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Noncontact Measurement of Autonomic Nervous
System Activities Based on Heart Rate Variability

Using Ultra-Wideband Array Radar
Takuya Sakamoto , Senior Member, IEEE, and Kosuke Yamashita

Abstract—The noncontact measurement of vital signs using
ultra-wideband radar has been attracting increasing attention be-
cause it can unobtrusively provide information about the physical
and mental condition of people. In particular, the continuous mea-
surement of a person’s time-varying instantaneous heart rate can
estimate the activity level of the autonomic nervous system without
the person wearing any sensors. Continuous heart rate measure-
ment using radar is, however, a difficult task because accuracy is
compromised by numerous factors, such as the posture and motion
of the target person. In this study, we introduce techniques for
increasing the accuracy and reliability of the noncontact measure-
ment of heart rate variability. We demonstrate the performance of
the proposed techniques by applying them to radar measurement
data from a sleeping person, and we also compare its accuracy with
electrocardiogram data.

Index Terms—Array signal processing, biomedical monitoring,
physiology, radar measurements, sensor systems and applications.

I. INTRODUCTION

THE importance of heart rate variability (HRV) has been
widely recognized in healthcare and medical applications.

Pagani et al. [1] and Malliani et al. [2] conducted pioneering
studies in this field, and suggested the use of the low-frequency
(LF)/high-frequency (HF) ratio of HRV, which is the power ratio
of the LF (0.04–0.15 Hz) to the HF (0.15–0.4 Hz) components of
the HRV time series, as a convenient marker for sympathetic and
vagal activity balance. This implies that sympathovagal interac-
tion modulates cardiovascular function, and thus, early signs
of various illnesses, such as diabetes, hypertension, congestive
heart failure, and ischemic heart disease, can be detected using
the LF/HF ratio measurement [2], whose details are reviewed
in [3].
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The advantage of using the LF/HF ratio is that it is an easy and
non-invasive measurement, yet sufficiently informative to detect
various clinical signs. Because of this advantage, numerous
studies have been published in this field, with most studies
based on contact sensors, such as electrocardiography (ECG)
and photoplethysmography [4]–[8]. These studies focused on
various aspects of HRV: Stanley et al. proposed a statistical
model [4], Mateo and Laguna proposed a signal processing
technique [5], Garcia-Gonzalez and Pallas-Areny proposed a
new HRV index [6], and Leor-Librach et al. [7] proposed a
mathematical model of the LF HRV. Sarkar and Koehler [8]
reported on HRV as a marker of heart failure.

Studies on the LF/HF ratio have also been conducted for
sleep monitoring [9]–[11]. Ako et al. [9] studied the relationship
between HRV and electroencephalogram (EEG) recordings, and
found that deep sleep suppresses sympathetic nervous activities,
which is indicated by a decrease in the LF of HRV, which can
be used in psychiatric disorder research. Knorr et al. [10] and
Mellman et al. [11] studied respiration, ECG, EEG, electromyo-
graphy, and electrooculography during sleep for injured patients.
They found that, during rapid eye movement (REM) sleep, the
LF/HF ratio is higher for a group that is developing posttraumatic
stress disorder (PTSD) than a control group of injured patients
without PTSD. Kishi et al. [12] studied the characteristic sleep
stage transition of chronic fatigue syndrome patients.

Limitations of the LF/HF ratio have also been reported:
Milicević [13] found that sympathovagal balance could not be
accurately measured using the LF/HF ratio for cardiac patients,
and Billman [14] indicated various issues regarding the use of
the LF/HF ratio including its ambiguity. The ambiguity issue
was addressed by Rosenberg et al. [15] and two-dimensional
LF and HF scatter diagrams were proposed instead of the LF/HF
ratio for discriminating various nerve activity balances. Based
on these careful studies, HRV has been increasingly used in
a wide range of applications [16]–[18]. Zhu et al. [16] used
HRV to detect autonomic nervous system dysfunction related to
cardiac mortality. Nardelli et al. [17] proposed an HRV-based
emotion estimation technique. Tobón et al. [18] proposed a
signal processing technique for the accurate estimation of HRV
using ECG signals.

