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P H Y S I C S

Energy redistribution and spatiotemporal  
evolution of correlations after a sudden quench 
of the Bose-Hubbard model
Yosuke Takasu1*, Tomoya Yagami1, Hiroto Asaka1, Yoshiaki Fukushima1,  
Kazuma Nagao2,3,4, Shimpei Goto5, Ippei Danshita5, Yoshiro Takahashi1

An optical lattice quantum simulator is an ideal experimental platform to investigate nonequilibrium dynamics of 
a quantum many-body system, which is, in general, hard to simulate with classical computers. Here, we use our 
quantum simulator of the Bose-Hubbard model to study dynamics far from equilibrium after a quantum quench. 
We successfully confirm the energy conservation law in the one- and three-dimensional systems and extract the 
propagation velocity of the single-particle correlation in the one- and two-dimensional systems. We corroborate 
the validity of our quantum simulator through quantitative comparisons between the experiments and the exact 
numerical calculations in one dimension. In the computationally hard cases of two or three dimensions, by using 
the quantum-simulation results as references, we examine the performance of a numerical method, namely, the 
truncated Wigner approximation, revealing its usefulness and limitation. This work constitutes an exemplary case 
for the usage of analog quantum simulators.

INTRODUCTION
Rapid advances in analog quantum simulation using highly con-
trollable systems with long coherence time, such as ultracold gases 
in optical lattices [for example, see (1, 2)], Rydberg atoms in an 
optical tweezer array [for example, see (3–5)], and trapped ions [for 
example, see (6, 7)], have notably expanded possibilities for study-
ing dynamics of quantum many-body systems. One of the recent 
targets of optical lattice quantum simulators has been the investiga-
tion of the nonequilibrium dynamics arising after a quantum 
quench (8–17), where a parameter of the system is varied rapidly and 
substantially. In the case of one dimension (1D) for a short time 
scale, quantum quench dynamics can be exactly computed with 
classical computers by means of the matrix product state (MPS) 
method [for example, see (18, 19)]. In pioneering works of quantum-
simulation research, the outputs of experiments were directly 
compared with those of exact numerical simulations with classical 
computers to examine the performance of the quantum simulators 
(10–12).

A two-point spatial correlation as a function of the distance of 
the two points has been the intense theoretical interest (20–30), and 
in fact, in 1D systems, it has been shown that access to such a cor-
relation function allows for exploring the dynamical spreading of 
quantum information, which is of great interest in connection with 
the Lieb-Robinson (LR) bound (11, 31). An exact computation of 
the spatiotemporal evolution of these two-point correlations is, 
however, generally intractable for a long time scale or in higher 
dimensions. While a more recent work has used outputs from 
a quantum simulator built with ultracold fermions in a Floquet-

engineered optical lattice in 3D as a reference for examining the 
performance of an approximate numerical method, namely, the 
nonequilibrium dynamical mean-field theory (32), a direct compar-
ison with quantitative theoretical approaches in the quench dynamics 
in higher dimensions is still lacking.

Here, we investigate the energy redistribution dynamics and the 
spatiotemporal evolution of the single-particle correlation function, 
which is one of the simplest two-point spatial correlations, in quan-
tum quench dynamics starting with a Mott insulating state by using 
an optical lattice quantum simulator of the Bose-Hubbard model 
(BHM) in 2D and 3D as well as 1D. The observation of the redistri-
bution of the kinetic and interaction energies turns out to be the 
confirmation of the energy conservation in the quench dynamics of 
a Bose-Hubbard quantum simulator. Furthermore, we successfully 
observe the correlation spreading after a rapid quench from a Mott 
insulating state toward the quantum critical region in 2D as well as 
toward the Mott region in 1D. We compare the measured propaga-
tion velocity of the correlation front, which is defined from the first 
peak in the time evolution of the correlation function at each dis-
tance, with the LR-like bound set by the maximum velocity of the 
quasiparticles. In the 2D case, we find that the former velocity 
exceeds the latter one. This happens because the single-particle cor-
relation spreads with two typical velocities, namely, the group 
velocity and the phase velocity, as was pointed out in the recent 
theoretical work (30), and the measured velocity corresponds to the 
phase one. Since the first peak propagating with the phase velocity 
decays rapidly with the distance, our observation is not contradicting 
the existence of the LR bound implying that any correlation func-
tions outside the LR light cone must be exponentially suppressed.

