

JRC TECHNICAL REPORT

Selection of substances for the 3rd Watch List under the Water Framework Directive

Livia Gomez Cortes, Dimitar Marinov, Isabella Sanseverino, Anna Navarro Cuenca, Magdalena Niegowska, Elena Porcel Rodriguez, and Teresa Lettieri

2020

Joint Research Centre

EUR 30297 EN

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Europtan to other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Contact information

Name: Teresa Lettieri Address: Via E. Fermi, 2749, 21027 Ispra (VA), Italy Email: <u>teresa.lettieri@ec.europa.eu</u> Tel.: 00390332789868

EU Science Hub

https://ec.europa.eu/jrc

JRC121346

EUR 30297 EN

PDF	ISBN 978-92-76-19426-2	ISSN 1831-9424	doi:10.2760/194067
Print	ISBN 978-92-76-19425-5	ISSN 1018-5593	doi:10.2760/240926

Luxembourg: Publications Office of the European Union, 2020

The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (<u>https://creativecommons.org/licenses/by/4.0/</u>). This means that reuse is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders.

All content © European Union, 2020

How to cite this report: Livia Gomez Cortes, Dimitar Marinov, Isabella Sanseverino, Anna Navarro Cuenca, Magdalena Niegowska, Elena Porcel Rodriguez and Teresa Lettieri, *Selection of substances for the 3rd Watch List under the Water Framework Directive*, EUR 30297 EN, Luxembourg: Publications Office of the European Union, 2020, ISBN 978-92-76-19426-2, doi:10.2760/194067, JRC121346.

Contents

Ex	ecut	tive sum	mary	4
1	Int	roductior	۹	7
2	Pro	ocess for	selecting candidate substances for the Watch List (WL)	8
	2.1	. Source	es of information and databases for hazard properties and analytical methods	8
		2.1.1	Hazard information	8
		2.1.2	Analytical methods	11
3	Ca	ndidate s	substances identified which should be monitored in sediment or biota	12
	3.1	. Criteri	a for selecting substances for sediment and biota monitoring	12
	3.2	2 List of	f substances to be monitored in sediment or biota	12
	3.3	8 Ration	nale for the selection	16
		2-Ethylł	nexyl 4-methoxycinnamate (EHMC, sunscreen agent)	16
		Group o	f pyrethroids (bifenthrin, permethrin, deltamethrin and esfenvalerate)	16
4	Se	lection of	f new substances for the Watch List (WL)	18
	4.1	. Criteri	a for identification of candidate substances for WL update	18
	4.2	2 List of	f substances fulfilling the criteria	19
	4.3	8 Ration	nale for the selection	33
		Industria	al products	33
		Pharma	ceuticals	36
		Plant pr	otection products and biocides	42
	4.4	l Other	substances proposed as candidates for the next Watch List (WL)	45
5	Со	nclusions	5	53
Re	fere	ences		56
Lis	t of	abbrevia	ations and definitions	61
Lis	t of	figures		63
Lis	t of	tables .		64
Su	pple	ementary	/ information	65
An Fra	nex ame	I: Outcor work Dir	me of the workshop "Analytical methods for substances in the Watch List under the Wate rective" held at the JRC (Ispra, Italy) in October 2018	r 66
An	nex	II: Hazar	rd properties, available monitoring data, RQ, and STE scores	68
An	nex	III: Facts	heets	85
	Bif	enthrin (CAS N. 82657-04-3)	86
	Ch 29	romium (-9) and ((CAS N. 7440-47-3): chromium trioxide, other Cr (VI) compounds (CAS N. 1333-82-0; 185 Cr (III) (CAS N. 16065-83-1, 1308-38-9)	40- 94
	Clo	otrimazol	le (CAS N. 23593-75-1)	. 103
	Суа	anide-Fre	ee (CAS N. 57-12-5)/ Hydrogen Cyanide (CAS N. 74-90-8)	. 107
	De	ltamethr	in (CAS N. 52918-63-5)	. 117
	Dir	noxystro	bin (CAS N. 149961-52-4)	. 125

2-Ethylhexyl-4-methoxycinnamate, EHMC (CAS N. 5466-77-3)/2-Ethylhexyl trans 4-methoxycinnamate (CAS N. 83834-59-7)
Epoxiconazole (CAS N. 133855-98-8, 135319-73-2, formerly 106325-08-0)
Esfenvalerate (CAS N. 66230-04-4)
Famoxadone (CAS N.131807-57-3)149
Fluconazole (CAS N. 86386-73-4)154
Imazalil (enilconazole) (CAS N. 35554-44-0)158
Ipconazole (CAS N. 125225-28-7)
Metconazole (CAS N. 125116-23-6)
Miconazole (CAS N. 22916-47-8)
Norethisterone (CAS N. 68-22-4)
Omeprazole (CAS N. 73590-58-6) and its metabolite 4-hydroxy omeprazole sulphide (CAS N. 103876-98- 8)
Penconazole (CAS N. 66246-88-6)
Permethrin (CAS N. 52645-53-1)
Prochloraz (CAS N. 67747-09-5)
Propiconazole (CAS N. 60207-90-1)
Sulfamethoxazole (CAS N. 723-46-6)
Tebuconazole (CAS N. 107534-96-3)
Tetraconazole (CAS N. 112281-77-3)
Trimethoprim (CAS N. 738-70-5)
Venlafaxine (CAS N. 93413-69-5)

Acknowledgements

We thank Helen Clayton (DG ENV) for her comments and suggestions. We are grateful to William H. Gaze (ECEHH) and to Caroline Whalley and other European Environment Agency (EEA) colleagues for providing helpful information on antibiotics. We acknowledge Robert Loos and Elisabetta Canuti (JRC) for providing information and advice on analytical methods and Sandrine Andres (INERIS) for information on PNEC values. We also acknowledge the receipt of useful information from DG SANTE colleagues. We thank Ramón Pérez de Lara for the cover image. Last but not least, we thank all the experts from Member State, European Free Trade Association (EFTA) countries and stakeholder groups who have provided information and helpful comments.

Authors

Livia Gomez Cortes Dimitar Marinov Isabella Sanseverino Anna Navarro Cuenca Magdalena Niegowska Elena Porcel Rodriguez Teresa Lettieri

Executive summary

The 1st Watch List (WL) was established by the Commission Implementing Decision (EU) 2015/495¹ in March 2015. The list was updated in June 2018 by the Commission Implementing Decision (EU) 2018/840². During that update, the Commission concluded that the substances diclofenac, oxadiazon, 2,6-di-tert-butyl-4-methylphenol, tri-allate and 2-ethylhexyl-4-methoxycinnamate should be removed from the WL, while the insecticide metaflumizone and the antibiotics amoxicillin and ciprofloxacin should be included (EU 2018/840²).

The period of continuous monitoring for any WL substance should not exceed four years (Article 8b in Directive 2008/105/EC³ as amended by Directive 2013/39/EU⁴). Thus, by the end of the 4th reporting year for the WL (2019) the substances in the 1st WL should have been removed and a maximum of 12 substances or groups of substances may be listed in the 3rd WL. However, the three substances included during the first WL update (EU 2018/840²) should be carried over to the 3rd WL to ensure that enough high-quality monitoring data are collected for their risk assessment.

The purpose of this report is to propose candidate substances for the 3rd WL.

Three pillars of information were used to select the candidate substances (Chapter 2). The first pillar is the outcome of the last prioritisation exercise^{5,6}, the second includes the outcome of the review of the 1st WL and recommendations for the 2nd WL⁷, and the third is based on a literature search and/or other sources, for instance information from Member States (MS) for emerging substances.

The overall selection process, including the rationale for each substance selected, is described in Chapters 3 and 4. Accordingly, **five criteria for the identification of candidate WL substances**, as discussed and adopted in the first revision of the WL⁷, were used by the JRC (Chapter 4).

Briefly, to prioritise substances for inclusion in the WL, the relevant matrix and stability of the substance (i.e. potential degradation products) were considered. The preferred monitoring matrix for candidate substances was decided according to their partitioning coefficient (log K_{ow}). Substances with log K_{ow} > 5 should preferably be measured in sediments, or suspended particulate matter (SPM), those with a log K_{ow} < 3 should be monitored preferably in water, while for substances with a log K_{ow} between 3 and 5, the choice of sediment or SPM is optional depending on the degree of contamination. Biota monitoring is also recommended for substances with the potential to accumulate through food chains and thus expose top predators via their diet⁸.

Crucial criteria for the selection were the availability of a reliable Predicted No Effect Concentration (PNEC) to estimate the safety threshold and adequately sensitive analytical methods for monitoring in the appropriate environmental matrix. Although the PNEC is based on toxicity data, other hazard properties were taken into account for the selection, i.e. persistence, bioaccumulation, carcinogenicity, mutagenicity, toxicity to reproduction, endocrine disruption and potential contribution to antimicrobial resistance (AMR).

The Table S1 lists the **candidate substances fulfilling the criteria for selection and identified by the JRC as most suitable for inclusion in the next WL**. The table shows for each substance, the group/class they belong to, name, use and matrix (environmental compartment) in which the substance should be monitored.

Table S1: A list of candidate substances, fulfilling the selection criteria and identified by the JRC as most suitable for inclusion in the next WL. The table shows for candidate substances the group/class, name, use and matrix (environmental compartment) where to be monitored. PPP: Plant Protection Product

Group	Name	Use	Matrix
	EHMC (2-Ethylexyl 4- methoxycinnamate)	UV filter	Sediment/SPM

Pyrethroids	Bifenthrin, Deltamethrin, Esfenvalerate, Permethrin	PPP and Biocide	Sediment/Biota/Water
Industrial products	Chromium (VI) and Chromium (III)	Industrial chemical	Preferable in coastal/transitional water (as total Cr in dissolved fraction)
	Free cyanide	Industrial product Inorganic biocide	Water Inland (preferable) and coastal waters (in dissolved fraction)
Anti-Microbial pharmaceuticals	Sulfamethoxazole, Trimethoprim	Antibiotic	Water (inland whole water)
	Clotrimazole, Fluconazole, Miconazole	Antifungal	
Other pharmaceuticals	Norethisterone	Synthetic hormone	Water (inland whole water)
	Venlafaxine and O-desmethylvenlafaxine	Antidepressant	
PPP and biocides (azole compounds)	Imazalil, Ipconazole, Metconazole, Penconazole, Prochloraz, Tetraconazole, Tebuconazole ^a	PPP Biocides	Water (inland whole water)
	Dimoxystrobin	РРР	Water (inland whole water)
	Famoxadone	РРР	Water (inland whole water)

However, in the following rounds of consultation, the sunscreen agent 2-Ethylexyl 4-methoxycinnamate (EHMC), the group of pyrethroids, free cyanide, chromium and the pharmaceutical norethisterone were removed from the list. The reasons for not including the pyrethroids or EHMC were the matrix and the analytical method, i.e. sediment monitoring was not considered suitable by all MS and water monitoring to reach very low limits of quantification (required for the pyrethroids) appears not to be possible in all MS. Chromium was not selected because it is already monitored by several MS as a river basin specific pollutant (RBSP). Free cyanide should be reconsidered when the analytical method has been more widely adopted and natural backgrounds have been better investigated/quantified. Norethisterone was removed because further investigation was needed, and because it could be analysed together with the pharmaceutical levonorgestrel in a future list, once more information is available for the latter.

In conclusion, the proposed substances are the two antibiotics, sulfamethoxazole and trimethoprim, which are often prescribed together, ten azole fungicides, three used as pharmaceuticals (clotrimazole, fluconazole and miconazole) and the others widely used as Plant Protection Products (PPP) (imazalil, ipconazole, metconazole,

^a Propiconazole and Epoxiconazole were also included originally but their use in the EU as PPPs has not been re-approved, and only propiconazole is still approved for use as a biocidal product, until March 2021.

penconazole, prochloraz, tetraconazole, tebuconazole), the antidepressant venlafaxine and its metabolite Odesmethylvenlafaxine, and two pesticides extensively used as fungicides, famoxadone and dimoxystrobin.

1 Introduction

The surface water Watch List (WL) under the Water Framework Directive (WFD) is a mechanism for obtaining high-quality Union-wide monitoring data on emerging pollutants and substances that may pose a significant risk at Union level to or via the aquatic environment, but for which available monitoring data are insufficient to draw conclusions on the actual risk posed. According to the amended Environmental Quality Standards (EQS) Directive (Article 8b³), the WL should be updated every 2 years. When updating the WL, the Commission should remove any substance for which a risk-based assessment can be concluded without additional monitoring data. New substances or groups of substances can be added to the WL during each update. The maximum number of substances or groups of substances that the Commission is allowed to include in the list increases by one at each update to a maximum of 14 substances or groups of substances. The duration of a continuous WL monitoring period for any individual substance may not exceed four years.

The first WL was established by Commission Implementing Decision (EU) 2015/495 in March 2015¹ and replaced in June 2018 by the list in Commission Implementing Decision (EU) 2018/840². During that update, the Commission concluded that the substances diclofenac, oxadiazon, 2,6-di-tert-butyl-4-methylphenol, triallate and 2-ethylhexyl-4-methoxycinnamate should be removed from the WL, while the insecticide metaflumizone and the antibiotics amoxicillin and ciprofloxacin were identified as suitable candidates and then included (EU 2018/840²). As the continuous WL monitoring period for any individual substance may not exceed four years, after the current WL update the substances from the 1st WL should be removed and a maximum of 12 substances or groups of substances can be listed in the 3rd WL. However, the three substances included during the first WL update (EU 2018/840²) should be carried over to the 3rd WL to ensure that enough high-quality monitoring data are collected for their risk assessment.

The purpose of the present report is to propose candidate substances to be included in the new WL.

The report is structured as follows:

Chapter 2 Process for selecting candidate substances for the WL. This chapter describes the overall process for selecting candidate substances for the WL. Section 2.1 provides a description of the sources of information and databases for ecotoxicology data and hazard properties. Section 2.2 provides a description of the sources of information and databases for analytical methods.

Chapter 3 Substances selected during the previous review of the WL to be monitored in sediment or biota. Section 3.1 describes the criteria for selecting substances for sediment/suspended particulate matter (SPM)/biota monitoring. Section 3.2 presents the list of substances proposed for sediment monitoring. It also provides available PNEC values and analytical methods. Section 3.3 describes the rationale for the selection.

Chapter 4 Selection of new candidate substances for the third WL. Section 4.1 describes the criteria followed for the selection of candidates for the 3rd WL. Section 4.2 presents the list of substances fulfilling the criteria and provides available PNEC values and analytical methods. Section 4.3 explains the rationale for the selection.

Chapter 5 Conclusions. This chapter describes the conclusions and the recommendations for the next WL.

The report also includes annexes and factsheets that show all supportive information:

Annex I: Outcome of the workshop "Analytical methods for substances in the Watch List under the Water Framework Directive" (JRC-Ispra, Italy, October 2018).

Annex II: Tables summarising the hazard properties, and showing the available monitoring data, risk quotients and STE scores of the candidate substances.

Annex III: Factsheets for the candidate substances.

2 Process for selecting candidate substances for the Watch List (WL)

To select the substances, three pillars as sources of information were considered (Figure 1). One pillar is the priority substances prioritisation exercise^{5,6}, the second is the outcome of the review of the 1st WL and recommendations for the 3rd WL⁷, and the third is literature search and other information⁹. The criteria shown in each box are described in Chapter 4. In the dashed box above the first pillar, there are grouped substances, i.e. the pyrethroids and sunscreen ingredient (2-ethylhexyl 4-methoxycinnamate (EHMC)), that are described separately (see Chapter 3) because they were already identified as potential candidates to be measured in sediment⁷ or suspended particulate matter (SPM) (EHMC) or sediment, biota or water (pyrethroids).

Figure 1. Overall process for the selection of candidate substances for the Watch List (WL). SPM= suspended particulate matter.

2.1 Sources of information and databases for hazard properties and analytical methods

A search for information on exposure to each substance in the aquatic environment was carried out. For the freshwater compartment, environmental quality standards (EQS) or predicted no-effect concentration (PNEC) values have been collected or derived considering toxicity effects to aquatic freshwater organisms (PNEC_{fw,eco}). For highly hydrophobic substances, the EQS or PNEC values were also considered for sediment organisms (PNEC_{eco,sed}). EQS or PNEC values should protect freshwater and marine ecosystems from possible adverse effects of chemicals.

Hazard properties such as Persistence (P), Bioaccumulation (B), Toxicity (T), Carcinogenicity (C), Mutagenicity (M), Reproductive Toxicity (R) and Endocrine Disruption (ED), substances' type of usage and status were also investigated.

2.1.1 Hazard information

Hazard information was collected from different sources (Table 1) for all the potential candidates.

First, EQS were collected from reports or online databases (see Table 1). Second, PNEC values were collected, with a particular focus on the substances where no EQS value was available. Furthermore, PNEC values were searched for in the literature, with preference given to those used already in European monitoring campaigns or prioritisation exercises.

Third, PNECs were collected from European Chemicals Agency (ECHA) dossiers (http://echa.europa.eu/) and European Food Safety Authority (EFSA) risk assessment reports (http://www.efsa.europa.eu/), when available.

Fourth, for pharmaceuticals, the Swedish FASS database (https://www.fass.se) was considered. In the case of antimicrobials, PNEC values were retrieved from the antimicrobial resistance (AMR) industry alliance list.

Fifth, literature was screened, particularly studies following the technical guidance document (TGD)-EQS (2018)⁸ for their PNEC derivation.

Finally, for those substances where information was not available from any of the sources listed above, PNECs were derived by the JRC using studies that were considered reliable or reliable with restrictions according to the TGD-EQS (2018)⁸.

Then, information about the PBT properties was retrieved from ECHA (industrial chemicals, pharmaceuticals and biocides) or EFSA (plant protection products, PPP), while Fass (SE) and Janusinfo, Stockholm County Council was the source for human pharmaceuticals. Carcinogenicity (C), Mutagenicity (M) and Reproductive Toxicity (R) are in accordance with Globally Harmonised System (GHS) categories from ECHA dossiers. For EDs the Endocrine Disruptor Strategy (EDS) database and categorisation of the European Commission was used (EDS database, EC). Information retrieved from TDEX (the endocrine disruption exchange) as well as from research projects and peer reviewed articles was also considered for evaluating the ED properties of the substances. Concerning PPP if EFSA dossiers were available, CMR scores were set accordingly.

ECHA's Annex III inventory was used to identify substances for which there was indication of concern and their hazard properties were reported as described in the inventory.

Table 1: Sources for EQS/PNEC values and hazard information.

Source	Description
AgriTox ANSES FR 2019	Plant protection products
	http://www.agritox.anses.fr/php/data-criteria.php
AMR Industry alliance	Anti-Microbial pharmaceuticals
	https://www.amrindustryalliance.org/wp- content/uploads/2018/09/AMR_Industry_Alliance_List-of-Predicted-No-Effect- Concentrations-PNECs.pdf
ЕСНА	All substances
	https://echa.europa.eu/home
ECOSAR	Pharmaceuticals
	https://www.epa.gov/tsca-screening-tools/ecological-structure-activity- relationships-ecosar-predictive-model
EDS database, EC	All substances
	https://ec.europa.eu/environment/chemicals/endocrine/strategy/substances_en.htm
TDEX the endocrine disruption exchange	All substances
	https://endocrinedisruption.org/
Swiss ECOTOX centre	All substances
	https://www.ecotoxcentre.ch/expert-service/quality-standards/proposals-for- acute-and-chronic-quality-standards/
ECOTOX Database US EPA	All substances
	https://cfpub.epa.gov/ecotox/search.cfm
EFSA	All substances
	http://dar.efsa.europa.eu/dar-web/provision
EU Pesticides database	Plant protection products
	https://ec.europa.eu/food/plant/pesticides/eu-pesticides- database/public/?event=activesubstance.selection&language=EN
FASS	Pharmaceuticals
	https://www.fass.se/LIF/startpage
INERIS	All substances
	https://substances.ineris.fr/fr/
Janusinfo, Stockholm County Council	Pharmaceuticals
	https://www.janusinfo.se/environment
JRC	All substances
OSPAR	All substances
Research articles and reports	All substances
RIVM	All substances
	https://www.rivm.nl/

2.1.2 Analytical methods

A literature review of available analytical methods was carried out for all the candidate substances (Table 2)

Source	Description
Companies	Plant protection products and industrial products
EFSA	Plant protection products http://www.efsa.europa.eu/en http://dar.efsa.europa.eu/dar-web/provision
Research articles and reports	All substances
USGS	Plant protection products and industrial products https://www.usgs.gov/
US EPA	Plant protection products https://www.epa.gov/

Table 2: Sources for analytical methods.

3 Candidate substances identified which should be monitored in sediment or biota

The first potential candidates for the 3rd Watch List (WL) were identified during the review of the 1st WL⁷.

3.1 Criteria for selecting substances for sediment and biota monitoring

In the previous WL report⁷, the JRC recommended sediment or biota as the preferred monitoring matrix for hydrophobic substances i.e. pyrethroid insecticides and 2-ethylhexyl 4-methoxycinnamate (EHMC) with high octanol/water partition coefficient values, the log K_{0W} .

Pyrethroids were shortlisted in the prioritisation exercise for priority substances, due to the high risk quotient (PEC/PNEC) calculated in the modelling-based exercise for three of them (bifenthrin, esfenvalerate and deltamethrin) and the high STE score for permethrin^{5.6}. Due to the lack of good monitoring data, the experts, involved in the exercise, proposed their inclusion in the next WL. The sunscreen ingredient EHMC was already in the WL, but most of the monitoring was performed in water despite the recommendation to monitor it in a most suitable matrix such as sediment. For the above reasons, the pyrethroids were recommended in 2018 as potential candidates for the 3rd WL to be measured in the most appropriate matrix (sediment or biota)⁷, but not included at that time because more time was needed to ensure the availability of appropriate monitoring methods.

The JRC promptly organised a workshop to bring together experts to share knowledge and protocols on methodologies to measure chemical substances in sediment. The workshop "Analytical methods for substances in the Watch List under the Water Framework Directive" was held at the JRC (Ispra, Italy) in October 2018. During the workshop, analytical methods to measure pyrethroids and EHMC in sediment were discussed. The outcome of the workshop is reported in Annex I. Briefly, the experts reached a general consensus on the definition of hydrophobicity of the analyte, as also recommended in the Water Framework Directive (WFD) CIS Guidance document No. 25 on sediment and biota monitoring (2010)¹⁰ and on sediment sampling, storage and extraction. For the hydrophobicity, the proposed rule of thumb also described in the JRC workshop report¹¹ is that compounds with log K_{OW} > 5 should preferably be measured in sediments, or suspended particulate matter (SPM), while compounds with a log K_{OW} < 3 should preferably be measured in water. Then, for compounds with a log K_{OW} < 5 should preferably be measured in water. Then, for compounds with a log K_{OW} < 5 should preferably be measured in water. Then, for compounds with a log K_{OW} < 5 should preferably be measured in water. Then, for compounds with a log K_{OW} < 5 should preferably be measured in water. Then, for compounds with a log K_{OW} > 5 should preferably be measured in water. Then, for compounds with a log K_{OW} > 5 should preferably be measured in water. Then, for compounds with a log K_{OW} between 3 and 5, either the sediment matrix or SPM may be used depending on the degree of contamination.

Moreover, for substances with potential to accumulate through food chains and thus expose top predators via their diet (log $K_{OW} > 3$, biomagnification factor (BMF) > 1 or bioconcentration factor (BCF) ≥ 100 and not readily biodegradable), biota monitoring is also recommended⁸.

3.2 List of substances to be monitored in sediment or biota

Table 3 shows the potential candidates for the next WL which should be monitored in sediment or biota. These substances were listed by the JRC in 2018⁷. For each substance, the table includes the group, name, uses, CAS number, PNEC value, analytical methods and status. The column on the right is dedicated to comments or other relevant information.

Table 3: Potential candidates for the 3rd WL which should be monitored in sediment. Abbreviations, dw: dry weight; ww: wet weight; lw: lipid weight; AF: assessment factor; EEA: European economic area; PNEC: predicted no effect concentration; LOQ: limit of quantification; MDL: method detection limit: PPP: plant protection product.

Group	Name	Use	CAS	PNEC water (µg/l) PNEC sediments (µg/kg dw) PNEC Biota (µg/kg ww)	Available Analytical Method (LOQ µg/l or µg/kg)	Status
	EHMC (2-Ethylexyl 4- methoxycinnamate) (2- Ethylexyl trans-4- methoxycinnamate)	UV-B filter present in sunscreens and cosmetics	5466-77-3 83834-59-7	water 6 (Carvalho et al., 2015) ¹² Sediments/SPM 200 dw (specific organism, <i>Melanoides</i> <i>tuberculata</i> , 28d, AF 10; JRC factsheet) ¹²	sediments HPLC-MS2 (0.0001 dw) (Mandaric et al., 2017) ¹³	Authorised
Pyrethroid insecticides	Bifenthrin	PPP Biocide ¹⁴	82657-04-3	water 0.00002 (JRC draft dossier, 2016) ¹⁵ sediments 0.4 dw (<i>Chironomus</i> <i>riparus</i> , AF 100; JRC draft dossier, 2016) ¹⁵ biota 586 (JRC derived, factsheet, 2020)	surface water GC-APCI-MS/MS (0.000025) (Rösch et al., 2019) ¹⁶ sediments GC-MS/MS (MDL 0.2) (USGS, 2007, 2009) ¹⁷⁻¹⁹ biota GC-MS/MS (0.10 to 1.54 lw) ¹⁴	NOT APPROVED as PPP app 01/08/2012 exp 31/07/2019 (2009/887/EC, Reg. (EU) 2017/195, Reg. (EU) 2018/291,Reg. (EU) 2019/324, Reg. (EU) No 582/2012). In progress for: AT, IT, SK APPROVED as BIOCIDE . This substance is approved for use as a biocide in the EEA and/or Switzerland for a wood preservation.

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method	Status
				PNEC sediments (µg/kg dw)	(LOQ µg/l or µg/kg)	
				PNEC Biota (µg/kg ww)		
	Deltamethrin	РРР	52918-63-5	water	surface water	APPROVED as PPP
		Biocide		0.00007 (JRC draft	GC-APCI-MS/MS	app 01/11/2003
					2019) ¹⁶	exp 31/10/2020
				standard AA-EQS. RIVM,	sediments	03/5/EC Reg. (EU) No 2018/1262 Reg. (EU) No 540/2011 Reg. (EU)
				sediments	GC-MS/MS (MDL 0.2 dw) (USGS, 2007, 2009) ¹⁷⁻¹⁹	No 823/2012 (Reg. (EU) 2016/950,Reg. (EU) 2017/1511).
				6.2 ww (Equilibrium partitioning, SE,	biota	Authorised in: AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE,
				assessment report, 2011)	GC-MS/MS (0.10 to 1.54 lw) ¹⁴	IT, LT, LU, LV, MT, NL, PL, PT, RO, SE, SI, SK, UK (28 MS)
				<i>riparus</i> , AF 100; JRC draft dossier, 2016) ¹⁵		APPROVED as BIOCIDE in the EEA and/or Switzerland for controlling insects and state
				biota		
				468 (JRC derived, factsheet, 2020)		prevention and treatment of external parasites in cattle and sheep. Active compound of medicated collars for prevention of ticks and mosquito bites in dogs.
	Esfenvalerate	РРР	66230-04-4	water	surface water	APPROVED as PPP
		Biocide		0.0001 (JRC draft dossier,	GC-APCI-MS/MS	app 01/01/2016
				2016 and NL legal	(0.000025) (Rösch et al., 2019) ¹⁶	exp 31/12/2022
				2008) ^{15,21}	sediments	00/67/EC Reg. (EU) 2015/2047 Reg. (EU) No 540/2011 (2010/77/EU, Reg. (EU) 2015/1885).
				1.25866 dw (Equilibrium partitioning; JRC draft dossier, 2016) ¹⁵	GC-MS/MS (MDL 0.2 dw) (USGS, 2007, 2009) ¹⁷⁻¹⁹ biota	Authorised in: AT, BE, BG, CY, CZ, DE, EL, ES, FI, FR, HR, HU, IE, IT, LU, NL, PL, PT, RO, SE, SK, UK (22 MS)
				biota		

Group	Name	Use	CAS	PNEC water (µg/l) PNEC sediments (µg/kg dw) PNEC Biota (µg/kg ww)	Available Analytical Method (LOQ µg/l or µg/kg)	Status
				1077 (JRC derived, factsheet, 2020)		BEING REVIEWED as BIOCIDE (ECHA)
	Permethrin	PPP Biocide	52645-53-1	water 0.00047 (JRC draft dossier, 2016) ¹⁵ 0.0002 (NL QS RIVM, 1997) ²² sediments 0.2 ww (specific organism, INERIS, 2011) 1 dw (<i>Chironomus riparus</i> , AF 100; JRC draft dossier, 2016) ¹⁵ biota 1954 (JRC derived, factsheet, 2020)	surface water GC-APCI-MS/MS (0.000125) (Rösch et al., 2019) ¹⁶ sediments GC-MS/MS (MDL 0.2 dw) (USGS, 2007, 2009) ¹⁷⁻¹⁹ biota GC-MS/MS (0.10 to 1.54 lw) ¹⁴	NOT APPROVED as PPP 00/817/EC In progress for: IT (1 MS). APPROVED as BIOCIDE This substance is approved for use as a biocide in the EEA and/or Switzerland, for wood preservation, controlling insects, ants, etc. APPROVED for VETERINARY and HUMAN use: treatment and prevention of external parasites infestations in dogs (caused by fleas and ticks) and as an insecticide against mosquitoes and repellent against sand flies. Permethrin is also used in humans as antiparasitic for the treatment of scabies

3.3 Rationale for the selection

2-Ethylhexyl 4-methoxycinnamate (EHMC, sunscreen agent)

2-ethylhexyl-4-methoxycinnamate (EHMC) is a UV-B absorber used worldwide in sunscreens and cosmetics. According to ECHA, EHMC is under assessment as persistent, bioaccumulative, toxic and potentially has endocrine disrupting properties (PBT list and ED list^a). The hazard properties of this substance are currently addressed within a Community Rolling Action Plan (CoRAP^b) process. Scientific based evidence would further suggest effects of EHMC on reproduction and thyroid hormonal balance in fish²³ as well as a possible role in DNA damage²⁴. Moreover, this substance was ranked with high Risk Quotient (RQ) in sediment matrix¹². For the above reason, it was included in the 1st WL but it was delisted in 2018, because, although monitoring in sediment or suspended particulate matter (SPM) had been recommended, the data reported were mainly from inland water. Indeed, the few sediment data reported to the JRC were not enough to carry out a risk evaluation for that matrix (see Annex II, Table 2.1). It was therefore decided to remove EHMC from the WL and to consider its re-inclusion in 2019/20 for sediment or SPM monitoring⁶. This would ensure the timely and cost-efficient development/validation of analytical methods (in particular by optimising sediment sampling) and sediment PNECs.

Since EHMC is not readily biodegradable, there is no risk of secondary poisoning of predators. According to the TGD-EQS (2018)⁸ in this case the derivation of quality standards (QS) for biota are not required. Thus, monitoring of this substance in biota is not recommended.

Conclusion: 2-ethylhexyl-4-methoxycinnamate (EHMC) is suitable for re-inclusion in the WL for monitoring in sediment or SPM.

Group of pyrethroids (bifenthrin, permethrin, deltamethrin and esfenvalerate)

The pyrethroids were identified as group of substances of high concern for aquatic organisms and indirectly for human health. These compounds are highly hydrophobic (log $K_{OW} > 5$) and more frequently detected in sediments²⁵ than in water. Moreover, these substances are not readily biodegradable, and there is evidences of bioaccumulation potential (BCF \ge 100) indicating a risk of secondary poisoning of predators. Thus, according to the TGD-EQS (2018)⁸, derivation of biota QS is required.

The pyrethroids were shortlisted in the prioritisation exercise^{5,6}. However, they were not included in the priority substances list due to the lack of good monitoring data for inland water or sediments (see Annex II, Table 2.1). The experts involved concluded that the pyrethroids should first be included in the WL.

Additional information for monitoring data, received from Member States (MS) after the working group (WG) Chemicals meeting (15-16 January 2020) is detailed in the factsheets of pyrethroids (Annex III).

Following that recommendation, during the first revision of the WL, the JRC proposed to include them when an adequate analytical method became available⁷. A new analytical method (LLE-GC-APCI-MS/MS) has been recently developed by the Swiss Federal Institute of Aquatic Science and Technology (Eawag¹⁶) for the detection of pyrethroids at low concentration (pg/l) in the water phase. On the other hand, there is also an available analytical method for monitoring pyrethroids in sediments using GC-MS/MS (MDL=0.2 μ g/kg) (USGS, 2009¹⁷⁻¹⁹) with a sufficient sensitivity. Besides, several methods are described in the literature for the analysis of pyrethroids in biota by using GC-MS/MS^{14,26}.

^a ECHA dossier: https://echa.europa.eu/es/substance-information/-/substanceinfo/100.157.824

^b CoRAP: https://echa.europa.eu/es/information-on-chemicals/evaluation/community-rolling-action-plan/corap-table//dislist/details/0b0236e1807eb946

Therefore, the JRC considers that the pyrethroids could now be included in the new WL.

Conclusion: The pyrethroids (bifenthrin, deltamethrin, esfenvalerate and permethrin) are suitable for inclusion in for the next WL as a group of substances to be monitored in sediment, the more appropriate matrix for hydrophobic substances with high log K_{OW} values. The JRC recommends sediment as preferred matrix but would allow the flexibility to the MS for measuring the pyrethroids in sediment, biota or water provided that the analytical method is sensitive enough (LOQ <PNEC).

4 Selection of new substances for the Watch List (WL)

This chapter describes a set of criteria for the identification of candidate substances to update the WL and presents a list of substances that fulfil the selection criteria.

4.1 Criteria for identification of candidate substances for WL update

The JRC proposes five criteria for the identification of new WL substances. The criteria proposed in the present report generally follow the approach described in the 1st and 2nd JRC WL reports^{7,12}. These criteria build on the monitoring and modelling-based exercises carried out by the JRC with the support of the SG-R^{5,6} for the review of the priority substances list. For more details on the methodologies, please see the summary available at the following link:

https://circabc.europa.eu/w/browse/0f6b893e-b0ab-46cb-a631-c3e1e55c7514.

Respecting the requirements of the environmental quality standard (EQS) Directive^{3,4}, the JRC is proposing the following **criteria** for identifying potential candidates for inclusion in the WL:

- 1. Substances that met the criteria for prioritisation previously but were not shortlisted because of few or lowquality monitoring data.
- 2. Substances shortlisted but with uncertainties for the monitoring data.
- 3. Substances considered in the modelling-based exercise⁶ for which:

a. the monitoring data met the criteria for the representativeness (number of Member States (MS), sites and samples) in Scenario 2 (Sc2)* but not in Scenario 3 (Sc3)**, and

b. in Sc2 the STE (Spatial, Temporal and Extent of predicted no-effect concentration (PNEC) exceedance^{5,7}) score was high and the modelled RQ was high;

and substances which went directly to the modelling stream (measured below 4 MS in Sc2 during the ongoing prioritisation) with modelled Risk Quotient (RQ) above 5 but not further selected because of lack of monitoring data.

- 4. Substances shortlisted, but not included in the 1st and 2nd WL because of limitations of monitoring methods available at the time:
 - 4.1) availability of analytical methods,
 - 4.2) reliability of the PNEC.
- 5. Substances of emerging concern identified based on research projects and articles, in line with the article 8b of Directive 2008/105/EC³ as amended by Directive 2013/39/EU⁴ (e.g. industrial products, pharmaceuticals, plant protection products and biocides).

**The Sc3 includes the quantified measurements and only the non-quantified samples where $\frac{1}{2}LOQ \le PNEC$, and it is considered as a more relevant data scenario for making a risk assessment^{5.7}

^{*}The data scenario Sc2 includes all quantified and non-quantified monitoring samples (the non-quantified measurements are set to half of the LOQ as stipulated in Directive 2009/90/EC²⁷).

Please note that banned substances fulfilling the criteria above will not be taken into consideration as potential candidates for the WL following the final recommendation cited in the document on the development of the 1st Watch List¹². To establish a priority for the inclusion in the WL, the relevant matrix and stability of the substance should be taken into account considering the availability of reliable PNECs and relevant analytical methods for monitoring in the appropriate environmental matrix.

The selection of candidate substances took into consideration also the hazard properties including the contribution to the antimicrobial resistance (AMR) for antibiotics and antifungal compounds.

4.2 List of substances fulfilling the criteria

Table 4 summarises potential candidates identified by the JRC for the next WL (in addition to EHMC and the pyrethroids mentioned in section 3). The substances have been selected according to the above criteria. To facilitate discussion, the substances have been grouped according to their use/type of substance (class). The table includes the name of the substance, use, CAS number, PNEC value, available analytical method, status and selection criteria. Information about the available monitoring data, measured environmental concentration (MEC), predicted environmental concentration (PEC) and initial risk assessment of potential candidates is summarised in Annex II (details could be found in the factsheets within Annex III).

Table 4: Potential candidates for the WL identified following the new criteria defined by the JRC. The **names of substances most suitable for inclusion are written in bold** characters; the other candidates are in non-bold characters. Abbreviations, dw: dry weight; ww: wet weight; PNEC: predicted no effect concentration; LOQ: limit of quantification; LOD: limit of detection; MDL: method detection limit; MIC: minimum inhibitory concentration; EEA: European economic area.