Recently, a number of studies have been published on
noncontact heart rate and HRV measurement using a radar
system instead of conventional contact sensors [19]–[23]. Hu
et al. [19] reported an accurate signal processing technique
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for the noncontact measurement of heart rate using radar.
Nagae and Mase [20] estimated HRV using radar data based
on a template-based method and maximum entropy algorithm.
Nostrati and Tavassolian [21] measured HRV using 2.4-GHz
radar with an error of 2%. Mogi and Ohtsuki [22] proposed a
radar-based HRV estimation method using the Viterbi algorithm.
Li and Lin [23] proposed a method to estimate heart rate based
on the wavelet transform and achieved an error of 3.5%. These
radar-based noncontact measurement techniques have also
been applied to sleep monitoring [24]–[28]. Baboli et al. [24]
integrated 2.4-GHz radar with a commercial sleep monitoring
system. Lin et al. [25] proposed a radar-based noncontact sleep
monitoring system using manually selected signal features.
Zhang et al. [26], Chung et al. [27], and Hong et al. [28] used
machine learning algorithms including a deep neural network
to classify sleep stages and REM and non-REM sleep.

As explained above, a number of studies have been reported
in this active field. Despite this, an accurate signal processing
technique for the noncontact measurement of HRV and the
LF/HF ratio has not yet been established. In particular, the quan-
titative measurement of the LF/HF ratio during sleep would be
of practical significance, but many recent studies in radar-based
noncontact sleep monitoring have focused on the classification
of sleep stages. In this paper, we introduce two techniques to
improve accuracy in the measurement of the LF/HF ratio using
an ultra-wideband (UWB) millimeter-wave (MMW) multiple-
input multiple-output (MIMO) array radar system. First, we
introduce the maximum ratio combining (MRC) technique,
which is an adaptive array processing technique, to improve the
signal-to-noise ratio (S/N) of the radar echo. Next, we introduce
a reliability index that is the total power of HRV to detect accu-
racy deterioration. Using the reliability index, we selectively
use accurate, continuous HRV estimates to obtain a reliable
LF/HF ratio, which would be impossible without the technique
introduced in this paper. We verify the effectiveness of these
techniques by comparing them with the reference HRV obtained
using ECG. By integrating these techniques, the LF/HF ratio
of a sleeping person is successfully measured in a noncontact
manner using a radar system. Preliminary results of this study
were presented in [29]. The difference between [29] and the
present paper is that the present paper introduces a reliability
index to exclude inaccurate heartbeat estimates, as explained
in Section IV-B.

II. SYSTEM MODEL AND MEASUREMENT SETUP

In this study, we use a UWB MMW MIMO radar system with
a center frequency of 60.5 GHz and bandwidth of 1.25 GHz,
which corresponds to a range resolution of 12.0 cm. The system
is MIMO array radar that comprises two transmitting and four
receiving elements, which results in an 8-channel radar system.
Fig. 1 shows a photograph of the radar system and Table I shows
its major parameters. Two transmitting elements (Tx1 and Tx2)
are vertically arrayed, whereas four receiving elements (Rx1,
Rx2, Rx3, and Rx4) are horizontally arrayed, as shown in Fig. 1.
The array elements are open-ended waveguide antennas, and
they are all vertically polarized. A MIMO array system with

Fig. 1. Ultrawideband MIMO array radar system used in this study.

TABLE I
RADAR PARAMETERS

Fig. 2. Measurement setup and a participant in a bed. The cabinet contained
an infrared camera and ultra-wideband MIMO array radar. An ECG device was
attached to the participant’s chest.

NT transmit and NR receive elements can increase the S/N by
a factor of the number of channels NTNR. Because our system
has NTNR = 8 channels, an S/N gain of 9 dB can be expected
in an ideal case. Generally, by increasing the number of MIMO
channels, a larger S/N gain can be expected, which enables the
accurate vital measurement of a person located far from the radar
antennas.