In addition to these experimental findings, to corroborate the 
quantitative performance of our quantum simulator, we present a 
thorough comparison between the quantum-simulation results and 
state-of-the-art theoretical calculations. We use the exact MPS 
method in the 1D case, finding excellent agreement with the obser-
vations. As for the case of the quench toward a deep superfluid 
region in 3D, the time evolution of the kinetic and interaction energies 
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is directly compared with numerical results obtained using the 
truncated Wigner approximation (TWA) on the basis of the Gross-
Pitaevskii mean-field theory (29). The good agreement between the 
experiment and the theory establishes the predictive power of the 
TWA for this type of quench. In contrast, in the case of the quench 
toward the quantum critical region in 2D, the TWA fails to capture 
quantitatively the experimental results, although it captures some 
qualitative features. This indicates that our quantum simulation goes 
beyond current classical computation and the data serve as a useful 
reference for pushing out its boundary.

RESULTS
Investigating nonequilibrium dynamics of the BHM
We consider a system of ultracold bosonic atoms confined in an 
optical lattice. When an optical lattice potential is deep, the system 
is quantitatively described by the BHM (33, 34)

	​​   ℋ​  =  − J​ ​ 
〈j,l〉

​​(​​   a ​​j​ †​ ​​   a ​​ l​​ + h . c . ) +  ​ U ─ 2 ​ ​​ 
j
​ ​ ​​   a ​​j​ †​ ​​   a ​​j​ †​ ​​   a ​​ j​​ ​​   a ​​ j​​ + ​​ 

j
​ ​(​V​ j​​ −  ) ​​   a ​​j​ †​ ​​   a ​​ j​​​	 (1)

where ​​​   a ​​j​ †​​ and ​​​   a ​​ j​​​ are the creation and annihilation operators at the 
site j, J is the tunneling-matrix element between nearest-neighbor 
sites, U is the on-site interaction energy,  is the chemical potential, 
and Vj is the local potential offset at the site j, which originates from 
the trap potential and the Gaussian envelopes of optical lattice 
lasers. 〈j, l〉 represents the summation over all neighboring sites. 
The position of the site j is denoted by ​​r​ j​​  = ​ Σ​α=1​ D  ​ ​x​j​ α​ ​e​ α​​​, where x1, x2, 
and x3 mean x, y, and z, respectively. e represents the unit vector in 
the x-direction, and D is the spatial dimension.

When the atom number per site, namely, the filling factor ​​n  ̄​​, is an 
integer and the ratio U/J is varied, the BHM exhibits a second-order quan-
tum phase transition between the Mott insulator and the superfluid. 
The system favors the superfluid phase for a relatively small U/J, 
while it does the Mott insulator phase for a relatively large U/J. For 
the unit filling case (​​n ̄ ​  =  1​), the quantum critical point has been 
determined with exact numerical methods as (U/J)c= 3.4 (1D), 16.7 
(2D), and 29.3 (3D), respectively [for review, see (35)].