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ μg/l)	Status	Selection criteria
Industrial products	4-chloroaniline	Industrial (ECHA)	106-47-8	0.05 (prioritisation exercise RBSP-ECOSTAT, UBA, 2014) ^{5,6} 0.22 (NL legal standard AA-EQS, RIVM, 2009) ²⁸ 1 (INERIS)	Isocratic reversed-phase HPLC (RPHPLC) (LOD 0.036) (Börnick et al., 2001) ²⁹ LC-MS/MS (0.00013) (Rimayi et al., 2019) ³⁰	This substance is manufactured and/or imported in the EEA for industrial use resulting in the manufacture of another substance (use of intermediates).	criterion 5
	3,4-dichloroaniline	Industrial (ECHA)	95-76-1	0.2 (water) and 0.039 mg/kg ww (sediment) (Risk Assessment Report, JRC, 2006) 0.02 (water, monitoring exercise INERIS, 2012) ^{5,6} 3 (NL QS, RIVM, 1998) ³¹	Isocratic reversed-phase HPLC (RPHPLC) (LOD 0.033) (Börnick et al., 2001) ²⁹ LC-MS/MS (LOD 0.0052) (USGS, 2012) ³²	This substance is manufactured and/or imported in the EEA for industrial use resulting in the manufacture of another substance (use of intermediates). This substance is used at industrial sites and in manufacturing.	criterion 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Chromium (Cr) (III) and Cr (VI)	Industrial (ECHA)	Cr III (CAS 16065-83- 1) Cr VI (CAS 18540-29- 9) CrO₃ (CAS 1333-82-0)	Inland water: Cr (III): 1.8 (JRC derived, 2018) ⁷ ; Cr (VI): 2.06 (JRC derived, 2018) ⁷ ; Total dissolved chromium (III + IV): 3.4 (EA UK, 2007) ³³ Coastal water: Cr (VI): 0.6 (JRC Dossier; EA. UK) ⁷ Cr (III): The QS derived for Cr (III): The QS	EPA method 218.7 (LOD 0.0044 to 0.015) LC-ICP-MS (LOD 0.001 to 0.01) (Perkin Elmer Application note) ³⁴	Cr (III) Authorised. This substance is known to be on the EEA market in nanomaterial form. Cr (VI) and its compounds are included in the REACH restricted substance list (entry 47, Annex XVII of REACH regulation)	criterion 1, 4

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Free cyanide	Industrial product Inorganic biocide	CN-57-12-5 CNH 74-90-8	0.26 (JRC Factsheet 2015- 2018/WFD-UK TAG report, 2012) ^{7,12} 5 (freshwater ECHA dossier) 0.5 (JRC Dossier https://circabc.europa.eu/fa ces/jsp/extension/wai/navi gation/container.jsp, 2015)	Continuous Flow Analysis (CFA) method according to ISO 14403- 2:2012 modified (0.14- 0.30) (Fraunhofer Institute, 2018) ³⁵	NOT APPROVED as PPP (2004/129/EC) No authorisation in place APPROVED AS BIOCIDE. This substance is approved for use as a biocide in the EEA and/or Switzerland, for: wood preservation, controlling rodents, controlling insects, ants, etc. (ECHA)	criterion 4
Anti-Microbial (AM) pharmaceuticals: antibiotics	Sulfamethoxazole	Antibiotic Antibacterials for systemic use	723-46-6	0.6 (EQS chronic, Swiss ECOTOX centre, 2016) 0.4 (EQS 0.4 Substance factsheet 2015 from modelling-based exercise, 2016) ^{5.6} 0.59 (FASS and RIVM, 2011) 16 (PNEC-MIC, AMR industry alliance) ³⁶ 0.1 (JRC derivation, 2019) 2.4 (Zhou et al., 2019) ³⁷	LC-MS/MS (0.0030) (Chitescu et al., 2015) ³⁸ LC-MS/MS (0.0022) (Papageorgiou et al., 2019) ³⁹ SPE followed by UHPLC- QqLIT-MS (river water 0.0008) (Mandaric et al., 2017) ¹³	Authorised	criteria 4, 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Trimethoprim	Antibiotic Antibacterials for systemic use	738-70-5	 120 (EQS chronic, Swiss ECOTOX centre, 2015) 60 (Swiss ECOTOX centre modelling-based exercise, 2016)^{5,6} 0.5 (PNEC-MIC, AMR industry alliance)³⁶ 43.3 (JRC derivation, 2019) 16 (RIVM, 2011) 15.7 (Zhou et al., 2019)³⁷ 	LC-MS/MS (0.01721) (Chitescu et al., 2015) ³⁸ LC-MS/MS (0.0005) (Papageorgiou et al., 2019) ³⁹ SPE followed by UHPLC- QqLIT-MS (river water 0.0002) (Mandaric et al., 2017) ¹³	Authorised	criterion 5
Anti-Microbial pharmaceuticals: azole pharmaceuticals (antifungal agents)	Clotrimazole	Human medicine Dermatologicals- antifungals for dermatological use	23593-75-1	1 (OSPAR, 2015) 0.02 (JRC derivation, 2019) 0.036 (Zhou et al., 2019) ³⁷	LC–MS/MS (0.02261) (Chitescu et al., 2015) ³⁸	Authorised	criterion 5
	Fluconazole	Human medicine Antimycotics for systemic use	86386-73-4	0.25 (PNEC-MIC, AMR industry alliance) ³⁶ 9.46 (JRC derivation, 2019) 0.613 (Zhou et al., 2019) ³⁷	LC-MS/MS (0.00501) (Chitescu et al., 2015) ³⁸ LC-MS/MS (0.0014) (Papageorgiou et al., 2019) ³⁹	Authorised	criterion 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Miconazole	Human medicine Dermatologicals- antifungals for dermatological use	22916-47-8 22832-87-7	0.4 (Minguez et al., 2014 acute) 0.2 (FASS SE database) 0.044 (Zhou et al., 2019) ³⁷	LC-MS/MS (0.00171) (Chitescu et al., 2015) ³⁸	Authorised	criterion 5
Other pharmaceuticals	Benzimidazoles: Anthelmintics: Mebendazole	Human medicine Antiparasitic Products, Insecticides and Repellents - Anthelmintics	31431-39-7	0.088 (FASS SE database)	LC-IonTrap-MS (0.00037) (Zrnčić et al., 2014) ⁴⁰	Authorised	criterion 5
	Benzimidazoles: Proton pump inhibitors (PPIs): Lansoprazole	Human medicine Alimentary Tract and Metabolism - Drugs for acid- related disorders	103577-45-3	18 (acute, Pharmaceuticals in the environment. Chapter 16. Webb, 2004) 0.192 (Zhou et al., 2019) ³⁷	LC-MS/MS (0.0012) (Papageorgiou et al., 2019) ³⁹	Authorised	criterion 5
	Benzimidazoles: Proton pump inhibitors (PPIs): Omeprazole and its metabolite 4-hydroxy omeprazole sulphide (OM14)	Human medicine Alimentary Tract and Metabolism - Drugs for acid- related disorders	73590-58-6 (Omeprazole) 103876-98-8 (4- hydroxy omeprazole sulphide)	Omeprazole: 41.9 (FASS) 2.1 (Zhou et al., 2019) ³⁷ 4-hydroxy omeprazole sulphide: 0.28 (ECOSAR, Wielens Becker et al., 2020) ⁴¹	UHPLC-QTOF MS (surface and wastewater) (Boix et al., 2014) ⁴² LC-MS/MS (0.00157) (Kosma et al., 2016) ⁴³	Authorised	criterion 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ μg/l)	Status	Selection criteria
	Fentanyl	Human medicine Nervous System - Anaesthetics	437-38-7	11.1 (FASS SE database) 0.295 (Zhou et al., 2019) ³⁷	LC-MS/MS (0.0001) (Krizman-Matasic et al., 2017) ⁴⁴	Authorised	criterion 5
	Gemfibrozil	Human medicine Cardiovascular System – Lipid- modifying agents	25812-30-0	0.8519 (JRC derivation, prioritisation exercise, 2016) ^{5,6} 1.56 (Zhou et al., 2019) ³⁷	SPE followed by UHPLC- QqLIT-MS (river water 0.0034) (Mandaric et al., 2017) ¹³	Authorised	criterion 5
	Norethisterone	Industrial (ECHA) Human medicine Genito-Urinary System and Sex Hormones - Sex hormones and modulators of the genital system	68-22-4	0.0354 (Prioritisation exercise, 2016) ^{5,6} 0.51 (freshwater, ECHA) 0.0148 (Zhou et al., 2019) ³⁷	LC-MS/MS (0.00001) (Vulliet et al., 2011) ⁴⁵	Authorised This is substance is manufactured and/or imported in the EEA in 1- 10 tonnes per year. This substance is used at industrial sites and in manufacturing.	criterion 5
	Venlafaxine and O- desmethylvenlafaxine	Human medicine Nervous System- Psychanaleptics	93413-69-5 142761-12-4	0.03835 (prioritisation exercise) ^{5,6} 0.0061 (Zhou et al., 2019) ³⁷ 0.650 (Wielens Becker et al., 2020) ⁴¹ 0.88 (UBA, 2019)	SPE-LC-MS-MS (0.0005) (Loos et al., 2013) ⁴⁶ LC-MS/MS (0.0004) (Papageorgiou et al., 2019) ³⁹ SPE followed by UHPLC- QqLIT-MS (river water 0.0015) (Mandaric et al., 2017) ¹³	Authorised	criteria 3, 4 and 5
Plant protection products and	Epoxiconazole	Plant protection product	133855-98-8	0.2 (EQS chronic, Swiss ECOTOX centre, 2016)	LC–MS/MS (0.0083) (Chitescu et al., 2015) ³⁸	NOT APPROVED	criterion 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
biocides: azole compounds			135319-73-2 Formerly 106325-08- 0	0.18 (INERIS, 2017) 1.8 (NL AA-EQS, Ctgb, 2010)	LC-ESI-Q-Orbitrap-MS (0.0025) (Casado et al., 2019) ⁴⁷	app 01/05/2009 exp 30/04/2020 2008/107 Reg. (EU) 2019/168 Reg. (EU) No 540/2011 . Authorised in : AT, BE, BG, CZ, DE, DK, EE, EL, ES, FR, HR, HU, IE, IT, LT, LU, LV, NL, PL, PT, RO, SI, SK, UK (24 MS)	
	Imazalil (enilconazole)	Plant protection product	35554-44-0	 2.5 (INERIS, 2015) 0.8 (monitoring exercise, JRC derivation from EFSA report)^{5.6} 0.87 (NL indicative QS) 	LC-ESI-Q-Orbitrap-MS (0.001) (Casado et al., 2019) ⁴⁷	APPROVED as PPP app 01/01/2012 exp 31/12/2024 Reg. (EU) No 2019/291 Reg. (EU) No 540/2011 Reg. (EU) No 705/2011 (1997/73/EC,2007/21/EC,2 010/57/EU) Authorised in: AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, NL, PL, PT, RO, SE, SK, UK (25 MS) In progress: LV This substance is being reviewed for use as a BIOCIDE in the EEA and/or Switzerland, for veterinary hygiene	criterion 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Ipconazole	Plant protection product	125225-28-7	0.044 (AgriTox ANSES FR, 2019)	LC-MS/MS (0.05) (DAR, 2011)	APPROVED app 01/09/2014 exp 24/08/2024 Reg. (EU) No 571/2014 (Dossier complete 08/20/EC) Authorised in: AT, BE, BG, CY, CZ, DE, EL, ES, FR, HR, HU, IE, IT, PL, PT, RO, SE, SK, UK (19 MS) In progress for: FI	criterion 5
	Metconazole	Plant protection product	125116-23-6	0.0582 (Prioritisation exercise, 2016) ^{5,6} 0.582 (AgriTox ANSES FR 2019) 0.0291 (JRC derivation, 2019) 0.291 (NL AA-EQS, Ctgb, 2010)	LC-MS/MS (0.0108) (Chitescu et al., 2015) ³⁸ LC-ESI-Q-Orbitrap-MS (0.0025) (Casado et al., 2019) ⁴⁷	APPROVED app 01/06/2007 exp 30/04/2021 Reg. (EU) 421/2020 Reg. (EU) No 540/2011 (2006/74/EC, Reg. (EU) 2018/524, Reg. (EU) 2019/168, Reg. (EU) No 878/2014) Authorised in: AT, BE, BG, CZ, DE, DK, EE, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, NL, PL, PT, RO, SE, SI, SK, UK (25 MS)	criteria 3, 4, 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Penconazole	Plant protection product	66246-88-6	6 (AgriTox ANSES FR and INERIS) 1.7 (NL MTR, Ctgb, 2000)	LC–MS/MS (0.0095) (Chitescu et al., 2015) ³⁸	APPROVED app 01/01/2010 exp 31/12/2021 2009/77/EC2010/34/EU Reg. (EU) No 540/2011 Authorised in: AT, BE, BG, CY, CZ, DE, EE, EL, ES, FI, FR, HR, HU, IT, LT, LU, LV, MT, NL, PL, PT, RO, SE, SI, SK, UK (26 MS)	criterion 5
	Prochloraz	Plant protection product	67747-09-5	10 (AgriTox ANSES FR) 1.3 (NL indicative QS) 0.161 (Zhou et al., 2019) ³⁷	LC–MS/MS (0.00851) (Chitescu et al., 2015) ³⁸	APPROVED app 01/01/2012 exp 31/12/2023 Reg. (EU) No 1143/2011 Reg. (EU) No 2019/291 Reg. (EU) No 540/2011 (2008/934) Authorised in: AT, BE, BG, CZ, DE, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, PL, RO, SI, SK, UK (24 MS)	criterion 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Propiconazole	Biocide	60207-90-1	PNEC _{fw} : 6.8 µg/l (FI, Assessment Report, 2015) 1.6 µg/l (INERIS, 2015) 0.095 µg/l (NOEC; Zhou et al., 2019) PNEC _{sed} : 54 µg/l (FI, Assessment Report, 2015)	GLC-ECD; LOQ : 0.05 µg/l (parent compound in potable water) GC-MS : 0.05 µg/l (parent compound in potable water and surface water) (Assessment Report 2015) LOD: 0.00002 µg/l (DK)	APPROVED for use as a BIOCIDE in the EEA. Exp 31/03/2021 NOT APPROVED as PPP	criterion 5
	Tebuconazole	PPP and biocide	107534-96-3	PNEC _{fw} : 1 µg/l (DK; Assessment Report, 2013) 0.24 µg/l (QS: CH ECOTOX Centre, 2016) PNEC _{sed} : 550 µg/Kg DK; Assessment Report 2013)	GC 0.05 μg/l (Assessment Report, 2013) LOD: 0.000015 μg/l (DK)	APPROVED for use as a BIOCIDE in the EEA. APPROVED as PPP app 01/09/2009 exp 31/08/2020 Authorised in: AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, PL, PT, RO,	criterion 5
	Tetraconazole	Plant protection product	112281-77-3	 1.9 (Prioritisation exercise, 2016)^{5,6} 4.2 (AgriTox ANSES FR) 3.2 (INERIS) 	LC-ESI-Q-Orbitrap-MS (0.0025) (Casado et al., 2019) ⁴⁷	APPROVED app 01/01/2010 exp 31/12/2021 2009/82/EUReg. (EU) No 540/2011 Authorised in: AT, BE, BG, CZ, DE, EL, ES, FR, HR, HU, IT, MT, PL, PT, RO, SI, SK, UK (18 MS)	criterion 5

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
Plant protection products and biocides: other substances	Copper (I) oxide (Cu2O) Copper (II) oxide (CuO)	Industrial (ECHA) Biocide (ECHA) Plant protection product (PPP)	1317-39-1 1317-38-0	7.8 (Cu ₂ O and CuO freshwater, ECHA) 1.6 (Cu ₂ O and CuO statistic approach, INERIS) 2.4 (NL legal standard AA- EQS) 1 (French legislation, INERIS)	ICP-MS (0.02) (US EPA)	 APPROVED as BIOCIDE This substance is manufactured and/or imported in the EEA in 1 000 - 10 000 tonnes per year. This substance is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing. Cu₂O substance is approved for use as a biocide in the EEA and/or Switzerland, for preventing fouling. APPROVED as PPP app 01/01/2019 exp 31/12/2025 2009/37/EC Reg. (EU) No 232/2015 Reg. (EU) No 232/2015 Reg. (EU) No S40/2011 (Reg.(EU) No S40/2011 (Reg.(EU) No S40/2011 (Reg.(EU) No S40/2018) Authorised in: AT, BE, BG, CY, CZ, DE, EL, ES, FR, HR, HU, IE, IT, LT, LU, LV, MT, PL, PT, RO, SI, SK, UK (23 MS) CuO is known to be on the EEA market in nanomaterial form (ECHA) 	criterion 4

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Dimoxystrobin	Plant protection product	149961-52-4	0.0316 (ETOX: Information System Ecotoxicology and Environmental Quality Targets, UBA) 1.67 (AgriTox ANSES FR)	LC-MS/MS (0.01) (Loos et al., 2018) ⁷ LC-ESI-Q-Orbitrap-MS (0.0010) (Casado et al., 2019) ⁴⁷	APPROVED app 01/10/2006 exp 31/01/2021 06/75/EC Reg. (EU) No 2018/1796 Reg. (EU) No 540/2011 (Reg. (EU) No 1136/2013, Reg.(EU) No 84/2018) Authorised in: AT, BE, BG, CZ, DE, EE, FR, HR, HU, LT, LU, LV, PL, RO, SK, UK (16 MS)	criteria 3, 4
	Famoxadone	Plant protection product	131807-57-3	0.14 (JRC derivation, prioritisation exercise) ^{5,6} 0.11 (AgriTox ANSES FR) 0.0085 (NL i-JG-MKN, 2015)	LC-MS/MS (0.1) (EPA, 2015) GC-MS/MS (0.005) (BE-Wallonia, BIODIEN project, 2019)	APPROVED app 01/10/2002 exp 30/06/2021 02/64/EC Reg. (EU) 2020/869 Reg. (EU) No 540/2011 (2010/77/EU, Reg. (EU) 2015/1885, Reg. (EU) 2015/1885, Reg. (EU) 2016/549, Reg. (EU) 2017/841, Reg. (EU) 2018/917, Reg. (EU) 2019/707) Authorised in: AT, BE, BG, CY, CZ, DE, EL, ES, FR, HR, HU, IT, MT, NL, PL, PT, RO, SI, SK, UK (20 MS)	criterion 4

Group	Name	Use	CAS	PNEC water (µg/l)	Available Analytical Method (LOQ µg/l)	Status	Selection criteria
	Proquinazid	Plant protection product	189278-12-4	0.18 (Oecotoxzentrum, Eagaw/EPFL, CH) 0.18 (AgriTox ANSES FR)	GC-MS (0.1) (EFSA, 2009)	APPROVED app 01/08/2010 exp 31/07/2022 2010/25/EU Reg. (EU) 2017/2069 Reg. (EU) No 540/2011 Authorised in: AT, BG, CY, CZ, DE, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, PL, PT, RO, SE, SI, SK, UK (25 MS)	criteria 3, 4

4.3 Rationale for the selection

Industrial products

4-Chloroaniline and 3,4-dichloroaniline

4-Chloroaniline (CAS 106-47-8) and 3,4-dichloroaniline (CAS 95-76-1) are industrial chemicals (aromatic amines) primarily used as chemical intermediates in the synthesis of pigments, dyes, pesticides, drugs and rubber products, as well as in laboratory chemicals. These substances are manufactured in and/or imported into the European Economic Area (EEA) for industrial use, in particular the manufacture of other substances (ECHA^a). Due to their high solubility in water, they can be easily released into surface waters through runoff either as the parent substance or as transformation products and metabolites (e.g. aromatic amines can be found as degradation products and intermediates of various pesticides).

Both substances (4-chloroaniline and 3,4-dichloroaniline) are persistent. 4-Chloroaniline is classified as carcinogenic (ECHA) and 3,4-dichloroaniline is a suspected endocrine disruptor (ED). These substances were selected and fulfil criterion 5.

The quality of available data is low/poor (3,4-dichloroaniline) and acceptable (4-chloroaniline) but for both the data are not Union-representative for making a risk assessment (see Annex II, Table 2.2).

Conclusion: At present, 4-chloroaniline and 3,4-dichloroaniline are considered as other candidates for the WL.

Chromium: Chromium (VI) and chromium (III)

Chromium (VI) and its compounds (CAS 133-82-0 and CAS 18540-29-9) and chromium (III) (CAS 16065-83-1) are two oxidation states of the element chromium. Chromium (III) is the state in which chromium is found in nature. Chromium (VI), also known as hexavalent chromium, is the second most stable oxidation state of chromium. Rarely occurring naturally, most chromium (VI) compounds are manufactured (products or by-products).

Chromium (VI) was shortlisted during the review of the Priority Substance (PS) list⁵ but not considered for EQS derivation (criterion 1). It was recommended to deselect this substance because restrictions on its use had already been imposed in the EU. Its possible selection for the WL is discussed in the JRC reports^{7,12}. Chromium (VI) and its compounds are considered substances of very high concern (SVHC^b) because they are carcinogenic and mutagenic. These substances are included in the REACH restricted substance list (entry 47, Annex XVII of REACH regulation).

According to the WHO, chromium (VI) causes more ecotoxicological concern than chromium (III). However, other studies⁴⁸ observed higher toxicity of chromium (III) to aquatic organisms. The JRC reviewed the ecotoxicological data available for chromium (VI) and chromium (III). This led to an update for the predicted no-effect concentration (PNEC) in freshwaters of $2.06 \mu g/l$ and $1.8 \mu g/l$ for chromium (VI) and chromium (III), respectively (the PNECs derived by the JRC will need to be confirmed via consultation with the WG Chemicals). The PNEC for chromium (III) oxide is authorised and known to be on the European Economic Area (EEA) market in nanomaterial form (ECHA).

For chromium (VI) and its compounds, 735 samples are available from 4 Member States (MS) and 148 sites in the prioritisation exercise (Inland whole water; Sc3 with PNEC = $2.06 \mu g/l$) (see Annex II, Table 2.2). About 51% of the samples are quantified. The data quality seems to be good since all non-quantified samples are measured with LOQ < PNEC, however the data are not representative for the EU since about 61% of all samples originate

^aEuropean Chemicals Agency (ECHA). <u>https://echa.europa.eu/es/substance-information/</u>

[/]substanceinfo/100.003.093

^b Article 57, REACH Regulation, at pp. 141–42.

from 1 MS; another MS has a share of 29%; the remaining 2 MS hold only 10% of all samples (one of them contributed with only 2 samples).

For chromium (III) oxide, 798 samples are available from 1 MS and 56 sites in the prioritisation exercise (Inland whole water; Sc2) (see Annex II, Table 2.2). About 19% of samples are quantified. The data quality seems to be good since all non-quantified samples are measured with LOQ < PNEC (1.8 μ g/l), however the data are not Union-representative since all samples originate from 1 MS.

For chromium total inland dissolved (Sc3, PNEC = $3.4 \mu g/l$), monitoring data from 24 MS (12599 sites) with 187752 samples (21.2% quantified) are available in the prioritisation exercise. The data quality seems acceptable but 47.5% of all samples originate from 1 MS, other 2 MS hold 34.9% of data (see Annex II, Table 2.2).

For chromium total coastal dissolved (Sc3, PNEC = 0.6 μ g/l), monitoring data from 6 MS (52 sites) with 370 samples (23% quantified) are available in the prioritisation exercise (see Annex II, Table 2.2). The data quality seems acceptable but 75% of all samples originate from 1 MS, therefore the data cannot be considered as Union-representative.

Information about the additional data (chromium total coastal dissolved) received from MS after the WG Chemicals meeting on 15-16 January 2020 could be seen in the factsheet of Chromium (Annex III).

Regarding the risk assessment results, we have observed that:

1. The available data for chromium (VI) and its compounds (Sc3 inland whole water; PNEC = $2.06 \mu g/l$) 735 samples (51% quantified) from 4 MS (148 sites) are not Union-representative and allow making only a preliminary risk assessment that showed a threat for chromium (VI) and CrO₃.

2. The amount and representativeness of available data for chromium (III) are not sufficient for making a risk assessment.

3. The available data for chromium (total) (Sc3 inland dissolved fraction; PNEC = $3.4 \mu g/l$) 187752 samples (21.2% quantified) from 24 MS (12599 sites) are sufficient for risk evaluation and these data indicated a low risk.

4. The amount and representativeness of available data for chromium (total) (Sc3 coastal/transitional dissolved fraction; PNEC = $0.6 \mu g/l$) totally 370 samples from 6 MS (one MS is overrepresented holding about 75% from all records), even after adding the additional data received in January 2020 (disaggregated and aggregated data from 6 MS; details in the factsheet (Annex III)) are not sufficient for making a risk assessment. However, the data collected so far indicate some threat/risk from chromium (total).

Thus, accepting the difficulties for a separate monitoring of chromium (VI) and chromium (III) in the inland surface water and acknowledging the sufficient amount of data for chromium total inland dissolved, the JRC would propose the final evaluation of chromium (VI) and chromium (III) to be developed, considering the chromium total dissolved in coastal/transitional waters.

Conclusion: Chromium (VI) and chromium (III) are suitable for inclusion in the next WL to be monitored together as chromium total dissolved fraction in coastal/transitional waters.

<u>Free cyanide</u>

Free cyanide (CAS CN- 57-12-5; CNH CAS 74-90-8) is approved for use as a biocide in the European Economic Area (EEA) for wood preservation, controlling rodents, controlling insects and ants (ECHA). Furthermore, the cyanide is used as a raw material in many products leading to the release in aquatic environments through effluents⁴⁹ as cyanide ions⁵⁰. Free cyanide has been identified as the most toxic form derived from hydrogen cyanide (HCN), sodium cyanide (NaCN) and potassium cyanide (KCN). This substance was identified as a good candidate for the 1st WL¹² however it was not recommended due to the lack of an appropriate analytical method. In 2015, a project was launched by the stakeholder in collaboration with the Fraunhofer Institute entitled
"Monitoring program for the determination of the natural background concentrations of free cyanide in surface waters". The overall goal of this study was to validate a method to determine the natural background (Fraunhofer Institute, 2018^{35}). The project successfully could develop a sensitive method for the free cyanide measurements with LOQ below 0.3 µg/l.

For cyanide anion, in the prioritisation dataset Sc2 (inland dissolved fraction; see Annex II; Table 2.3) data from 2 MS with 340 samples are available (18.5% quantified samples). The data quality is low since about 64% of non-quantified samples have LOQ/LOD \geq PNEC (PNEC = 0.5 µg/l) and the data are not Union-representative (monitored only in 2 countries). Therefore, there is an insufficient amount of good quality and representative data for free cyanide to develop a Union-wide risk assessment for inland surface water (dissolved fraction).

Additional monitoring data, received from MS after the WG Chemicals meeting on 15-16 January 2020, have been included in the factsheet (Annex III). However, these supplementary data are insufficient to complete the risk assessment. Besides, there are no available data for cyanide anion in coastal/transitional water (dissolved fraction).

On the other hand, the available monitoring data allow making a tentative initial risk assessment which showed a threat in several MS (confirmed as well by RQ; the physical-chemical properties also indicate a potential risk). Therefore, to complete the risk evaluation it is recommendable more data to be collected. All these would motivate the need of a Union-wide data collection for cyanide anion (inland and/or coastal water; dissolved fraction) for the purpose of risk evaluation.

Conclusion: The analytical method is available, with a Limit of Quantification (LOQ) mostly < $0.3 \mu g/l$ (PNEC value for freshwater is $0.5 \mu g/l$), thus confirming a sufficient sensitivity of the analytical method to reach a value below the PNEC in freshwater. Free cyanide is suitable for inclusion in the next WL to be monitored in inland surface (preferable) and coastal waters (both in dissolved fraction).

Pharmaceuticals

Different types of pharmaceuticals (e.g. antimicrobials, antidepressants) commonly found in surface waters, ground waters and soils across the EU are considered for inclusion in the WL. The selection of pharmaceuticals is in line with the Commission Communication on the Strategic Approach to Pharmaceuticals in the Environment (COM/2019/128 final⁹)^a.

In this document, the pharmaceuticals are grouped according to their therapeutic use. The antibiotics and antifungal agents are grouped as Anti-Microbial pharmaceuticals while the remaining pharmaceuticals are listed as other pharmaceuticals (

Figure *2*). The pharmaceuticals are selected under criterion 5.

Figure 2: Classification of pharmaceuticals. In bold the substances most suitable for inclusion; not in bold - other candidates.

Anti-Microbial pharmaceuticals (antibiotics and antifungal)

Antibiotics sulfamethoxazole (CAS 723-46-6) and trimethoprim (CAS 738-70-5), and the antifungal agents (azole pharmaceuticals): clotrimazole (CAS 23593-75-1), fluconazole (CAS 86386-73-4) and miconazole (CAS 22916-47-8) are frequently detected in the water and apart from being toxic they may contribute to the spread and persistence of antimicrobial resistance (AMR)⁵¹. The selection of Anti-Microbial pharmaceuticals (antibiotics and antifungal agents) is also in line with the European One Health Action Plan against antimicrobial resistance^b (COM/2017/0339 final⁵²).

The available monitoring data in the prioritisation dataset (Sc2; inland surface water) for the foregoing Anti-Microbial pharmaceuticals are not representative (sulfamethoxazole) and/or are insufficient (trimethoprim and azole pharmaceuticals) for making a Union-wide risk assessment (moreover, miconazole is missing any

^a The European Union Strategic Approach to Pharmaceuticals in the Environment states: "The Commission will: Consider additional potentially relevant pharmaceuticals, such as cytotoxic pharmaceuticals and X-ray contrast media, in the work supporting the review of the surface water Watch List under the Water Framework Directive, as well as the feasibility of monitoring antimicrobial resistant microorganisms and antimicrobial resistance genes;"(<u>https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2019:128:FIN</u>)

^b The Action Plan states: "maximise the use of data from existing monitoring, e.g. Watch List monitoring under the Water Framework Directive, to improve knowledge of the occurrence and spread of antimicrobials in the environment". COM/2017/0339 final: Communication from the Commission to the Council and the European Parliament: A European One Health Action Plan against Antimicrobial Resistance (AMR) <u>https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX;52017DC0339</u>

monitoring data) (see Annex II, Table 2.2). Information about the additional data received from MS after the WG Chemicals meeting on 15-16 January 2020 are included in the factsheets (Annex III).

Risk assessment for antibiotics

Antimicrobials are natural, semi-synthetic or synthetic compounds that can kill or inhibit the growth of microorganisms including bacteria and fungi. As other pharmaceuticals, antibiotics enter the environment via wastewater effluents, runoff, through manufacturing plants and/or improper disposal. Antibiotics have been detected in aquatic systems around the world, with concentrations ranging between 0.01 to $1 \mu g/l^{51,53-55}$, and in some cases, like effluents from antibiotic manufacturing sites, could reach higher concentrations, in the milligram per litre range^{54,56}.

Antibiotics present a potential risk to the ecosystem's health because their mode of toxic action is conserved for the environmental microorganisms⁵⁷ and some of them are persistent in the environment⁵⁸. Furthermore, several studies have shown that antimicrobials could increase, maintain and spread antibiotic-resistant bacteria (ARB) in the environment even at low, sub-lethal or sub-inhibitory exposure concentrations and thereby pose a risk to human health⁵⁹.

The current Environmental Risk Assessment (ERA) for antibiotics has been developed based on the existing guidelines for other chemicals (e.g. pesticides or industrial chemicals) which typically involve ecotoxicological tests using different organisms like fish, *Daphnia* and algae, including cyanobacteria. The effects on microorganisms are assessed by functional endpoints such as nitrogen transformation in soil, and respiration in activated sludge⁵⁹. Antibiotic's modes of action are generally highly specific, especially for bacteria, but test on bacterial toxicity plays a minor role during the current ecotoxicological assessment, leaving the possibility to overlook an adverse effect of antibiotics on environmental bacteria.

Minimum Inhibitory Concentration (MIC)

To ensure protection to both human and the environment, a PNEC for antimicrobial resistance (AMR) derived using the minimum inhibitory concentration (MIC) has been proposed to predict upper boundaries for resistance⁶⁰. The group of Bengtsson-Palme and Larsson⁶⁰ collected MIC data from the public EUCAST database, identified the lowest MIC, compensated for the limited species coverage and predicted the lowest MIC adjusted for the number of tested species. The PNECs for resistance selection (PNEC-MIC) were assessed using an assessment factor of 10 to account for the differences between inhibitory concentration and selective concentration of antibiotics. In some cases, the PNEC-MIC were below the available PNEC for ecotoxicological effects.

To be more protective with environmental ecosystems, it is suggested deriving PNECs, determining ecotoxicological and resistant selection and using the lower value for the ERA (AMR industry alliance³⁶).

The JRC has considered the methodology proposed by Bengtsson-Palme and Larsson in 2016 as a first approach for the evaluation of antibiotics⁶⁰.

The JRC is also evaluating the possibility to add the detection of antimicrobial resistance genes (ARG) as an endpoint for the evaluation of risk assessment by quantitative polymerase chain reaction (qPCR) and sequencing methods.

The antibiotics and antifungal agents proposed by the JRC can be monitored using the same analytical method (LC-MS/MS³⁸).

Conclusion: The antibiotics (sulfamethoxazole and trimethoprim) and the antifungal agents (azole pharmaceuticals): clotrimazole, fluconazole and miconazole, are suitable for inclusion in the next WL to be monitored in inland surface waters.

Other pharmaceuticals

Other pharmaceuticals have also been selected according to their occurrence and hazard properties.

Anthelmintics: mebendazole (benzimidazoles)

Mebendazole (CAS 31431-39-7) is persistent, bioaccumulative and toxic (PBT) (Stockholm County Council^a). It is suspected of being carcinogenic, mutagenic and toxic to reproduction (CMR, in Annex III inventory, ECHA^b).

No data are available for this substance in the dataset of the prioritization exercise (see Annex II; Table 2.2).

Conclusion: At present, mebendazole is considered amongst the other candidates for the WL.

Proton pump inhibitors (PPI): lansoprazole and omeprazole (benzimidazoles)

Proton pump inhibitors, e.g. lansoprazole (CAS 103577-45-3) and omeprazole (CAS 73590-58-6), are commonly prescribed, and thus, widely used for the treatment of acid-related disorders. According to several studies^{41-43,61,62}, PPIs are easily metabolised in the human body and easily transformed in the environment. For this reason, even though they are widely used, PPIs occur at low concentrations in wastewater and surface water. It has been suggested that their most abundant and frequent metabolites and transformation products should be monitored in water together with the parent compounds to better assess the risk that these substances pose to aquatic organisms. In the case of omeprazole, the most abundant and frequently detected metabolites OM10 and 4-hydroxy omeprazole sulphide OM14⁴². According to ECHA (Annex III inventory), there is an indication of concern as omeprazole is listed as suspected persistent and toxic (PT) and mutagenic and toxic to reproduction (MR). According to a recently published study⁴¹, the metabolite 4-hydroxy omeprazole sulphide (OM14, CAS number 103876-98-8) identified as potentially mutagenic (M) poses a higher risk to aquatic organisms than its parent compound.

Omeprazole and its metabolites can be analysed by LC-MS/MS with sufficient sensitivity⁴³. However, the PNEC values are not reliable since they are derived from modelling (ECOSAR)^{37,41}.

No available data exist for omeprazole and lansoprazole nor for their metabolites in the dataset of the prioritisation exercise (see Annex II; Table 2.2).

Conclusion: Omeprazole and its metabolite 4-hydroxy omeprazole sulphide (OM14) are considered as other candidates to be taken into account in future WL revisions if a reliable PNEC based on ecotoxicity data will be derived. These substances should be monitored in inland surface waters.

^a <u>https://politiquedesante.fr/wp-content/uploads/2014/05/PBT-2014-2015-copie.pdf</u>

^b <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory</u>

Benzimidazoles

<u>Fentanyl</u>

Fentanyl (CAS 437-38-7) is an opioid used in anaesthetics. It is also employed as a recreational drug and shows persistent and toxic (PT) properties according to the Stockholm County Council^a, and elicits possibly toxic effects to reproduction (R) (Annex III inventory, ECHA^b).

Two MS expressed a concern that fentanyl is subject to the controlled substance law (the narcotics act), therefore difficulties could be encountered to purchase standard solutions for chemical analysis.

No monitoring data are available for this substance in the dataset of the prioritisation exercise (see Annex II; Table 2.2).

Conclusion: At present, fentanyl is considered amongst other candidates for the WL.

<u>Gemfibrozil</u>

Gemfibrozil (CAS 25812-30-0) is a human medicine used for the treatment of abnormal blood lipid levels. It is persistent and toxic (PT, Stockholm County Council^c) and possibly carcinogenic (C) and toxic to reproduction (R).

According to the prioritisation dataset Sc2 (inland whole water), it is monitored in 3 MS at 251 sites (see Annex II; Table 2.2) with 2476 samples (only 2% quantified). About 97% of all samples come from one MS, meaning that the data are not Union-representative.

Conclusion: Gemfibrozil is considered at present amongst other candidates for the WL.