Fig. 2 shows the actual measurement setup with a participant.
An infrared video camera and the radar system were both in-
stalled in a cabinet. Additionally, an ECG device was attached
to the chest of the participant during the measurement, which
was used as a reference for the heart rate.

We performed measurements overnight so that we could
monitor unconscious body movement and heart rate during
sleep. Snapshots of the infrared video footage are presented in
Fig. 3 (t = 100, 173, and 188 s for the top, middle, and bottom
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Fig. 3. Video capture images of the sleeping participant rolling over in scenario
A. Images were captured at t = 100, 173, and 188 s for the top, middle, and
bottom photographs, respectively.

photographs, respectively), which shows body motion, including
rolling over, and limb motion, both performed unconsciously.

III. RADAR AND MIMO SIGNAL PROCESSING

A. Measurement of Physiological Displacement

Because millimeter waves can penetrate clothing and blan-
kets, radar systems can measure the skin displacement of a
person who is dressed and asleep in a bed. The received sig-
nal is down-converted to the intermediate frequency band and
quadrature-demodulated to obtain in-phase (I) and quadrature
(Q) signals, which results in a complex-valued signal. If there is
only a single echo reflected off a single target located at distance
d(t) = d0 +Δd(t) from the antennas, then a complex-valued
signal for slow time t and fast time τ is approximately expressed
as

s(t, τ) = Ap{τ − 2d0/c− 2Δd(t)/c}
· exp [jk {τ − 2d0/c− 2Δd(t)/c}] , (1)

where A is the amplitude and p(τ) is the pulse envelope
waveform that includes the effect of frequency-dependent scat-
tering, propagation, antennas, amplifiers, and filters. If a tar-
get echo is detected approximately at fast time τ = 2d0/c,
then the time-dependent slight displacement component Δd(t)
can be measured from the phase of s(t, 2d0/c) because the
time-dependent displacement is much smaller than d0, that
is, |Δd(t)| � d0, and Δd(t) does not significantly affect en-
velope p(τ − 2d0/c− 2Δd(t)/c) � p(τ − 2d0/c). Therefore,
signal phase ∠s(t, τ) is converted to a displacement as Δd(t) �
λ∠s(t, τ)/4π and processed to estimate the heart rate of the
person under test. When there is only a single dominant echo,

received signal srec is written as srec(t, τ) = s(t, τ) + u(τ) +
n(t, τ), where u is static clutter and n is noise. Next, a cir-
cle fitting technique is used [30] to reject static clutter. Hu’s
method [19] is one of the most accurate circle fitting meth-
ods [30]. Hu’s method estimates static clutter u by solving
an optimization problem u = argminu′ ε(u′), where ε(u′) =∑L

i=1(|srec(ti)− u′| −A0(u
′))2, τ is omitted for simplicity,

L is the number of data samples, and A0(u
′) is determined

by A0(u
′)2 =

∑L
i=1 |srec(ti)− u′|2/L. Static clutter is then

subtracted to obtain clutter-free signal s0 = srec − u. Finally,
phase ∠s0(t, τ) is processed using the topology method [31],
which is one of the most accurate algorithms, to estimate the
heart interbeat interval (IBI) h(t), which is the reciprocal of
the instantaneous heart rate. In the topology method, six types
of features are extracted from phase waveform ∠s0(t, τ), and
the heartbeat IBI is accurately estimated using the topological
similarity of the feature sequence patterns of the waveform [31].

B. MIMO Array Radar Signal Processing

During the measurement, the participant was asleep in a bed
and prone to unconscious movement, such as rolling over, which
resulted in the body position varying over time. Because of
the changing position, we formed the array beam pattern using
adaptive array signal processing with the MIMO system so that
a high S/N was maintained throughout the measurement. The
MIMO array antenna consisted of two transmitting and four
receiving elements, and 2× 4 = 8 channels were obtained in
total. We used the MRC technique, which is an adaptive array
signal processing algorithm in the field of telecommunications,
because the technique maximizes the output power even when
the element phases are not calibrated.