Our analog quantum simulator of the BHM is built with an 
ultracold Bose gas of 174Yb atoms confined in a 3D optical lattice. 
We use this 174Yb-atom-BHM quantum simulator to analyze dy-
namics after a quench of the ratio U/J starting with a Mott insulator 
state with unit filling. We convert a 174Yb Bose-Einstein condensate 
(BEC) in a weakly confining harmonic trap into the initial Mott in-
sulator state by slowly ramping up the optical lattice depth up to s ≡ 
V0/ER = 15 for all the three directions, where V0 is the depth of the 
optical lattice and ER is the recoil energy of the optical lattice laser 
whose wavelength is 532 nm. See Methods for the preparation. The 
prepared state is deep in a Mott insulator regime (U/J = 100) and is 
well approximated as a product of local Fock states

	​ ∣ ​ ​ MI​​ 〉  = ​ ∏ 
j
​ ​​ ​​    a ​​j​ †​  ∣  0〉​	 (2)

To realize a quench of U/J, we rapidly ramp down the lattice 
depth for some directions toward a final value. For instance, in the 
case of the 1D quench, we ramp down the lattice depth only for the 
x direction while in the 3D case, we do it for all the three directions. 
The ramp-down speed is set to be 100 ER/ms. By using the band-
mapping techniques, we check that there is no discernible amount 
of the atoms in excited bands with this quench speed. We use the 

numerical values of U and J calculated as functions of lattice depth 
reported in (35) (see section S1).

After the quench process, we keep the lattice depth constant and 
let the system evolve. To obtain the single-particle correlation func-
tion at a certain distance ​𝚫  = ​ Σ​α=1​ D  ​ ​e​ α​​ ​​ ​x​​ α​​​​, where x ≥ 0, in the unit 
of a lattice spacing d (=266 nm) (36)

	​​ K​ 𝚫​​  = ​  Σ​ 
α=1

​ 
D

  ​​  Σ​ 
∣​x​j​ α​−​x​l​ 

α​∣=d​Δ​ ​x​​ α​​​
​​〈 ​​   a ​​j​ †​ ​​   a ​​ l​​ 〉​	 (3)

after a certain hold time, we release the gas from the trapping and 
optical lattice potentials to measure the time-of-flight (TOF) image, 
from which we deduce the momentum distribution (see Methods 
for details). By performing a Fourier transform of the momentum 
distribution, we obtain K. The kinetic energy of the BHM is equal 
to the sum of −JK at  = 1, where  = ∣ ∣ (36).

Moreover, we measure the onsite-interaction energy of the BHM, 
​​U _ 2 ​ ​​ j​​ 〈 ​​   a ​​j​ †​ ​​   a ​​j​ †​ ​​   a ​​ j​​ ​​   a ​​ j​​ 〉​, by means of the atom number projection spectros-
copy (36, 37) for the 3D case and photoassociation spectroscopy 
(38) for the 1D case where we confirm that there are almost no mul-
tiple occupancies larger than two (see Methods for details). Compared 
to the methods based on the quantum gas microscope techniques (11), 
our methods are rather efficient, especially in higher dimensions, 
for our current purposes of obtaining the ensemble average of the 
two-point correlation functions and the Hubbard energies, because 
less repetitions are needed thanks to the much larger number of atoms.

The experimental procedure and setup and typical high-resolution 
spectra are summarized in sections S1 and S2. It is worth noting 
that the dynamical evolution of the phase correlation, which is sim-
ilar to the single-particle correlation, has been measured for weakly 
interacting Bose gases in 1D optical lattices by means of Talbot in-
terferometry in (39). In contrast, the present work investigates the 
single-particle correlation in strongly correlated regimes in higher 
dimensions.

Experimental confirmation of our methods: Dynamics 
of the 1D BHM after a sudden quench
First, we investigate the behaviors of atoms after a sudden quench in 
1D. The results for the dynamical redistribution of the Hubbard 
energies and the spatiotemporal evolution of the atom correlations 
are shown in Figs. 1 and 2, respectively. Specifically, we ramp the 
lattice depth in the x direction down to s = 5 implying U/J = 6.8, 
where the ground state is a Mott insulator state close to the quantum 
critical point. Figure 1 shows the time evolution of the kinetic energy, 
the onsite-interaction energy, and the sum of the two energies. On 
a short time scale, while the sum of the two remains almost con-
stant, the kinetic energy decreases and the interaction energy in-
creases. After making a small overshoot, each energy ends up with 
an almost steady value, i.e., the energies are redistributed. These 
behaviors are expected for an isolated system but have never been 
observed experimentally before.