Norethisterone

Norethisterone (CAS 68-22-4), also known as norethindrone, is a synthetic progestational hormone belonging to the 19-nortestosterone-derived class of progestins. Synthetic progestins mimic the effects of the natural hormone progesterone, which is involved in regulating the menstrual cycle, pregnancy, and embryogenesis in humans and other species. In mammals, they are known to have interactions not only with the progesterone receptor (PR) but also with other steroid hormone receptors such as the androgen, estrogen and glucocorticoid receptors (AR, ER and GR). For example, norethisterone has (anti)androgenic or (anti)estrogenic activities⁶³. Furthermore comparing to other progestins, norethisterone has also some estrogenic activity because one of its metabolites is ethinylestradiol (EE2), due to the metabolic activity of the cytochrome P450 enzyme which converts the substance to EE2. Norethisterone is used alone or in combination with estradiol (E2) or (EE2) in contraceptive pills, menopausal hormone replacement therapy and for the treatment of various hormonal and gynaecological disorders. When used in combination with estrogens, the content of norethisterone in the medicines is usually higher than that of E2 or EE2. Norethisterone has been detected in the aquatic environment together with other progestins⁶³. The presence of these substances in the aquatic environment raises concern due to their ability to act as endocrine disrupters (ED) by mimicking and/or disrupting the activity of endogenous progestogens, which play critical roles in modulating sexual development and maturation in fish^{45,63,64}. Several studies described also androgenic effects of norethisterone in fish indicating that this substance activates the AR in fish^{65,66}. Apart from the already mentioned endocrine disrupting properties, norethisterone fulfils the persistent/very persistent (P/vP) and toxic (T) criteria and it is considered toxic to reproduction (R) (ECHA dossier^d). A tentative risk assessment of progestins for fish was carried out by K. Fent⁶³ and the highest risk was identified for norethindrone. Another progestin, levonorgestrel (CAS 797-63-7), was ranked with high risk quotient in a recently published study by Gunnarsson et al⁶⁷. Norethisterone and levonorgestrel have been detected in surface

^a https://politiquedesante.fr/wp-content/uploads/2014/05/PBT-2014-2015-copie.pdf

^b <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory</u>

^c <u>https://politiquedesante.fr/wp-content/uploads/2014/05/PBT-2014-2015-copie.pdf</u>

^d ECHA dossier: https://echa.europa.eu/brief-profile/-/briefprofile/100.000.619

(river) water and wastewater⁶³. Both substances can be analysed in the environment by LC-MS/MS, but in the same way as for other hormones, the major limitation is the sensitivity of the method (LOQ < PNEC). Currently, the existing method is not sensitive enough to analyse levonorgestrel. The progestogenic activity can also be analysed by *in vitro* bioassays. Thus, progestins could be considered in future revisions of the WL as group of hormones to be monitored in water by combining effect-based methods (EBM) and chemical analysis.

In Sc2 (inland whole water) of the prioritisation dataset, there are available 20 samples from 1 MS (19 sites) (see Annex II; Table 2.2). The data quality is good (100% quantified samples), however the quantity of data is insufficient and they are not representative for the EU to perform a risk assessment. Information about the additional data received from MS after the WG Chemicals meeting on 15-16 January 2020 could be seen in the factsheet of Norethisterone (Annex III).

The available monitoring data are insufficient but allow making a tentative initial risk assessment showing a threat in some MS (the physical-chemical properties also indicate a potential risk), therefore to complete the risk evaluation it is preferable to collect a sufficient amount of Union-representative monitoring data.

For the above reasons, the JRC considers norethisterone a good candidate for the 3rd WL. Other progestins could be taken into account as group of hormones in future updates of the WL preferable combining to the analytical measurements the EBM.

Conclusion: Norethisterone is suitable for inclusion in the next WL for monitoring in inland surface waters.

<u>Venlafaxine</u>

Venlafaxine (CAS 93413-69-5) is an antidepressant that was identified as a potential candidate in the previous review of the WL⁷. This substance is suspected to be persistent, toxic (PT, Stockholm County Council^a) and toxic to reproduction (R, ECHA^b). It fulfils criterion 3 (substances from the modelling exercise measured below 4 MS with modelled RQ above 5), however it was not selected for the WL in 2018 because the PNEC value was considered not reliable. The JRC has reviewed the available ecotoxicological information and found a reliable PNEC of 0.0061 (Zhou et al., 2019), which, if confirmed upon consultation with the MS and stakeholders, should suggest the substance to be considered for the next WL.

The major active metabolite of venlafaxine O-desmethylvenlafaxine (CAS 93413-62-8) was also considered for the WL to be measured together with the parent compound. A PNEC value for this metabolite has been recently derived by UBA (UBA, 2019)⁶⁸. Since there is no chronic data for the metabolite, the same study was used for the PNEC derivation of O-desmethylvenlafaxine due to the similarity of the two compounds (See Annex III).

The existing monitoring data in the prioritisation dataset came from 1 MS (93 sites) with 1395 samples (about 77% quantified) (see Annex II; Table 2.2) and are not representative for making a Union-wide risk assessment. Information about the additional data received from MS after the WG Chemicals meeting on 15-16 January 2020 could be seen in the factsheet of Venlafaxine (Annex III).

The available monitoring data are insufficient and are not Union-representative but allow making a tentative initial risk assessment showing a threat in several MS (confirmed as well by RQ and STE; the physical-chemical properties also indicate a potential risk), therefore to complete the risk evaluation it is preferable to collected a sufficient amount of Union-representative monitoring data.

Conclusion: Venlafaxine and its metabolite O-desmethylvenlafaxine are suitable for inclusion in the next WL for monitoring in inland surface waters.

^a <u>https://politiquedesante.fr/wp-content/uploads/2014/05/PBT-2014-2015-copie.pdf</u>

^b <u>https://echa.europa.eu/es/brief-profile/-/briefprofile/100.122.418</u>

Plant protection products and biocides

<u>Azole compounds: epoxiconazole, imazalil, ipconazole, metconazole, penconazole, prochloraz, propiconazole, tebuconazole and tetraconazole</u>

Due to their antifungal properties, azole fungicides are extensively used in plant protection products and biocides. Europe is considered the dominant market for fungicides with major applications on grains and cereals, fruits (with particularly intensive use in viticulture), and vegetables. In urban areas, fungicides are used in paints and coatings on walls, flat roofs, and basement seals. Consequently, fungicides can enter aquatic ecosystems via discharge from wastewater treatment plants following domestic and industrial use and indirectly from surface runoff, primarily from agricultural diffuse sources. Azole fungicides can be harmful to a broad range of non-target organisms and have also been studied for their possible endocrine-disrupting properties. Moreover, their use is predicted to increase due to climate change and to contribute to the development of fungicide resistance and to the propagation of invasive fungal species⁶⁹. Azole compounds are selected under criterion 5.

The azole compounds have a common Mode of Action (MoA)⁷⁰, they competitively inhibit the fungal CYP51class cytochrome P450 superfamily enzyme 14*a*-*sterol demethylase* in a dose-dependent manner. CYP51 enzymes are essential components of the pathway leading to the synthesis of ergosterol, a major sterol of the plasma membrane of most fungi. Azoles also act by inhibiting a similar functioning enzyme (24-methylene dihydrolanosterol demethylase) in the fungal cell⁷¹. Ergosterol maintains the membrane rigidity, stability and integrity. In most fungi, azoles exert a dual antimicrobial effect. Firstly, ergosterol depletion causes instability of the membrane, which leads to growth and proliferation inhibition. Secondly, fungal CYP51 inhibition causes the accumulation of different methylated metabolites, which are toxic to the fungal cell⁷⁰.

The available monitoring data in the prioritisation dataset (Sc2; inland surface water) for the individual azole compounds (epoxiconazole, imazalil, ipconazole, metconazole, penconazole, prochloraz, propiconazole, tebuconazole and tetraconazole) are either insufficient or not overall representative for making a Union-wide risk assessment (ipconazole is missing any monitoring data). In addition, the data quality seems poor because there are many repeated non-quantified samples for these compounds in the dataset (see Annex II; Table 2.3). Moreover, since the azole compound are widely used and have a common MoA, the risk posed by these substances should be evaluated considering them together (accumulative approach for risk assessment^{72,73}). For this reason the azole PPP should be monitored simultaneously and a higher cumulative exceedance rate is expected. However, a synchronised monitoring data for azoles exist occasionally in the prioritisation dataset. Information about preliminary individual risk assessment of the azole compounds could be found in Annex II (Table 2.3) and their factsheets in Annex III.

The azole substances can be measured using the same analytical method (LC-MS/MS) with limits of quantification ranging from 0.001 to 0.05 μ g/l depending on the substance^{38,47}. See Annex I for more detailed information.

Conclusion:

The azole compounds (epoxiconazole, imazalil, ipconazole, metconazole, penconazole, prochloraz, propiconazole, tebuconazole and tetraconazole) are suitable for inclusion in the next WL to be monitored in inland surface waters. However, following internal consultation, two azole compounds, epoxiconazole and propiconazole, have been removed from the list since their use as PPP has been discontinued and only propiconazole is still approved for use as a biocide, until March 2021.

Copper oxides

Copper occurs in nature in four oxidation states: elemental copper (Cu) (0) (solid metal), Cu (I) cuprous ion (Cu₂O; CAS 1317-39-1), Cu (II) cupric ion (CuO; CAS 1317-38-0), and rarely Cu (III). In water, Cu (II) is the most prevalent form of copper⁷⁴. Two forms of copper oxide (i.e. Cu (I) oxide and Cu (II) oxide) are approved in the European Economic Area (EEA) and/or Switzerland for use as active ingredients in plant protection products and biocides. Copper (I) oxide is approved as a biocide for preventing fouling, while Cu (II) oxide is approved as a biocide for wood preservation. Dicopper oxide is manufactured and/or imported in the European Economic Area in 1000-

10000 tonnes per year, while copper oxide is manufactured and/or imported in the European Economic Area in 1000+ tonnes per year (ECHA). These substances may be washed into the aquatic environment from agricultural and urban application sites and may also enter into the water when used as a biocide in antifouling paint formulations.

Besides, Cu (II) oxide is known to be on the EEA market in nanomaterial form (ECHA). Metal nanoparticles can induce toxicity by mechanisms that are different from those of soluble ions. A Danish investigation into the environmental risk posed by engineered nanomaterials found that release patterns and hazard properties of copper nanomaterials may cause a future concern⁷⁵.

Moreover, the environmental pollution caused by heavy metals such as copper can co-select for antimicrobial resistance (AMR)⁵¹.

No monitoring data solely for copper oxides Cu (II) and Cu (I) in inland surface water are present in the dataset of the prioritisation exercise (see Annex II; Table 2.3).

For Cu total inland dissolved fraction (Sc3; PNEC = $7.8 \mu g/l$), overall 97036 samples from 24 MS (7009 sites) are available in the dataset (inland surface water) of the prioritisation exercise. About 50% of all samples are quantified. The data quality seems good, however the risk evaluation outcome depends on the choice of PNEC (see Annex II; Table 2.3).

Conclusion: At present, copper oxides are considered amongst other substances requiring further investigation, although it might in future be concluded that sufficient monitoring data exist.

Dimoxystrobin

Dimoxystrobin (CAS 149961-52-4) is approved as a plant protection product (PPP) in the UE. It is authorised in 16 Member States (MS). Dimoxystrobin fulfils two of the persistent, bioaccumulative and toxic (PBT) criteria; it is P, T and has endocrine disrupting (ED) properties according to the EU pesticides database^a and it is a candidate for substitution. Furthermore, it is classified as suspected to be carcinogenic and toxic to reproduction (ECHA^b). It fulfils criteria 3 and 4.

Dimoxystrobin was selected during the last WL update⁷ but not recommended for the WL because of the expiry date of the approval as a PPP. The approval for this substance has been recently reviewed and renewed (expiration of the approval 31/01/2021).

The available monitoring data in the prioritisation dataset (Sc2; inland surface water) are not representative (6078 samples from only 1 MS) for making a Union-wide risk assessment. In addition, the data quality seems poor because there are 3890 repeated non-quantified samples (64% from total) (see Annex II; Table 2.3).

Conclusion: Dimoxystrobin is suitable for inclusion in the next WL to be monitored in inland surface waters.

Famoxadone

Famoxadone (CAS 131807-57-3) is authorised as plant protection product in 20 Member States (MS). Moreover, this substance fulfils two of the PBT criteria according to the EU pesticides database^c. It is persistent (P) and toxic (T) and it is a candidate for substitution. This substance has also been listed in the Annex III inventory (ECHA^d) as a suspected carcinogen, mutagen and hazardous to the aquatic environment. Famoxadone is selected under criterion 4.

ahttps://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN

^b <u>https://echa.europa.eu/es/substance-information/-/substanceinfo/100.128.660</u>

^c <u>https://ec.europa.eu/food/plant/pesticides/eu-pesticides</u>

^d <u>https://echa.europa.eu/es/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.114.714</u>

According to the last review of the WL (Loos et al., 2018), famoxadone could be considered for inclusion in the 3rd WL, if its approval is renewed and if a reliable PNEC and an appropriate analytical method are available. This substance is approved until June 2020 when the approval will be reviewed. If it is renewed, it should be considered for inclusion in the next WL, although it might have to wait until the 4th WL.

The available monitoring data in the prioritisation dataset (Sc2; inland surface water) are not representative (overall 5528 samples from 3 MS; 98% of samples originate from one MS) for making a Union-wide risk assessment. In addition, the data quality is poor because there are numerous repeated non-quantified samples (5422; about 98% from total) (see Annex II; Table 2.3).

Conclusion: Famoxadone is suitable for inclusion in the next WL to be monitored in inland surface waters.

<u>Proquinazid</u>

Proquinazid (CAS 189278-12-4) is authorised as plant protection product in 25 Member States. This substance is persistent (P), toxic (T) and possibly carcinogenic (C) (ECHA^a) and should be considered for the WL if reliable information for the PNEC is available⁷. Proquinazid fulfils criteria 3 and 4.

The available monitoring data in the prioritisation dataset (Sc2; inland surface water) are not representative for making a Union-wide risk assessment (see Annex II; Table 2.3).

Conclusion: Proquinazid is considered at present amongst the other candidates for the WL.

^a <u>https://echa.europa.eu/es/substance-information/-/substanceinfo/100.113.680</u>

4.4 Other substances proposed as candidates for the next Watch List (WL)

In selecting the substances for the WL the JRC took into account the recommendations from Member States (MS) and stakeholders as established in article 8b of Directive $2008/105/EC^3$ as amended by Directive $2013/39/EU^4$.

During the revision of the first version of this report and after the WG Chemicals meeting on 15-16 January 2020, some MS suggested several substances or groups of substances for consideration as WL candidates. Additionally, following internal consultation, the degradation product 1,2,4-triazole was proposed as a marker for the group of azole compounds. 1,2,4-triazole is used *inter alia* as a nitrification inhibitor and is also a degradation product found in soil and water⁷⁶; it might therefore be useful to monitor it as a sentinel providing evidence of the presence of azole substances in the environment. This substance has also been detected in samples of groundwater and drinking water⁷⁷.

The JRC collected additional information on the hazard properties and uses of the proposed substances, which is summarised in Table 5. For each substance, the table includes the name of the substance, CAS number, use, matrix (environmental compartment), hazard properties, available analytical method (limit of quantification, LOQ), predicted no-effect concentration (PNEC) value and MS proposing the substance.

For some of the substances in Table 5, extensive monitoring data already exist to evaluate the Union-wide risk, and/or some may therefore already be considered in the review of the priority substances list. The other substances will be taken into consideration in future updates of the WL.

Table 5. A list of substances suggested by individual MS and during internal consultation as good candidates for the next WL. The table shows for each candidate substance the name of the substance, CAS number, use, matrix (environmental compartment), hazard properties, the available analytical method and PNEC value. Abbreviations, dw: dry weight; ww: wet weight; lw: lipid weight; AF: assessment factor; PNEC: predicted no effect concentration; LOQ: limit of quantification; LOD: limit of detection; PPP: plant protection product; P: persistent; B: bioaccumulative; T:toxic; R: toxic to reproduction; ED: endocrine disruptor.

Name	CAS No	Use	Matrix	Hazard Properties	LOQ	PNEC	MS	Comments
Etofenprox (Pyrethroids)	80844-07-1	PPP and Biocide	Sediment/biota/water	2 PBT criteria (BT not P) (EU Pesticides database)	Water: 12.5 pg/l (Rösch et al., 2019)	PNEC _{fw} 0.0054 µg/l (JRC derivation, modelling) 0.00108 µg/l (JRC derivation (Loos et al., 2018)) PNEC _{sed} 6.3 µg/kg ww (AT, 2013 assessment report)	DE	1116 samples from 3 MS available in Sc2 inland whole water (prioritisation exercise). Quantified samples less than 1%. MEC(p95)=0.01µg/l RQ=9.3 (lowest PNEC)
Lambda- chyalothrin (Pyrethroids)	91465-08-6	PPP and Biocide	Sediment/biota/water	2 PBT criteria (BT not P) (EU Pesticides database)	Water (LOQ): 12.5 pg/l (Rösch et al. 2019) Sediment (LOD):0.2 µg/kg dw (USGS, 2009)	PNEC _{fw} 0.0002 μg/l (DK) PNEC _{sed} 0.93 μg/kg (DK) 1.05 μg/kg dw (DK) PNEC _{biota} 0.04 μg/kg (INERIS)	DE, DK	21729 samples from 6 MS available in Sc2 inland whole water (prioritisation exercise). Quantified samples are about 0.6%. The data quality is low. MEC(p95)=0.05µg/l RQ=250
Cyfluthrin (Pyrethroids)	68359-37-5	Biocide	Sediment/biota/water		Sediment (LOD):0.2 µg/kg dw (USGS, 2009)	0.001 µg/l (prioritization dataset Sc2) 4.1E-05 µg/l (PNEC _{fw} ; DK) 0.027 µg/Kg (PNEC _{sed} ; DK)		14579 samples from 5 MS are available in Sc2 inland whole water (prioritisation exercise. Quantified samples are about 2.3%. The data quality is low. MEC(p95)=0.1 μg/l RQ=2500 (lowest PNEC)
Esbiothrin or allethrin	584-79-2	Biocide	Sediment/biota/water		Sediment (LOD):		DK	8477 samples from 1 MS are available in Sc2 inland whole water (prioritisation exercise).

Name	CAS No	Use	Matrix	Hazard Properties	LOQ	PNEC	MS	Comments
					0.2 μg/kg dw (USGS, 2009)			Quantified samples are about 0.01%. The data quality is very low. MEC(p95)=0.05 µg/l
Siloxanes D4, D5, D6	556-67-2 (D4) 541-02-6 (D5)	Industrial (silicone materials)	Water	PBT (officially recognised in the EU); Suspected Toxic for reproduction Restricted SVHC candidate list PBT (officially recognised in the EU) Restricted SVHC candidate list		PNECfw 1.5 µg/l (ECHA); 0.44 µg/l (UK, 2009; RIVM, 2012; SE, 2018); PNECsed 3 mg/Kg dw (ECHA); 0.54 mg/Kg (UK, 2009); 0.015 mg/Kg dw (SE, 2018) PNECfw 1.2 µg/l (ECHA) PNECsed 11 mg/Kg dw (ECHA) PNECsed	DE	No available data in the prioritisation exercise
	540-97-6 (D6)			PBT (officially recognised in the EU) SVHC candidate list		13 mg/Kg dw (ECHA)		
Alkylphenols	98-54-4 (Butylphenol) 121158-58-5 (Dodecylphenol)	Industrial	Water	Suspected to be Toxic to Reproduction (Harmonised C&L). Officially recognised in the EU as ED (Candidate list of SVHCs). Officially recognised in the EU as Toxic to Reproduction (Harmonised C&L). Under assessment as ED (ED		PNEC _{fw} 10 μg/l (ECHA) PNEC _{sed} 270 μg/Kg (DW; ECHA) PNEC _{fw} 74 μg/l (ECHA) PNEC _{sed} 226 μg/Kg (DW;	DE	Sc2 inland whole water (prioritisation exercise). Butylphenol: 18163 samples from 2 MS; Quantified samples about 1.4%. The data quality is low. MEC(p95)=0.25 µg/l RQ=0.025 Dodecylphenol: no data Amylphenol: 1298 samples
	80-46-6 (Amylphenol)			list).		ECHA) PNEC _{fw}		from 1 MS; 0% quantified samples. The data quality is

Name	CAS No	Use	Matrix	Hazard Properties	LOQ	PNEC	MS	Comments
				Officially recognised in the EU as ED (Candidate list of SVHCs).		10 µg/l (ECHA) PNEC _{sed} 1.509 mg/Kg (DW; ECHA)		very low. MEC(p95)=0.5 µg/l RQ=0.05
Phenol- benzotriazoles	3846-71-7 (UV-320) 3864-99-1 (UV-327)	Industrial Cosmetics and sunscreens	Water	PBT PBT under assessment (ECHA); High potential to bioaccumulate (BCF 3240) IVL Report B2159		94.1 µg/l (AF1000) (SE) (IVL Report B2159)	DE	No available data in the prioritisation exercise
	25973-55-1 (UV-328)			PBT (Officially recognised in the EU) PBT under assessment		PNECrw: 10 μg/l PNECsed: 451 mg/Kg (DW)		
	36437-37-3 (UV-350)							
	2440-22-4 (UV-P)					0.13 µg/l (based on the 21 d NOEC of 0.013 mg/l and an assessment factor of 100 (AU))		
Diflufenican	83164-33-4	РРР	Water	2 PBT criteria (EU Pesticides Database) PT (EFSA 2007)	LC-MS-MS LOQ: 0.05 µg/l (EFSA 2007)	0.01 μg/l (INERIS, 2012)	DK	47162 samples from 8 MS are available in Sc2 inland whole water (prioritisation exercise). About 8.8% quantified samples. The data quality is low. MEC(p95)=0.026 μg/l RQ=2.6

Name	CAS No	Use	Matrix	Hazard Properties	LOQ	PNEC	MS	Comments
Azoxystrobin	131860-33-8	PPP and Biocide	Water	PT, vP (ECHA/BPC/168/2017)	LOD: 0.018 µg/l (DK)	0.95 μg/l (INERIS, 2011)	DK	21361 samples from 8 MS (2102 sites) are available in Sc2 dataset (prioritisation exercise). About 6.4% of samples are quantified. The data quality is acceptable since only 5 non-quantified samples were measured with LOQ > 2*PNEC (PNEC=0.2 ug/l). However, 2 MS are overrepresented in the dataset holding about 84.5% from all samples. Median=0.01 μg/L; MEC(p95)=0.04 μg/L RQ=0.04
Fipronil	120068-37-3	Biocide	Water	P, vP and T	Drinking water GC-MS (only confirmatory method for the GC-EC method) LOQ 0.05 µg/l GC-EC LOQ 0.1 µg/l LOQ 0.004 µg/kg Surface Water LC-MS/MS LOQ 0.004 µg/kg GC-EC	PNECfw: 0.012 µg/l (Assessment report, 2011) PNECsed: 3.02 µg/Kg (Assessment report, 2011)	NL	6657 samples from 3 MS are available in Sc2 inland whole water (prioritisation exercise). About 1% quantified samples. The data quality is low. MEC(p95)=0.025 µg/l RQ=2.1

Name	CAS No	Use	Matrix	Hazard Properties	LOQ	PNEC	MS	Comments
					LOQ 0.2 µg/l			
Oxipurinol (Allopurinol)	2465-59-0 315-30-0	Pharmaceuticalmetabolite Gout	Water	PT (allopurinol) (suspected. Janusinfo, SE)			DE	No available data in the prioritisation exercise
Clindamycin	18323-44-9	Pharmaceuticals Antibiotic	Water	Suspected PT There is broad agreement in that a majority of data submitters agree this substance is Toxic to Reproduction (66.67% of REACH registrations) Risk cannot be excluded (Janusinfo SE)		0.1 μg/l (PNEC-ENV; AMR Industry Alliance) 1 μg/l (PNEC-MIC; AMR Industry Alliance)	DE	436 samples from 1 MS are available in Sc2 inland whole water (prioritisation exercise). About 30% quantified samples. The data quality is acceptable. MEC(p95)=0.11 μg/l RQ=1.1 (lowest PNEC)
Metformin	657-24-9	Pharmaceuticals Antidiabetic		PT (suspected. Janusinfo, SE)	LC-MS/MS (0.0005 µg/l) (Papageorgiou et al., 2019)	EQS 160 µg/l (Swiss ECOTOX centre) 10 µg/l (PNEC Astra- Zeneca)	DE	2090 samples from 2 MS are available in Sc2 inland whole water (prioritisation exercise). About 97% quantified samples. The data quality is good but data are nor Union- representative. MEC(p95)=4.8 µg/l RQ=0.48 (lowest PNEC)
Gabapentin	60142-96-3	Pharmaceuticals antiepileptic		R (suspected, ECHA)			DE	1478 samples from 1 MS are available in Sc2 inland whole water (prioritisation exercise). About 96% quantified samples. The data quality is good but data are nor Union- representative. MEC(p95)=3.8 μg/l
Levonorgestrel	797-63-7	Pharmaceuticals Progestin	Water	PT (suspected) R C (suspected)	LC-MS/MS (0.0003 µg/l) (Vulliet et al., 2011)	0.00003 µg/l (FASS SE)	NL	No available data in the prioritisation exercise

Name	CAS No	Use	Matrix	Hazard Properties	LOQ	PNEC	MS	Comments
Ibuprofen	15687-27-1	Pharmaceuticals	Water	T (suspected, Janusinfo SE)		1 μg/l (FASS SE)	NL	Extensive dataset is available (data from 15 MS; 9367 samples in Sc3) but still awaiting for the finalisation of the EQS to complete the risk assessment evaluation. In conclusion, this is not a WL candidate.
Propanolol	525-66-6	Pharmaceuticals Beta-blocker used for the treatment of hypertension, angina, certain types of anxiety, and the prevention of migraine	Water			0.23 μg/l (Astra-Zeneca)	NL	4069 samples from 4 MS are available in Sc2 inland whole water (prioritisation exercise). About 13% quantified samples. The data quality is low. MEC(p95)=0.02 μg/l ; RQ=0.09
Carbamazepine	298-46-4	Pharmaceuticals	Water	PT (suspected, Janusinfo SE)		0.5 µg/l	NL	A dataset is available from the prioritisation exercise (totally26624 samples from 15 MS in Sc3; the data quality is acceptable). RQ=1.36 and STE=0.45. In conclusion, this is not a WL candidate.
Dipyridamole	58-32-2	Pharmaceuticals	Water	PT (suspected, Janusinfo SE)			NL	No available data in the prioritisation exercise
Triclosan	3380-34-5	Antimicrobial agent	Water	PBT and ED (under assessment, CoRAP, ECHA)		0.053 µg/l (AA-QS freshwater, JRC factsheet, 2015) 0.02 µg/l (UBA, 2015)	NL	According to the prioritisation exercise, monitoring data are available from 10 MS totally 4234 samples (the quality of monitoring is acceptable in Sc3). With PNEC=0.02 µg/l would suggest RQ=2.6 and STE=0.65 (considered as an intermediate risk; 4 MS showed exceedances)

Name	CAS No	Use	Matrix	Hazard Properties	LOQ	PNEC	MS	Comments
Rodenticides: Bromadiolone Brodifacoum Difenacoum	28772-56-7 56073-10-0 56073-07-5	Biocides for controlling rodents	Water	P, vP BT R	LC-MS/MS 0.05- 0.5 µg/l	Bromadiolone 0.017-0.38 µg/l (SE, AR 2010) Brodifacoum 0.04 µg/l (IT, AR 2010) Difenacoum 0.06 µg/l (FI, AR 2009)	ES	Data available in the prioritisation dataset (inland whole water Sc2): Bromadiolone: 5368 samples from 2 MS; all non-quantified; low data quality; MEC(P95)=0.05 µg/l; RQ=2.94-0.13 Brodifacoum: 91 samples from 1 MS; all non-quantified; low data quality; MEC(P95)=0.005 µg/l; RQ=0.125 Difenacoum : 1298 samples from 1 MS; all non- quantified; low data quality;
1,2,4-Triazole	288-88-0	Used in fertilisers, laboratory chemicals, pharmaceuticals and phytopharmaceuticals. It is also formed by the degradation of azoles in soil and water.	Water	Suspected to be Toxic to Reproduction (Harmonised Classification, ECHA dossier) Under assessment as ED (ECHA dossier)	LC-MS/MS 0.05 µg/l (BASF Corporation, EPA 2013)	32 μg/l (AF 100, ctgb NL)		Proposed during internal consultation as a possible indicator for the azole group. The detection limit should be based on the most toxic azole compound.

5 Conclusions

In 2020, the Watch List (WL), according to Directive 2008/105/EC (Article 8b⁸) has to be revised and, except for three substances included in 2018 (amoxicillin, ciprofloxacin and metaflumizone), all existing substances must be removed.

The JRC identifies 11 substances/groups of substances as suitable candidates based on the criteria described in sections 3.1 and 4.1 for inclusion in the next WL.

- Group of pyrethroids and the sunscreen ingredient. These substances are hydrophobic and, to gather good data quality in order to evaluate whether they pose an ecotoxicological or human health risk, they should be measured in sediment or biota. For the sunscreen agent the JRC would recommend the analysis in sediment but also suspended particulate matter (SPM) could be accepted. For pyrethroids, JRC would recommend measurement in sediment but also measurements in biota or water could be accepted. Recently, Rösch et al. developed a very sensitive method to measure the pyrethroids in water, reaching a limit of quantification (LOQ) of pg/l (below the PNEC values) (Rösch et al., 2019¹⁶). However, this method requires very sophisticated and expensive instruments which are not available in all laboratories. Participants in the workshop "Analytical methods for substances in the Watch List under the Water Framework Directive" held at the JRC (Ispra, Italy) in October 2018, agreed that compounds with log Kow > 5 should preferably be measured in sediments or in SPM, and that a method for sediments exists.
- Antibiotics (sulfamethoxazole, trimethoprim) and antifungal pharmaceuticals (clotrimazole, fluconazole, miconazole). These substances have been identified because of their wide use and release into water, their toxicity to aquatic life and their possible contribution to the spread of antimicrobial and antifungal resistance. In the context of action to address in a more holistic way the rising threat from antimicrobial resistance (AMR), the environment, and particularly water, has been identified as a potential reservoir of resistance whose role needs to be better understood (A EU One Health Action Plan)³⁹. Their inclusion in the WL will provide a picture of their concentration at the EU level.
- Other pharmaceuticals (venlafaxine, norethisterone). Venlafaxine was identified as a suitable candidate since this substance is persistent (P) toxic (T) and fulfils criterion 3 (measured in fewer than 4 MS during the ongoing priority substances prioritisation exercise and with a modelled Risk Quotient (RQ) higher than 5). However, it was excluded because the PNEC was not reliable. The JRC, based on available ecotoxicological data, derived a PNEC. Norethisterone is a synthetic hormone and its endocrine disrupting (ED) properties could pose a risk to aquatic organisms.
- Plant protection products (PPP, azole compounds). Imazalil, ipconazole, metconazole, penconazole, prochloraz, tetraconazole and tebuconazole are widely used as PPP and biocides. They have been selected due to their hazard properties. Many of them are PT and some of them have ED properties. Moreover, they may contribute to antifungal resistance. The substances epoxiconazole and propiconazole have been removed from the group since they are not approved as PPP and only propiconazole is approved as a biocide, until March 2021.
- Dimoxystrobin and famoxadone. These two substances are PPP and they were identified because of their hazard properties and potential risk in the modelling-based exercise. In the first review of the WL, they were not further proposed due to expired data. Recently, their use in Europe has been renewed and the JRC would recommend their inclusion due to common use in 16 Member States (MS) (dimoxystrobin) and 20 MS (famoxadone).
- Chromium (Cr) (III) and Cr (VI). In 2018⁷, the JRC revised the PNEC value for Cr (III) which currently corresponds to 1.8 µg/l and is lower than the PNEC value for Cr (VI) (2.06 µg/l) considered so far the most toxic form. Indeed, the use of hexavalent chromium has been restricted due to its toxicity effects, however, according to the more recent ecotoxicological data, trivalent chromium poses a major risk. For this reason, the JRC would recommend gathering more data on these two forms of chromium, particularly for coastal and transitional waters, since no good data are available to evaluate the risk.
- Free cyanide is one of the most toxic cyanide forms in the aquatic environment. This substance was identified as a potential risk during the prioritisation exercise (2011), but questions were raised about the form of cyanide covered by the available monitoring data. The substance was not further considered in the 1st WL because of the lack of a good analytical method. Thanks to the efforts of

stakeholders, a method is now available and the selection of this substance would result in monitoring data being collected across Europe. However, the surrounding environment and potential natural background should be considered.

In conclusion, Table 6 shows the suggested candidate substances and group/class of substances with respective names, uses and matrices (environmental compartment) where the JRC would recommend that monitoring be performed.

Table 6: A list of candidate substances fulfilling the selection criteria and identified by the JRC as most suitable for inclusion in the next Watch List (WL). The table shows for each candidate substance the group/class, name, use and matrix (environmental compartment) where it should be monitored. (SPM= Suspended particulate matter; PPP= plant protection product).

Group	Name	Use	Matrix
	EHMC (2-Ethylexyl 4- methoxycinnamate)	UV filter	Sediment/SPM
Pyrethroids	Bifenthrin, Deltamethrin, Esfenvalerate, Permethrin	PPP and biocide use	Sediment/biota/water
Industrial products	Chromium (VI) and chromium (III)	Industrial chemical	Preferable in coastal/transitional water (as total chromium in dissolved fraction)
	Free Cyanide	Industrial product	Water
		Inorganic biocide	Inland (preferable) and coastal waters (in dissolved fraction)
Anti-Microbial Pharmaceuticals	Sulfamethoxazole, Trimethoprim	Antibiotic	Water (inland whole water)
	Clotrimazole, Fluconazole, Miconazole	Antifungal	
Other Pharmaceuticals	Norethisterone	Synthetic Hormone	Water (inland whole water)
	Venlafaxine and O- desmethylvenlafaxine	Antidepressant	
PPP and Biocides (Azole compounds)	Imazalil, Ipconazole, Metconazole, Penconazole, Prochloraz, Tetraconazole, Tebuconazole	PPP Biocides	Water (inland whole water)
Other PPP and Biocides	Dimoxystrobin	РРР	Water (inland whole water)

Famoxadone	РРР	Water (inland whole water)
------------	-----	-------------------------------

Table 7 lists other candidates that are not further considered in this exercise following some comments of MS and stakeholders as explained in section 4.3.

Table 7: List of substances assessed by the JRC as other candidates for the next Watch List (WL) (not proposed for now to be included in the WL). For each substance, the table shows the group/class, name, use and matrix (environmental compartment) where it should be monitored. (PPI= Proton pump inhibitor; PPP= plant protection product).

Group	Name	Use	Matrix
Industrial products	4-chloroaniline 3,4-dichloroaniline	Industrial	Water (inland whole water)
Pharmaceuticals	Mebendazole	Human medicine	Water (inland whole water)
	Fentanyl	Human medicine	
	Gemfibrozil	Human medicine	
	PPI: Omeprazole and its metabolites	Human medicine and metabolites	
PPP and Biocides	Copper (I) oxide (Cu ₂ O) Copper (II) oxide (CuO)	PPP Biocide	Water (inland dissolved fraction)
	Proquinazid	РРР	Water (inland whole water)

References

- 1 EU. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Official Journal of the European Union, L 78/40-42, 24.3.2015. (2015).
- 2 EU. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495 (notified under document C(2018) 3362). (2018).
- 5 EU. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Union, L348/84-97, 24.12.2008. (2008).
- 4 EU. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, L226/1-17, 24.8.2013. (2013).
- 5 Carvalho, R. N. *et al.* Monitoring-based exercise: second review of the priority substances list under the Water Framework Directive (<u>https://circabc.europa.eu/w/browse/52c8d8d3-906c-48b5-a75e-53013702b20a</u>). (2016).
- 6 Lettieri, T. *et al.* Modelling-based strategy for the prioritisation exercise under the Water Framework Directive, <u>https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf</u>). (2016).
- 7 Loos, R., Marinov, D., Sanseverino, I., Napierska, D. & Lettieri, T. Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List. EUR 29173, Publications Office of the European Union, Luxembourg, 2018, doi:10.2760/701879. (2018).
- 8 Guidance document No. 27. Technical Guidance For Deriving Environmental Quality Standards. Updated version 2018. (2018).
- 9 EU. COM/2019/128 final: COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL AND THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE: European Union Strategic Approach to Pharmaceuticals in the Environment (<u>https://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=COM:2019:128:FIN</u>). (2019).
- 10 Guidance document No. 25 on chemical monitoring of sediment and biota under the Water Framework Directive. ISBN 978-92-79-16224-4; doi: 10.2779/43586. (2010).
- 11 Loos, R., Marinov, D., Sanseverino, I. & Lettieri, T. Analytical methods for substances in the Watch List under the Water Framework Directive. Workshop Report. Publications Office of the European Union, Luxembourg, ISBN 978-92-79-96856-3, doi:10.2760/74723, JRC113172. (2018).
- 12 Carvalho, R. N., Ceriani, L., Ippolito, A. & Lettieri, T. Development of the first Watch List under the Environmental Quality Standards Directive, EUR2714, Publications Office of the European Union, Luxembourg, doi: 10.2788/101376. (2015).
- 13 Mandaric, L. *et al.* Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. *Science of The Total Environment* **590-591**, 484-494, doi:<u>https://doi.org/10.1016/j.scitotenv.2017.02.185</u> (2017).
- 14 Corcellas, C., Eljarrat, E. & Barceló, D. First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). *Environment International* **75**, 110-116, doi:<u>https://doi.org/10.1016/j.envint.2014.11.007</u> (2015).
- 15 JRC. Draft Dossier of substances identified in the second prioritisation process <u>https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp</u>. (2016).
- 16 Rösch, A., Beck, B., Hollender, J. & Singer, H. Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid-liquid

extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. *Analytical and Bioanalytical Chemistry* **411**, 3151-3164, doi:10.1007/s00216-019-01787-1 (2019).