The received 8-channel signals are denoted by signal vector
s(t) = [s1,1, s1,2, . . . , s2,4]

T, where superscript T is a transpose
operator and si,j is the signal for the i-th transmitting and j-th
receiving elements. The correlation matrix is expressed as

Rss = 〈s(t)sH(t)〉

�
∫

s(t)sH(t)dt, (2)

where superscript H is a complex-conjugate transpose opera-
tor and 〈〉 is an expectation operator achieved using ensemble
averaging, which can be approximated using the time average.

By applying the eigenvalue decomposition of Rss, we obtain

Rss = [v1v2 · · ·vN ]diag{σ1, σ2, . . . , σN}[v1v2 · · ·vN ]H,
(3)

where σ1, σ2, . . . , σN are eigenvalues sorted in descending
order, and eigenvector vi (i = 1, . . . , N) corresponds to the
i-th eigenvalue σi. The dimension of the vectors is denoted
by N = 8. The MRC technique uses the first eigenvector v1

as weight vector w = v1 and obtains output signal s(t) as
s(t) = wHs(t) = vH

1 s(t), where the eigenvectors and weight
vector are normalized, that is, |vi|2 = 1 for i = 1, 2, . . . , N and
|w|2 = 1. If only a single echo is received, the MRC technique
provides a weight that maximizes the S/N, which corresponds
to the matched filter.
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IV. HEART RATE VARIABILITY AND RELIABILITY

A. Heart Rate Variability and Nervous Systems

Activity in the autonomic nervous system can be estimated
from the time-dependent heart rate called HRV. Therefore, men-
tal stress, for example, can be inferred from the measurement
of HRV. When the sympathetic nervous system, which is as-
sociated with mental stress, is activated, the LF component
(f1 ≤ f ≤ f2) increases, whereas the activation of the parasym-
pathetic nervous system is identified by the intensity of the HF
component (f2 ≤ f ≤ f3), where f1 = 0.04 Hz, f2 = 0.15 Hz,
and f3 = 0.4 Hz. Therefore, mental stress can be detected using
LF/HF ratio ρ expressed as

ρ(t) =

∫ f2
f1

SHR(t, f)df∫ f3
f2

SHR(t, f)df
, (4)

where SHR(t, f) is a spectrogram of HRV expressed as a func-
tion of slow time t and frequency f . LF/HF ratio ρ(t) is widely
used as an index that indicates the autonomic nervous system
balance.

B. Heart Rate Variability and Reliability

As mentioned in the previous section, the frequency analysis
of HRV reveals the mental state of the person under test. To
obtain a frequency spectrum, however, we require an HRV time
series that is continuously accurate over a time period that is
greater than the reciprocal of the lower cut-off frequency of
the LF, 1/f1 = 25 s, which cannot always be satisfied in the
noncontact measurement of HRV. Therefore, it is necessary to
automatically estimate the reliability of the measured HRV.

In this section, we propose using the total power of non-direct-
current (non-DC) components of the HRV time series. This
technique is based on a hypothesis, which is that the reliable
HRV time series has a moderate non-DC component, which is
formulated as

UHR =

√∫ f4

f1

SHR(f)df, (5)

where UHR(t) is an unreliability index. The lower-cutoff fre-
quency f1 = 0.04 Hz is the same as the lower-cutoff frequency
f1 of the LF. The higher-cutoff frequency f4 = 2.48 Hz is the
Nyquist frequency determined by the sampling frequency. If f1
is set too low, then physiologically meaningless components
are included in the results, whereas if f1 is set too high, then
physiologically important HRV is erroneously excluded. Large
UHR suggests that the estimated HRV is unlikely to be accurate.
The reciprocal of UHR is also introduced as RHR = 1/UHR,
which denotes a reliability index.