Figure 2 (A to D) shows the time evolution of the single-particle 
correlation function for several values of . As the time evolves, the 
correlations first grow and each of them has the first (local) maxi-
mum at a certain time. We extract the peak time for each  by 
numerically fitting to the experimental data, which is plotted against 
 in Fig. 2G. The peak time increases linearly with the distance, i.e., 
the correlation exhibits a light-cone-like propagation. From the 
peak time versus , we extract the propagation velocity as v = 
5.5(7)Jd/ℏ.
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The maximum velocity of a particle-hole excitation is given as 
(11, 21)

	​​​ v​ max​​ ≃ ​  6Jd ​√ 
_

 D ​ ─ ℏ ​​ [​​1 − ​ 16 ​J​​ 2​ ─ 
9 ​U​​ 2​

 ​​]​​​​	 (4)

which can be interpreted as an LR-like bound. It is noted that vmax 
corresponds to the sum of the maximum velocities of the doublon 
and the holon, which are respectively given by ​4Jd ​√ 

_
 D ​ / ℏ​ and ​2Jd ​

√ 
_

 D ​ / ℏ​ in the leading order with respect to J/U. As long as U/J ≫ 1, 
Eq. 4 is valid regardless of the spatial dimension. At U/J = 6.8, vmax = 
5.8Jd/ℏ such that the condition v < vmax is satisfied, as expected. A 
similar propagation behavior has been also observed in the case of 
the density-density correlation (11). In contrast, we will see later 
that v > vmax in the 2D case. We will explain that this observation is 
still compatible with the LR-like bound.

While these observations reveal important features of the non-
equilibrium dynamics of BHM, this 1D study is also important 
from another aspect. Since our BHM quantum simulator is analog, 
it is imperative to examine its accuracy through a direct comparison 
with exact numerical calculations in 1D before applying it to the 
cases of higher dimensions, in which exact computation on classical 
computers is currently unavailable. In Figs. 1 and 2, we compare the 
experimental results in 1D with the exact numerical ones at zero 
temperature obtained with the MPS method. For details of the MPS 
calculations, see section S4. We see that the experimental observa-
tions are in good agreement with the exact numerical calculations 
with no fitting parameters.

Dynamics of BHM after a sudden quench in  
higher dimensions
Having corroborated the quantitative validity of our BHM quan-
tum simulator by the comparison between the theory and experi-
ment in 1D, we now discuss the main result of this work, i.e., the 
quench dynamics in higher dimensions. Figure 3 shows the energy 
redistribution dynamics for the 3D case after the ramp-down of the 
lattice depth to s = 5 (U/J = 3.4), where the ground state is deep in 
the superfluid phase. The general tendency of the time evolution is 
similar to the 1D case: The two energies are redistributed on a time 
scale smaller than ℏ/J and the sum of the two remains almost con-
stant within the displayed time window t ≲ ℏ/J.

We next investigate the dynamical spreading of the single-particle 
correlation after a quantum quench in 2D. The final lattice depth in 
this case is s = 9 implying U/J = 19.6, where the ground state is a 
Mott insulator phase near the quantum critical point. Figure 4 
(A to D) shows the spatial distribution of the single-particle correla-
tion at several hold times after a quench. We clearly observe that the 
correlation first grows between nearest-neighbor sites and then it 
propagates for larger distances at later times. More directly, Fig. 4 
(E to G) shows the time evolution of the single-particle correlation 
function Kx, y for several values of (x, y), where x (y) denotes 
the distance in the x (y) direction in units of the lattice spacing d. 
The delay in the growth of the correlation for longer distance is 
clearly observed along the directions of x, y, and x + y, in Fig. 4 
(E, F, and G, respectively). In the same manner as the 1D case, we 
extract the position of the first peak in the time evolution of the 
correlation at each distance, which is plotted against the Euclidean 
distance ​​√ 

_
 ​​x​ 2​ + ​​y​ 2​ ​​ in Fig. 4H. We further extract the propagation 

velocities from the linear fitting to Fig. 4 (H and I) as v = 13.7(2.1)Jd/ℏ 
(peak) and v = 10.2(1.4)Jd/ℏ (trough). According to Eq. 3, the maximum 
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velocity of the particle-hole excitation is vmax = 8.4Jd/ℏ, which is 
slower than the observed propagation velocity in Fig. 4.