- 17 Hladik, M. & USGS. Methods Development for the Analysis of Pyrethroid Pesticides in Environmental Samples. FINAL REPORT FOR CALFED Recipient Agreement No. ERP-02-P42. (2007).
- 18 Hladik, M. L. & Kuivila, K. M. Assessing the Occurrence and Distribution of Pyrethroids in Water and Suspended Sediments. *Journal of Agricultural and Food Chemistry* **57**, 9079-9085, doi:10.1021/jf9020448 (2009).
- 19 Hladik, M. L., Smalling, K. L. & Kuivila, K. M. Methods of Analysis—Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. Techniques and Methods 5–C2. U.S. Department of the Interior. U.S., Geological Survey, Reston, Virginia. (2009).
- 20 RIVM 2008. RIVM Letter report 601716015/2008. Environmental risk limits for deltamethrin. https://www.rivm.nl/bibliotheek/rapporten/601716015.pdf.
- 21 RIVM 2008. RIVM Letter report 601716017/2008. Environmental risk limits for esfenvalerate. https://www.rivm.nl/bibliotheek/rapporten/601716017.pdf.
- 22 RIVM 1997. RIVM report no. 601501002. Maximum Permissible Concentrations and Negligible Concentrations for pesticides. <u>https://www.rivm.nl/bibliotheek/rapporten/601501002.pdf</u>.
- 23 Lee, I., Lee, J., Jung, D., Kim, S. & Choi, K. Two-generation exposure to 2-ethylhexyl 4-methoxycinnamate (EHMC) in Japanese medaka (Oryzias latipes) and its reproduction and endocrine related effects. *Chemosphere* **228**, 478-484, doi:<u>https://doi.org/10.1016/j.chemosphere.2019.04.123</u> (2019).
- 24 Sharma, A. *et al.* Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells. *Science of The Total Environment* **593-594**, 18-26, doi:<u>https://doi.org/10.1016/j.scitotenv.2017.03.043</u> (2017).
- 25 Massei, R. *et al.* Screening of Pesticide and Biocide Patterns As Risk Drivers in Sediments of Major European River Mouths: Ubiquitous or River Basin-Specific Contamination? *Environmental Science & Technology* **52**, 2251-2260, doi:10.1021/acs.est.7b04355 (2018).
- Pico, Y. *et al.* Contaminants of emerging concern in freshwater fish from four Spanish Rivers. *Science of The Total Environment* **659**, 1186-1198, doi:<u>https://doi.org/10.1016/j.scitotenv.2018.12.366</u> (2019).
- 27 EU. Commission Directive 2009/90/EC of 31 July 2009 laying down, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status. Official Journal of the European Union, L201/36, 1.8.2009. (2009).
- 28 RIVM 2009. RIVM Report 601714002/2009. Environmental risk limits for monochloroanilines <u>https://www.rivm.nl/bibliotheek/rapporten/601714002.pdf</u>.
- 29 Börnick, H., Grischek, T. & Worch, E. Determination of aromatic amines in surface waters and comparison of their behavior in HPLC and on sediment columns. *Fresenius' Journal of Analytical Chemistry* **371**, 607-613, doi:10.1007/s002160101011 (2001).
- 30 Rimayi, C., Odusanya, D., Weiss, J. M., de Boer, J. & Chimuka, L. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa. *Science of The Total Environment* 627, 1008-1017, doi:<u>https://doi.org/10.1016/j.scitotenv.2018.01.263</u> (2018).
- 31 RIVM 1998. Report no. 601501003. Maximum Permisssible Concentrations and Negligible Concentrations for aniline derivatives. <u>https://www.rivm.nl/bibliotheek/rapporten/601501003.pdf</u>.
- 32 Hladik, M. L. & Calhoun, D. L. Analysis of the herbicide diuron, three diuron degradates, and six neonicotinoid insecticides in water—Method details and application to two Georgia streams: U.S. Geological Survey Scientific Investigations Report 2012–5206, 10 p. Available at http://pubs.usgs.gov/sir/2012/5206. (2012).
- 33 UK Environment Agency 2007. Science Report: SC040038/SR5. SNIFFER Report: WFD52(v). Proposed EQS for Water Framework Directive Annex VIII substances: chromium(VI) and chromium(III) (dissolved). https://www.wfduk.org/sites/default/files/Media/chromium.pdf.

- 34 Vonderheide, A. P. *et al.* Retention of Cr(III) by high-performance chelation ion chromatography interfaced to inductively-coupled plasma mass spectrometric detection with collision cell. *Journal of Chromatography A* **1024**, 129-137, doi:<u>https://doi.org/10.1016/j.chroma.2003.10.070</u> (2004).
- 35 Fraunhofer Institute. Monitoring program for the determination of the natural background concentrations of free cyanide in surface waters. Report on work package 4: Cyanide monitoring program. Fraunhofer Institute for Molecular Biology and Applied Ecology (IME). Division Applied Ecology, 57392 Schmallenberg, Germany. (2018).
- AMR Industry Alliance Antibiotic Discharge Targets. List of Predicted No-Effect Concentrations (PNECs).
 (2018).
- 37 Zhou, S. *et al.* Optimization of screening-level risk assessment and priority selection of emerging pollutants The case of pharmaceuticals in European surface waters. *Environment International* **128**, 1-10, doi:<u>https://doi.org/10.1016/j.envint.2019.04.034</u> (2019).
- 38 Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. *Science of The Total Environment* **532**, 501-511, doi:<u>https://doi.org/10.1016/j.scitotenv.2015.06.010</u> (2015).
- 39 Papageorgiou, M., Zioris, I., Danis, T., Bikiaris, D. & Lambropoulou, D. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Science of The Total Environment 694, 133565, doi:https://doi.org/10.1016/j.scitotenv.2019.07.371 (2019).
- 40 Zrnčić, M. *et al.* Analysis of anthelmintics in surface water by ultra high performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry. *Chemosphere* **99**, 224-232, doi:<u>https://doi.org/10.1016/j.chemosphere.2013.10.091</u> (2014).
- 41 Wielens Becker, R. *et al.* Investigation of pharmaceuticals and their metabolites in Brazilian hospital wastewater by LC-QTOF MS screening combined with a preliminary exposure and in silico risk assessment. *Science of The Total Environment* **699**, 134218, doi:https://doi.org/10.1016/j.scitotenv.2019.134218 (2020).
- 42 Boix, C. *et al.* Identification of new omeprazole metabolites in wastewaters and surface waters. *Science of The Total Environment* **468-469**, 706-714, doi:<u>https://doi.org/10.1016/j.scitotenv.2013.08.095</u> (2014).
- 43 Kosma, C. I., Lambropoulou, D. A. & Albanis, T. A. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review. *Science of The Total Environment* **569-570**, 732-750, doi:<u>https://doi.org/10.1016/j.scitotenv.2016.06.160</u> (2016).
- 44 Krizman-Matasic, I., Kostanjevecki, P., Ahel, M. & Terzic, S. Simultaneous analysis of opioid analgesics and their metabolites in municipal wastewaters and river water by liquid chromatography–tandem mass spectrometry. *Journal of Chromatography A* **1533**, 102-111, doi:https://doi.org/10.1016/j.chroma.2017.12.025 (2018).
- 45 Vulliet, E. & Cren-Olivé, C. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. *Environmental Pollution* **159**, 2929-2934, doi:<u>https://doi.org/10.1016/j.envpol.2011.04.033</u> (2011).
- 46 Loos, R. *et al.* EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. *Water Research* **47**, 6475-6487, doi:<u>https://doi.org/10.1016/j.watres.2013.08.024</u> (2013).
- 47 Casado, J., Brigden, K., Santillo, D. & Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. *Science of The Total Environment* **670**, 1204-1225, doi:<u>https://doi.org/10.1016/j.scitotenv.2019.03.207</u> (2019).
- 48 Aharchaou, I. *et al.* Chromium hazard and risk assessment: New insights from a detailed speciation study in a standard test medium. *Environmental Toxicology and Chemistry* **37**, 983-992, doi:10.1002/etc.4044 (2018).

- 49 Destanoğlu, O., Gümüş Yılmaz, G. & Apak, R. Selective Determination of Free Cyanide in Environmental Water Matrices by Ion Chromatography with Suppressed Conductivity Detection. *Journal of Liquid Chromatography & Related Technologies* **38**, 1537-1545, doi:10.1080/10826076.2015.1076460 (2015).
- 50 Jaszczak, E., Polkowska, Ż., Narkowicz, S. & Namieśnik, J. Cyanides in the environment—analysis problems and challenges. *Environmental Science and Pollution Research* **24**, 15929-15948, doi:10.1007/s11356-017-9081-7 (2017).
- 51 Sanseverino, I., Navarro Cuenca, A., Loos, R., Marinov, D. & Lettieri, T. State of the Art on the Contribution of Water to Antimicrobial Resistance, EUR 29592 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-98478-5, doi:10.2760/771124, JR C114775. (2018).
- 52 EU. COM/2017/0339 final: Communication from the Commission to the Council and the European Parliament: A European One Health Action Plan against Antimicrobial Resistance (AMR) <u>https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:52017DC0339</u>. (2017).
- 53 Monteiro, S. C. & Boxall, A. B. A. in *Reviews of Environmental Contamination and Toxicology* (ed David M. Whitacre) 53-154 (Springer New York, 2010).
- 54 Larsson, D. G. J. Antibiotics in the environment. *Upsala Journal of Medical Sciences* **119**, 108-112, doi:10.3109/03009734.2014.896438 (2014).
- 55 Kümmerer, K. & Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. *Clinical Microbiology and Infection* **9**, 1203-1214, doi:<u>https://doi.org/10.1111/j.1469-0691.2003.00739.x</u> (2003).
- 56 Larsson, D. G. J., de Pedro, C. & Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. *Journal of Hazardous Materials* **148**, 751-755, doi:https://doi.org/10.1016/j.jhazmat.2007.07.008 (2007).
- 57 Quinlan, E. L. *et al.* Temporal Dynamics of Periphyton Exposed to Tetracycline in Stream Mesocosms. *Environmental Science & Technology* **45**, 10684-10690, doi:10.1021/es202004k (2011).
- 58 Wellington, E. M. H. *et al.* The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. *The Lancet Infectious Diseases* **13**, 155-165, doi:https://doi.org/10.1016/S1473-3099(12)70317-1 (2013).
- 59 Brandt, K. K. *et al.* Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms. *Environment International* **85**, 189-205, doi:https://doi.org/10.1016/j.envint.2015.09.013 (2015).
- 60 Bengtsson-Palme, J. & Larsson, D. G. J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. *Environment International* **86**, 140-149, doi:<u>https://doi.org/10.1016/j.envint.2015.10.015</u> (2016).
- 61 DellaGreca, M. *et al.* Degradation of lansoprazole and omeprazole in the aquatic environment. *Chemosphere* **63**, 1087-1093, doi:<u>https://doi.org/10.1016/j.chemosphere.2005.09.003</u> (2006).
- 62 Boix, C., Ibanez, M., Sancho, J. V., Niessen, W. M. & Hernandez, F. Investigating the presence of omeprazole in waters by liquid chromatography coupled to low and high resolution mass spectrometry: degradation experiments. *Journal of mass spectrometry : JMS* **48**, 1091-1100, doi:10.1002/jms.3260 (2013).
- 63 Fent, K. Progestins as endocrine disrupters in aquatic ecosystems: Concentrations, effects and risk assessment. *Environment International* **84**, 115-130, doi:<u>https://doi.org/10.1016/j.envint.2015.06.012</u> (2015).
- 64 Runnalls, T. J., Beresford, N., Losty, E., Scott, A. P. & Sumpter, J. P. Several Synthetic Progestins with Different Potencies Adversely Affect Reproduction of Fish. *Environmental Science & Technology* **47**, 2077-2084, doi:10.1021/es3048834 (2013).
- 65 Paulos, P. *et al.* Reproductive responses in fathead minnow and Japanese medaka following exposure to a synthetic progestin, Norethindrone. *Aquat Toxicol* **99**, 256-262, doi:10.1016/j.aquatox.2010.05.001 (2010).

- 66 Ellestad, L. E. *et al.* Environmental Gestagens Activate Fathead Minnow (Pimephales promelas) Nuclear Progesterone and Androgen Receptors in Vitro. *Environmental Science & Technology* **48**, 8179-8187, doi:10.1021/es501428u (2014).
- 67 Gunnarsson, L. *et al.* Pharmacology beyond the patient The environmental risks of human drugs. *Environment International* **129**, 320-332, doi:<u>https://doi.org/10.1016/j.envint.2019.04.075</u> (2019).
- 68 UBA, 2019. veDatenblatt. Vorschlag für einen Umweltqualitätsstandard EQS (environmental quality standard) für die Bewertung der Gewässerrelevanz von Venlafaxin und O-Desmethylvenlafaxin.
- 69 Zubrod, J. P. *et al.* Fungicides: An Overlooked Pesticide Class? *Environmental Science & Technology* **53**, 3347-3365, doi:10.1021/acs.est.8b04392 (2019).
- 70 Martinez-Matias, N. & Rodriguez-Medina, J. R. Fundamental Concepts of Azole Compounds and Triazole Antifungals: A Beginner's Review. *Puerto Rico health sciences journal* **37**, 135-142 (2018).
- 71 Sardul, S. S., Harshita, S., Ravindra, P. A., Suneel, K. & Shyamji, S. Antifungal Azole Derivatives and their Pharmacological Potential: Prospects & Retrospects. *The Natural Products Journal* **4**, 140-152, doi:<u>http://dx.doi.org/10.2174/221031550402141009100632</u> (2014).
- 72 EC COM(2012) 252. Communication from the Commission to the council. The combination effect of chemicals Chemical mixtures. Brussels, 31.5.2012.EFSA (European Food Safety Authority), 2008. Opinion of the Scientific Panel on Plant Protection Products and their Residues to evaluate the suitability of existing methodologies and, if appropriate, the identification of new approaches to assess cumulative and synergistic risks from pesticides to human health with a view to set MRLs for those pesticides in the frame of Regulation (EC) 396/2005. The EFSA Journal 2008, 704, 1-85.
- FSA, 2013. Scientific Opinion on the relevance of dissimilar mode of action and its appropriate application for cumulative risk assessment of pesticides residues in food. EFSA Journal, 11(12): 3472.
- 74 Kiaune, L. & Singhasemanon, N. in *Reviews of Environmental Contamination and Toxicology Volume* 213 (ed David M. Whitacre) 1-26 (Springer New York, 2011).
- 75 The Danish Environmental Protection Agency. Ministry of Environment and Food. Environmental assessment of nanomaterial use in Denmark. Environmental project No. 1788, 2015. (2015).
- 76 INERIS, 2014. Validation groupe d'experts : Juillet 2014. Version 2 : 17/02/2016. DRC-15-136849-12771B.
- 77 DANISH ENVIRONMENTAL PROTECTION AGENCY. 2019. POTENTIAL SOURCES OF 1,2,4-TRIAZOLE IN DANISH GROUNDWATER. Technical note Final, 06.03.2019.

List of abbreviations and definitions

AMR Antimicrobial resistance APCI Atmospheric pressure chemical ionisation ARB Antibiotic resistant bacteria **B** Bioaccumulation C Carcinogenicity CMR Carcinogenic, mutagenic and toxic to reproduction CAS Chemical Abstract Service Eawag Swiss Federal Institute of Aquatic Science and Technology EE2 17-alpha-Ethinylestradiol E1 Estrone E2 17-beta-Estradiol ECHA European Chemicals Agency ECOSAR Ecological structure activity relationships ED Endocrine disruptor EDS Endocrine Disruptors Strategy EEA European Environment Agency EEA European Economic Area EFSA European Food Safety Authority EFTA European Free Trade Association EHMC 2-ethylhexyl-4-methoxycinnamate EQS Environmental quality standard EQSD Environmental quality standard Directive ERA Environmental Risk Assessment FASS Swedish Medicines Information Engine GC-MS Gas chromatography mass spectrometry INERIS Institut national de l'environnement industriel et des risques JRC Joint Research Centre Kow N-octanol/water partition coefficient LC-MS-MS Liquid chromatography (tandem) triple quadrupole mass spectrometry LLE Liquid-liquid extraction LOD Limit of detection LOQ Limit of quantification M Mutagenicity MDL Method detection limit MEC Measured environmental concentration MIC Minimum inhibitory concentration MoA Mode of Action

MS Member State

- OT Omeprazole transformation product OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic PBT Persistent, bioaccumulative and toxic PEC Predicted environmental concentration PNEC Predicted no-effect concentration P Persistence PPI Proton pump inhibitor PPP Plant protection product PS Priority Substance **R** Reproduction Toxicity RIVM National Institute for Public Health and the Environment (NL) RQ Risk Quotient Sc2 and Sc3 Scenario 2 and Scenario 3 SG-R Sub-group on revision (of the priority substance list) SoE State of the Environment SPE Solid-phase extraction SPM Suspended particulate matter STE Spatial, Temporal and Extent of PNEC exceedance SVHC Substance of very high concern T Toxicity TGD Technical guidance document **UBA** German Environment Agency USGS United States Geological Survey US EPA The United States Environmental Protection Agency
- WFD Water Framework Directive

OM Omeprazole metabolite

- WG Working group
- WL Watch List

List of figures

Figure 1	. Overall process for the selection of candidate substances for the Watch List (WL)	8
Figure 2	. Classification of pharmaceuticals	36

List of tables

Table 1. Sources for EQS/PNEC values and hazard information	10
Table 2. Sources for analytical methods	11
Table 3. Potential candidates for the 3 rd WL which should be monitored in sediment	13
Table 4. Potential candidates for the WL identified following the new criteria defined by the JRC	20
Table 5. A list of substances suggested by individual MS and during internal consultation as good candida for the next WL	ıtes 46
Table 6. A list of candidate substances fulfilling the selection criteria and identified by the JRC as most suitable for inclusion in the next Watch List (WL).	54
Table 7. List of substances assessed by the JRC as other candidates for the next Watch List (WL) (not proposed for now to be included in the WL)	55

Supplementary information

The annexes below present additional information for the WL candidate substances.

Annex I: Outcome of the workshop "Analytical methods for substances in the Watch List under the Water Framework Directive" held at the JRC (Ispra, Italy) in October 2018

The workshop was held at the JRC (Ispra, Italy), on the 9-10 October 2018. It was attended by 22 experts from 14 countries. Teresa Lettieri chaired the meeting.

The objectives of the Workshop were: i) to discuss the feedback received from MS in order to get better measurements for the five substances for which it is difficult to reach the LOQ \leq PNEC (in particular methiocarb, imidacloprid, EE2); ii) to discuss the analytical methods for the pyrethroid insecticides and the sunscreen (UV-filter) agent 2-ethylhexyl 4-methoxycinnamate (EHMC) in the appropriate matrix (sediment or biota).

During the meeting, the experts gave several presentations which are summarised as follows.

Robert Loos (JRC) presented the substances proposed for the next round of the WL to be measured in sediment: pyrethroids (etofenprox, permethrin, esfenvalerate, deltamethrin, bifenthrin) and EHMC, a UV-filter sunscreen ingredient. In particular, he discussed the analytical methods (including extraction, clean-up and determination) and the sampling strategies reported in scientific articles and indicating the MS that currently analyse pyrethroids (FR and CH (method in development)) or EHMC (CZ; DE, SE (method in development)).

Isabella Sanseverino discussed the PNEC values derived by the JRC for pyrethroids in marine water, freshwater and sediments. All the studies (acute and chronic) were retrieved from institutional dossiers.

Francois Lestremeau (INERIS-FR) presented the institutional method (GC-MS/MS) used to analyse pyrethroids in sediment, which is part of the regular monitoring in France since 2015. With this method, the MS is able to reach an LOQ of 1-5 μ g/kg. To avoid sticking of the substances to the analytical part of the instrument (GC liner), sorbitol alcohol is used as an analytical protectant.

Silwan Daouk (CH) presented the method (GC-APCI or NCI MS/MS) developed in CH for analysing pyrethroids in water. With this method, it was possible to reach LOQ \leq PNEC (around 25 pg/l) for many compounds except for permethrin, bifenthrin and deltamethrin. He suggested using tap water instead of MilliQ water as a matrix for making the calibration process and to analyse the samples within 24 hours. If the measurement is not performed, it is recommended storing the samples at -20°C for a maximum of 1 week and to avoid sample storage at +4°C. He also remarked that pyrethroids stick to the glass and that it is possible to recover the substances by shaking. The method for detecting pyrethroids in sediment is under development. Some detections and PNEC exceedances in water were reported.

Martin Fereneik (CZ) presented the method developed for detecting EHMC in sediment, based on lyophilisation, LLE with hexane/acetone and GC-MS. He pointed out that it is critical to evaluate laboratory blanks (therefore no clean-up is used) because they can be easily contaminated with cosmetic products used by operators. The method LOQ was set at 50 µg/kg to avoid false positive samples. The concentration levels at the majority of the sampling sites were below the LOQ.

Ola Swahn (SE) presented an analytical method (in-house built method is in development) for detecting EHMC in sediment, based on superheated water extraction (SHWE), followed by SPE clean-up and UHPLC-MS/MS analysis (use of HPLC degasser, GC oven, extraction cell and a cooling coil). The samples can be extracted in wet conditions and it takes 20 minutes to extract 1 sample without the use of organic solvents. As the results have not been published yet, slides cannot be circulated.

After the presentations, several aspects of the sediment analysis (e.g. fraction to be analysed, number of sampling points, normalisation, storage) were discussed with a specific focus on EHMC in sediments.

For pyrethroids, the measurement in biota was also mentioned considering their bioaccumulation potential in fish. However, sediment was indicated as matrix of choice because there is already analytical methodology available, while measurement in biota would be more difficult. When analysed in water, it is recommended

performing the analysis of pyrethroids within 24h or store them at -20°C (for a maximum of one week). It was also remarked that pyrethroids stick to the glass, but it is possible to recover the substance by shaking.

For the analysis in sediments, the importance of defining the fraction to be analysed was mentioned and how to normalise the data to the organic carbon. Different methodologies used to measure pyrethroids and EHMC in sediments were also presented with the following discussion on drafting recommendations for sediment analysis. It was suggested consulting the CIS sediment and biota guidance document N° 25.

Finally, the participants split into two different groups to draft guidelines for sediment analysis. All participants agreed on the following points:

1. Use of sediment fraction below 2 mm;

2. Normalisation of the concentration results respect to the dry matter and Total Organic Carbon (TOC);

3. Selection of a proper sampling site ensuring at least 20% of fine particles;

4. Creation of a composite sample with a minimum of three sampling points located close by;

5. Sample storage at -20°C in amber glass (if not possible to analyse them within 24 hours);

6. Sampling period dependent on the use of pesticides, and for EHMC after the summer;

7. Importance of internal standards: recovery standards should be spiked the day before and left overnight, normal internal standard can be spiked just before extraction; use of reference materials;

8. The extraction method is up to the laboratories (different methods possible).

The **main conclusions** of the Workshop were the following:

1. Proposal for introducing the LOQ value in the WL Decision;

2. Ask MS to provide information about LOD, LOQ and concentrations between LOD and LOQ to understand if non-quantified samples are detected or non-detected samples;

3. Recommendations for sediment analysis to be drafted;

4. Look for PNEC to propose new substances for the next round of the WL;

5. Promote the exchange of information and improve communication and collaboration (service, training, protocols) between MS for substances for which it is difficult to reach the LOQ \leq PNEC.

Annex II: Hazard properties, available monitoring data, RQ, and STE scores

The tables below give information relative to the hazard properties (PBT/CMR/ED), available monitoring data, RQs, and STE scores for the candidate substances.

Note:

Information for additional monitoring data (if any), collected after the WG Chemicals meeting on 15-16 January 2020, is provided in factsheets of the candidate substances.

Updated information regarding hazard properties, use and PNEC values are detailed in the factsheets of the candidate substances.

Table 2.1: Candidate substances to be monitored in the sediments. Abbreviations, ED: endocrine disruptor; P: persistent; vP: very persistent; T: toxic; B: bioaccumulative; C: carcinogenic; M: mutagenic.

Group	Name	CAS	PNEC water (µg/l) PNEC sediments (µg/kg) PNEC biota (µg/kg)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	EHMC (2-Ethylexyl 4- methoxycinnamate) (2-Ethylexyl trans- 4- methoxycinnamate)	5466-77-3 83834-59-7	water 6 (EU 2015/495) sediments 200 (specific organism, <i>Melanoides tuberculata</i> , 28d, AF 10; JRC factsheet Carvalho et al., 2015)	Not in Annex III inventory (ECHA) Suspected PBT, ED under assessment (ED list) (ECHA, CoRAP) ED properties (Several studies, the endocrine disruption exchange, TEDX endocrine) ED according to the JRC factsheet (Carvalho et al., 2015) ED (ECHA)	Inland whole water: WL combined dataset (after 3 rd reporting year): for Sc3 1583 samples (13.4% quantified) from 23 MS; Median = 0.3 µg/l; MEC(p95) = 1.8 µg/l Sediments: No available data in the dataset of the prioritization exercise. WL dataset: reported 31 samples from 3 MS; max concentration = 35 µg/kg	0.3 (PNEC = 6 μg/l) <1	0 (PNEC = 6 µg/l) 0
Pyrethroid insecticides	Bifenthrin	82657-04-3	water 0.00002 (JRC Factsheet; prioritisation 2016) sediments 0.4 dw (specific organism, INERIS, 2011) 0.4 dw (<i>Chironomus</i> <i>riparus</i> , AF 100; JRC dossier, 2016) biota 586 ww (JRC derived, factsheet, 2020)	2 PBT criteria (P, vP, T EU Pesticides database); Suspected B and CM in Annex III inventory (ECHA); Possibly C (ECHA); Possible ED properties	Inland whole water: In Sc2 dataset 7572 samples from 3 MS (1132 sites) are available. Only 2 quantified samples. The data quality of Sc2 is not good (for the majority of non-quantified samples LOQs > PNEC). The data are not Union- representative. Sc3 was not developed since low data quality. Median conc = 0.01 µg/l; MEC(p95) = 0.025 µg/lSediments: No available data in the dataset of the prioritisation exercise.	1250 (PNEC = 0.00002 µg/l)	3 (PNEC = 0.00002 µg/l)

Group	Name	CAS	PNEC water (µg/l) PNEC sediments (µg/kg) PNEC biota (µg/kg)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	Deltamethrin	52918-63-5	water 0.00007 (JRC Factsheet; prioritisation, 2016) sediments 6.2 ww (Equilibrium partitioning, SE, assessment report, 2011) 0.54 dw (Chironomus riparus, AF 100; JRC dossier, 2016) biota 468 ww (JRC derived, factsheet, 2020)	PT BC (suspected) in Annex III inventory (ECHA); Possible ED properties (one study)	Inland whole water: In Sc2 dataset 28842 samples from 7 MS (2766 sites) are available. Only 0.7% quantified samples. Data quality in Sc2 is not good since 96.6% of non-quantified samples have LOQs>PNEC. The data are not Union- representative because 1 MS holds 89.2% from all samples. Median conc = 0.01 µg/l; MEC(p95) = 0.05 µg/l. Sc3 was worked out but it is not representative for EU-wide assessment (3 MS with 3520 samples; 6% quantified). Sediments: No available data in the dataset of the prioritisation exercise.	714 (Sc2; PNEC = 0.00007 μg/l) 1.4 (Sc3; PNEC = 0.00007 μg/l)	2.69 (Sc2; PNEC= 0.00007 µg/l) 1.2 (Sc3; PNEC= 0.00007 µg/l)
	Esfenvalerate	66230-04-4	water 0.0001 (JRC Factsheet prioritisation 2016) sediments 1.25866 dw (Equilibrium partitioning; JRC dossier, 2016) biota 1077 ww (JRC derived, factsheet, 2020)	2 PBT criteria (BT) (EU Pesticides database) P (suspected) T C (suspected) in Annex III inventory (ECHA) Possible ED properties (one study)	Inland whole water: In Sc2 data from 4 MS (1152 sites) with 8661 samples are available. Only 0.5% quantified samples. Data quality is not good since 98.9% from all non-quantified samples have LOQs > PNEC. The data are not Union-representative (one MS holds 76% from all measurements). In Sc3 (PNEC = 0.0001 µg/l) data from only 2 MS (26 sites) with 87 samples are available (53% quantified samples). These data are insufficient and Sc3 is not representative for EU-wide assessment. Sediments: No available data in the dataset of the prioritisation exercise.	500 (Sc2) 170 (Sc3)	2.6 (Sc2; PNEC = 0.0001 μg/l) 2.5 (Sc3; PNEC = 0.0001 μg/l)
Group	Name	CAS	PNEC water (µg/l) PNEC sediments (µg/kg) PNEC biota (µg/kg)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
-------	------------	------------	--	--	--	---	--
	Permethrin	52645-53-1	<pre>water 0.00047 (derived by the JRC) 0.0015 (UK) 0.0002 (NL QS RIVM, 1997) sediments 0.2 ww (specific organism, INERIS, 2011) 1 dw (<i>Chironomus</i> <i>riparus</i>, AF 100; JRC substance dossier, 2016) biota 1954 ww (JRC derived, factsheet, 2020)</pre>	T PB (suspected) M (suspected) in Annex III inventory (ECHA) Possible ED properties (two studies)	Inland whole water: In Sc2 dataset 29730 samples from 7 MS are available. Only 0.4% quantified samples. Data quality is not good since only 2 non-quantified samples have LOQ < PNEC. The data are not Union-representative because one MS holds 90.7% from all samples. Median = 0.0125 µg/l; MEC(p95) = 0.025 µg/l; Sc3 contains 117 samples from 4MS. The available data are insufficient for a reliable risks assessment. Median = 0.01 µg/l; MEC(p95) = 0.09 µg/l; Sediments: No available data in the dataset of the prioritisation exercise.	53 (Sc2) 191 (Sc3); PNEC = 0.00047 μg/l 125 (Sc2); PNEC = 0.0002 μg/l	2.41 (Sc2; PNEC = 0.00047 μg/l) 2.29 (Sc3; PNEC = 0.00047 μg/l)

Hazard PNEC Data RQ CAS STE score Group Name (MEC(P95)/PNEC) (µq/l) (PBT/CMR/ED) (prioritisation exercise) Industrial 4-Chloroaniline 106-47-8 0.05 (prioritisation PT, C, possible M In Sc2 (inland whole water) monitored in 5 MS 3 (PNEC = 0.05 µg/l) 0.97 (PNEC = 0.05 exercise RBSP-ECOSTAT, C (ECHA). (2323 sites); available 26925 samples; only products µq/l) UBA, 2014) Not in Annex III inventory 0.8% guantified samples; the data guality is (ECHA) acceptable but the data are not Union-0.22 (NL legal standard representative since one MS holds about 90% AA-EQS. RIVM, 2009) from all samples: Median = 0.05 $\mu q/l$; MEC(p95) = 0.15 $\mu q/l$; 1 (INERIS) Sc3 is expected to be similar to Sc2 for PNEC = 0.05 µg/l. 3,4-dichloroaniline 95-76-1 0.2 (water) and 0.039 P, vP Endocrine disruptor 7.5 (PNEC = 0.02 µg/l) 1.6 (PNEC = 0.02)In Sc2 (inland whole water) monitored in 9 MS; mg/kg ww (sediment) available 13348 samples; only 0.7% are (INERIS). µq/l) (Risk Assessment Report, Not in Annex III inventory quantified samples; the data quality is poor (ECHA) JRC, 2006) since 71.5% from non-quantified samples were measured with LOQ > PNEC (PNEC = $0.02 \mu q/l$); 0.02 (water, monitoring the data are not Union-representative (79% exercise INERIS, 2012) from all samples originate from 2 MS); 5,6 Median = 0.025 μ g/l; MEC(p95) = 0.15 μ g/l. Sc3 is not developed since the low data quality. 3 (NL QS, RIVM, 1998)9 Chromium (Cr) Cr (III) (CAS 16065-83- Inland water: P and T (Factsheet) Cr (VI) and CrO₃ (inland whole water, Sc3, PNEC Cr (VI) (inland whole Cr (VI) (inland whole (III) and Cr (VI) 1) = 2.06 µg/l): 735 samples are available from 4 water; Sc3; PNEC = 2.06 water; Sc3; PNEC = Cr (VI) (CAS 18540-29- Cr (III): Cr (III) suspected R (ECHA) MS and 148 sites; about 51 % of samples are µg/l): 2.4 2.06 µg/l): 1.1 9) quantified: the data quality seems to be good 1.8 (JRC derived, 2018); CrO₃ (CAS 1333-82-0) Cr (VI) suspected C Annex since all non-quantified samples are measured Cr (III) (inland whole Cr (III) (inland whole Cr (VI): III inventory (ECHA) with LOQ < PNEC, however the data are not water; Sc2; PNEC = water: Sc2: PNEC = 1.8 Cr (VI) trioxide is CM and Union-representative since about 61% of all 2.06 (JRC derived, samples originate from 1 MS; another MS has a μ g/l): 0.44 1.8 µg/l): STE is not possible R (ECHA) 2018)7; calculated but is Cr (VI) and its compounds share of 29%; the remaining 2 MS hold only expected to be low were included in the SVHC 10% of all samples (one of them contributed Total dissolved since MEC(p95) < (substance of verv high with only 2 samples); Median = $1 \mu q/l$; MEC(p95) chromium (III + IV): PNFC concern) list (Annex XV = 5 µa/l. Cr total (inland dissolved; 3.4 (EA UK. 2007) REACH in 2010) because $(Sc3; PNEC = 3.4 \mu q/l)$: they are carcinogenic and Cr (III) (inland whole water, Sc2): 798 samples Coastal water: 0.735 Cr total (inland mutagenic are available from 1 MS and 56 sites; about 19 % of samples are guantified; the data guality dissolved: Sc3: PNEC Cr (VI): 0.6 (JRC Dossier: seems to be good since all non-guantified = 3.4 µg/l): 0.22 EA. UK) Cr total (coastal

Table 2.2: Industrial products and pharmaceuticals. Abbreviations, ED: endocrine disruptor; P: persistent; vP: very persistent; T: toxic; B: bioaccumulative; C: carcinogenic; M: mutagenic.