These reliability and unreliability indices are defined as fol-
lows: Generally, we can observe HRV because of the activ-
ity level of the sympathetic/parasympathetic nervous systems.
However, there is a physiological limitation to actual heart rate
change over time. Excessive change in heart rate is considered
to indicate the incorrect measurement of heart rate; an incorrect
heart rate would look like random white noise that is uniformly

Fig. 4. Signal intensity for a slow time and range for scenario A.

distributed over a wide frequency band, which is detected and
converted to RHR and UHR introduced above.

V. PERFORMANCE EVALUATION OF THE PROPOSED

TECHNIQUES

A. Measurement Scenarios

We evaluated the performance of the proposed techniques by
applying them to two scenarios: A and B. The measurement
time of each scenario was 200 s. In scenario A, the participant
remained stationary for t < 160 s, and started to move and roll
over at t � 160 s and t � 170 s (see Fig. 4). In scenario B, the
participant remained stationary except for 65 s< t < 85 s. Fig. 4
shows signal intensity |s(t, τ)|2 as a function of slow time t and
range r = cτ/2 for scenario A. We observe that the echo from
the participant remained at almost the same range around r =
1.1 m until the body movement that occurred at t = 160 s. We
also observe a time-varying echo caused by body motion for
160 s < t < 180 s. The weaker echo at around r � 3.2 m was
caused by the reflection from the wall.

B. Evaluation of MIMO Array Signal Processing

Next, we evaluated the performance of the MRC array signal
processing that was introduced in Section III. The upper graph
of Fig. 5 shows the S/N for scenario A as a function of slow
time t. The red, yellow, and purple lines show the maximum,
minimum, and average S/N, respectively, whereas the blue line
shows the S/N of the combined multi-channel signal s(t) using
the MRC technique. From this figure, we observe that the MRC
improved the S/N by 8 dB from the average, and 6 dB from the
best single channel. This result suggests that the MRC is effective
for improving the S/N, which is necessary for measuring slight
skin displacement caused by the heartbeat.

The lower graph in Fig. 5 shows the heart rate sequences
estimated using the ECG (black line), a single radar channel
with the maximum power (red circles), and the multiple radar
channels combined using the MRC (blue plots). The root-mean-
square (RMS) error in measuring the heartbeat IBI was 182 ms
using the best single channel and 148 ms using multiple channels
combined using the MRC technique, which resulted in an 18%
improvement. Please note that the RMS errors were calculated
from the entire time period of 200 s. This result suggests the
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Fig. 5. S/N of the maximum, minimum, and average single channels and all
multiple channels combined using MRC (upper figure) and the IBI measured
using the ECG and the maximum-power single channel and multiple channels
combined using MRC (lower figure).

Fig. 6. Spectrogram of the IBI measured using ECG for scenario A.

Fig. 7. Spectrogram of the IBI measured using radar for scenario A.

effectiveness of the MRC technique in improving the heart
rate measurement accuracy. However, the accuracy significantly
degraded for t > 160 s because of body motion.

C. Evaluation of the Reliability Index

We investigate the performance of the proposed reliability
index. Figs. 6 and 7 show spectrograms of IBIs measured using
the ECG and radar for scenario A. We observe a similarity

Fig. 8. RMS error in estimating the IBI (black line) and the proposed reliability
index RHR(t) (red line) for scenario A. The RMS error is relatively small when
RHR(t) is large.

Fig. 9. Heartbeat IBI measured using ECG (black line) and radar (blue circles)
using the proposed method (scenario A). The IBI plots are displayed only if the
reliability index is higher than threshold RHR(t) > Rth.

between these spectrograms for 90 s < t < 160 s before signif-
icant body movement starts at t = 160 s. By contrast, when the
participant is in motion (t ≥ 160 s), we observe a nonnegligible
discrepancy between the two spectrograms. During body mo-
tion, the intensity of the non-DC component of the radar-based
IBI spectrogram increases over a wide frequency range, which
is exploited as a reliability index in the proposed approach.