DISCUSSION AND OUTLOOK
The observation that v > vmax in the 2D case shown in Fig. 4 can be 
interpreted along the line explained in (30). The correlation spatially 
propagates as a wave packet, whose width spreads in time. This 
means that the velocity of the first peak in the time evolution of the 
correlation function at each distance, namely, the phase velocity, is 
faster than that of the center of the wave packet, namely, the group 
velocity. Moreover, the first peak decays rather rapidly as the dis-
tance becomes larger. The velocity extracted from the experimental 
data in the way described above corresponds to the phase velocity, 
while the meaningful propagation velocity, which should be com-
pared with the LR-like bound, does to the group velocity. In the case 
of the final lattice depth s = 9 in 2D, we cannot accurately extract the 
group velocity because of the unclear separation of the two veloci-
ties. Instead, In section S5, we show an example, in which the phase 
velocity is well separated from the group velocity in the 1D case 
with large U/J. There, we also see that v > vmax. Hence, the behavior 
that v > vmax is not unique to the 2D case but can emerge regardless 
of the spatial dimension as long as U/J after the quench is sufficiently 
large. Notice that we observed v < vmax in the case of the final lattice 
depth s = 5 (U/J = 6.8) in 1D because the phase velocity is approxi-
mately equal to the group velocity at U/J = 6.8 (30).

Next, we discuss the usefulness and limitation of some numeri-
cal methods based on the quantum simulation results. Since there is 
no exact computation method applicable to the 2D and 3D cases, it 
is meaningful to examine the accuracy of some approximate meth-
ods by using the quantum simulation results as a quantitative refer-
ence. In (32), the time-dependent dynamical mean-field theory has 
been examined by comparison with quantum simulation results for 
real-time dynamics of the Fermi-Hubbard model. This method is 
not suited for computing the nonlocal spatial correlations analyzed 
in the present work because it ignores the momentum dependence 
of the correlation functions. Instead, we choose the TWA approxi-
mation, which is supposed to accurately capture semiclassical 
dynamics of the BHM at least on a short time scale [see (29) and 
references therein]. In Fig. 3, where the energy redistribution dy-
namics in 3D is depicted, we also show the numerical calculations 

as solid lines obtained with the TWA (29). In the TWA calculations, 
we take the Mott insulator state of Eq. 2 as the initial state and set 
the system size to be 303 sites. We ignore the trapping potential be-
cause it is irrelevant to the dynamics within the time window t ≲ ℏ/J 
as was discussed in the 1D case. The TWA results are in good agree-
ment with the experimental observations. More details of the TWA 
calculations are described in (29).

Let us turn our attention to the correlation spreading in 2D 
shown in Fig. 4. The solid lines in Fig. 4 (E to G) represent the results 
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Fig. 4. Spatiotemporal evolution of the single-particle correlation after the 
quench in 2D. (A to D) 2D plots of the single-particle correlation as functions of the 
distances x and y for several hold times of tJ/ℏ = 0 (A), 0.12 (B), 0.23 (C), and 0.35 
(D). Data with ​​√ 