Group	Name	CAS	PNEC (µg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
			Cr (III): The QS derived for Cr (III) in freshwater may be used as an indicative value for marine water bodies until sufficient long-term studies with marine organisms are available (UK EA 2007). Total dissolved Cr (III + IV): 0.6 (EA UK, 2007)		samples are measured with LOQ < PNEC, however the data are not Union-representative since all samples originate from 1 MS; Median = 0.05 μg/l; MEC(p95) = 0.783 μg/l. Cr total (inland dissolved; Sc3 PNEC=3.4 μg/L): available 187752 samples (21.2 % quantified) form 24 MS (12599 sites; period 2006-2017). The data quality seems acceptable but 47.5 % of all samples originate from 1 MS and other 2 MS hold 34.9 % of data. (Dataset of the prioritisation exercise plus additional data submitted in 2018) Cr total (coastal dissolved; Sc3; PNEC = 0.6 μg/l): 6 MS, 52 sites, 370 samples (23% quantified); the data quality seems acceptable; 75% of all samples originate from 1 MS; Median = 0.5 μg/l; MEC(p95) = 0.7 μg/l.	dissolved; Sc3; PNEC = 0.6 µg/l): 1.2	Cr total (coastal dissolved; Sc3; PNEC = 0.6 µg/l): 0.57
	Free cyanide	CN-57-12-5 CNH 74-90-8	0.26 (JRC Factsheet 2015-2018/WFD-UK TAG report 2012) 0.5 (JRC Dossier https://circabc.europa.eu/ faces/jsp/extension/wai/n avigation/container.jsp 2015)	T (ECHA) HCN does not display properties of environmental persistence or bioaccumulation, although it is highly toxic to aquatic organisms. It does not meet the criteria for classification as PBT.	Cyanide (as total CN): In Sc2 (inland whole water) data from 14 MS with 17568 samples are available; 23.4% quantified samples. The data quality is low since about 77% of non-quantified samples have LOQ/LOD \geq PNEC (PNEC = 0.5 µg/l). The data seems not Union-representative since 3 MS hold about 70% from all samples; Median = 2.15 µg/l; MEC(p95) = 7.5 µg/l. Sc3 was not worked out since low data quality. Cyanide anion (CN-): In Sc2 (inland dissolved fraction) data from 2 MS with 340 samples are available (18.5% quantified samples). The data quality is low since about 64% of non-quantified samples have LOQ or LOD \geq PNEC (PNEC = 0.5 µg/l). The data are not representative. Median = 1 µg/l; MEC(p95) = 11.7 µg/l. Sc3 was not worked out since low data quality.	Cyanide (inland dissolved; NORMAN; WATERBASE): 10-40 (MEC = 5-20 µg/l and PNEC = 0.5 µg/l) 19.2-76.8 (MEC = 5 - 20 µg/l and PNEC = 0.26 µg/l). Cyanide anion: 23.4 (PNEC = 0.5 µg/l) 45 (PNEC = 0.26 µg/l)	STE(Sc2) is not calculated for CN- but it is expected to be high since the median-conc. > PNEC

Group	Name	CAS	ΡΝΕϹ (μg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
Anti-Microbial (AM) pharmaceuticals: antibiotics	Sulfamethoxazol e	723-46-6	0.6 (EQS chronic, Swiss ECOTOX centre, 2016) 0.4 (EQS 0.4 Substance factsheet 2015 from modelling-based exercise, 2016) 0.59 (FASS and RIVM, 2011) 16 (PNEC-MIC, AMR industry alliance) 0.1 (JRC derivation, 2019) 2.4 (Zhou et al., 2019)	P(3/3) T(3/3) Stockholm County Council. Suspected P (suspected hazardous for the aquatic environment) suspected PT and CMR in Annex III inventory (ECHA). No information about ED properties	In Sc2 (inland whole water) data from 14 MS (1023 sites) with 11684 samples are available. About 65% of samples are quantified. The non- quantified samples were measured with LOQ < PNEC (0.1 µg/l or lower). The quality of monitoring is acceptable (LOQ < PNEC) but the data are not Union-representative (65% of all samples originate from one MS; 18.6% from another MS; the remaining 13 MS have a share less than 16.4%). Sc3 is equal to Sc2 (for PNEC considered). Median = 0.025 µg/l; MEC(p95) = 1.17 µg/l	2.9 (PNEC = 0.4 μg/l) 11.7 (PNEC = 0.1 μg/l)	0.42 (PNEC = 0.4 µg/l) (not calculated for PNEC = 0.1 µg/l)
	Trimethoprim	738-70-5	120 (EQS chronic, Swiss ECOTOX centre 2015) 60 (Swiss ECOTOX centre modelling-based exercise, 2016) 0.5 (PNEC-MIC, AMR industry alliance) 43.3 (JRC derivation, 2019) 16 (RIVM, 2011) 15.7 (Zhou et al., 2019)	P(3/3) T(1/3) Stockholm County Council. Suspected PT and suspected CMR in Annex III inventory (ECHA). No information about ED properties	In Sc2 (inland whole water) data from 4 MS (352 sites) with 4613 samples are available. About 26% of samples are quantified. All non- quantified samples were measured with LOQ < PNEC (0.03 µg/l or lower). Data quality in Sc2 seems to be acceptable (LOQ < PNEC) but the data are not Union- representative (76% of all samples originate from one MS; 21% from another MS; the remaining 2 MS have a share less than 3%). Median = 0.0125 µg/l; MEC(p95) = 0.0674 µg/l Sc3 is not developed but is expected to be equal to Sc2 (since for non-quantified samples LOQ < PNEC).	0.001 (PNEC = 60 µg/l) 0.13 (PNEC = 0.5 µg/l)	0 (PNEC = 60 µg/l) (not calculated for PNEC = 0.5 µg/l)

Group	Name	CAS	PNEC (µg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
Anti-Microbial pharmaceuticals: azole pharmaceuticals (antifungal agents)	Clotrimazole	23593-75-1	1 (OSPAR 2015) 0.02 (JRC derivation, 2019) 0.036 (Zhou et al., 2019)	P(3/3) B(3/3) T(3/3) Stockholm County Council Suspected PB; suspected CM in Annex III inventory (ECHA) database of modelling exercise: PBT. Possible ED only one study	In Sc2 (inland dissolved) data from 2 MS (19 sites) with 45 samples are available. About 47% of the samples are quantified. Data quality in Sc2 seems to be acceptable but the amount of data is very low. Median = 0.0008 µg/L; MEC(p95) = 0.016 µg/l. Sc3 was not developed since the data are not representative.	0.016 (PNEC = 1 μg/l) 0.8 (PNEC = 0.02 μg/l)	STE (Sc2) is not calculated (should be low since MEC(p95) < PNECs)
	Fluconazole	86386-73-4	0.25 (PNEC-MIC, AMR industry alliance) 9.46 (JRC derivation, 2019) 0.613 (Zhou et al., 2019)	P(3/1 uncertain) T(1/3) Stockholm County Council R - a majority of data submitters agree this substance is Toxic to Reproduction (ECHA) Not in Annex III inventory (ECHA). Not in the database of the modelling exercise. No information about ED	In Sc2 (inland whole water) data from 1 MS (26 sites) with 436 samples are available. 40% of samples are quantified. The data quality is acceptable but the data are not Union- representative. Median = 0.01 µg/l; MEC(p95) = 0.06 µg/l. Sc3 was not developed since the data are not representative.	0.24 (PNEC = 0.25 µg/l)	STE (Sc2) is not calculated (expected be low since MEC(p95) < PNECs)
	Miconazole	22916-47-8 22832-87-7	0.4 (Minguez et al., 2014 acute) 0.2 (FASS SE database) 0.044 (Zhou et al., 2019)	P(3/3uncertain) B(3/3) T(3/3) Stockholm County Council. Suspected PBT; suspected R in Annex III inventory (ECHA)	No available data in the dataset of the prioritisation exercise		

Group	Name	CAS	PNEC (µg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
Other pharmaceuticals	Benzimidazoles: Anthelmintics: Mebendazole	31431-39-7	0.088 (FASS SE database)	PBT, possible R (modelling exercise) P(3/3uncertain) B(3/1) T(1/3) Stockholm County Council. Suspected P suspected CMR in Annex III inventory (ECHA)	No available data in the dataset of the prioritisation exercise		
	Benzimidazoles: Proton pump inhibitors (PPIs): Lansoprazole and its metabolites	103577-45-3	18 (acute, Pharmaceuticals in the environment. Chapter 16. Webb, 2004) 0.192 (Zhou et al., 2019)	PT P(3/3) T(1/3) Stockholm County Council No information about ED properties	No available data in the dataset of the prioritisation exercise		
	Benzimidazoles: Proton pump inhibitors (PPIs): Omeprazole and its metabolites	73590-58-6	Omeprazole: 41.9 (FASS) 2.1 (Zhou et al., 2019) 4-hydroxy omeprazole sulphide: 0.28 (ECOSAR, Wielens Becker et al., 2020)	T (modelling exercise) possible M and R. No information about ED properties	No available data in the dataset of the prioritisation exercise		
	Fentanyl	437-38-7	11.1 (FASS SE database) 0.295 (Zhou et al., 2019)	PT, possible R Not PBT (FASS) P(3/3) T(1/3) (uncertain) Stockholm County Council P R Annex III inventory (ECHA) No information about ED properties	No available data in the dataset of the prioritisation exercise		

Group	Name	CAS	PNEC (µg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	Gemfibrozil	25812-30-0	0.8519 (JRC derivation, Prioritisation) 1.56 (Zhou et al., 2019)	PBT, possible C and R (modelling exercise) P(3/3) T(2/3) Stockholm County Council. No information about ED properties	In Sc2 (inland whole water) monitored in 3 MS (251 sites); available 2476 samples; only 2% quantified samples; 97% of all samples coming from one MS; the data are not Union- representative; Median = MEC(p95) = 0.0125 µg/l; Sc3 is equal to Sc2 (PNEC = 0.8519 µg/l)	0.015 (PNEC = 0.8519 μg/l)	0.16 (PNEC = 0.8519 µg/l)
	Norethisterone	68-22-4	0.0354 (Prioritisation) 0.51 (freshwater ECHA) 0.00148 (Zhou et al., 2019)	PBT, possible C, R, ED (modelling exercise) P(3/3) B(3/3) T(3/3) Stockholm County Council	In Sc2 (inland whole water) monitored in 1 MS (19 sites); available 20 samples; the data quality is good; 100% quantified samples. However, the data are insufficient and are not Union- representative. Median = 0.003 µg/l; MEC(p95) = 0.0034 µg/l;	0.1 (PNEC = 0.0354 µg/l) 0.23 (PNEC=0.0148 µg/l)	0 (PNEC = 0.0354 µg/l)
	Venlafaxine and O- desmethylvenlaf azine	93413-69-5 142761-12-4	0.03835 (prioritisation exercise, not reliable) 0.1 (JRC derivation 2019) 0.0061 (Zhou et al. 2019) 0.88 (UBA, 2019)	PT Stockholm County Council R (ECHA dossier) P(3/3) T(2/3) Stockholm County Council. No information about ED properties	In Sc2 (inland whole water) data from only 1 MS (93 sites) with 1395 samples are available. 76.8% quantified samples. The quality of monitoring in this country is acceptable but data are not representative for an EU-wide assessment. Sc3 was not developed since data are not representative. Median = 0.03 µg/l; MEC(p95) = 0.19 µg/l	5 (PNEC = 0.03835 µg/l) 31 (PNEC = 0.0061 µg/l)	1.36 (PNEC = 0.03835 µg/l)

Group	Name	CAS	PNEC (µg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
protection products and biocides: azole compounds	Epoxiconazole	133855-98-8 135319-73-2 Formerly 106325-08-0	0.24 (EQS acute, Swiss ECOTOX centre, 2016) 0.2 (EQS chronic, Swiss ECOTOX centre, 2016) 0.18 (INERIS, 2017) 1.8 (NL AA-EQS, Ctgb, 2010)	PT, possible CR (modelling exercise) possibly P, R Annex III inventory (ECHA) two PBT criteria, toxic for reproduction 1A/1B ED properties (EU Pesticides database)	In Sc2 (inland whole water) monitored in 7 MS (2385 sites); available 26476 samples; only 1.3% quantified samples; the data quality seems poor although that 95% of non-quantified samples were measured with LOQ < PNEC (LOQ \leq 0.1); there is a lot repeated non-quantified samples (17682; about 67% from all samples) coming from 2 MS; the data are not Union-representative (1 MS holds 53% of all samples, other 40% originate from 2 MS); Median = 0.01 µg/l; MEC(p95) = 0.05 µg/l. Sc3 is not developed since the low data quality but is expected to be similar to Sc2 for considered PNECs.	0.28 (PNEC = 0.18 μg/l) RQ (PEC) 0.005 - 5 (PNEC = 0.18 μg/l)	0.46 (PNEC = 0.18 μg/l)
	Imazalil (enilconazole)	35554-44-0	2.5 (INERIS, 2015) 0.8 (monitoring exercise, JRC derivation from EFSA report) 0.87 (NL indicative QS)	possibly C (modelling exercise) possibly ED (ECHA) suspected PT suspected CR in Annex III inventory (ECHA)	In Sc2 (inland whole water) are available 7197 samples from 6 MS. Only 0.1% quantified samples. The data have poor quality and are not Union-representative (91.6% of samples originate from 1 MS). About 75% (5421) from all samples are repeated non-quantified samples having LOQ of 0.02 or 0.05 µg/l. Median = 0.01 µg/l; MEC(p95) = 0.075 µg/l. Sc3 was not developed since the low data quality. FOCUS PEC (EFSA, 2011) Step 2: 0.43 µg/l Step 3: 0.001 - 0.13 µg/l	0.09 (PNEC = 0.8 μg/l) RQ (PEC) (PNEC = 0.8 μg/l) Step 2: 0.54 Step 3: 0.00125 - 0.1625	0 (PNEC = 0.8 μg/l)

Table 2.3. Plant protection products (PPP) and biocides. Abbreviations, ED: endocrine disruptor; P: persistent; vP: very persistent; T: toxic; B: bioaccumulative; C: carcinogenic; M: mutagenic.

Group	Name	CAS	ΡΝΕϹ (μg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	Ipconazole	125225-28-7	0.044 (AgriTox ANSES FR 2019)	PT, vP, possible R (modelling exercise). S CR in Annex III inventory (ECHA)	No available data in the dataset of the prioritisation exercise FOCUS PEC, Step 2 (EFSA, 2013) N Europe, October-February, PECmax = 0.2719 µg/l N Europe, March - May, PEC max = 0.1088 µg/l N Europe, June - September, PEC max = 0.1088 µg/l S Europe, October-February, PEC max = 0.2175 µg/l S Europe, March - May, PEC max = 0.2175 µg/l S Europe, June - September, PEC max = 0.1631 µg/l	RQ (PEC) 2.5 (PEC = 0.11 μg/l) 6.1 (PEC = 0.27 μg/l)	
	Metconazole	125116-23-6	0.0582 (prioritisation) 0.582 (AgriTox ANSES FR, 2019) 0.0291 (JRC derivation, 2019) 0.291 (NL AA-EQS, Ctgb, 2010)	Database of modelling exercise: PT, vP, possible R Suspected CR in Annex III inventory (ECHA) two PBT criteria (EU Pesticides database); R possibly toxic for reproduction (ECHA);. No information about ED properties	In Sc2 (inland whole water) data from 3 MS (702 sites) with 5742 samples are available. Only 3 samples are quantified. The data quality in Sc2 is not good. There are 4108 (70% from total) repeated non-quantified samples with LOQ = 0.05 µg/l coming from 1 MS. The data are not Union-representative. Median = MEC(p95) = 0.025 µg/l. Sc3 is not developed since the low data quality. FOCUS PEC (EFSA, 2006) 0.1 - 1.2 µg/l	0.43 (PNEC = 0.0582 μg/l) 0.86 (PNEC = 0.0291 μg/l) RQ (PEC) 1.7 - 20.6 (PNEC = 0.0582 μg/l) 3.4 - 41 (PNEC = 0.0291 μg/l)	0 (PNEC = 0.0582 μg/l)

Group	Name	CAS	ΡΝΕϹ (μg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	Penconazole	66246-88-6	6 (AgriTox ANSES FR and INERIS) 1.7 (NL MTR, Ctgb, 2000)	PT, possible R (modelling exercise) Suspected B and suspected CR in Annex III inventory (ECHA) ED	In Sc2 (inland whole water) monitored in 5 MS (1547 sites); available 14037 samples; only 2.8% quantified samples; the data quality seems poor, although all non-quantified samples were measured with LOQ \leq 0.23 µg/l; there is a lot repeated non-quantified samples (7184; about 70.5% from all samples) with LOQ = 0.05 µg/l or LOQ = 0.02 µg/l;); the data are not Union-representative (1 MS holds 52% of all samples, other 45% originate from 2 MS); Median = 0.025 µg/l; MEC(p95) = 0.05 µg/l. Sc3 is not developed since the low data quality but is expected to be equal to Sc2 for considered PNECs. FOCUS PEC (EFSA; 2008) Step 2: 2 - 3.3 µg/l	0.008 (PNEC = 6 μg/l) 0.03 (PNEC = 1.7 μg/l) RQ (PEC) (PNEC=6 μg/l) Step 2: 0.33 - 0.55 Step 3: 0.03 - 0.09	STE (Sc2) is not calculated (expected to be low since MEC(p95) < PNEC)
	Prochloraz	67747-09-5	10 (AgriTox ANSES FR) 1.3 (NL indicative QS) 0.161 (Zhou et al., 2019)	PT, vP, possible CR, possible ED (modelling exercise) two PBT criteria (EU Pesticides database) Suspected CR Annex III inventory (ECHA)	In Sc2 (inland whole water) monitored in 7 MS (2557 sites); available 32674 samples; only 1.6% quantified samples; the data quality is not good, although all non-quantified samples have LOQ $\leq 0.4 \ \mu g/l$; there are many repeated non-quantified samples (23462; about 72% from total) with LOQs from 0.01 $\mu g/l$ to 0.1 $\mu g/l$; the data are not Union-representative since one MS holds 84% of samples; Median = 0.02 $\mu g/l$; MEC(p95) = 0.05 $\mu g/l$. Sc3 is not developed since the low data quality. FOCUS Step 3 calculations of PEC applied in Winter cereals: 0.1 - 3 $\mu g/l$ (EFSA, 2011)	0.005 (PNEC = 10 μg/l) 0.3 (PNEC = 0.161 μg/l) RQ (PEC) 0.01 - 0.3 (PNEC = 10 μg/l) 0.6 - 18.6 (PNEC = 0.161 μg/l)	STE (Sc2) is not calculated (expected to be low since MEC(p95) < PNEC)

Group	Name	CAS	РNEC (µg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	Propiconazole	60207-90-1	PNEC _{fw} : 6.8 µg/l (DK; Assessment Report, 2015) 1.6 µg/l (INERIS, 2015) 0.095 µg/l (NOEC; Zhou et al., 2019) PNEC _{sed} : 54 µg/l (DK; Assessment Report, 2015)	2 PBT criteria (EU Pesticides Database) PT (Assessment Report, 2015) Toxic to reproduction. Under assessment as Endocrine disruptor (ECHA)	50995 samples from 9 MS are available in Sc2 inland whole water (prioritisation exercise). About 3.27% quantified samples. The data quality is low. MEC(p95)=0.05 µg/	0.52 (PNEC=0.095 μg/l)	Not estimated
	Tebuconazole	107534-96-3	PNEC _{fw} : 1 µg/l (DK; Assessment Report, 2013) 0.24 µg/l (QS: CH ECOTOX Centre, 2016) PNEC _{sed} : 550 µg/kg (DK Assessment Report, 2013)	2 PBT criteria (EU Pesticides Database) PT (CHL report, 2012) Suspected to be toxic for reproduction (ECHA)	38498 samples from 8 MS are available in Sc2 inland whole water (prioritisation exercise). About 6.7% quantified samples. The data quality is low. MEC(p95)=0.05 μg/l	0.05 (PNEC=1µg/l) 0.21 (PNEC=0.24µg/l)	Not estimated but should be low since MEC(p95) <pnec< th=""></pnec<>

Group	Name	CAS	ΡΝΕϹ (μg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	Tetraconazole	112281-77-3	1.9 (Prioritisation) 4.2 (AgriTox ANSES FR) 3.2 (INERIS)	PT, vP, possible R (modelling exercise)	In Sc2 (inland whole water) monitored in 2 MS (1132 sites); available 11075 samples; only 0.1% quantified samples; the data quality seems poor since there is a lot repeated non-quantified samples (9778; about 88% from total) with LOQs of 0.02; 0.05 and 0.1 µg/l coming from 1 MS; the data are not Union-representative; Median = 0.02 µg/l; MEC(p95) = 0.05 µg/l. Sc3 is not developed since the low data quality but is expected to be equal to Sc2. FOCUS Step 2 PEC: 2 - 3 µg/l (EFSA, 2008)	0.03 (PNEC = 1.9 μg/L) RQ (PEC) 1.1 - 1.6 (PNEC = 1.9 μg/l)	0 (PNEC = 1.9 μg/l)
Plant protection products and biocides: other substances	Copper (I) oxide (Cu ₂ O) Copper (II) oxide (CuO)	1317-39-1 1317-38-0	7.8 (Cu ₂ O and CuO freshwater ECHA) 1.6 (Cu ₂ O and CuO statistic approach, INERIS) 2.4 (NL legal standard AA-EQS) 1 (French legislation, INERIS)	P two PBT criteria (EU Pesticides database)	No available data for Cu ₂ O and CuO in the dataset of the prioritisation exercise (probably these substances were reported together with Cu (CAS 7440-50-8)). Copper Cu (CAS 7440-50-8). Inland whole water (Sc3; PNEC = 7.8 μg/l): 151392 samples from 27 MS (9079 sites); 79% of all samples are quantified; the data quality seems good; Median = 1.7 μg/l, MEC(p95) = 6 μg/l. Inland dissolved (Sc3; PNEC = 7.8 μg/L): 97036 samples from 24 MS (7009 sites); 50% of all samples are quantified; the data quality seems good; Median = 1.7 μg/l, MEC(p95) = 6 μg/l.	0.94 (Sc3; PNEC = 7.8 μg/l) 16 (Sc3; PNEC = 1.6 μg/l) 0.77 (Sc3; PNEC = 7.8 μg/l) 16 (Sc3; PNEC = 1.6 μg/l)	0.36 (Sc3; PNEC = 7.8 μg/l) 0.4 (Sc3; PNEC = 7.8 μg/l)

Group	Name	CAS	ΡΝΕϹ (μg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	Dimoxystrobin	149961-52-4	0.0316 (ETOX: Information System Ecotoxicology and Environmental Quality Targets, UBA) 1.67 (AgriTox ANSES FR)	2 PBT criteria (PT), endocrine disrupting properties (EU Pesticides database); CR (suspected) in Annex III inventory (ECHA); C Possibly Carcinogenic; R Possibly Toxic to Reproduction; database of modelling exercise: PT. ED properties (EU Pesticides database)	In Sc2 (inland whole water) data from 1 MS (6078 samples); 2.8% quantified samples. The data quality seems acceptable (LOQs < PNEC) but there are 3890 (64% from total) repeated non-quantified samples (LOQ = 0.01 µg/l or 0.02 µg/l) the data are not Union- representative; Median = 0.01 µg/l; MEC(p95) = 0.025 µg/l; Sc3 is not developed since the scarcity of data.	0.79 (PNEC = 0.0316 μg/l)	0 (PNEC = 0.0316 µg/l) (since MEC(p95) < PNEC)

Group	Name	CAS	PNEC (µg/l)	Hazard (PBT/CMR/ED)	Data (prioritisation exercise)	RQ (MEC(P95)/PNEC)	STE score
	Famoxadone	131807-57-3	0.14 (JRC derivation) 0.11 (AgriTox ANSES FR) 0.0085 (NL i-JG-MKN, 2015)	BT Suspected P and CM in Annex III inventory (ECHA) 2 PBT criteria (BT) (EU Pesticides database). No information about ED properties	In Sc2 (inland whole water) data from 3 MS (5528 samples) are available; no any quantified samples; the data quality seems acceptable since LOQs < PNEC (0.14 μ g/l) but there are a lot repeated non-quantified samples (5422; about 98% from total) The data are not Union-representative (98% of samples originate from one MS). Median = 0.01 μ g/l; MEC(p95) = 0.025 μ g/l; Sc3 is not developed since insufficient data quality.	0.18 (PNEC = 0.14 μg/l)	0 (PNEC = 0.14 μg/l)
	Proquinazid	189278-12-4	0.18 (not reliable, Oecotoxzentrum, Eagaw/EPFL, CH) 0.18 (AgriTox ANSES FR)	PT C in Annex III inventory (ECHA); C Possibly Carcinogenic (ECHA); database of modelling exercise: PBT. No information about ED properties	In Sc2 data from 1 MS (1285 samples); very low data quality; no any quantified samples; the data are not Union-representative Median = MEC(p95) = 0.01 µg/l; Sc3 is not developed since low data quality	0.056 (PNEC = 0.18 μg/l)	0 (PNEC = 0.18 μg/l)

Annex III: Factsheets

This Annex shows factsheets only for candidate substances fulfilling the selection criteria and identified by the JRC as most suitable for inclusion in the next WL.

Bifenthrin (CAS N. 82657-04-3)

1. Substance identity

EC name	(2-methylbiphenyl-3-yl)methylrel-(1R,3R)-3-[(1Z)-2-chloro-3,3,3-trifluoroprop-1- en-1-yl]-2,2-dimethylcyclopropanecarboxylate; bifenthrin (ISO)
EC number	617-373-6
CAS number	82657-04-3
Molecular formula	C ₂₃ H ₂₂ ClF ₃ O ₂
Molecular weight	422.87 g/mol
Structure	Bifenthrin is a mixture of 2 optical isomers, (Z)-(1R)-cis-acid and (Z)-(1S)-cis-acid (enantiomers)
SMILES	CC1=C(C=CC=C1COC(=0)C2C(C2(C)C)C=C(C(F)(F)F)Cl)C3=CC=CC=C3

2. Physico-chemical properties

Endpoint	Value	Source	
Vapour Pressure (Pa)	1780 at 20°C 1.78 x 10 ⁻⁵ at 20°C (purity 98.8%)	HSDB EFSA Conclusion, 2011	
Water solubility (mg/l)	< 0.001	http://npic.orst.edu/factsheets/archive/biftech.html EFSA, 2011	
logK _{ow}	6.0 6.6 6.6 (comparative HPLC method)	https://pubchem.ncbi.nlm.nih.gov/compound/bifenth rin EFSA, 2011 EFSA Conclusion, 2011	

3. Environmental fate

Endpoint Value Source	
-----------------------	--

Sorption potential K _{oc}	236610 8387-14332 236610 (arithmetic mean) (logK _{oc} = 5.37)	EFSA, 2011 HSDB EFSA Conclusion, 2011
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)	2.24e5 (logK₀c)	https://comptox.epa.gov/dashboard/dsstoxdb/results?search =DTXSID9020160#env-fate-transport
Biodegradability	Not readily biodegradable	EFSA Conclusion, 2011
Bioaccumulation (BCF)	1703 4.68e4 (predicted) 1709 (measured)	EFSA, 2011 <u>https://comptox.epa.gov/dashboard/dsstoxdb/results?search</u> <u>=DTXSID9020160#env-fate-transport</u> EFSA Conclusion, 2011 According to the BCF value exceeding the trigger of 100 and to the value of the log K _{ow} which is higher than 3, the potential risk to biota and humans from secondary poisoning should be assessed (EFSA Conclusion, 2011 and PubChem).

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	<u>1 - 10 tonne registered substances</u>	ECHA <u>https://echa.europa.eu/it/substance</u> <u>-information/</u> /substanceinfo/100.120.070
Uses	NOT APPROVED as PPP (2009/887/EC,Reg. (EU) 2017/195,Reg. (EU) 2018/291,Reg. (EU) 2019/324,Reg. (EU) No 582/2012) Authorisation in progress for: AT, IT, SK (3 MS)	http://ec.europa.eu/food/plant/pesti cides/eu-pesticides- database/public/?event=activesubs tance.detail&language=EN&selecte dID=1026
	APPROVED as BIOCIDE. Biocidal active substance and product. This substance is approved for use as a biocide in the EEA and/or Switzerland, for: wood preservation. Only uses as insecticide may be authorised.	https://echa.europa.eu/it/substance -information/ /substanceinfo/100.120.070

Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.0005 - 0.0049 (values predicted for risk assessment using FOCUS Step 4)	EFSA Conclusion, 2011
PEC _{sed} (µg/kg dw)	0.0030 – 0.495 (values predicted for risk assessment using FOCUS Step 4)	EFSA Conclusion, 2011
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 dataset (inland whole water) 7572 samples from 3 MS (1132 sites) are available. Only 2 quantified samples. Data quality of Sc2 is not good. Sc3 was not developed since data scarcity.	Dataset of monitoring prioritisation 2014	MEC(P95) = 0.025 μg/l (Sc2)
112 samples for monitoring in sediments (15 quantified; 97 non-quantified (95 of them with LOQ=5 μg/kg dw; 2 with LOQ=50 μg/kg dw)	Data received from EE after the WG Chemicals meeting on 15-16 January 2020	Mean=8.6 µg/kg dw (estimated by all reported samples; this value should not be used in risk assessment since for non- quantified samples LOQs>PNECsed); all 15 quantified samples exceeded PNECsed)

Note: Sc2 includes all reported quantified and non-quantified samples. The data quality for Sc2 is verified by controlling the data accuracy, checking quantification frequency of sampling and applying the LOQ-PNEC criterion to non-quantified samples ($\frac{1}{2}$ LOQ \leq PNEC).

Sc3 is the main decisive dataset which includes the quantified measurements and these non-quantified samples when $\frac{1}{2}$ LOQ \leq PNEC (i.e. avoiding the non-confirmed exceedances when the non-quantified concentrations are set up equal to half of LOQ).

After the WG Chemicals meeting on 15-16 January 2020, information for monitoring in sediments was received as follows:

SE – not analysed

FR – available 1052 samples (not sent to JRC); quantification frequency 0%; all non-quantified samples have LOQ>PNEC (PNEC=0.4 μ g/kg dw)

FI – not analysed

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference	
GC-MS	0.001	In surface water (EFSA, 2008 and EFSA, 2011).	
GC-NCI-MS 0.00004		Extraction by ultrasound-assisted emulsification-extraction of a water-immiscible solvent (chloroform) in 20 ml water (Feo et al., 2010).	
GC-ECD/MS	0.00006 - 0.00098 (LOD)	SPE (Zheng et al., 2016).	
n.a.	0.005	Finland	
GC-APCI-MS/MS	0.0000025	Surface water (Rösch et al., 2019)	
GC-MS/MS (0.2) 0.2 (MDL) (µg/kg dw)		Sediment (USGS, 2007, 2009)	
GC-MS/MS	0.10-1.54 µg/kg lw	Biota (Corcellas et al., 2015)	

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Bifenthrin	P, vP, B (suspected) and T,	Suspected C, M and R*	Suspected ED*

Note: Suspected=indication fo concern. Substance not listed in the PBT list from ECHA <u>https://echa.europa.eu/it/information-on-chemicals/pbt-vpvb-assessments-under-the-previous-eu-chemicals-legislation</u>.

*Harmonised classification for acute toxicity# Harmonised classification for aquatic toxicity# Harmonised classification for carcinogenicity# Harmonised classification for skin sensitisation# Harmonised classification for specific target organ toxicity# Suspected carcinogen# Suspected hazardous to the aquatic environment# Suspected mutagen# Suspected persistent in the environment# Suspected skin sensitiser# Suspected toxic for reproduction (ECHA. Annex III inventory)

*https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedxlist#sname=BIFENTHRIN&searchfor=any&sortby=chemname&action =search&searchcats=all&sortby=chemname

6. Hazard assessment

6.1 Ecotoxicology data

Freshwater

Species	Time-scale	Endpoint	Toxicity (μg/l)	
Invertebrates				
Daphnia magna	21 d	NOEC	0.00095	

Daphnia magna	21 d	NOEC	0.0013	
Corbicula	21 d	NOEC	2.58	
Mysidopsis bahia	28 d	NOEC	0.0012	
Chironomus riparius	28 d	28 d NOEC		
Fish				
Pimephales promelas	21 d	NOEC	1.86	
Pimephales promelas	368 d	NOEC	0.04	

Sediment

Species	Time-scale	Endpoint	Toxicity (μg/l)
Chironomus riparius	28 d	NOEC	0.04

6.2 Mammalian toxicology data

		Master reference
	Rat, acute toxicity, oral, LD $_{50}$ 54.5 mg/kg (diluted in corn oil); 186.1 mg/kg (undiluted)	
	Rat, acute toxicity, dermal, LD ₅₀ >2000 mg/kg	
	Rat, acute toxicity, inhalation, LC_{50} 1.01 mg/l/4h	
	Dog, short-term toxicity, oral, tremors; reduction in tail latency; staggered gait and exaggerated hindlimb flexion, NOAEL 2.5 mg/kg/day (90-day dog) NOAEL 1.5 mg/kg/day (1-year dog)	
Mammalian toxicity	Rat, short-term toxicity, dermal, tremors; reduction in tail latency; staggered gait and exaggerated hindlimb flexion, NOAEL 50 mg/kg/day	EFSA Conclusion, 2011
	Rabbits, short-term toxicity, dermal, tremors; reduction in tail latency; staggered gait and exaggerated hindlimb flexion, NOAEL 100 mg/kg/day	
	Rat, long-term toxicity, tremors, NOAEL 4.7 mg/kg bw/d for males and 3 mg/kg bw/d for females (2-yr rat)	
	Mouse, long-term toxicity, tremors, NOAEL 7.6 mg/kg bw/d for males and 37 mg/kg bw/d for females (18-m mice)	
	Mouse, carcinogenicity, bladder tumours in male mice (statistically significant at 92 mg/kg bw/d)	

Mouse, acute, LD ₅₀ 42.5 mg/kg bw (Bifenthrin, a.s.)	
Rat, reproductive, NOAEL 3 mg/kg bw/day (Bifenthrin, a.s.)	
Rat, acute neurotoxicity, NOAEL 35 mg/kg bw/d	EFSA Conclusion, 2011 and DAR, 2006
Mouse, long-term toxicity, oral; tremors, reduction in weight, NOAEL 7.6 mg/kg bw/day for males and 37 mg/kg bw/day for females (Bifenthrin, 88.35% purity)	Geiger L.E. (1986), cited in DAR, 2006 and in INERIS, 2011
Rat, oral, 2-year, tremors, NOAEL 3 mg/kg bw/day for males and 4.7 mg/kg bw/day for females	INERIS, 2011
<i>Oryctolagus cuniculus</i> , oral, 29-day, convulsive movements, no teratogenic effects, NOAEL 2.67 mg/kg bw/day	INERIS, 2011
Rat, oral, 29-day; tremors, reduction in weight, no teratogenic effects, NOAEL 1 mg/kg bw/day (Bifenthrin, 88.35% purity)	DeProspo J.R. (1984) cited in DAR, 2006 and in INERIS, 2011
Rat, oral, tremors, reduction in weight, no teratogenic effects, NOAEL 7.4 mg/kg bw/day (Bifenthrin, 95.3% purity)	Watt B. and Freeman C. (2001) cited in DAR, 2006 and in INERIS, 2011
Rat, oral, long-term toxicity, tremors and reduction in body weight in parental line and in F1 generation of females during gestation and lactation, reproductive NOAEL 5 mg/kg bw/day and systemic NOAEL 3 mg/kg bw/day (Bifenthrin, 88.35% purity)	DeProspo J.R. (1986) cited in DAR, 2006 and in INERIS, 2011

6.3 PNEC derivation

PNEC	Endpoint	Endpoint value	AF	PNEC value
PNEC _{fw}	NOEC, 21 d (<i>Daphnia magna</i>)	0.00095 µg/l	50	0.00002 (µg/l) (JRC draft dossier, 2016)
PNEC _{sed}	NOEC, 28 d (Chironomus riparius)	0.04 mg/kg	100	0.4 µg/kg dw (JRC draft dossier, 2016)
PNEC _{biota,sec pois}	NOAEL (1-year dog)	1.5 mg/kg/day	30	586 µg /kg ww (JRC, 2020)
PNEC _{biota, hh}				

PNEC _{dw, hh}		

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
$\mathbf{RQ}_{\mathbf{fw}}$ (for MEC(P95) and PNEC = 0.00002 µg/l)	1250 (Sc2)
RQ _{fw} (for PEC1 = 0.054 μ g/l and PNEC = 0.00002 μ g/L)	2700
RQ _{fw} (for PEC _{fw} = 0.0049 μ g/l and PNEC = 0.00002 μ g/l)	245
\textbf{RQsed} (for PEC_{sed}=0.495 $\mu\text{g/kg}$ dw and PNEC=0.4 $\mu\text{g/kg}$ dw)	1.24

Note: PEC1 (freshwater) value is taken from Lettieri, T., Chirico, N., Carvalho, R.N., Napierska, D., Loos, R., Sanseverino, I., Marinov, D., Ceriani, L., Umlauf, G. 2016. *Modelling-based strategy for the prioritisation exercise under the Water Framework Directive*, https://circabc.europa.eu/

w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf.

8. STE score

3 (Sc2; PNEC = 0.00002 μg/l)

Note: STE is a risk-evaluation method/tool developed by the JRC (Loos et al., 2018, EUR 29173 EN). Minimal score = 0 (no risk); Maximal score = 3 (very high risk).

9. References

Corcellas, C., Eljarrat, E. & Barceló, D. First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). *Environment International* **75**, 110-116, doi:https://doi.org/10.1016/j.envint.2014.11.007 (2015).

Draft Assessment Report (DAR). 2006. Initial risk assessment provided by the rapporteur Member State France for the existing active substance Bifenthrin of the third stage (part A) of the review programme referred to in Article 8(2) of Council Directive 91/414/EEC.

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817.</u>

EFSA Scientific Report 186, pp. 1-109; Conclusion regarding the peer review of the pesticide risk assessment of the active substance bifenthrin (2008).

EFSA Journal 9(5), 2159. Conclusion on the peer review of the pesticide risk assessment of the active substance bifenthtin (2011).

EPA 2011. Johnson, M.; Luukinen, B.; Gervais, J.; Buhl, K.; Stone, D. 2010. Bifenthrin Technical Fact Sheet; NationalPesticideInformationCenter,OregonStateUniversityExtensionServices.http://npic.orst.edu/factsheets/archive/biftech.html.

Feo, M.L., Eljarrat, E., Barceló, D.; A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. Journal of Chromatography A, 1217 (2010) 2248–2253.

INERIS. 2011. Normes de qualité environnementale: Bifenthrin. Version 1: 16/12/2011; DRC-11-118981-13678A.

JRC, 2016. Draft Dossier of substances identified in the second prioritisation process https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp.

Rösch, A., Beck, B., Hollender, J. et al. Anal Bioanal Chem (2019) 411: 3151. <u>https://doi.org/10.1007/s00216-019-01787-1</u>.

USGS. 2007. Hladik, M. & USGS. Methods Development for the Analysis of Pyrethroid Pesticides in Environmental Samples. FINAL REPORT FOR CALFED Recipient Agreement No. ERP-02-P42.

USGS. Hladik, M. L. & Kuivila, K. M. Assessing the Occurrence and Distribution of Pyrethroids in Water and Suspended Sediments. Journal of Agricultural and Food Chemistry 57, pp. 9079-9085. doi: 10.1021/jf9020448 (2009).

USGS. Hladik, M. L., Smalling, K. L. & Kuivila, K. M. Methods of Analysis—Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. Techniques and Methods 5–C2. U.S. Department of the Interior. U.S., Geological Survey, Reston, Virginia (2009).

WHO, 2011. WHO SPECIFICATIONS AND EVALUATIONS FOR PUBLIC HEALTH PESTICIDES: Bifenthrin <u>https://www.who.int/whopes/quality/Bifenthrin WHO specs</u> eval March 2017.pdf?ua=1

Zheng, S., Chen, B., Qiu, Q., Chen, M., Ma, Z., Yu, X. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere 144, pp. 1177–1192 (2016).

Chromium (CAS N. 7440-47-3): chromium trioxide, other Cr (VI) compounds (CAS N. 1333-82-0; 18540-29-9) and Cr (III) (CAS N. 16065-83-1, 1308-38-9)

1. Substance identity

EC name	Chromium
EC number	
CAS number	7440-47-3 (Chromium) 1333-82-0; 18540-29-9 (Chromium(VI)) 1333-82-0; 1308-38-9 (Chromium(III))
Molecular formula	CrO ₃ ; Cr(VI)
Molecular weight	99.99; Cr(VI): 51.9
Structure	$ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} Cr & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} Cr & 0 \\ 0 \end{bmatrix} $
SMILES	[Cr](=O)(=O)=O

2. Physico-chemical properties

Endpoint Value		Source
Vapour Pressure (Pa)	Not available (inorganic ionic compound)	EU-RAR, 2005
Water solubility (mg/l)	1667 mg/l	EU-RAR, 2005
logKow	Not available (inorganic ionic compound)	EU-RAR, 2005

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	Not available	EU-RAR, 2005
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)	1000	EU-RAR, 2005
Biodegradability	N.a.	EU-RAR, 2005

Bioaccumulation (BCF)	2.8	EU-RAR, 2005

Chromium is a relatively common element and occurs in the earth's crust at an average concentration of 200 mg/kg. In soils one finds in general contents of 10 to 90 mg/kg.

Trivalent chromium is an essential trace element for humans and animals. Hexavalent chromium compounds cause allergic and asthmatic reactions and are considered carcinogenic.

Chromium occurs in waters in trivalent and hexavalent form. Under aerobic conditions chromium (VI) is stable. Under conditions, reduced anaerobic it is to chromium (III). Under oxidising conditions, a transformation from chromium (III) to chromium (VI) is also chromium possible. The distribution between (111) and flowing (VI) total chromium chromium of the concentration in waters not is constant, chromium (VI) has a share of 30-70%.

adsorption of soluble chromium (111) Due to the formation poorly compounds and chromium of in suspended solids, a large part of the chromium is particulate bound.

There is a wide range of background values ("ambient background concentrations") within Europe. For the dissolved concentration of chromium in uncontaminated waters, values of < 0.1 μ g/l to 0.5 μ g/l are given. The FOREGS study gives for European waters for > 0.45 μ m filtered concentration a median value (n = 806) of 0.38 μ g/l (Internationale Kommission zum Schutz des Rheins, 2009).