Fig. 8 shows a time variation of the RMS error ev(t) and
reliability RHR(t), where ev(t) is calculated as

ev(t) =

√∑I
i=1 w(ti − t)|hr(ti)− hE(ti)|2∑I

i=1 w(ti − t)
, (6)

where I is the number of IBI samples, hr and hE are heartbeat
IBIs estimated using the radar and ECG, respectively, and w(·)
is a Tukey window with a length of 12.8 s and taper parameter
of 0.7. From this figure, we observe that RHR(t) is low for t ≥
90 s and 160 s ≥ t, which is consistent with the time when the
RMS error is also large. The large RMS error is the reason for
the discrepancy between Figs. 6 and 7. We confirmed that there
is a positive correlation between the RMS error and unreliability
indexUHR = 1/RHR with a correlation coefficient of 0.88. This
result indicates that reliability index RHR(t) is a good indicator
of accuracy for the measurement of the heartbeat. Fig. 9 shows
the IBIs measured using radar (blue circles) and ECG (black
line), where the radar IBI is not displayed if the reliability is
lower than a threshold (RHR(t) < Rth), where Rth = 12.5 Hz.
As shown in the figure, almost all low-accuracy IBI plots were
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Fig. 10. RMS error in estimating the IBI (black line) and the proposed
reliability index RHR(t) (red line) for scenario B. The RMS error is small
when RHR(t) is large.

Fig. 11. Heartbeat IBI measured using ECG (black line) and radar (blue
circles) using the proposed method (scenario B). The IBI plots are displayed
only if the reliability index is high RHR(t) > Rth.

removed successfully. Thus, the proposed reliability index is
effective for distinguishing reliable and unreliable IBI estimates.

The use of the reliability index achieved an RMS error of
23.4 ms (Fig. 9), where RMS error e was calculated using IBI
samples whose reliability was greater than the threshold as

e =

√∑I
i=1 H(RHR(ti)−Rth)|hr(ti)− hE(ti)|2∑I

i=1 H(RHR(ti)−Rth)
, (7)

where H(·) is a unit step function. The original RMS error
was 148 ms (Fig. 5), which suggests an improvement of 6.3
times. Although several IBI estimate points disappeared, which
resulted in a great deal of missing data, the measurement of the
LF/HF ratio requires accurate IBI estimates rather than a large
number of data points that include unreliable estimates.

Next, the same techniques were applied to scenario B. Reli-
ability index RHR(t) and the RMS error are shown in Fig. 10.
Except for t � 100 s, the reliability was low, which is consistent
with the large RMS error. In scenario B, the correlation coeffi-
cient between unreliability index UHR = 1/RHR and the RMS
was 0.80, which is not as high as that in scenario A. Despite this,
the reliability index provides useful information for interpreting
the IBI values measured using radar.

Fig. 11 shows the IBI measured using the ECG (black line)
and radar (blue circles), where the radar estimates are displayed
only if the reliability index is larger than a threshold (RHR(t) >
Rth), where Rth = 12.5 Hz. Although an accurate heart rate
was measured using radar only for a short time, the accuracy

Fig. 12. Mental stress index ρ(t) for scenario A.

Fig. 13. Mental stress index ρ(t) for scenario B.

is sufficient. In this case, the RMS error using the proposed
reliability index was 28.3 ms. Compared with the original RMS
error of 205.0 ms without using the reliability index, the accuracy
improved by 7.2 times using the proposed reliability index.

D. Estimation of the LF/HF Ratio

In this section, we investigate whether ECG and radar mea-
surements can provide a consistent LF/HF ratio. Fig. 12 shows
the LF/HF ratio calculated from ECG data (red line) and also
from radar data (black line) in scenario A, where the solid and
dashed black lines indicate the estimates for the reliability index
higher and lower than threshold RHR(t) < Rth (Rth = 12.5
Hz), respectively. In the figure, we observe that the estimates
from ECG and radar are consistent when the reliability is high,
whereas there is a discrepancy between them when the relia-
bility is low, which indicates the effectiveness of the proposed
reliability index. The original correlation coefficient between
the estimates from the ECG and radar was 0.38, whereas the
correlation coefficient was 0.87 only when the reliability was
above the threshold, which means that the proposed reliability
index increased the correlation coefficient.