_
 ​​x​ 2​ + ​​y​ 2​ ​  ≤  4​ are shown. Note that the displayed correlations are 

normalized by the maximum value of the correlation ​​C​max,​ (2D)  ​​ during 0 < t < 1.0ℏ/J for 
each distance (x, y). (E to G) Time evolution of the single-particle correlation K 
after the quench for (x, y) = (1,0) [(E), red square], (2,0) [(E), green circle], (3,0) [(E), 
yellow diamond], (0,1) [(F), red square], (0,2) [(F), green circle], (0,3) [(F), yellow dia-
mond], (1,1) [(G), green circle], and (2,2) [(G), yellow diamond]. The solid lines are 
the numerical results obtained using the TWA method. The error bars denote the 
SE of 15 independent measurements. (H and I) Time at the first peak (H) or the first 
trough (I) of the single-particle correlation as a function of the Euclidean distance 
​Δ  =  ​√ 

_
 ​Δ​x​ 2​ + ​Δ​y​ 2​ ​​. A fit with a linear function with a nonzero offset is shown as a solid 

line both in (H) and (I). The first peak and trough are obtained by fitting the exper-
imental data with the empirical function described in section S6. The error bars 
denote the fitting errors.
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obtained by using the TWA. The TWA agrees with the experiment 
on a very short time scale (t < 0.1ℏ/J). Moreover, the peak positions 
and the values at a relatively long time (t > 1ℏ/J) for a short distance, 
say  = 1, are reasonably captured. However, it fails to capture some 
important properties of the correlation dynamics, such as the loca-
tions of the correlation troughs and the almost converged value of 
the correlation for  > 1. This disagreement is consistent with the 
general fact that the TWA is less accurate when ​U / (D​n ̄ ​J)​ or tJ/ℏ is 
larger. This failure of the TWA indicates that one needs to push out 
the boundary of currently available numerical techniques for quan-
titative description of the quantum simulation results. One possible 
candidate is to extend the SU(N) TWA (40, 41) for analyzing the 
BHM with unit filling.

In both of the 1D and 2D quench cases, we observed that the peaks 
propagated linearly with a constant velocity (see Figs. 2G and 4, H 
and  I). However, extrapolations to t = 0 have nonzero offsets. In 
addition, our numerical results also support the existence of the offsets. 
The offsets reflect the difference between the speed for the creation 
of a particle-hole pair and that for its propagation. The former 
speed determines the time giving the first peak at  = 1, while the 
latter does those at  > 1. It is noted that the dependence of the 
propagation velocity on distance in the case of the 1D quench was 
already numerically discussed in (11).

Our quantum simulation platform for studying nonequilibrium 
dynamics can be straightforwardly applied to other quantum many-
body systems such as the Fermi-Hubbard model [with SU(N) 
symmetry (42, 43)], the Bose-Fermi Hubbard model, and the spin-
ful BHM. In addition, it is interesting to extend our work to a study 
of quench dynamics on a quantum system with controlled dissipa-
tion, which has recently attracted much interest (44).

METHODS
Preparation of the initial Fock state
Details of our experimental setup are described in (36). We first 
prepare a BEC of 174Yb atoms confined in an optical far-off resonant 
trap (FORT) whose wavelength is 532 nm. The trap frequencies of 
the FORT are given by (x′, y′, z) = 2 × (28,130,160) Hz, where 
the x′ and y′ axes were tilted from the x and y axes, to which two of the 
optical lattices are directed, by 45∘. Then, we slowly ramp up the 
optical lattice depth for all the three directions from s = 0 to 5 in 100 ms 
and from 5 to 15 in another 100 ms. A typical number of atoms is 
chosen to be N = 1.3 × 104 such that the filling factor is unity.

Lattice quench
We perform the quench by sudden decrease of the optical lattice 
with depth of s ER in 0.01(15 − s) ms. See also section S1. The exci-
tation of the atoms into higher bands is negligible with this proce-
dure. For the cases of the 1D and 2D quench, we decrease the lattice 
depth along the one direction of x and two directions of x and y, 
respectively. It is to be noted that when lattice depth is 10.6 ER, U/J 
is equal to 29.34, which is the critical lattice depth for the superfluid-
Mott transition at ​​n ̄ ​ =  1​.