4. Environmental exposure assessment

4.1Predicted Environmental Concentration

	Description	Source
Tonnes/year	114 (2010) in CZ	CZ
UsesManufacture of substances and preparations, formulation of preparations and materials, industrial use resulting in inclusion into or onto a matrix, use as laboratory reagent. Chromium trioxide meets the criteria for inclusion in Annex XIV to Regulation (EC) N. 1906/2006. In 2015 the latest application date expected for chromium trioxide is 21 March 2016, and the sunset date is 21 September 2017, but exemptions have been granted for certain uses.UsesElectroplatingMain source is leather tanning industry and other industriae using sharehouse.		ECHA, 2013 Regulation (EC) N. 1906/2006 COMMISSION REGULATION (EU) No 348/2013 CZ
Spatial usage (by MS)	Not known	-
Banned uses	Cement and cement-containing mixtures shall not be placed on the market, or used, if they contain when hydrated, more than 2 mg/kg (0.0002%) soluble chromium VI of the total dry weight of the cement. Leather articles coming into contact with the skin shall not be placed on the market where they	ECHA, List of substances restricted under REACH

	contain chromium VI in concentrations equal to or greater than 3 mg/kg (0.0003% by weight) of the total dry weight of the leather.	
	Articles containing leather parts coming into contact with the skin shall not be placed on the market where any of those leather parts contains chromium VI in concentrations equal to or greater than 3 mg/kg (0.0003% by weight) of the total dry weight of that leather part.	
ERC code	-	-
PEC _{fw} (mg/l)		
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)	0.98 (N.R.)	Calculation based on Equation L (Section 3.4.3)

N.R. Not required based on BCF value not reaching the trigger value required for biota assessment

4.2 Measured Environmental Concentrations

Chromium is analysed in most countries as total chromium (VI+III). In the prioritisation exercise 2014, Cr (VI) data were only available for non-filtered water samples (whole water fraction) from 4 countries.

In 2018, one MS (UK, England) submitted Cr (VI) data for dissolved water samples, and 9 MS total chromium (VI+III) data.

The use of monitored concentrations for chromium total in dissolved fraction, and the use of monitored concentration for Cr (VI) in whole water, below, gives an overestimation of the risk posed by Chromium VI in dissolved fraction.

n. of MS	Source of monitoring data	MEC values
Cr (VI) and CrO₃ in Sc3 (inland whole water; PNEC = 2.06 µg/l)	735 samples (51% quantified) from 4 MS (148 sites). The data quality seems to be good (non-quantified samples are measured with LOQ < PNEC) but about 61% of all samples originate from 1 MS; another MS has a share of 29%.	5 µg/l (P95)
	(Dataset of monitoring prioritisation 2014 plus additionally submitted data 2017- 2018)	
Cr (III) in Sc2 (inland whole water)	798 samples are available from 1 MS (56 sites); about 19 % of samples are quantified; the data quality seems to be good since all non-quantified samples are measured with LOQ < PNEC, however the data are not Union-representative since all samples originate from 1 MS.	MEC(p95) = 0.783 µg/l Median = 0.05 µg/l

Cr(total) in Sc3 (inland dissolved fraction; PNEC = 3.4 µg/l)	187752 samples (21.2 % quantified) form 24 MS (12599 sites; period 2006-2017). The data quality seems acceptable but 47.5 % of all samples originate from 1 MS and other 2 MS hold 34.9 % of data. (Dataset of the prioritisation exercise plus additional data submitted in 2018)	MEC(95) = 2.5 μg/l
Cr (total) in Sc3 (coastal and transitional water; dissolved fraction; PNEC = 0.6 µg/l)	370 samples (23% quantified) from 6 MS (52 sites). The data quality seems acceptable but 75% of all samples originate from 1 MS. (Dataset of monitoring prioritisation 2014)	0.7 μg/l (P95) 0.5 μg/l (median)
Cr (total) in CZ	Wastewater; measured in industrial wastewater not in surface water. Year 2015.	0.02-497 µg/l
Cr (VI) in UK (England; probably inland dissolved phase)	Approx. 170 sites monitored quarterly in water body's deemed at risk from Cr (VI) via permitted discharges.	Results mostly show below LOD, however 1 site exceeds AA EQS, and 2 others record values above this limit.

Additional data (received in January 2020)

Cr (total) in Sc2 (coastal and	Disaggregated recent data for Cr-total in coastal water (dissolved fraction) were received from 2 MS (BE (651 samples) and IE (872 samples); totally 1523 samples). One of these two MS (BE) is already presented in Sc3 prioritisation dataset. IE LOQ=0.05 µg/l) and BE (Flanders) LOQ 0.22-3 µg/l (602 non- quantified samples out of all 651 samples have LOQs>2*PNEC (PNEC=0.6 µg/l)).	MEC(p95)=0.5 µg/l (IE) and MEC(p95)=1 µg/l (BE-Flanders). MEC values are estimated after discarding non- quantified samples with LOQs>2*PNEC (PNEC=0.6 µg/l). Exceedances were
fraction)	Additional recent data for Cr-total in coastal	observed in one MS (BE).
	MS: FI 303 (aggregated data); BG 44 (all non- quantified); LV 20 and SI 132 samples; totally	
	499 samples. The LOQs per country are: 0.01- 5 μ g/l (Fl), 1 μ g/l (BG), 0.8 μ g/l (LV) and 3.5	MEC(p95)=1.2 μg/l (LV) and Mean=0.5 μg/l (BG).
	of samples from FI have LOQs > $2*PNEC$ (PNEC=0.6 µg/l) and these samples were excluded from risk assessment analysis. The	Exceedances were observed in one MS (LV).
	concentration.	

4.3	Ana	lytical	Methods
-----	-----	---------	---------

|--|

EPA method 218.7 (2011)	0.0044 to 0.015 (LOD)	Samples are preserved with a combined buffer/dechlorinating reagent which complexes free chlorine and increases the pH to a value greater than eight. A measured volume (usually 1 ml) of the sample is introduced into an ion chromatograph. CrO_4^{2-} is separated from other matrix components on an anion exchange column. CrO_4^{2-} is derivatised with 1,5-diphenylcarbazide in a post-column reactor and is detected spectrophotometrically at a wavelength of 530 nm. Cr (VI) is qualitatively identified via retention time, and the concentration of CrO_4^{2-} in the sample is calculated using the integrated peak area and the external standard technique. Results are reported in units of $\mu g/l$ of Cr (VI) (EPA method 218.7; 2011).
Ion chromatography	LOD: 0.050 LOQ: 0.16	Cr (VI) determination in water samples with ion chromatography followed by post-column derivatisation of the Cr (VI) with diphenylcarbazide and detection of the coloured complex at 530 nm (Mamais et al., 2016).
LC-ICP-MS	0.001 to 0.01 (LOD)	Perkin Elmer Application note; Vonderheide et al., 2004.
ISO method 23913:2006 Flow analysis (FIA and CFA) and spectrometric detection	2-200 (LOD)	ISO 23913:2006 specifies flow injection analysis (FIA) and continuous flow analysis (CFA) methods for the determination of Cr (VI) in various types of water. The method applies to the following mass concentration ranges: for FIA (20 to 200 micrograms per litre and 200 to 2 000 micrograms per litre for surface water, leachates and wastewater) and for CFA (2 to 20 micrograms per litre and 20 to 200 micrograms per litre for drinking water, groundwater, surface water, leachates and wastewater). The range of application may be changed by varying the operating conditions. Seawater may be analysed by these methods with changes in sensitivity and after adaptation of the reagent and calibration solutions to the salinity of the samples.
lon chromatography	1	Ionic chromatography to separate Cr6+ and interfering compounds. Measure by spectrometry (540nm) after derivation post column by 1.5-diphenylcarbazide solution (Belgium-Wallonia).

5. P, B, T, C, M, R, ED properties

Substance	Persistent(P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Chromium (III)		R (suspected)*	One study, to be further investigated (ECHA, ANSES)*
Chromium (VI)	P and T	CM and R (suspected)**	Not investigated

Note: Suspected=indication fo concern. *Community rolling action plan(CoRAP). Cr (VI) is listed as substance of very high concern (SVHC) and included in the REACH restricted substance list (entry 47, Annex XVII of REACH regulation). **(ECHA. Annex III inventory)

- 6. Hazard assessment
 - 6.1 Ecotoxicology data

Chromium (VI)

The PNEC previously used for chromium (VI) in the 2014 prioritisation report has been updated by JRC after a literature search and the evaluation of new chronic toxicity data. The assessment performed in the European Risk Assessment Report (EU 2005), by the Environment Agency in 2007 (UK EA 2007) and the UBA Dossier 2015 have been taken into consideration, with the inclusion of additional chronic data assessed to be adequate and relevant. On this basis, the JRC has derived a new PNEC of 2.06 µg/l for chromium (VI).

In addition to the previous chronic quality standard derivation (EU 2005), 31 freshwater and 2 marine water chronic toxicity values have been found from 17 studies published after 2005. A literature evaluation of these studies has been performed by using the LET tool in-house developed by the JRC and based on the work of Kase et al. (2015), and three of them were deemed to be not reliable. Freshwater and marine water datasets have been treated separately following the EQS Technical Guidance Document (EC 2011).

An overall dataset of 73 freshwater chronic toxicity values is available for 35 species of 8 different taxonomic groups, i.e. 7 algae species, 2 cnidarian species, 5 crustaceans, 11 fish species, 4 higher aquatic plants, 2 insects, 2 molluscs, and 2 amphibians.

After selecting the most sensitive geometric mean endpoints per species, a probabilistic approach has been undertaken with 35 freshwater chronic data points, giving an HC5 value of 0.006 mg/l. An AF of 3 has been applied to the HC5 value giving a chronic freshwater QS of $2.06 \mu g/l$.

Regarding the marine water chronic toxicity dataset, only a deterministic approach could be applied, since data are available for 15 species of 5 taxonomic groups. The lowest value has been observed for the polychaete worm *Nereis arenaceodentata* with a 2-week NOEC of 0.006 mg/l. In accordance with the EQS Technical Guidance Document (EC 2011), an AF of 10 has been applied, giving a chronic marine water QS of 0.6 µg/l.

Chromium (III)

In addition, a new PNEC of $1.8 \mu g/l$ has been derived by JRC for chromium (III) after a literature search and the evaluation of new chronic ecotoxicological data.

In addition to the chronic toxicity values reported in the European Assessment report of 2005 (EU 2005), four toxicological data have been retrieved (2 from the ECHA's dissemination website, and 2 from recent publications), giving a final dataset of 9 freshwater and 2 marine water chronic toxicity values.

The available dataset could not enable the derivation of an SSD curve, since only data from 7 species of three taxonomic groups have been found. Therefore, the deterministic approach has been carried out in the present assessment.

The 30-day time-to-hatch NOEC 0.018 mg/l for the fish *Danio rerio* (Study report 1990, ECHA DB 2018b) has been determined to be the lowest chronic freshwater value in the new dataset. Because data are available from each trophic level of the base set, an AF of 10 has been applied (EC 2011), giving a QS of 1.8 µg/l.

The only value available for the marine water is the 7-day mortality NOEC 40 mg/l of the crustacean *Petrolisthes laevigatus* (Urrutia et al., 2008). Based on these data, it has been yet deemed to be insufficient to derive QS for marine water bodies.

6.2 PNEC derivation

PNEC derivation (Cr (VI))

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
PNEC _{fw}	HCs-50%	6.0	3 (SSD)	2.06 (Loos et al., 2018)
PNEC _{t+cw}	NOEC (<i>Nereis arenaceodentata </i> 2- week)	6.0	10	0.6 (Loos et al., 2018)

PNEC derivation (Cr (III))

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
PNEC _{fw}	NOEC (<i>Danio rerio </i> 30 d)	18	10	1.8 (Loos et al., 2018)

PNEC derivation for total dissolved Chromium (III + VI)

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
PNEC _{fw}	SSD	10.3	3	3.4 (UK-EA, 2007, KSR-CIPR- ICBR 2009)
PNEC _{t+cw}	NOEC (2-week, mortality) Nereis arenaceodentata	6	10	0.6 (UK-EA, 2007, KSR-CIPR- ICBR 2009)

The existing EQS for the protection of marine organisms is 15 μ g/l dissolved chromium, based on a range of acute and chronic data to which no assessment factor was applied (Mance et al., 2984). The PNEC_{freshwater} (3.4 μ g/l) and PNEC_{saltwater} (0.6 μ g/l) derived for Cr (VI) in the UK-EA (2007) and CIPR-ICBR (2009) reports are lower by a factor of ~5 and ~30, respectively, reflecting both the availability of new data and the assessment factor used.

It should also be noted that the PNEC_{freshwater} value 3.4 μ g/l for Cr (III) refers to the dissolved water concentration. Indeed in laboratory tests, water-soluble forms of chromium (III) have generally been used. However, in the environment, Cr (VI) is likely to be reduced to forms of Cr (III) with limited water solubility, which will be associated mainly with the particulate (sediment and suspended matter) phases of the water compartment (KSR-CIPR-ICBR 2009).

Considering that no sufficient experimental data with saltwater organisms are available to derive a PNEC_{saltwater} for Cr (III) and since trivalent chromium is considered to be less toxic than Cr (VI) and hardly bioavailable under

natural conditions (due to the low solubility of the Cr (III)), the $PNEC_{saltwater}$ value 0.6 µg/l may be used as an indicative value for dissolved chromium.

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ_{fw} (CrVI, inland whole water) (for MEC(P(95) data from 4MS and PNEC = 2.06 µg/l)	2.4 (Sc3)
RQ _{fw} (CrIII, inland whole water) (for MEC(P(95) data from 1MS and PNEC = 1.8 µg/l)	0.435 (Sc2)
RQ _{fw} (Cr total, inland dissolved) (for MEC(P(95) data from 24MS and PNEC = 3.4 µg/l)	0.735 (Sc3)
RQ _{c+tw} (Cr total, coastal dissolved) (for MEC(P(95) data from 6 MS and PNEC = 0.6 μg/l)	1.17 (Sc3)
RQ _{c+tw} (Cr total, coastal dissolved) Additional data (received in January 2020) for MEC(P(95) and PNEC = 0.6 μg/l)	1.67 (BE) 2 (LV)
RQ _{fw} (PEC/PNEC)	102.94ª

^a PEC has been derived for the 1st WL and it doesn't consider the restricted use. (Carvalho, et al., WL report 2015)

8. STE score (Sc3)

1.099 (PNEC = $2.06 \mu g/l$) (Cr (VI) inland whole water; data from 4 countries).

0.22 (PNEC = $3.4 \mu g/l$) (Cr (total) inland dissolved fraction; data from 24 countries).

0.564 (PNEC = $0.6 \mu g/l$) (Cr (total) coastal and transitional dissolved phase; data from 6 countries).

9. References

COMMISSION REGULATION (EU) No 348/2013 of 17 April 2013 amending Annex XIV to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), 2013

ECHA, 2013. Available at https://echa.europa.eu/documents/10162/3be377f2-cb05-455f-b620-af3cbe2d570b

ECHA, List of substances restricted under REACH. Available at <u>https://echa.europa.eu/</u> <u>substances-restricted-under-reach</u>

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817.</u>

EPA Method 218.7. Determination of hexavalent chromium in drinking water by ion chromatography with postcolumn derivatization and UV-visible spectroscopic detection. 2011.

EU-RAR, 2005. European Risk Assessment Report on Chromium Trioxide, Sodium chromate, Sodium dichromate, Ammonium dichromate and Potassium dichromate (2005) EUR 21508 EN, and Brussels,

C7/VR/csteeop/Cr/100903 D(03) Available at <u>http://eur-lex.europa.eu/legal-</u>content/EN/TXT/PDF/?uri=CELEX:32013R0348&from=EN

Internationale Kommission zum Schutz des Rheins, 2009. Ableitung von Umweltqualitätsnormen für die Rheinrelevanten Stoffe. Bericht Nr. 164; ISBN 3-935324-70-7; <u>https://www.iksr.org/fileadmin/user_upload/Dokumente_de/Berichte/Bericht_Nr.</u> 164d.pdf

ISO method 23913:2006, water quality - determination of chromium(VI) - method using flow analysis (FIA and CFA) and spectrometric detection.

KSR-CIPR-ICBR 2009. Ableitung von Umweltqualitätsnormen für die Rhein-relevanten Stoffe. SBN 3-935324-70-7. https://www.iksr.org/fileadmin/user_upload/DKDM/Dokumente/Fachberichte/DE/rp_De_0164.pdf

Loos, R., Marinov, D., Sanseverino, I., Napierska, D. & Lettieri, T. Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List. EUR 29173, Publications Office of the European Union, Luxembourg, doi: <u>10.2760/701879</u> (2018).

Mamais, D., Noutsopoulos, C., Kavallari, I., Nyktari, E., Kaldis, A., Panousi, E., Nikitopoulos, G., Antoniou, K., Nasioka, M. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. Chemosphere 152, pp. 238-244 (2016).

Mance G, Brown V M, Gardiner J and Yates J, 1984 Proposed EnvironmentalQuality Standards for List II substances in water: chromium. TR 207. Prepared for the Department of the Environment (DoE). Medmenham, Buckinghamshire: WRc.

Perkin Elmer Application note (Ernstberger, H., Neubauer, K.): Chromium speciation in drinking water by LC-ICP-MS.

REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 December 2006, Official Journal of the European Union. Available at http://faolex.fao.org/docs/pdf/eur68317.pdf

Vonderheide, A. P., Meija, J., Tepperman, K., Puga, A., Pinhas, A. R., States, J. C., Caruso, J. A. Retention of Cr(III) by high performance chelation ion chromatography interfaced to inductively-coupled plasma mass spectrometric detection with collision cell. J. Chromatogr. A 1024, pp. 129–137 (2004).

UK Environment Agency 2007. Science Report: SC040038/SR5. SNIFFER Report: WFD52(v). Proposed EQS for Water Framework Directive Annex VIII substances: chromium(VI) and chromium(III) (dissolved). https://www.wfduk.org/sites/default/files/Media/chromium.pdf

Clotrimazole (CAS N. 23593-75-1)

1. Substance identity

EC name	Clotrimazole
EC number	245-764-8
CAS number	23593-75-1
Molecular formula	C ₂₂ H ₁₇ ClN ₂
Molecular weight	344.8 g/mol
Structure	
SMILES	C1=CC=C(C=C1)C(C2=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	3,31E-07	(OSPAR, 2015)
Water solubility (mg/l)	0,49	(OSPAR, 2015)
logK₀w	4,1	(OSPAR, 2015)

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}		
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		

Biodegradability	not biodegradable	(OSPAR, 2015)
Bioaccumulation (BCF)	610 l/kg	(OSPAR, 2015)

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	10 tonnes are produced in the EU each year, and almost the same quantity is imported.	(OSPAR, 2015)
Uses	Its main use is for treatment of dermatological and gynaecological (OSPAR, 2015) fungal infections.	
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.086	(OSPAR, 2015)
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland dissolved) data from 2 MS (19 sites) with 45 samples are available. About 47% of samples are quantified. Data quality in Sc2 seems to be acceptable but the amount of data is very low. The data are not Union-representative. Sc3 was not developed since the data scarcity.	Dataset of monitoring prioritisation 2014	MEC(P95) = 0.016 µg/l (Sc2)

Note:

After the WG Chemicals meeting on 15-16 January 2020, additional monitoring data were received as follows:

Disaggregated recent data (totally 41 samples) for inland surface water Sc2 from 1 MS (SE) with LOQ=0.001 μ g/l. All samples were non-quantified. This MS is not in the prioritisation dataset. The average concentration is 0.0005 μ g/l. Considering PNEC=0.02 μ g/l no exceedances were observed.

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
LC–MS/MS	0.02261	Chitescu et al. 2015

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P)Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Clotrimazole	P and B	C and M	ED
	(suspected)	(suspected)	(suspected)

1. Note: Suspected=indication of concern. Suspected bioaccumulative #Suspected carcinogen #Suspected mutagen #Suspected persistent in the environment #Suspected skin sensitiser (ECHA Annex II inventory). <a href="https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list#sname=CLOTRIMAZOLE&searchfor=any&sortby=chemname&action=search&searchcats=all&sortby=chemname.POSSIBLE ED (ONLY 1 STUDY).

- 6. Hazard assessment
- 2. 6.1 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
	NOEC 66 Nieuwkoop-faber- stage (<i>Xenopus tropicalis</i>)	1.96	100	0.02 (JRC derivation, 2019)
PNEC _{fw}	EC50 (Fish)	36	1000	0.036 (Zhou et al., 2019)
	NOEC 21d (Daphnia magna)	10	10	1 (OSPAR, 2015)
PNECsed				31.6 μg/kg wwt (EqP, OSPAR, 2015)
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ_{fw} (MEC(P95)/PNEC)	0.016 (PNEC = 1 µg/l) 0.8 (PNEC = 0.02 µg/l, JRC derivation 2019)
RQ_{fw} (PEC/PNEC; PEC = 0.086 µg/l)	0.086 (PNEC = 1 µg/l) 4.3 (PNEC = 0.02 µg/l, JRC derivation 2019)
RQ _{sed}	
RQbiota,sec pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

8. STE score

STE (Sc2) is not calculated (according to available data it is expected to be low since MEC(P95) < PNEC (1 µg/l and 0.02 µg/l)

9. References

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511, doi: https://doi.org/

10.1016/j.scitotenv.2015.06.010 (2015).

OSPAR Commission. OSPAR background document on clotrimazole. 2005

Zhou, S. et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants -The case of pharmaceuticals in European surface waters. Environment International 128, pp. 1-10, doi: https://doi.org/10.1016/j.envint.

2019.04.034 (2019).
Cyanide-Free (CAS N. 57-12-5)/ Hydrogen Cyanide (CAS N. 74-90-8)

1. Substance identity

EC name	Cyanide
EC number	200-821-6 (Hydrogen cyanide)
CAS number	57-12-5 (free cyanide) 74-90-8 (hydrogen Cyanide)
Molecular formula	HCN, CN ⁻
Molecular weight	26.02 g/mol (free cyanide) 27.03 g/mol (hydrogen cyanide)
Structure	c NHC ^N
SMILES	C#N

2. Physico-chemical Properties for hydrogen cyanide (HCN)

Endpoint	Value	Source
Vapour Pressure	620 mmHg at 20°C (as HCN) 830 hPa at 20°C	WFD – UK TAG Report, 2012 <u>https://echa.europa.eu/it/registration-</u> <u>dossier/-/registered-dossier/14996/2/3</u>
Water solubility (mg/l)	1,000,000 at 25°C (as HCN)	WFD – UK TAG Report, 2012
logK₀w	0.35 – 1.07 (as HCN) -0.25 to 0.66	WFD – UK TAG Report, 2012 https://www.canada.ca/en/environment- climate-change/services/evaluating-existing- substances/screening-assessment- cyanides.html

3. Environmental fate

Endpoint	Value	Source
Sorption potential Log K _{oc}	0.45 to 1.17	https://www.canada.ca/en/enviro nment-climate- change/services/evaluating- existing-substances/screening- assessment-cyanides.html
Partition coefficient solid- water in sediment Kp _{sed} (l/kg)		
Biodegradability	Biodegradation is an important transformation process for cyanide in natural surface waters and is dependent on such factors as cyanide concentrations, pH, temperature, availability of nutrients and acclimation of microbes.	WFD – UK TAG Report, 2012
Bioaccumulation (BCF)	Experimental BCF values for rainbow trout range from 1.69–4.12.	WFD – UK TAG Report, 2012

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	11894 (2010) in CZ	CZ
Uses	Cyanides are used extensively in industry and are also emitted from car exhaust fumes. They also occur ubiquitously in the environment and are found in a range of aquatic organisms such as arthropods, macrophytes, fungi and bacteria.	WFD – UK TAG Report, 2012
	This substance is manufactured and/or imported in the European Economic Area for industrial use resulting in the manufacture of another substance (use of intermediates).	ЕСНА
	This substance is used at industrial sites and in manufacturing.	
	This substance is approved for use as a biocide in the EEA and/or Switzerland, for: wood preservation, controlling rodents, controlling insects, ants, etc	
	Electroplating	CZ
Spatial usage (by MS):	Widespread use	

Banned uses	-	
ERC code	-	
Fraction of tonnage to region	-	
PEC (µg/l)	PEC _{fw} =12 PEC _{coastal water} =10 Estimated by data from 12 MS; 7 MS with data in the INERIS database, those data represent total CN; data of another 2 MS represent free CN; the other 3 MS did not specify	James, et al., 2009).
PEC _{sed} (µg/kg dw)	-	
PEC _{biota} (mg/kg)	-	

4.2 Measured Environmental Concentration

Source of monitoring data	MEC values	RBSP
Wastewater	2.5 - 11 μg/l (2015)	
NORMAN DB, 2014	MEC _{95, dissolved} : 5 µg/l	10 MS (RBSP EQS
WATERBASE, 2014	MEC _{95, dissolved} : 20 µg/l	ECOSTAT – UBA report)
IPCheM	MEC ₉₅ : 14 µg/l	and total (WRc, 2012)
n. of MS	Source of monitoring data	MEC values
nide anion (CN-)		
olved fraction) data from 2 MS nples are available (18.5% ples). The data quality is low non-quantified samples have C (0.5 µg/l)). The data are not ative. Sc3 was not worked out e low data quality.	Dataset of monitoring prioritisation 2014	MEC(P95) = 11.7 μg/l (Median = 1 μg/l)
	Source of monitoring data Wastewater NORMAN DB, 2014 WATERBASE, 2014 IPCheM n. of MS nof MS	Source of monitoring dataMEC valuesWastewater2.5 - 11 µg/l (2015)NORMAN DB, 2014MEC95, dissolved: 5 µg/lWATERBASE, 2014MEC95, dissolved: 20 µg/lIPCheMMEC95: 14 µg/lIPCheMMEC95: 14 µg/ln. of MSSource of monitoring datanide anion (CN-) olved fraction) data from 2 MS tples are available (18.5% ples). The data quality is low non-quantified samples have C (0.5 µg/l)). The data are not ative. Sc3 was not worked out e low data quality.Dataset of monitoring prioritisation 2014

Note:

After the WG Chemicals meeting on 15-16 January 2020, information for additional monitoring data was received as follows:

Disaggregated recent data for Free CN (inland dissolved fraction) were received from 3 MS (BG, EE and SI; other 2 MS probably will send data later). These MS have not data in the prioritisation dataset. All samples from EE were non-quantified with LOQs≥3 µg/l, i.e. higher than 2*PNEC (PNEC=0.5 µg/l), and cannot be used in the risk assessment analysis. BG sent totally 1075 samples (17 quantified records; LOQ 2 or 3 µg/l) while SI provided totally 100 samples (20 quantified samples; LOQ=0.5 µg/l). Considering PNEC=0.5 µg/l exceedances were observed in 2 MS (SI and BG).

Aggregated recent data for Free CN (inland dissolved fraction) were provided by 1 MS (FI). All samples from this MS were non-quantified with LOQs=5 μ g/l, i.e. higher than 2*PNEC (PNEC=0.5 μ g/l), and were excluded from the risk assessment analysis.

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
Free cyanide:	Free cyanide: 5	CZ
CSN ISO 6703	Total cyanides: 1 – 5	
Total cyanides:		
CSN 757415, CSN EN ISO 14403-2		
Spectrophotometric measure of total and	LOD: 0.1	BE-Wallonia
free cyanide by molecular absorption	LOQ: 0.5	
SPEK (CFA), SIST EN ISO 14403-2:2013	LOD: 0.1	Slovenia
	LOQ: 0.5	
Continuous flow analysis (CFA) with photometric detection	LOQ: 0.14 - 0.30	Fraunhofer Institute, 2017

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)	Comment
Free cyanide	т	_	_	_

NOTE: Not listed in the PBT list from ECHA <u>https://echa.europa.eu/it/information-on-chemicals/pbt-vpvb-assessments-under-the-previous-eu-chemicals-legislation</u>.

Volatilisation and biodegradation are important transformation processes for cyanide in ambient waters. Hydrogen cyanide can be biodegraded by acclimated microbial cultures, but is usually toxic to unacclimated microbial systems at high concentrations (WFD-UK TAG Report, 2012).

6. Hazard assessment

6.1 Ecotoxicology data

Trophic level	Endpoint	Value	Reference
Fish	Rainbow trout, 20 d, LOEC	5 µg/l	WFD- UK TAG Report, 2012
Fish	<i>Lepomis macrochirus</i> , 289 d, total inhibiotin of spawning, LOEC	5.2 µg/l	WFD- UK TAG Report, 2012
Fish	<i>Salvelinus fontinalis,</i> egg production, NOEC	5.7 µg/l	WFD- UK TAG Report, 2012
Aquatic Invertebrates	<i>Moinodaphnia macleayi</i> , 5 d, reproduction, NOEC	9.6 µg/l	WFD- UK TAG Report, 2012
Aquatic Invertebrates	<i>Gammarus pseudolimnaeus,</i> 98 d, growth, NOEC	4 µg/l	WFD- UK TAG Report, 2012
Aquatic Invertebrates	<i>Hydra viridissima</i> , 6 d, population growth, NOEC	110 µg/l	WFD- UK TAG Report, 2012
Algae	Pseudokirchneriella subcapitata, 72 h,growth rate and biomass, NOEC	10 µg/l	WFD- UK TAG Report, 2012

6.2 PNEC derivation

PNEC	Endpoint	Endpoint value	AF	PNEC value
PNEC _{fw}	<i>Lepomis macrochirus</i> , 289 d, LOEC	5.2 µg/l	20	0.26 (µg/l)ª
PNEC _{sed}	-	-	-	-
PNEC biota,sec pois	-	-	-	-
PNEC _{biota, hh}	-	-	-	-
PNEC _{dw, hh}	-	-	-	50 (µg/l) ^ь

N.R. Not required based on Koc and BCF values not reaching the trigger values required for sediment and biota assessment

^a Value retrieved from WFD- UK TAG Report (2012). A more recent freshwater AA-EQS derivation of **5E-04 mg/l** needs also to be considered (JRC substance dossier, 2012).

 $^{\rm b}$ EU Drinking Water QS, referred to cyanide.

Trophic level	Endpoint	Klimish code	Reference	
	<i>Chlamydomonas</i> /10d NOEC _{pop} = 0.010	1 (ECETOC, 2007)	Bringmann et al., 1978	
	<i>Chlorococcales</i> /24h NOEC _{physiology} = 0.024	2 (ECETOC, 2007)	Krebbs, 1991	
Algae & aquatic plants (mg/l)	<i>Lemna gibba</i> /7d E _r C _{10 (biomass)} = 0.00899 [CN ⁻] E _y C ₁₀ (biomass) = 0.00358 ⁽¹⁾ [CN ⁻]	1 (INERIS, 2011)	Bertow et al., 2011	
	<i>Champia parvula</i> /14d NOEC _{growth} = 0.0039	2 (ECETOC, 2007)	Steele et al., 1983	
	<i>Nitzschia closterium</i> /72h LOEC _{growth} = 0.010	2 (Sorokin, 2007)	Pablo et al., 1997a	
	<i>Gammarus pseudolimnaeus</i> /98d NOEC _{reproduction} = 0.0039 [HCN]	2 (ECETOC, 2007)	Oseid et al., 1979	
Invertebrates (mg/l)	<i>Moinodaphnia macleayi</i> /5d NOEC _{reproduction} = 0.0058	2 (ECETOC, 2007)	Rippon et al., 1992	
	<i>Asellus communis</i> /112d NOEC _{reproduction} = 0.0279	2 (Sorokin, 2007)	Oseid and Smith, 1979	
	<i>Chironomous riparius</i> / 8d NOEC _{reproduction} ≥ 0.005	1 (INERIS, 2011)	Bertow, 2011	
	No information available			
	No information available			
	<i>Oncorhynchus mykiss</i> /20d NOEC _{growth} = 0.0048	2 (Sorokin, 2007)	Kovacs, 1979	
	<i>Salvelinus fontinalis</i> /144d NOEC _{reproduction} = 0.0054 [CN ⁻]	2 (ECETOC, 2007)	Koenst et al., 1977	
Fish (mg/l)	<i>Lepomis macrochirus</i> /289d LOEC _{reproduction} = 0.005 Extrapolation to NOEC _{repro} = 0.001 ⁽²⁾	2 (Sorokin, 2007, ECETOC, 2007)	Kimball et al., 1978	
	No information available			
	No inf	ormation available		

3. 6.3 PNEC derivation SSD method (JRC dossier, 2012)

 $^{(1)}$ Estimated from the lowest test concentration (3.7 $\mu g/l).$

⁽²⁾, Sorokin, 2007, proposed to add an extrapolation factor of 2 from the LOEC to the NOEC, whereas ECETOC, 2007 used an extrapolation factor of 5. The worst-case of 5 was retained.

<u>Chronic toxicity:</u>

According to the TGD-EQS, when sufficient data are available, two calculation methods can be used to calculate AA-QS_{freshwater} and AA-QS_{saltwater} values:

Assessment Factor Method

Chronic toxicity values are available on 3 freshwater trophic levels and 1 marine trophic level. The lowest value was obtained on the crustacean *Lepomis macrochirus* / 289d: NOEC_{repro} = **1 µg/l**.

According to the TGD-EQS (1), a default assessment factor of 10 and 100 applies for freshwater and marine water, respectively. The information on the chronic toxicity of cyanides to marine species is insufficient to reduce the assessment factor.

QS _{freshwater} (assessment factor method) =	1 / 10 = 0.1 µg/l
QS _{saltwater} (assessment factor method) =	1 / 100 = 0.01 µg/l

- Species Sensitivity Distribution (SSD) Method

Toxicity data are log-transformed and fitted to a distribution function from which the 5^{th} percentile (referred to as the HC₅) of that distribution is used as the basis for an EQS.

Species sensitivity distribution of NOECs for freshwater and saltwater species

As no significant difference can be demonstrated between freshwater and saltwater sensitivities, it is deemed more relevant to base the QS derivation on the freshwater and saltwater SSD including a higher number of species. This SSD, consisting of the most reliable data (Klimisch code 1 - 2), results in an HC₅ of 2.5 µg.l⁻¹.

It is noted however that mollusc species are missing to complete the TGD-EQS (1) requirements for SSD derivation. For this reason, the maximum assessment factor of 5 is used to determine the AA-QS from the SSD.

QS_{freshwater} (SSD method) = 2.5/5 = 0.5 μ g/l

 $QS_{saltwater}$ (SSD method) = 2.5/50 = 0.05 μ g/l

The QS determined using the SSD are more than 3 times higher than the QS derived with the method of the assessment factors. However, it is noted that these QS would be sufficiently protective to protect the most sensitive data (*Lepomis macrochirus*/289d: NOEC_{repro} = $1 \mu g/l$) among the species tested.

Although the dataset lacks mollusc ecotoxicity data, the *Chironomus riparius* and *Lemna gibba* data recently provided a comprehensive dataset and the use of the maximum assessment factor applied on the HC_5 should be considered as protective enough. It is thus proposed to use the QS derived using the SSD method. Consequently, the following QS are proposed for the protection of aquatic organisms:

PNEC	Relevant study for derivation of QS	AF	Tentative QS
AA-QS _{freshwater} , eco	SSD – HCs = 0.0025 mg/l	5	0.5 µg/l

(JRC Dossier https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp 2015)

6.3 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
PNEC.	LOEC, 289 d (Lepomis macrochirus)	5.2	20	0.26 (JRC Factsheet 2015)
T NECTW				0.5 (SSD Approach, JRC Dossier, 2015)
	-	50	10	5 (freshwater ECHA dossier)
PNEC _{fw}				
PNEC _{sed}				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (PEC/PNEC)

RQ	Value
\boldsymbol{RQ}_{fw} (NORMAN MEC 5-20 $\mu g/l)^c$ and PNEC 0.5 $\mu g/l$	10-40
\boldsymbol{RQ}_{fw} (NORMAN MEC 5-20 $\mu g/l)^c$ and PNEC 0.26 $\mu g/l$	19.2-76.8
$\boldsymbol{RQ_{fw}}$ (MEC(P95) CN-) ^c and PNEC 0.5 $\mu g/l$	23.4
\boldsymbol{RQ}_{fw} (MEC(P95) CN-) ^c and PNEC 0.26 $\mu g/l$	45
$\boldsymbol{RQ_{fw}}$ (PECfw and PNEC 0.5 $\mu g/l$	24
RQ_{fw} (PEC _{fw} and PNEC 0.26 µg/l	46
RQ fw (PEC _{coastal water} and PNEC 0.05 μg/l	200

RQ _{sed}	-
RQbiota,sec pois	-
RQ _{biota, hh}	-
RQ _{dw, hh}	-

^c Dissolved fraction

8. STE score

STE score for Cyanide anion (Sc2) is not calculated since the data scarcity (however, considering the available data from 2 MS, STE is expected to be high since the Median > PNEC (PNEC=0.5 μ g/l)).

Note: The available monitoring data are insufficient and are not Union-representative but allow making a tentative initial risk assessment which showed a threat in several MS (confirmed as well by RQ; the physical-chemical properties also indicate a potential risk), therefore to complete the risk evaluation it is preferable to collected a sufficient amount of Union-representative monitoring data.

9. References

Bertow, D. Lemna gibba, Growth Inhibition; Sodium cyanide. Report No. IPW-001/4-54/J, (CEFIC, Bruxelles, 2011).

Bertow, D. Sediment - water chironomid toxicity test; Sodium cyanide. Report No. IPW-001/4-29/R, (CEFIC, Bruxelles, 2011).

Bringmann, G. & Kühn, R. Grenzwerte der Schadwirkung wassergefährdender Stoffe gegen Blaualgen (Microcystis aeruginosa) und Grünalgen (Scenedesmus quadricauda) im Zellvermehrungshemmtest. Vom Wasser 50, 45-60 (1978).

EC. TGD-EQS. Draft Technical Guidance Document for deriving Environmental Quality Standards (February 2010 version). (Not yet published., 2010).