Fig. 13 shows the same comparison for scenario B. In this
case, the reliability is larger than the threshold within a limited
time, where the radar-based estimate is a solid black line. The
correlation coefficient between the ECG and radar estimates was
0.89 without the reliability index and 0.99 with the reliability

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



214 IEEE JOURNAL OF ELECTROMAGNETICS, RF, AND MICROWAVES IN MEDICINE AND BIOLOGY, VOL. 4, NO. 3, SEPTEMBER 2020

index. These results indicate the importance of the proposed
reliability index in measuring the LF/HF ratio using a radar
system.

VI. DISCUSSION

A. Selection of the Frequency Band

An operating frequency band is one of the most important
parameters in radar-based heartbeat monitoring. For exam-
ple, many recent studies use low-frequency CW radar at 2.4–
2.5 GHz [21], [28], [32]–[34], 4.8 GHz [33], and 5.8 GHz [23],
[35]–[36], and sub-MMW CW at 24 GHz [37]–[38], whereas
some use UWB radar at 4.2 GHz [39]–[41], 6.8 GHz [42],
15 GHz [43], 24 GHz [36], 77 GHz [44], and 122 GHz [45].

In this study, we used a UWB radar system with a bandwidth
of 1.25 GHz, which corresponds to a high range resolution of
12.0 cm, which can distinguish most echoes from body parts, in
addition to other clutter, thus enabling the accurate measurement
of the heartbeat. Because of radio spectrum allocation regula-
tion, however, the use of UWB radar is allowed only in specific
frequency bands (e.g., 24, 60, 77, and 79 GHz). In particular,
MMW bands 60, 77, and 79 GHz are sensitive to a small
displacement, and thus, can measure the heartbeat accurately.
Additionally, unlike 77 and 79 GHz bands, 60-GHz systems
suffer relatively less interference from automotive radar systems.
For these reasons, we selected the 60 GHz band in our study.
Despite this, the proposed techniques in the present paper can be
applied equally well to lower-frequency UWB radar, provided
the system’s phase jitter is small. Note that low-frequency array
radar systems are physically large and bulky, which can be
disadvantageous in practice.

B. Selection of the Reliability Threshold

In this study, reliability thresholdRth = 12.5 Hz was selected
empirically. If threshold Rth is to be optimized for a specific
target person, then the value depends on the physiological char-
acteristics of that person. If the target person’s natural heart rate
fluctuation is large, then threshold Rth should be also set to a
large value to avoid mislabeling. If the same threshold valueRth

is to be used for multiple people, then the value should be set
based on the average heart rate fluctuation across the subjects of
a clinical study.

In this study, only one participant and two three-minute data
were used to evaluate the proposed algorithm. The next step of
this study requires the measurement of a large number of partici-
pants so that the effectiveness of the proposed techniques can be
evaluated statistically. Such a large-scale measurement would
also help to tune important parameters, such as the reliability
threshold, that were set empirically in this study.

VII. CONCLUSION

In this paper, we introduced techniques necessary for the
accurate noncontact measurement of the heartbeat during sleep
using ultra-wideband array radar. First, we introduced a MIMO
signal processing technique to improve the S/N, which was
demonstrated to be able to improve the accuracy in estimating the

IBI. We then proposed a reliability index, which is the reciprocal
of the intensity of the non-DC component of the IBI time series.
The index was demonstrated to be effective for detecting unre-
liable IBI estimates from radar data. The techniques introduced
in the present paper are key technology for applying radar-based
noncontact vital measurement to sleep monitoring and assessing
the LF/HF ratio, which is an index of autonomic nervous system
activities.
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