Measurement of the ensemble average of the nonlocal  
atom correlation
Here, we briefly describe a method for obtaining the ensemble aver-
age of the nonlocal atom correlation K of Eq. 3. Details are described 
in (36). The atomic-density distribution n(r) after the TOF t is given by

	​ n(r ) = ​​(​​ ​ m ─ ℏt ​​)​​​​ 
3
​ ​∣ ​​    w ​​ 0​​(k ) ∣​​ 2​ S(k)​	 (5)

where ​​​ ~ w ​​ 0​​(k)​ is the Fourier transformation of the Wannier function 
in the lowest Bloch band w0(r) and k = mr/ℏt.

When t is long enough, the structure factor S(k) is expressed as

	​ S(k ) = ​Σ​ 
j,l

​ ​ ​e​​ ik·(​r​ j​​−​r​ l​​)​ 〈 ​​   a ​​j​ †​ ​​   a ​​ l​​ 〉​	 (6)

where 〈 · 〉 represents the ensemble average. Therefore, the ensemble 
average of the nonlocal atom correlation K can be easily obtained 
by Fourier transformation. For real experiments, two factors should 
be taken into account: an interaction effect and the finite-TOF 
effect.

A careful estimation of our experimental conditions (36) shows 
that the ratio of the interaction energy Un(n − 1)/2 to the kinetic 
energy ℏL is mostly far lower than 1, justifying our ignorance of 
the interaction effect during TOF. The finite-TOF effect is small but 
not negligible so that we determined the nonlocal atom correlation 
by extrapolation based on the theoretical model described in (36).

Measurement of ensemble average of the interaction energy
To measure the ensemble average of the interaction energy ​(1 / 2 ) U ​
​ i​​ 〈 ​​   a ​​i​ 

†​ ​​   a ​​i​ 
†​ ​​   a ​​ i​​ ​​   a ​​ i​​ 〉​ = ​(1 / 2 ) U ​​ i​​ 〈 ​​   n ​​ i​​(​​   n ​​ i​​ − 1 ) 〉​, a method for projecting the 

distribution of the atom number per site on an observable, 
namely, the atom number projection method, is required. Details 
are described in (36). First, we increase the optical lattice depth 
quickly to freeze the hopping of atoms. The ramp-up time is smaller 
than the hopping time but large enough to prevent the atoms from 
being excited into the higher band of the optical lattice. For exam-
ple, the ramp-up time is 0.1 ms from 5ER to 15ER.

Subsequently, we perform a site-occupancy-resolved spectros-
copy. We use two methods: the high-resolution spectroscopy using 
the optical transition between the 1S0 and 3P2 (mJ = 0) electronic 
states of Yb atoms and the photoassociation spectroscopy. The ex-
cellent resolution of the spectroscopy using the 1S0 and 3P2 (mJ = 0) 
transition allows us to distinguish different site occupancies, owing 
to quite different two-body interactions of Ueg/h = −8.5  kHz and 
Ugg/h = 3.2 kHz at 15ER. From the area of the spectra, we obtain the 
total number Nn of n-occupied sites. The interaction energy is ob-
tained as U = (1/2)nNnn(n − 1). The correlation factors induced by 
occupancy-dependent Rabi frequencies and a loss of atoms in the 
3P2 (mJ = 0) state during the spectroscopy were studied in our pre-
vious work (36).

Another method that we use is the photoassociation, which is a 
process to create one molecule from two atoms by light. The created 
molecule rapidly escapes from the trap so that we can measure the 
total number of doubly occupied sites as the loss of the atoms. It is 
noted that the method is invalid in the case of triple and higher oc-
cupancies. For example, photoassociation in a triply occupied site 
induces only two-atom loss and one atom remains, which is the 
same result as the case of a doubly occupied site, concerning the loss 
of atoms.

In our experiment, we use the high-resolution spectroscopy 
using the optical transition between the 1S0 and 3P2 (mJ = 0) for the 
3D quench experiment. In contrast, we use the photoassociation for 
the 1D quench experiment, where we additionally check the absence 
of triply occupied sites or higher by means of the high-resolution 
spectroscopy.
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