ECETOC. Cyanides of Hydrogen, Sodium and Potassium, and Acetone Cyanohydrin (CAS No. 74-90-8, 143-33-9, 151-50-8 and 75-86-5). Vol I and II. (European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium., 2007).

EQS set for cyanide ion and total, WRc, 2012. Contract No. 070311/2011/603663/ETU/D1 "Comparative Study of Pressures and Measures in the Major River Basin Management Plans' - Task 2c (Comparison of Specific Pollutants and EQS): Final Report". WRc Ref: UC8981/1 October 2012. Available at http://ec.europa.eu/environment/archives/water/implrep2007/pdf/P_M%20Task%202c.pdf

EU Drinking Water QS. COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, Official Journal of the European Communities. Available at http://europa.eu/legislation_summaries/environment/water_ protection_management/l28079_en.htm

Fraunhofer Institute, 2017. Rüdel, H., Knopf, B. Monitoring program for the determination of the natural background concentrations of free cyanide in surface waters. Report on work package 3: Characterization of parameters influencing cyanide levels in natural waters.

IPCheM database at <u>http://ipchem.jrc.ec.europa.eu/JRC Dossier, 2015 at https://circabc.</u> <u>europa.eu/faces/jsp/extension/wai/navigation/container.jsp 2015</u>

James A., Bonnomet V., Morin A. and Fribourg-Blanc B. (2009). Implementation of requirements on Priority substances within the Context of the Water Framework Directive. Contract N° 07010401/2008/508122/ADA/D2. Final dradt prioritisation process report on monitoring-based ranking, INERIS / IOW: 58.

Kimball, G. L., Smith, L. L., Jr. & Broderius, S. J. Chronic Toxicity of Hydrogen Cyanide to the Bluegill. *Tran. Am. Fish. Soc.* **107**, 341-345 (1978).

Koenst, W. M., Smith, L. L., Jr. & Broderius, S. J. Effect of Chronic Exposure of Brook Trout to Sublethal Concentrations of Hydrogen Cyanide. *Environ.Sci.Technol.* **11**, 883-887 (1977).

NORMAN Database http://www.norman-network.net/?q=node/24

Oseid, D. M. & Smith, L. L. J. The effects of hydrogen cyanide on Asellus communis and Gammarus pseudolimnaeus and changes in their competitive response when exposed simultaneuously. *Bull. Environm. Contam. Toxicol.* **21**, 439-447 (1979).

RBSP EQS ECOSTAT – UBA report – Ecological Environmental Quality Standards of "River Basin Specific Pollutants" in Surface Waters – Update and Development analysis of a European Comparison between Member States, by U. Irmer, F. Rau, J. Arle, U. Claussen, V. Mohaupt – Annex WATERBASE Database http://www.eea.europa.eu/data-and-maps/data/waterbase-rivers-6.

Steele, R. L. & Thursby, G. B. in *Aquatic Toxicology and Hazard Assessment: Sixth Symposium.* (eds W.E. Bishop, R.D. Cardwell, & B.B. Heidolph) 73-89.

WFD – UK TAG Report, Proposed EQS for Water Framework Directive Annex VIII substances: cyanide (free) (For consultation), Water Framework Directive – United Kingdom Technical Advisory Group, 2012. Available at http://www.wfduk.org/sites/default/files/Media/Cyanide_Final_.pdf.

Deltamethrin (CAS N. 52918-63-5)

1. Substance identity

EC name	a-cyano-3-phenoxybenzyl [1R-[1a(S*),3a]]-3-(2,2-dibromovinyl)-2,2- dimethylcyclopropanecarboxylate	
EC number	258-256-6	
CAS number	52918-63-5	
Molecular formula	C ₂₂ H ₁₉ Br ₂ NO ₃	
Molecular weight	505.21 g/mol	
Structure	Br O O	
SMILES	CC1(C(C1C(=0)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3)C=C(Br)Br)C	

2. Physico-chemical Properties

Endpoint	Value	Source
Vapour Pressure (Pa)	1.24 x 10 ⁻⁸ at 25°C	Biocide Assessment Report, 2011
Water solubility (mg/l)	0.0002 0.0002 at 25°C; solubility not pH dependent (determined at pH 7.49 - 7.85) < 0.005 at 20°C by column elution method, pH 6.2	<u>http://npic.orst.edu/factsheets/archive/Deltatech.html</u> EC Review Report, 2002
logK₀w	4.6 6.1	http://ceqg- rcqe.ccme.ca/download/en/17 0 http://npic.orst.edu/factsheets/ archive/Deltatech.html

3. Environmental fate

Endpoint	Value	Source
----------	-------	--------

Sorption potential Koc (l/kg)	408250 l/kg EU dossier K₀c range 460000-16300000 ml/g 10240000	Biocide Assessment Report, 2011 PPDB: Pesticide Properties DataBase. University of Hertfordshire <u>http://sitem.herts.ac.uk/aeru/ppdb/en/Repo</u> <u>rts/205.htm</u>
Partition coefficient solid- water in sediment Kp _{sed} (l/kg)		
Biodegradability	Not readily biodegradable	EC Review Report, 2002
Bioaccumulation (BCF)	1400 <i>Lepomis macrochirus</i> , 28 days: 310, 2800 and 1400 for edible, non-edible and whole body tissue, respectively. Clearance time: 4.3 days; by day 14 of the depuration period 7 6% of the ¹⁴ Cresidues present on the last day of exposure had been eliminated from the whole body tissue.	http://sitem.herts.ac.uk/aeru/ppdb/en/Repo rts/205.htm EC Review Report, 2002 Biocide Assessment Report, 2011

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	<u>1 - 10 tonne registered substances</u>	ECHA https://echa.europa.eu/it/substa nce-information/- /substanceinfo/100.052.943
Uses	Deltamethrin is approved as PPP in the EU (in agriculture to protect crops or kill livestock parasites). Deltamethrin is authorised in 28 MS (AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, PL, PT, RO, SE, SI, SK, UK). Expiration of approval: 31/10/2020	http://ec.europa.eu/food/plant/p esticides/eu-pesticides- database/public/?event=actives ubstance.detail&language=EN& selectedID=1197
	This substance is approved for use as a biocide in the EEA and/or Switzerland, for: controlling insects, ants, etc Approved for veterinary use: prevention and treatment of external parasites in	https://echa.europa.eu/it/substa nce-information/- /substanceinfo/100.052.943
	cattle and sheep.	

	Active compound of medicated collars for prevention of ticks and mosquito bites in dogs.	
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.00537	EFSA 2014
PEC _{sed} (µg/kg dw)	1.09	EFSA 2014
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 dataset (inland whole water) 28842 samples from 7 MS (2766 sites) are available. Only 0.7% quantified samples. Data quality in Sc2 is not good. Sc3 was worked out but it is not representative for EU-wide assessment (3 MS with 3520 samples; 6% quantified).	Dataset of monitoring prioritisation 2014	MEC(P95) = 0.05 µg/l(Sc2) MEC(P95) = 0.0001 µg/l (Sc3)
97 samples for monitoring in sediments (all non-quantified with LOQ=10 μg/kg dw)	Data received from EE after the WG Chemicals meeting on 15-16 January 2020	Mean=10 µg/kg dw (estimated by all reported samples; this value should not be used in risk assessment since LOQ>PNEC)

Note: Sc2 includes all reported quantified and non-quantified samples. The data quality for Sc2 is verified by controlling the data accuracy, checking quantification frequency of sampling and applying the LOQ-PNEC criterion to non-quantified samples ($\frac{1}{2}$ LOQ \leq PNEC).

Sc3 is the main decisive dataset which includes the quantified measurements and these non-quantified samples when $\frac{1}{2}$ LOQ \leq PNEC (i.e. avoiding the non-confirmed exceedances when the non-quantified concentrations are set up equal to half of LOQ).

After the WG Chemicals meeting on 15-16 January 2020, information for monitoring in sediments was received as follows:

SE – available 90 samples (all non-detected); LOQ=1.5 μ g/kg dw (the data should not be used in risk assessment since LOQ>PNEC);

FR – available 4242 samples (the data are not yet sent to JRC); quantification frequency 1%; only 22 nonquantified samples have LOQ<PNEC (PNEC=0.54 µg/kg dw);

FI – available 3 samples (only 1 detected); LOQ=10 μ g/kg dw (the data should not be used in risk assessment since LOQ>PNEC).

4.3 Analytical Methods

Method	LOQ	Description/Reference
GC-NCI-MS	0.00038 µg/l	Extraction by ultrasound-assisted emulsification- extraction of a water-immiscible solvent (chloroform) in 20 ml water (Feo et al., 2010).
GC-NCI-MS	0.001 µg/l	SPE of 1 L water (Elfman et al., 2011).
GC-ECD/MS	0.00006 – 0.00098 µg/l (LOD)	SPE (Zheng et al., 2016).
n.a.	0.005 µg/l	Finland
n.a.	0.001 – 0.02 µg/l	CZ
GC-APCI-MS/MS	0.000025 µg/l	Surface water (Rösch et al. 2019)
GC-MS/MS	0.2 µg/kg dw	Sediment (USGS, 2009)
GC-MS/MS	0.10-1.54 µg/kg lw	Biota (Corcellas et al., 2015)

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P)Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Deltamethrin	PT*	C and M**	ED***
	and B** (suspected)	(suspected)	(suspected)

Note: Suspected=indication of concern. Not listed in the PBT list from ECHA <u>https://echa.europa.eu/it/information-on-</u> chemicals/pbt-vpvb-assessments-under-the-previous-eu-chemicals-legislation. #Harmonised classification for aquatic toxicity #Suspected bioaccumulative #Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected mutagen #Suspected persistent in the environment #Suspected skin sensitiser (ECHA Annex II inventory).

*Assessment repot (SE, 2011); **(ECHA. Annex III inventory); ***https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list#sname=Deltamethrin&searchfor=any&sortby=chemname&action =search&searchcats=all&sortby=chemname possible ED

- 6. Hazard assessment
 - 6.1 Ecotoxicology data
- 4.
- 5. Freshwater

Species	Time-scale	Endpoint	Toxicity (μg/l)
Algae			
Chlorella vulgaris	96 h	NOEC	470
Invertebrates			

Daphnia magna	21 d	NOEC	0.0041	
Chironomus riparius	28 d	NOEC	0.010	
Chironomus riparius	28 d	NOEC	0.0035	
Gammarus pulex	21 d	NOEC	0.009	
Tisbe battagliai	6 d	EC10	0.0161	
Tisbe battagliai	6 d	EC10	0.0087	
Tisbe battagliai	6 d	EC10	0.0281	
<i>Tisbe battagliai</i> 6 d		LC10	0.0641	
Fish				
Pimephales promelas 260 d		NOEC	0.017	

Sediment

Species	Time-scale	Endpoint	Toxicity (μg/kg dw)
Chironomus riparius	28 d	EC10	54.2

6. 6.2 Mammalian toxicology data

7. Mammalian oral toxicity	Rat, acute, LD ₅₀ : 87 mg/kg bw		
	Dog, 13-week, oral, NOEL: 2.5 mg/kg bw/day (supported by observations of maternal toxicity in teratogenicity studies)		
	Dog, 1-year, oral, NOAEL: 1 mg/kg bw/day (neurological effects)ª	FC Daviau Dapart	
	Rat, 90-day, oral, NOAEL: 1 mg/kg bw/day (neurological effects)	2002	
	Rat, 2-year, oral, NOAEL: 1 mg/kg bw/day (neurological effects) ^b		
		Rat, reproductive toxicity, diet, NOEL: 4.2 mg/kg bw/day (adults and offspring) ^c	

^a Lowest NOAEL value which had also been identified in the EFSA Opinion (2009) and used for risk assessment. This NOAEL value of 1 mg/kg bw/day was reported to be related to altered behaviour and liquid faeces (EFSA Opinion, 2009).

^b Lowest NOAEL value which had also been identified in the EFSA Opinion (2009), and used for risk assessment. This NOAEL value of 1 mg/kg bw/day was reported to be related to reduced body weight and food consumption, and changes in heamatological parameters (EFSA Opinion, 2009).

^c This two*generation study was also commented in the EFSA Opinion, 2009. The NOAEL 4.2 mg/kg bw/day for parental and offspring toxicity was based on clinical signs, reduced body weight and increased mortality. The NOAEL for reproductive toxicity was found to be 18 mg/kg bw/day, the highest dose tested (EFSA Opinion, 2009).

Rat, maternal toxicity, NOAEL: 2.5 mg/kg bw/day	
Rat, developmental toxicity, NOEL: > 5 mg/kg bw/day	
Rat, 13-week, oral, NOEL: 4 mg/kg bw/day (neurotoxicity)	
Mice, 2-year, dietary study, NOAEL: 12 mg/kg bw/day (males, highest dose tested)	
Mice, 97-week, dietary study, NOAEL: 16 mg/kg bw/day (males, skin ulceration)	
Rat, 2-year, dietary study, NOAEL: 1 mg/kg bw/day (males, reduced body weight and food consumption, changes in haematological parameters)	
Rat, acute neurotoxicity test, gavage, NOAEL: 5 mg/kg bw/day (effects in the functional observation battery and on locomotor activity)	
Rat, short-term dietary neurotoxicity, diet, 13-week, NOAEL: 4 mg/kg bw/day (systemic toxicity and neurotoxicity)	
Rat, two-generation reproductive study, diet, NOAEL: 18 mg/kg bw/day (highest dose tested, reproductive toxicity)	
Mice, developmental toxicity, gavage, NOAEL: 3 mg/kg bw/day (maternal toxicity, based on absence of malformations and developmental variations in the foetuses at the highest dose tested)	
Rats / developmental toxicity / gavage / NOAEL: 2.5 mgkg bw/day (neonatal toxicity, based on reduced body weight gain and mild salivation)	EFSA Opinion, 2009
Rats, developmental toxicity, gavage, NOAEL: 5 mgkg bw/day (maternal toxicity, based on reduced body weight gain and mild salivation)	
Rat, developmental toxicity, gavage, NOAEL: 3.3 mgkg bw/day (maternal toxicity, based on clinical signs (e.g. moribundity, convulsions, increased salivation, hypersensitivity, staining), reduced body weight gain, deaths	
Rats, developmental toxicity, gavage, NOAEL: 11 mgkg bw/day (developmental toxicity, no malformation and developmental variations in foetuses at the highest dose tested)	
Rabbit, developmental toxicity, NOAEL: 25 mg/kg bw/day (maternal toxicity, based on death of one female; developmental toxicity, based on retardation of ossification)	
Rabbit, developmental toxicity, NOAEL: 10 mg/kg bw/day (maternal toxicity, based on decreased food consumption and body weight gain)	

Rabbit, developmental toxicity, NOAEL: 32 mg/kg bw/day (developmental toxicity, highest dose tested)	
Rat, developmental neurotoxicity study, diet, NOAEL: 6.78 mg/kg bw/day (maternal toxicity, based on reduced body weight gain in dams)	
Rat, developmental neurotoxicity study, diet, NOAEL: 6.78 mg/kg bw/day (offspring toxicity, based on reduced body weight gain and delayed balanopreputial separation)	

8. 6.3 PNEC derivation

PNEC	Endpoint	Endpoint value	AF	PNEC value
PNEC _{fw}	28 d, NOEC (Chironomus riparius)	0.0035 µg/l	50	0.00007 µg/l (JRC draft dossier, 2016)
PNECsed	28 d, EC10 (Chironomus riparius) (mortality)	54.2 µg/kg dw	100	0.54 µg/kg dw (JRC draft dossier, 2016)
PNEC _{biota,sec pois}	EC _{biota,sec pois} Rat / 2-year / oral		10	468 µg/kg ww (JRC derived, 2020)
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7 . Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	714 (Sc2); 1.4 (Sc3)
RQ_{fw} (PEC1/PNEC; PEC1 = 0.03 µg/l)	429
RQ_{fw} (PEC2/PNEC; PEC2 = 0.36 µg/l)	5143
RQ_{fw} (PEC _{fw} /PNEC; PEC _{fw} = 0.00537 μg/l)	77
RQ_{sed} (PECsed/PNEC; PECsed = 1.09 µg/kg dw)	2

Note: PEC1 and PEC2 (both for fresh water) are taken from Lettieri, T., Chirico, N., Carvalho, R.N., Napierska, D., Loos, R., Sanseverino, I., Marinov, D., Ceriani, L., Umlauf, G. 2016. *Modelling-based strategy for the prioritisation exercise under the Water Framework Directive*, <u>https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf</u>.

8 . STE score

2.69 (Sc2; PNEC = 0.00007 μg/l)

1.2 (Sc3; PNEC = 0.00007 μg/l)

Note: STE is a risk-evaluation method/tool developed by the JRC (Loos et al., 2018, EUR 29173 EN). Minimal score = 0 (no risk); Maximal score = 3 (very high risk).

9. 9. References

Assessment Report, SE 2011.

Biocide Assessment Report. 2011. Directive 98/8/EC concerning the placing biocidal products on the market. Inclusion of active substances in Anex I or IA to Directive 98/8/EC. Assessment Report. Deltamethrin. Producttype 18 (Insecticides). May 2011. Annex I – Sweden (RMS). Available on-line at: http://dissemination.echa.europa.eu/

Biocides/ActiveSubstances/0024-18/0024-18_Assessment_Report.pdf

Biocide Assessment Report, Study summary. 2011. Deltamethrin, Document IIIA, Section 7, Annex Point IIA 7.2. Available on-line at: <u>http://dissemination.echa.</u> <u>europa.eu/Biocides/ActiveSubstances/0024-18/Data_009.pdf</u>

Corcellas, C., Eljarrat, E. & Barceló, D. First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). *Environment International* **75**, 110-116, doi:https://doi.org/10.1016/j.envint.2014.11.007 (2015).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-</u>/dislist/details/AIII-100.047.817.

EFSA. 2009. Scientific Opinion. Potential developmental neurotoxicity of deltamethrin. Scientific opinion of the Panel on Plant Protection Products and their Residues (PPR). Question No EFSA-Q-2008-373. Adopted on 9 December 2008. The EFSA Journal 921, pp. 1-34 (2009).

Elfman, L., Tooke, N.E., Patring, J.D.M. Detection of pesticides used in rice cultivation in streams on the island of Leyte in the Philippines. Agricultural Water Management 101, pp. 81– 87 (2011).

European Commission (EC). 2002. Review report for the active substance deltamethrin. 6504/VI/99-final. European Commission, Health & Consumer Protection Directorate-General. Directorate E1 – Plant Health.

Feo, M.L., Eljarrat, E., Barceló, D. A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. Journal of Chromatography A 1217, pp. 2248–2253 (2010).

JRC, 2016. Draft Dossier of substances identified in the second prioritisation process https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp.

Rösch, A., Beck, B., Hollender, J. et al. Anal Bioanal Chem. 411, 3151. doi: <u>https://doi.org/10.1007/s00216-019-01787-1</u> (2019).

USGS. 2007. Hladik, M. & USGS. Methods Development for the Analysis of Pyrethroid Pesticides in Environmental Samples. FINAL REPORT FOR CALFED Recipient Agreement No. ERP-02-P42.

USGS. Hladik, M. L. & Kuivila, K. M. Assessing the Occurrence and Distribution of Pyrethroids in Water and Suspended Sediments. Journal of Agricultural and Food Chemistry 57, pp. 9079-9085. doi: 10.1021/jf9020448 (2009).

USGS. Hladik, M. L., Smalling, K. L. & Kuivila, K. M. Methods of Analysis—Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. Techniques and Methods 5–C2. U.S. Department of the Interior. U.S., Geological Survey, Reston, Virginia (2009).

Zheng, S., Chen, B., Qiu, Q., Chen, M., Ma, Z., Yu, X. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere 144, pp. 1177–1192 (2016).

Dimoxystrobin (CAS N. 149961-52-4)

1. Substance identity

EC name	Dimoxystrobin
EC number	604-712-8
CAS number	149961-52-4
Molecular formula	C19H22N2O3
Molecular weight	326,39 g·mol ⁻¹
Structure	$H_{3}CO^{-N} \xrightarrow{O}_{CH_{3}} CH_{3}$
SMILES	CC1=CC(=C(C=C1)C)OCC2=CC=C2C(=NOC)C(=O)NC

2. Physico-chemical Properties

Endpoint	Value	Source
Vapour Pressure (Pa)		
Water solubility (mg/l)	4.3	http://sitem.herts.ac.uk/aeru/iupac/Reports/246.htm
logKow	3.6	http://sitem.herts.ac.uk/aeru/iupac/Reports/246.htm

3. Environmental fate

Endpoint	Value	Source
Sorption potential Koc	486.2 ml/g	EFSA, 2005
Partition coefficient solid- water in sediment Kp _{sed} (l/kg)	Photolysis and partition to sediment was considered the main routes of dissipation of dimoxystrobin from the water phase in the outdoor water sediment study. A first order water phase DT _{50water} = 15.3 d was calculated using only 0-58 d data.	EFSA, 2005
Biodegradability	Not readily biodegradable	EFSA, 2005
Bioaccumulation (BCF)	84	EFSA, 2005

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	Use: 8.485 in 2016. 18.572 in 2015.	CZ RO
Uses	Dimoxystrobin is approved as PPP in EU (16 MS: AT, BE, BG, CZ, DE, EE, FR, HR, HU, LT, LU, LV, PL, RO, SK, UK) Strobilurin fungicide with the main uses in oilseed rape. Approval expiration date: 31/01/2021.	http://ec.europa.eu/food/plant/pestici des/eu-pesticides- database/public/?event= activesubstance.detail&language=E N&selectedID=1251 EU pesticides database BASF, 2013 DG Sante
Spatial usage (by MS)	Not in PPP register, not sold as PPP in the 2000's. In Finland, the compound is not use.	FI
	Uses registered for oil-seed rape, sunflower.	SK
	Admission for rapeseed.	BE-Fl
	Not approved in DK and SE.	SE; DK
Banned uses		
ERC code		
PEC _{fw} (µg/l)	16.42 µg/L	Lettieri et al., 2016
PEC _{sw} (µg/l)	0.28-1.35	EFSA, 2005
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) data from only 1 MS (720 sites) with 6078 samples are available. 2.8% quantified samples.	Dataset of monitoring prioritisation 2014	MEC(P95) = 0.025 μg/l (Sc2)

The data quality seems acceptable (LOQs<PNEC) but there are 3890 (64% from total) repeated non-quantified samples (LOQ = 0.01 µg/l or 0.02 µg/l)

Sc3 was not developed since the data are not Union-representative.

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
SPE-LC-MS-MS	0.025	Extraction of 10 ml water; elution with methanol (BASF, 2013)
LC-MS-MS	0.01	CZ
SPE-LC-MS-MS	0.01	BE-Wallonia
LC-ESI-Q-Orbitrap-MS	0.0010	Casado et al., 2019

Dimoxystrobin has mainly been analysed in food products (Lozowicka et al., 2014; Schurek et al., 2008; Wang et al., 2012; 2017).

Lozowicka et al. (2014) analysed pesticide residues (including dimoxystrobin) in grain (barley, oat, rye, and wheat) from Kazakhstan.

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Dimoxystrobin	P and T	C and R (suspected)	ED (EU Pesticides database)

Note: Suspected=indication fo concern. # Harmonised classification for acute toxicity: The substance is listed in Annex VI of CLP as: Acute Tox. 4 # Harmonised classification for aquatic toxicity: The substance is listed in Annex VI of CLP as: Aquatic Acute 1; The substance is listed in Annex VI of CLP as: Aquatic Chronic 1 # Harmonised classification for carcinogenicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for reprotoxicity: The substance is listed in Annex VI of CLP as: Carc. 2 # Harmonised classification for carc. 2 # Harmonised classification

6. Hazard assessment

6.1 Ecotoxicology data

Species	Time-scale	Endpoint	Toxicity (μg/l)
Algae & aquatic plants			
Pseudokirchneriella subcapitata	96 h	EC10	13.3

Invertebrates			
Daphnia magna	21 d, reproduction	NOEC	12.5
Daphnia magna	10 d, growth	NOEC	0.5
Chironomus riparius	28 d, emergence rate	NOEC	10
Fish			
Oncorhynchus mykiss	97 d, growth	NOEC	0.316
Acipenser ruthenus L.	7 d	NOEC (weight)	0.1
		NOEC (growth)	1
Oncorhynchus mykiss	28 d	NOEC	10
Pimephales promelas	36 d	NOEC	16

Data used for PNEC derivation

Source: UBA 2014 and EFSA 2005

6.2 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
PNECfw	97-d NOEC (body length, ELS*, <i>Oncorhynchus mykiss</i>)	0.316	10	0.0316 (ETOX: Information System Ecotoxicology and Environmental Quality Targets, UBA)
				1.67 (AgriTox ANSES FR)
PNEC _{sed}				
PNEC _{biota,sec} pois				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7 . Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P(95))/PNEC)	0.79 (Sc2; PNEC = 0.0316 μg/l)

RQ₅ w (PEC/PNEC; PEC=0.28-1.35 µg/l)	8.8-42.7 (PNEC = 0.0316 µg/l)
RQ _{fw} (PEC/PNEC; PEC = 16.42 µg/l)	519.6 (PNEC = 0.0316 µg/l)

Note: the last PEC value is taken from Lettieri et al., 2016.

8 . STE score

0 (Sc2; PNEC = 0.0316 µg/l)

Note: After the WG Chemicals meeting on 15-16 January 2020, additional disaggregated monitoring data were received from MULNV (NRW, DE)

Totally 1004 samples for inland surface whole water (14 quantified); LOQs of non-quantified samples $0.001 - 0.01 \mu g/l$ (samples with LOQ>0.01 $\mu g/l$ were excluded); MEC(p95)=0.01 $\mu g/l$; these data indicate no risk for PNEC=0.0316 $\mu g/l$ (RQ=0.32).

9 . References

BASF, 2013. Method for the determination of BAS 505 F, 505M98 (Reg.No. 360056), 505M01 (Reg.No. 358104), 505M08 (Reg.No. 354562) and 505M09 (Reg.No. 354563) in surface water and groundwater by LC-MS/MS; BASF Method Number L0191/01.

Casado, J., Brigden, K., Santillo, D. & Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Science of The Total Environment 670, pp. 1204-1225. doi: 10.1016/j.scitotenv.2019.03.207 (2019).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817.</u>

EFSA, 2005. Conclusion regarding the peer review of the pesticide risk assessment of the active substance dimoxystrobin; EFSA Scientific Report 46, pp. 1-82 (2005).

Lettieri, T., Chirico, N., Carvalho, R.N., Napierska, D., Loos, R., Sanseverino, I., Marinov, D., Ceriani, L., Umlauf, G. 2016. *Modelling-based strategy for the prioritisation exercise under the Water Framework Directive*, <u>https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf</u>).</u>

Lozowicka, B., Kaczynski, P., Paritova, A.E., Kuzembekova, G.B., Abzhalieva, A.B., Sarsembayeva, N.B., Alihan, K. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food and Chemical Toxicology 64, pp. 238–248 (2014).

EU Pesticides database. https://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.selection&language=EN

Schurek, J., Vaclavik, L., Hooijerink, H., Lacina, O., Poustka, J., Sharman, M., Caldow, M., Nielen, M.W.F., Hajslova, J. Control of Strobilurin Fungicides in Wheat Using Direct Analysis in Real Time Accurate Time-of-Flight and Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry. Anal. Chem. 80, pp. 9567–9575 (2008).

Szöcs, E., Brinke, M., Karaoglan, B., Schäfer, R.B. Large Scale Risks from Agricultural Pesticides in Small Streams. Environ. Sci. Technol. 51, pp. 7378–7385 (2017).

UBA 2014. EQS DATASHEET - ENVIRONMENTAL QUALITY STANDARD - DIMOXYSTROBIN. https://webetox.uba.de/webETOX/public/basics/literatur/download.do;jsessionid=F4FE610EA26A033B1B337F4 661409AC2?id=21Wang, J., Chow, W., Leung, D., Chang, J. Application of Ultrahigh-Performance Liquid Chromatography and Electrospray Ionization Quadrupole Orbitrap High-Resolution Mass Spectrometry for Determination of 166 Pesticides in Fruits and Vegetables. J. Agric. Food Chem. 60, pp. 12088-12104 (2012).

Wang, J., Chow, W., Chang, J., Wong, J.W. Development and Validation of a Qualitative Method for Target Screening of 448 Pesticide Residues in Fruits and Vegetables Using UHPLC/ESI Q-Orbitrap Based on Data-Independent Acquisition and Compound Database. J. Agric. Food Chem. 65, pp. 473–493 (2017).

2-Ethylhexyl-4-methoxycinnamate, EHMC (CAS N. 5466-77-3)/2-Ethylhexyl trans 4-methoxycinnamate (CAS N. 83834-59-7)

1. Substance identity

Chemical name (IUPAC)	2-Ethylhexyl 4-methoxycinnamate
EC number	226-775-7 629-661-9
CAS number	5466-77-3 83834-59-7
Molecular formula	C ₁₈ H ₂₆ O ₃
Molecular weight	290.4 g/mol
Structure	
SMILES	CCCCC(CC)COC(=0)/C=C/C1=CC=C(C=C1)OC

2. Physico-chemical Properties

Endpoint	Value	Source
Vapour Pressure (Pa)	30	ЕСНА, 2014
Water solubility (mg/l)	0.75	ECHA, 2014
logK _{ow}	>6	ECHA, 2014

3. Environmental fate

Endpoint	Value	Source
Sorption potential (K_{oc})	13290	ЕСНА, 2014
Partition coefficient solid- water in sediment Kp _{sed} (l/kg)		

Biodegradability	Readily biodegradable	ЕСНА, 2014
Bioaccumulation (BCF)	433	ЕСНА, 2014
BMF	1	GD No. 27 (2011)

- 4. Environmental exposure assessment
- 10. 4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	7500 (year 2000)	Prioritisation exercise (Carvalho et al., 2016 and Lettieri et al. 2016)
Uses	Sunscreen ingredient in personal care products	
Spatial usage (by MS):	Widespread use (worldwide)	Sevin, I. (2006)
Banned uses	-	
ERC code	ERC8a	
Fraction of tonnage to region	0.1	
PEC _{fw} (mg/l)	0.0063	ECETOC (Carvalho et al., 2015)
PEC _{sed} (mg/kg dw)	8.39	ECETOC (Carvalho et al., 2015)
PEC _{biota} (mg/kg)	2.73 (N.R.)	Calculation based on Equation L (Carvalho et al., 2015)

N.R. Not required because readily biodegradable.

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values	RBSP
	NORMAN DB, 2014	MEC _{95, whole} : 3.98E-04 mg/l (DE)	_
2 (DE, SE)	SE National Screening Programme 2009: UV-filters	MEC95: 3.03E-05 mg/l (surface water) MEC95: 0.043 mg/kg dw (sediment) MEC95: 7.8E-04 mg/kg ww (biota)	-

MS	Source of monitoring data	MEC values
Water:		
In Sc3 (inland whole water) 1583 samples (13.4% quantified) from 23 MS (335 sites) are available; the data quality is good (LOQ < PNEC) and data are Union-representative; Median conc. = 0.3 µg/l.	Combined WL dataset (after 3 rd reporting year of the WL)	MEC(P95) = 1.8 µg/l(Sc3)
Sediments: In Sc2 reported 31 samples from 3 MS; Max conc. = 35 µg/kg	Combined WL dataset (after 3 rd reporting year of the WL)	MEC(P95) < 35 µg/kg (Sc2)

4.3 Analytical Methods

Method	LOQ	Description/Reference
HPLC-MS2 (sediment)	0.0001 ng/g dw	(Mandaric et al., 2017)

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
ЕНМС	РВТ		ED
	(under assessment)		(under assessment)

NOTE: Endocrine disruptor-Category 1 both for human health and aquatic organisms (Endocrine Disruptor database of the EU Commission, 2011). In the latter case, an increase in plasma VTG + and increased mRNA expression levels of estrogen receptor (ER) alpha, among sex hormone receptors in the liver (Endocrine Disruptor database of the EU Commission, 2011).

EHMC has been reported to display low but multiple hormonal activities in fish including vitellogenin induction, histological changes in gonads and effects on the expression of genes involved in different hormonal pathways in fathead minnows (Christen V. et al., 2011). EHMC has also caused toxic effects on reproduction in snails (Kaiser D. et al., 2012).

Negative results for genotoxicity. (ECHA, 2014). Suspected PBT, potential endocrine disruptor, possible risk, wide dispersive use, consumer use, environmental exposure, high (aggregated) tonnage (Draft Community Rolling Action Plan (CoRAP) update for years 2016-2018). EHMC is undergoing an ED assessment (ECHA). Lee et al. (2019) described the long-term effects of EHMC on fecundity and thyroid disrupting effects in fish, suggesting that EHMC may affect reproduction and thyroid hormonal balance of fish. Sharma et al. (2017) described the DNA damage response (COMET assay) of EHMC cis and trans isomers.

6. Hazard assessment

11. 6.1 Ecotoxicology data

Trophic level	Endpoint	Value	Reference
Algae	<i>Selenastrum capricornutum</i> , 72 h, growth rate, EC ₅₀	32 mg/l	ЕСНА, 2014
Algae	<i>Selenastrum capricornutum,</i> 72 h, growth rate, NOEC	> 100000 µg/l	ЕСНА, 2014
Aquatic invertebrates	<i>Melanoides tuberculata,</i> 28 d, number of embryos per snail, sediment toxicity test, NOEC	2 mg/kg dw	Kaiser et al., (2012) (R2)
Aquatic invertebrates	<i>Potamopyrgus antipodarum,</i> 56 d, number of embryos per snail, sediment toxicity test, NOEC	0.08 mg/kgª	Kaiser et al., (2012) (R2)
Aquatic invertebrates	Daphnia magna, 48 h, EC ₅₀	> 0.0271 mg/l	ЕСНА, 2014
Fish	Danio rerio, 48 h, sediment contact test, sublethal effects, NOEC	100 mg/kg	Kaiser et al., (2012) (R2)
Fish	<i>Cyprinus carpio</i> , 96 h, LC ₅₀	> 100000 µg/l	ECHA, 2014

^a Even though this value was lower, it was not selected for the risk assessment, because no dose-effect curve was seen, in contrast with the one chosen (in bold).

(R2) Relevance and reliability were assessed using a literature evaluation tool (LET) based on the CRED system (Kase et al., unpublished). Assessed to be reliable with restrictions (Klimisch score 2).

12. 6.2 Mammalian toxicology data

Type of test	Endpoint	Value	Reference
Repeated dose toxicity	Rat, oral, min 90 d, NOAEL	450 mg/kg bw/day	ЕСНА, 2014
Reproductive toxicity	Rat, oral, 2 generation study, NOAEL	450 mg/kg bw/day	ЕСНА, 2014
Developmental toxicity	Rabbit, oral, NOAEL	500 mg/kg bw/day	ECHA, 2014

13.

14. 6.3 PNEC derivation

PNEC	Endpoint	Endpoint value	AF	PNEC value	Comment
PNEC _{fw}	-	-	-	6 µg/l	Carvalho et al., 2015
PNEC _{sed}	<i>Melanoides tuberculata,</i> 28 d, sediment toxicity test, NOEC	2000 µg/kg	10 ^a	200 µg/kg dw	Kaiser et al., (2012)
PNEC _{biota,sec pois}	N.R.	-	-	-	RB
PNEC _{biota, hh}	N.R.	-	-	-	RB
PNEC _{dw, hh}	DNEL, repeated dose toxicity, oral	2.25 mg/kg bw/day	-	7.875 mg/kg bw/day	ECHA, 2014 (for DNEL & AF) ^b

N.R. Not required because the substance is readily biodegradable (RB).

^a Two long-term endpoints were available for two snail species *Potamopyrgus antipodarum* and *Melanoides tuberculata* at concentrations below water solubility. For *P. antipodarum*, although the NOEC was lower (0.08mg/kg), there was no clear dose response, and for this reason it was not selected. Additionally, for *Chironomus riparius* and *Lumbriculus variegatus* no effects were observed over 28 days for concentrations up to 50 mg/kg dw. Thus, there is data for three long-term tests with species representing different living and feeding conditions and an AF of 10 was selected.

^b DNEL, retrieved from ECHA, 2014 used in equation F as TL_{hh} (Carvalho et al., 2015)

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw}	0.3
RQ _{sed}	7.1 (SE Screening Programme) < 1 (WL sediments data)
RQbiota,sec pois	N.R.
RQ _{biota, hh}	N.R.
RQ _{dw, hh}	8E-04

8. STE score

Water: 0 (PNEC = $6 \mu g/l$)

Sediments: Not calculated since insufficient data are available

9. References

 ECHA,
 2014.
 Dissemination
 website:
 http://apps.echa.europa.eu/registered/data/

 dossiers/DISS-9ea053bf-39e2-163b-e044-00144f67d031/DISS-9ea053bf-39e2-63b-e044-00144f67d031.html
 00144f67d031.html

ECHA, 2015. Community Rolling Action Plan (CoRAP). https://echa.europa.eu/ documents/10162/13628/corap 2016 2018 en.pdf

Endocrine Disruptor database of the EU Commission), available at http://ec.europa.eu/environment/chemicals/endocrine/documents/index_en.htm

Carvalho, R. N., Ceriani, L., Ippolito, A. & Lettieri, T. Development of the first Watch List under the Environmental Quality Standards Directive, EUR2714, Publications Office of the European Union, Luxembourg, doi: 10.2788/101376 (2015).

Carvalho, R. N. et al. Monitoring-based exercise: second review of the priority substances list under the Water Framework Directive (https://circabc.europa.eu/w/browse/ 52c8d8d3-906c-48b5-a75e-53013702b20a) (2016).

Christen V, Zucchi S, Fent K. Effects of the UV-filter 2-2thyl-4-trimethoxycinnamate (EHMC) on expression of genes involved in hormonal pathways in fathead minnows (Pimephales promelas) and link to vitellogenic induction and histology. Aq. Tox. 102, pp. 167-176 (2011).

GD No. 27. Technical Guidance for Deriving Environmental Quality Standards – Guidance Document No. 27 (2011) Common Implementation Strategy of the Water Framework Directive (2000/60/EC). doi: 10.2779/43816. Available at: <u>http://ec.europa.eu/</u> environment/water/water-dangersub/lib pri substances.htm

Kaiser D, Sieratowicz A, Zielke H, Oetken M, Hollert H, Oehlmann J. Ecotoxicological effect characterisation of widely used organic UV filters. Environmental Pollution 163, pp. 84-90 (2012).

Lee, I., Lee, J., Jung, D., Kim, S. & Choi, K. Two-generation exposure to 2-ethylhexyl 4-methoxycinnamate (EHMC) in Japanese medaka (Oryzias latipes) and its reproduction and endocrine related effects. Chemosphere 228, 478-484, doi:https://doi.org/10.1016/j.chemosphere.2019.04.123 (2019).

Sharma, A. et al. Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells. Science of The Total Environment 593-594, 18-26, doi:https://doi.org/10.1016/j.scitotenv.2017.03.043 (2017).

Lettieri, T. et al. Modelling-based strategy for the prioritisation exercise under the Water Framework Directive, https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf) (2016).

Mandaric, L., Diamantini, E., Stella, E., Cano-Paoli, K., Valle-Sistac, J., Molins-Delgado, D., Bellin, A., Chiogna, G., Majone, B., Diaz-Cruz, M.S., Sabater, S., Barcelo, D., Petrovic, M. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism, Science of The Total Environment 590–591, pp. 484-494. ISSN 0048-9697, <u>https://doi.org/10.1016/j.scitotenv.2017.02.185</u> (2017).

NORMAN database at http://www.norman-network.net/?g=node/24

Remberger M, Lilja K, Kaj L, Viktor T, Brorström-Lundén E. Results from the Swedish National Screening Programme 2009. Subreport 3: UV-filters. IVL Swedish Environmental Research Institute. http://www.ivl.se/download/18.7df4c4e812d2da6a 416800088960/B1971.pdf (2011).

Sevin, I., Update of Sunscreen Ingredients Nomination to NTP. Ph.D. Technical Resources International, Inc

Sharma, A. et al. Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells. Science of The Total Environment 593-594, 18-26, doi:https://doi.org/10.1016/j.scitotenv.2017.03.043 (2017).

Epoxiconazole (CAS N. 133855-98-8, 135319-73-2, formerly 106325-08-0)

- EC name (2RS,3SR)-1-[3-(2-chlorophenyl)-2,3-epoxy-2-(4-fluorophenyl)propyl]-1H-1,2,4triazole EC number 406-850-2 603-915-9 603-739-4 **CAS number** 133855-98-8 135319-73-2 Formerly 106325-08-0 Molecular C17H13ClFN3O formula Molecular weight 329.76 g/mol Structure H H Ó Ο Cl C F C1=CC=C(C(=C1)C2C(O2)(CN3C=NC=N3)C4=CC=C(C=C4)F)Cl SMILES
- 1. Substance identity

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	< 1.10 ⁻⁵ at 20°C	INERIS, 2011 EFSA, 2008
Water solubility (mg/l)	7.1 (demineralised water) at 20°C, 8.4 at pH 3 and 20°C	INERIS, 2011 EFSA, 2008
logKow	3.3	INERIS, 2011 JRC, 2009

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc} (l/kg)	280 – 2647 1802	EFSA, 2008 INERIS, 2011
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)	3.3 at 25°C (demineralised water)	EFSA, 2008 INERIS, 2011
Biodegradability	Not easily biodegradable	INERIS, 2011 EFSA, 2006 and 2008
Bioaccumulation (BCF)	70	INERIS, 2011 EFSA, 2006 and 2008

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source	
Tonnes/year			
Uses			
	NOT APPROVED as PPP		
	exp 30/04/2020		
Spatial usage (by MS)	2008/107Reg. (EU) 2019/168Reg. (EU) No 540/2011.	EU pesticides database	
	Authorised in: AT, BE, BG, CZ, DE, DK, EE, EL, ES, FR, HR, HU, IE, IT, LT, LU, LV, NL, PL, PT, RO, SI, SK, UK (24 MS)		
Banned uses			
ERC code			
PEC _{fw} (µg/l)	0.001 - 0.9	FOCUS Step 3 (EFSA, 2008)	
PEC _{sed} (mg/kg dw)			
PEC _{biota} (mg/kg)			

4.2 Measured Environmental Concentration

n. of MS Source of MEC values monitoring data	
--	--

In Sc2 (inland whole water) monitored in 7 MS (2385 sites); available 26476 samples; only 1.3% quantified samples; the data quality seems poor although that 95% of non-quantified samples were measured with LOQ < PNEC (LOQ \leq 0.1 µg/l); There is a lot repeated non-quantified samples (17682; about 67% from all samples) coming from 2 MS; the data are not Union-representative (1 MS holds 53% of all samples, other 40% originate from 2 MS);

Sc3 is not developed since the low data quality but is expected to be similar to Sc2 for considered PNECs. Median = 0.01 µg/l; MEC(p95) = 0.05 µg/l;

Prioritisation exercise

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
LC–MS/MS	0.0083	Chitescu et al., 2015
LC-ESI-Q-Orbitrap-MS	0.0025	Casado et al., 2019

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
	РТ	CR (suspected)	ED
			(EU Pesticides Database)

Note: Harmonised classification for aquatic toxicity #Harmonised classification for carcinogenicity #Harmonised classification for reprotoxicity #Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected mutagen #Suspected persistent in the environment #Suspected respiratory sensitiser #Suspected skin sensitiser #Suspected toxic for reproduction (ECHA Annex III inventory). PT and ED (EU Pesticides Database)

6. Hazard assessment

6.1 Ecotoxicology data

Trophic level	Endpoint	Value (µg/l)	Reference
Algae	LC/EC ₅₀ Ankistodesmus bibraianus	1900	INERIS, 2011
Algae	NOEC/EC10 Pseudokirchneriella subcapitata	1.8	INERIS, 2011
Invertebrate	LC/EC50 Daphnia magna	8690	INERIS, 2011

Invertebrate	NOEC/EC10 Chironomus riparus	62.5	INERIS, 2011
Fish	LC/EC ₅₀ Oncorhynchus mykiss	3140	INERIS, 2011
Fish	NOEC/EC10 Oncorhynchus mykiss	10	INERIS, 2011

6.2 Mammalian toxicology data

6.3 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value
	chronic			0.2 µg/l (Swiss ECOTOX centre, 2016)
PNEC _{fw}	Chronic NOEC/CE10 algae Pseudokirchneriella subcapitata	1.8	10	0.18 µg/l (INERIS, 2011)
				1.8 µg/l (NL AA-EQS, Ctgb, 2010)
PNECsed				3 μg/kg (EqP dw, INERIS, 2011)
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7 . Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	0.28 (PNEC = 0.18 µg/l)
RQ _{fw} (PEC/PNEC)	0.005 – 5 (PNEC = 0.18 μg/l)
RQ _{sed}	
RQbiota,sec pois	
RQ _{biota, hh}	

RQ _{dw, hh}	

8 . STE score

0.46 (PNEC = 0.18 µg/l)

Note: After the WG Chemicals meeting on 15-16 January 2020, additional disaggregated monitoring data were received from MULNV (NRW, DE)

Totally 1164 samples for inland surface whole water (107 quantified); LOQs of non-quantified samples 0.0008 – 0.05 µg/l; MEC(p95)=0.05 µg/l; these data indicate no risk (RQ<1 for PNEC=0.18 µg/l).

9 . References

Casado, J., Brigden, K., Santillo, D. & Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Science of The Total Environment 670, pp. 1204-1225. doi: https://doi.org/10.1016/j.scitotenv.2019.03.207 (2019).

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511. doi: https://doi.org/10.1016/j.scitotenv.2015.06.010 (2015).

ECHA. Annex III inventory. https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817

EFSA, 2006. Draft Assessment Report (DAR) – public version–. Initial risk assessment provided by the rapporteur Member State Germany for the existing active substance Epoxiconazole of the third stage (part A) of the review programme referred to in Article 8(2) of Council Directive 91/414/EEC European.

EFSA, 2008. Conclusion regarding the peer review of the pesticide risk assessment of the active substance Epoxiconazole, European Food Safety Authority: 80.

 EU
 Pesticides
 database.
 https://ec.europa.eu/food/plant/pesticides/eu-pesticides

 database/public/?event=activesubstance.selection&language=EN

INERIS, 2011. Validation groupe d'experts: Juin 2011, Version 1: 15/12/2011. DRC-11-118981-13560A. https://substances.ineris.fr/fr/substance/cas/133855-98-8/3

Esfenvalerate (CAS N. 66230-04-4)

1. Substance identity

EC name	(S)-a-cyano-3-phenoxybenzyl-(S)-2-(4-chlorophenyl)-3-methylbutyrate
EC number	613-911-9
CAS number	66230-04-4
Molecular formula	C ₂₅ H ₂₂ ClNO ₃
Molecular weight	419.91 g/mol
Structure	
SMILES	CC(C)C(C1=CC=C(C=C1)Cl)C(=0)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3

2. Physico-chemical Properties

Endpoint	Value	Source
Vapour Pressure (Pa)	1.17 x 10 ⁻⁹ at 20°C purity 99.9% 2.84 x 10 ⁻⁹ at 25°C purity 99.9%	EFSA Conclusion, 2014
Water solubility (mg/l)	< 0.001 at pH 5, 20°C; nearly insoluble in water	EFSA Conclusion, 2014
logK _{ow}	6.24	EFSA Conclusion, 2014

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	251700 ml/g	EFSA Conclusion, 2014
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	Not readily biodegradable	EFSA Conclusion, 2014
Bioaccumulation (BCF)	3369	http://www.rivm.nl/bibliotheek/rap porten/601716017.pdf EFSA, 2014
4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	ECHA 1 - 10 tonne registered substances information/- /substanceinfo/100.118.80-	
Uses	Esfenvalerate is approved as PPP in the EU (in agriculture to protect crops or kill livestock parasites). Esfenvalerate is authorised in 25 MS AT, BE, BG, CY, CZ, DE, EL, ES, FI, FR, HR, HU, IE, IT, LU, NL, PL, PT, RO, SE, SK, UK	http://ec.europa.eu/food/plant/pesticid es/eu-pesticides- database/public/?event=activesubsta nce.detail&language=EN&selectedID =1286
	Only uses as insecticide may be authorised.	http://eur-lex.europa.eu/legal- content/EN/TXT/HTML/?uri=CELEX:32 011R0540&from=EN
	Expiration of approval: 31/12/2022 (00/67/ECReg. (EU) 2015/2047Reg. (EU) No 540/2011 (2010/77/EU, Reg. (EU) 2015/1885))	http://ec.europa.eu/food/plant/pesticid es/eu-pesticides- database/public/?event=activesubsta nce.detail&language=EN&selectedID =1286
	BEING REVIEWED AS BIOCIDE	ECHA https://echa.europa.eu/it/substance- information/- /substanceinfo/100.118.804
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.000774 - 0.00539 (values predicted for risk assessment using FOCUS Step 4)	EFSA Conclusion, 2014
PEC _{sed} (µg/kg dw)	0.00244 - 1.090 (values predicted for risk assessment using FOCUS Step 4)	EFSA Conclusion, 2014
PEC _{sed} (µg/kg dw)	5.9 (values predicted for risk assessment using FOCUS Step 3)	EFSA Conclusion, 2014

PEC _{biota} (mg/kg)		
------------------------------	--	--

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) data from 4 MS (1152 sites) with 8661 samples are available. Only 0.5% quantified samples. The data quality in Sc2 is not good. In Sc3 (inland whole water; PNEC = 0.0001 µg/L) data from only 2 MS (26 sites) with 87 samples are available; 53% quantified samples. Sc3 is not representative for EU-wide assessment.	Dataset of monitoring prioritisation 2014	MEC(P95) = 0.05 µg/l (Sc2) MEC(P95) = 0.017 µg/l (Sc3)
97 samples for monitoring in sediments (all non- quantified with LOQ=10 µg/kg dw)	Data received from EE after the WG Chemicals meeting on 15-16 January 2020	Mean=10 µg/kg dw (estimated by all reported samples; this value cannot be used in risk assessment since LOQ>PNEC)

Note: Sc2 includes all reported quantified and non-quantified samples. The data quality for Sc2 is verified by controlling the data accuracy, checking quantification frequency of sampling and applying the LOQ-PNEC criterion to non-quantified samples ($\frac{1}{2}$ LOQ \leq PNEC).

Sc3 is the main decisive dataset which includes the quantified measurements and these non-quantified samples when $\frac{1}{2}$ LOQ \leq PNEC (i.e. avoiding the non-confirmed exceedances when the non-quantified concentrations are set up equal to half of LOQ).

After the WG Chemicals meeting on 15-16 January 2020, information for monitoring in sediments was received as follows:

SE – available 89 samples (only 1 detected); LOQ=0.2 μ g/kg dw (the data should not be used in risk assessment since are non-detected);

FR – available 444 samples (the data not sent yet to JRC); quantification frequency 0%; all non-quantified samples have LOQ>PNEC (PNEC=1.3 μ g/kg dw)

FI – available 2 samples (only 1 detected); LOQ=100 µg/kg dw (the data should not be used in risk assessment since LOQ>PNEC);

Method	LOQ	Description/Reference
GC-NCI-MS	0.0001 µg/l	Extraction by ultrasound-assisted emulsification- extraction of a water-immiscible solvent (chloroform) in 20 ml water (Feo et al., 2010).
GC-MS	0.06 µg/l	SPE of water (Bereswill et al., 2013).
GC-ECD	0.001 μg/l	Surface water and drinking water analysis (EFSA, 2014).
GC-APCI-MS/MS	0.000025 µg/l	Surface water (Rösch et al., 2019)

4.3 Analytical Methods

GC-MS/MS	0.2 µg/kg	Sediment (USGS, 2009)

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P)Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Esfenvalerate	ВТ	С	ED
	and	(suspected)	(suspected)
	P (suspected)		

NOTE: Suspected=indication of concern. Not listed in the PBT list from ECHA <u>https://echa.europa.eu/it/information-on-chemicals/pbt-vpvb-assessments-under-the-previous-eu-chemicals-legislation</u>. Harmonised classification for acute toxicity# Harmonised classification for aquatic toxicity# Harmonised classification for skin sensitisation# Suspected bioaccumulative# Suspected carcinogen# Suspected hazardous to the aquatic environment# Suspected persistent in the environment# Suspected skin sensitiser (ECHA. Annex III inventory).

*https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedxlist#sname=ESFENVALERATE&searchfor=any&sortby= chemname&action=search&searchcats =all&sortby=chemname

6. Hazard assessment

6.1 Ecotoxicology data

Freshwater

Species	Time-scale	Endpoint	Toxicity (µg/l)	
Algae				
Pseudokirchneriella subcapitata	48 hr, growth rate	NOEC	1.0	
Invertebrates				
Daphnia magna	21 d, reproduction	NOEC	0.052	
Daphnia magna	21 d, reproduction	NOEC	0.056	
Chironomus riparius	28 d	NOEC	0.16	
Fish				
Lepomis macrochirus	30 d, mortality	NOEC	0.092	
Lepomis macrochirus	60 d, mortality	NOEC	0.052	
Lepomis macrochirus	90 d, mortality	NOEC	0.010	
Oncorhynchus mykiss	21 d, mortality	NOEC	0.001	
Pimephales promelas	260 d, survival	NOEC	0.090	

Salmo gairdneri	21 d	NOEC	0.001
Mesocosm study			
Aquatic insects	-	NOEC	0.01

6.2 Mammalian toxicology data

	Rat, long-term toxicity, systemic toxicity and carcinogenic effects, 104-week NOAEL 2.3 mg/kg bw/day	
	Mouse, long-term toxicity, systemic toxicity and carcinogenic effects, 18- month, NOAEL 4.3 mg/kg bw/day	
	Mouse, reproductive toxicity, parental NOAEL 2.45 mg/kg bw/day, reduction in body weight; relevant reproductive NOAEL 6 mg/kg bw/day, no adverse effect; relevant offspring NOAEL 2.45 mg/kg bw/day, decreased body weight	
	Rat, developmental toxicity, maternal NOAEL 3 mg/kg bw/day; relevant developmental NOAEL 20 mg/kg bw/day. Clinical signs of neurotoxicity have been described for the maternal toxicity while no adverse effects have been reported for the developmental toxicity	EFSA Conclusion, 2014
	Rabbit, developmental toxicity, maternal NOAEL 2 mg/kg bw/day; relevant developmental NOAEL 20 mg/kg bw/day. Clinical signs of neurotoxicity have been described for the maternal toxicity while no adverse effects have been reported for the developmental toxicity	
Mammalian toxicity	Rat, acute neurotoxicity, NOAEL 1.75 mg/kg bw/day on the basis of clinical signs of neurotoxicity (***)	
	Rat, repeated neurotoxicity, 13-week, NOAEL 3.2 mg/kg bw/day on the basis of clinical signs of neurotoxicity (reduced forelimb grip strength, reduced motor activity)	
	Rat, acute toxicity, LD $_{50}$ 88.5 mg/kg bw	EFSA Conclusion, 2014
	Mouse, acute toxicity, LD ₅₀ 250 mg/kg bw	
	Rat, short term toxicity, 90-day, NOAEL 2.5 mg/kg bw/day	EFSA Conclusion, 2014
	Mouse, short term toxicity, 90-day, NOAEL 30.5 mg/kg bw/day	EFSA Conclusion, 2014
	Dog, short term toxicity, 1 year (highest dose), NOAEL 5 mg/kg bw/day	EFSA Conclusion, 2014

7. 6.3 PNEC derivation

PNEC	Endpoint	Endpoint value	AF	PNEC value
	21-day, mortality (<i>Oncorhynchus mykiss</i>)	0.001 µg/l	10	0.0001 μg/l (JRC draft dossier, 2016)
PNEC _{fw}				0.0001 µg/l (NL legal standard AA-EQS, RIVM, 2008)
PNEC _{sed}		EqP		0.4841 µg/kg _{ww} 1.25866 µg/kg _{dw} (JRC draft dossier, 2016)
PNEC _{biota,sec pois}	Long-term toxicity, NOAEL Rat	2.3 mg/kg bw/day	10	1077 µg/kg ww (JRC derived, 2020)
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7 . Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (for MEC(P95) and PNEC = 0.0001 µg/l)	500 (Sc2) 170 (Sc3)
RQ _{fw} (for PEC = 0.0634 µg/L and PNEC = 0.0001 µg/l)	634
RQ _{fw} (for PEC = 0.0054 µg/L and PNEC = 0.0001 µg/l)	54
RQ_{sed} (for PECsed=1.09 $\mu\text{g/kg}$ dw and PNEC=1.26 $\mu\text{g/kg}$ dw)	0.87 (Focus 4)
RQ_{sed} (for PECsed=5.9 $\mu\text{g/kg}$ dw and PNEC=1.26 $\mu\text{g/kg}$ dw)	4.7 (Focus 3)

Note: PEC1 (freshwater) is from Lettieri, T., Chirico, N., Carvalho, R.N., Napierska, D., Loos, R., Sanseverino, I., Marinov, D., Ceriani, L., Umlauf, G. 2016. *Modelling-based strategy for the prioritisation exercise under the Water Framework Directive*, <u>https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf</u>.

8 . STE scores

2.6 (Sc2; PNEC = 0.0001 µg/l)

2.5 (Sc3; PNEC = 0.0001 μ g/l)

Note: STE is a risk-evaluation method/tool developed by the JRC (Loos et al., 2018, EUR 29173 EN). Minimal score = 0 (no risk); Maximal score = 3 (very high risk).

9 . References

Bereswill, R., Streloke, M., Schulz, R. Current-used pesticides in stream water and suspended particles following runoff: Exposure, effects, mitigation requirements. Environ. Toxicol. Chem. 32, pp. 1254-1263 (2013).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817</u>

EFSA, 2014. Conclusion on the peer review of the pesticide risk assessment of the active substance esfenvalerate. EFSA Journal 12(11), 3873.

Feo, M.L., Eljarrat, E., Barceló, D. A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. Journal of Chromatography A 1217, pp. 2248–2253 (2010).

JRC, 2016. Draft Dossier of substances identified in the second prioritisation process. <u>https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp</u>.

RIVM 2008. RIVM Letter report 601716017/2008. Environmental risk limits for esfenvalerate. https://www.rivm.nl/bibliotheek/rapporten/601716017.pdf

Rösch, A., Beck, B., Hollender, J. et al. Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Anal Bioanal Chem 411: 3151. https://doi.org/10.1007/s00216-019-01787-1 (2019).

USGS. 2007. Hladik, M. & USGS. Methods Development for the Analysis of Pyrethroid Pesticides in Environmental Samples. FINAL REPORT FOR CALFED Recipient Agreement No. ERP-02-P42.

USGS. 2009. Hladik, M. L. & Kuivila, K. M. Assessing the Occurrence and Distribution of Pyrethroids in Water and Suspended Sediments. Journal of Agricultural and Food Chemistry 57, pp. 9079-9085, doi: 10.1021/jf9020448

USGS. Hladik, M. L., Smalling, K. L. & Kuivila, K. M. Methods of Analysis—Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. Techniques and Methods 5–C2. U.S. Department of the Interior. U.S., Geological Survey, Reston, Virginia (2009).

Famoxadone (CAS N.131807-57-3)

1. Substance identity

EC name	3-anilino-5-methyl-5-(4-phenoxyphenyl)-1,3-oxazolidine-2,4-dione	
EC number	603-520-1	
CAS number	131807-57-3	
Molecular formula	C ₂₂ H ₁₈ N ₂ O ₄	
Molecular weight	374.4 g/mol	
Structure		
SMILES	CC1(C(=0)N(C(=0)01)NC2=CC=C2)C3=CC=C(C=C3)0C4=CC=C4	

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	6.4x10 ⁻⁷ (at 20°C)	PubChem
Water solubility (mg/l)	0.0520	PubChem
logK₀w	4.65 (at pH7) 4.65 (at pH7)	PubChem

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	3300-4030	PubChem

Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	Substance considered not readily biodegradable in the absence of a specific experiment.	EFSA, 2015
Bioaccumulation (BCF)	971 to 1,286 measured in edible bluegill sunfish tissue 3,327 to 3,608 for the nonedible tissue and 2,434 to 3,425 for the whole fish tissues	PubChem

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	Criteria for 1-10 tonne registered substance	ECHA
Uses	Fungicide Substance approved on 01/10/2002 with expiration date on 30/06/2021 02/64/ECReg. (EU) 2020/869Reg. (EU) No 540/2011 (2010/77/EU,Reg. (EU) 2015/1885,Reg. (EU) 2016/549,Reg. (EU) 2017/841,Reg. (EU) 2018/917,Reg. (EU) 2019/707)	EU Pesticides Database
Spatial usage (by MS)	Substance authorised in 20 MS (AT, BE, BG, CY, CZ, DE, EL, ES, FR, HR, HU, IT, MT, NL, PL, PT, RO, SI, SK, UK)	EU Pesticides Database
Banned uses		
ERC code		
PEC _{fw} (mg/l)		
PEC₅w (µg/l)	0.018-1.28	FOCUS, EFSA (2015)
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) data from 3 MS (5528 samples) are available; no any quantified	Dataset of monitoring prioritization 2014	MEC(P95) = 0.025 µg/L (Sc2)

samples; the data quality seems acceptable since LOQs < PNEC (0.14 μg/l) but there are a lot repeated non-quantified samples (5422; about 98% from total) The data are not Unionrepresentative (98% of samples originate from one MS).

Sc3 was not developed since lower data quality.

4.3 Analytical Methods

Method	LOQ (µg/l)	Description / Reference
LC-MS/MS	0.10	Samples were adjusted to approximately 5% acetonitrile and 0.01 % formic acid. The analytes were extracted from the solution onto a C18-SPE cartridge and recovered in acidified acetonitrile and acidified methanol (EPA, 2015).
GC-MS/MS	0.005	BE-Wallonia, Research project BIODIEN (2019)

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P)Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Famoxadone	BT	СМ	
	and P (suspected)	(suspected)	

Note: Suspected=indication of concern. 2 PBT criteria (EU Pesticides Database). Harmonised classification for aquatic toxicity #Harmonised classification for specific target organ toxicity #Suspected bioaccumulative #Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected mutagen #Suspected persistent in the environment #Suspected skin sensitiser (ECHA Annex III inventory)

- 6. Hazard assessment
- 6.1 Ecotoxicology data

Species	Time-scale	Endpoint	Toxicity (µg/l)
Algae			
Pseudokirchneriella subcapitata	5d	NOEC	3.08
Invertebrates			
Daphnia magna	21 d, reproduction	NOEC	0.085
Fish			

Oncorhynchus mykiss	90 d	NOEC	1.4

6.1 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
				0.14 (JRC Derivation, prioritization exercise Lettieri et al., 2016)
PNEC _{fw}				0.11 (AgriTox ANSES FR)
	NOEC (Daphnia)	0.085	10	0.0085 (NL i-JG-MKN, RIVM 2015)
PNECsed				
PNEC biota,sec pois				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value	
RQ_{fw} (MEC(P95)/PNEC)	0.18 (PNEC = 0.14 μg/l) 2.9 (PNEC = 0.0085 μg/l)	
RQ ₅w (PEC/PNEC)	0.13-9.1 (PNEC=0.14 μg/l) 2.1-150.6 (PNEC=0.0085 μg/l)	
RQ _{sed}		
RQbiota,sec pois		
RQ _{biota, hh}		
RQ _{dw, hh}		

8. STE score

0 (Sc2; PNEC = 0.14 µg/l)

Not calculated for PNEC=0.0085 $\mu g/l$ but expected to be higher.

9. References

BE-Wallonia. 2019 Reserch project BIODIEN. http://eau.wallonie.be/spip.php?article168ECHA. Annex III inventory. https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817

EPA, 2015. https://www.epa.gov/pesticide-analytical-methods/ecm-famoxadone-degradates-soilwater-mrid-49970601

 EU
 Pesticides
 database.
 https://ec.europa.eu/food/plant/pesticides/eu-pesticides

 database/public/?event=activesubstance.selection&language=EN

Lettieri, T. et al. Modelling-based strategy for the prioritisation exercise under the Water Framework Directive, <u>https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf</u>) (2016).

RIVM Briefrapport 2015-0124. E. Smit, R. Keijzers. Indicatieve waterkwaliteitsnormen voor bestrijdingsmiddelen Normvoorstellen voor 19 stoffen. https://www.rivm.nl/bibliotheek/rapporten/2015-0124.pdf

Fluconazole (CAS N. 86386-73-4)

1. Substance identity

EC name	1H-1,2,4-Triazole-1-ethanol, alpha-(2,4-difluorophenyl)-alpha-(1H-1,2,4-triazol- 1-ylmethyl)-
EC number	627-806-0
CAS number	86386-73-4
Molecular formula	C ₁₃ H ₁₂ F ₂ N ₆ O
Molecular weight	306.2708
Structure	
SMILES	OC(CN1C=NC=N1)(CN1C=NC=N1)C1=C(F)C=C(F)C=C1

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	3.0x10 ⁻⁹ mm Hg at 25°C (est)	US EPA, 2004
Water solubility (mg/l)	4.363 mg/l at 25°C (est) Slightly soluble in water	US EPA, 2004
logK _{ow}	0.25 at 25°C (est)	US EPA, 2004

3. Environmental fate

Endpoint	Value	Source
Sorption potential Koc	estimated Koc of 5.3x10 ⁴	ToxNet https://toxnet.nlm.nih.gov/cgi- bin/sis/search2/r?dbs+hsdb:@term+@rn +@rel+86386-73-4
Partition coefficient solid- water in sediment Kp _{sed} (l/kg)		
Biodegradability		

Bioaccumulation (BCF)	estimated BCF of 3.2	ToxNet https://toxnet.nlm.nih.gov/cgi- bin/sis/search2/r?dbs+hsdb:@term+@rn +@rel+86386-73-4
-----------------------	----------------------	--

- 4. Environmental exposure assessment
- 4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year		
Uses		
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (mg/l)		
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) data from 1 MS (26 sites) with 436 samples are available. 40%of samples are quantified. The data quality seems acceptable but the data are not Union-representative.	Dataset of monitoring prioritisation 2014	MEC(P95) = 0.06 µg/l (Sc2)
Sc3 was not developed since data scarcity.		

Note: After the WG Chemicals meeting on 15-16 January 2020, additional monitoring data were received as follows:

Disaggregated recent data (totally 66 samples) for inland surface water Sc2 from 3 MS (17 (SE), 30 (LV) and 19 (FI)) with LOQ=0.0005 μ g/l (SE), LOQ=0.00005 μ g/l (LV) and LOQ=0.004 (FI). The above MS are not in the prioritisation dataset. From all samples 29 were non-quantified (4 (SE), 11 (LV) and 14 (FI)). The average concentrations per country are 0.015 μ g/l (SE), 0.041 (LV) μ g/l and 0.004 (FI) μ g/l. Considering PNEC=0.25 μ g/l no exceedances were observed.

In addition, a compilation of aggregated recent data (totally 81 samples) for inland surface water (including monitoring of effluents) is received from 6 MS (FI, EE, DE, LV, PL and SE). The results belong to the CWPharma project (Interreg BS region programme), which will be published in spring 2020. MEC(p95)=0.046 μ g/l, so these data suggest no risk (PNEC=0.25 μ g/l).

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
LC–MS/MS	0.00501	Chitescu et al., 2015
LC-MS/MS	0.0014	Papageorgiou et al., 2019

5. P, B, T, C, M, R, ED properties

Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
	R (Suspected)	
г В Т	ioaccumulative (B) oxic (T)	ioaccumulative (B) R (Suspected)

Note: Suspected=indication of concern. A majority of data submitters agree this substance is Toxic to Reproduction. (ECHA).

6. Hazard assessment

6.1 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
				0.25 (PNEC-MIC) (AMR industry alliance)
PNEC _{fw}	NOEC (Fish)	30.63	50	0.613 (Zhou et al., 2019)
	EC10 7d (<i>Lemna</i> <i>minor</i>)	473	50	9.46 (JRC derivation, 2019)
PNECsed				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	0.24 (PNEC MIC = 0.25 μg/l)

RQ _{fw} (PEC/PNEC)	
RQ _{sed}	
RQbiota,sec pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

8. STE score

STE (Sc2) is not calculated since data scarcity (only 1 MS) considering only data from this MS, STE is expected be low since MEC(p95) < PNEC (0.25 μ g/l).

9. References

AMR Industry Alliance Antibiotic Discharge Targets. List of Predicted No-Effect Concentrations (PNECs) (2018).

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511, doi: https://doi.org/10.1016/j.scitotenv.2015.06.010 (2015).

Papageorgiou, M., Zioris, I., Danis, T., Bikiaris, D. & Lambropoulou, D. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Science of The Total Environment 694, 133565. doi: https://doi.org/10.1016/j.scitotenv.2019.07.371 (2019).

US EPA, 2004; Estimation Program Interface (EPI) Suite. Ver.3.12. Nov 30, 2004. Available from, as of Dec 19, 2005: <u>http://www.epa.gov/oppt/exposure/pubs/</u>

episuitedl.htm

Zhou, S. et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International 128, pp. 1-10. doi: https://doi.org/10.1016/j.envint. 2019.04.034 (2019).

Imazalil (enilconazole) (CAS N. 35554-44-0)

1. Substance identity

EC name	1-[2-(allyloxy)-2-(2,4-dichlorophenyl)ethyl]-1H-imidazole
EC number	252-615-0
CAS number	35554-44-0
Molecular formula	C ₁₄ H ₁₄ Cl ₂ N ₂ O
Molecular weight	297.18 g/mol
Structure	
SMILES	C=CCOC(CN1C=CN=C1)C2=C(C=C(C=C2)Cl)Cl

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	1.58 10 ⁻⁴ at 25°C	EFSA, 2010 INERIS, 2015
Water solubility (mg/l)	184 at pH 7.6 and 20°C	EFSA, 2010 INERIS, 2015
logK₀w	3.82	FOOTPRINT, INERIS

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	5115 4753 (mean, soils)	FOOTPRINT, INERIS EFSA, 2010
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		

Biodegradability	Not rapidly biodegradable	EFSA, 2010 and INERIS, 2015
Bioaccumulation (BCF)	154 48,7-63,8 (<i>Oncorhynchus mykiss</i>), low risk of bioconcntration	US EPA, 2011 cited by INERIS EFSA, 2010 and INERIS, 2015

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	1-10 tonne registered substance	ECHA
Uses	APPROVED as PPP approval 01/01/2012 expiration 31/12/2024 Reg. (EU) No 2019/291Reg. (EU) No 540/2011Reg. (EU) No 705/2011 (1997/73/EC,2007/21/EC,2010/57/EU)	EU pesticides database
	This substance is being reviewed for use as a biocide in the EEA and/or Switzerland, for: veterinary hygiene.	ECHA
Spatial usage (by MS)	Authorised as PPP in: AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, NL, PL, PT, RO, SE, SK, UK (25 MS) In progress: LV	EU pesticides database
Banned uses		
ERC code		
PEC _{fw} (µg/l)	Step 2: 0.43 Step 3: 0.001 - 0.13	FOCUS PEC (EFSA; 2011)
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) are available 7197 samples from 6 MS. Only 0.1% quantified samples. The data have a poor quality and are not Union-representative (91.6% of samples originate from 1 MS). About 75% (5421) from all samples	Dataset of monitoring prioritisation 2014	Median = 0.01 μg/l MEC(p95) = 0.075 μg/l

are repeated non-quantified samples having LOQ of 0.02 or 0.05 µg/l.

Sc3 was not developed since the low data quality but is expected to be similar to Sc2 for considered PNEC.

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
LC-ESI-Q-Orbitrap-MS	0.001	Casado et al., 2019

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
	PT	CR	ED
	(suspected)	(suspected)	(under assessement, ECHA)

Note: Suspected=indication of concern. Suspected to be Carcinogenic and under assessment as Endocrine Disrupting (ECHA). Harmonised classification for acute toxicity #Harmonised classification for aquatic toxicity #Harmonised classification for eye damage #Suspected hazardous to the aquatic environment #Suspected persistent in the environment #Suspected toxic for reproduction (ECHA Annex III Inventory)

6. Hazard assessment

6.1 Ecotoxicology data

Freshwater

Trophic level	Endpoint	Value (µg/l)	Reference
Algae	LC/EC50 Pseudokirchneriella subcapitata	870	INERIS, 2015
Algae	NOEC/EC10 Pseudokirchneriella subcapitata	457	INERIS, 2015
Invertebrate	NOEC/EC10 Daphnia magna	3500	INERIS, 2015
Invertebrate	NOEC/EC10 Daphnia magna	25	INERIS, 2015
Fish	LC/EC ₅₀ Oncorhynchus mykiss	1480	INERIS, 2015
Fish	NOEC/EC10 Oncorhynchus mykiss	225	INERIS, 2015

Sediment

Trophic level	Endpoint	Value (mg/kg)	Reference
Invertebrate	NOEC/EC10 Chironomus riparus	27.5 (dw)	INERIS, 2015

6.2 Mammalian toxicology data

6.3 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value
	NOEC/LOEC Daphnia magna	25	10	2.5 μg/l (INERIS, 2015)
PNEC _{fw}				0.8 µg/l monitoring exercise (Carvalho et al., 2016) JRC derivation from EFSA report
				0.87 μg/l (NL, indicative QS)
PNEC _{sed}				275 µg/kg (EqP dw, INERIS, 2015)
PNEC _{biota,sec} pois				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	0.09 (PNEC = 0.8 µg/l)
RQ_{fw} (PEC/PNEC; PNEC = 0.8 µg/l)	Step 2: 0.54 Step 3: 0.00125 - 0.1625
RQ _{sed}	
RQ _{biota,sec} pois	
RQ _{biota, hh}	

8. STE score

0 (PNEC = 0.8 µg/l)

9. References

Carvalho, R. N. et al. Monitoring-based exercise: second review of the priority substances list under the Water Framework Directive (https://circabc.europa.eu/w/browse/ 52c8d8d3-906c-48b5-a75e-53013702b20a) (2016).

Casado, J., Brigden, K., Santillo, D. & Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Science of The Total Environment 670, pp. 1204-1225. doi: https://doi.org/10.1016/j.scitotenv.2019.03.207 (2019).

ECHA. Annex III inventory. https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817

EFSA, 2010. Conclusion on the peer review of the pesticide risk assessment of the active substance imazalil.EuropeanFoodSafetyAuthority,EFSAJournal8(3),1526http://www.efsa.europa.eu/en/efsajournal/doc/1526.pdf.

 EU
 Pesticides
 database.
 https://ec.europa.eu/food/plant/pesticides/eu-pesticides

 database/public/?event=activesubstance.selection&language=EN

INERIS, 2015. Validation groupe d'experts: Juillet 2014. Version 1: 21/12/2015. DRC-15-136849-12775A. <u>https://substances.ineris.fr/fr/substance/nom/imazalil</u>

EPA (2011). EPI Suite, v.4.10, EPA's office of pollution prevention toxics and Syracuse Research Corporation (SRC).

Ipconazole (CAS N. 125225-28-7)

1. Substance identity

EC name	Ipconazole (ISO); (1RS,2SR,5RS;1RS,2SR,5SR)-2-(4-chlorobenzyl)-5-isopropyl- 1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol
EC number	603-038-1
CAS number	125225-28-7
Molecular formula	C ₁₈ H ₂₄ ClN ₃ O
Molecular weight	333.9 g/mol
Structure	H ₃ C CH ₃ N N OH N CI
SMILES	CC(C)C1CCC(C1(CN2C=NC=N2)O)CC3=CC=C(C=C3)Cl

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	3 x 10⁻⁵ Pa at 25°C (99.7% pure)	EFSA, 2013
Water solubility (mg/l)	11 mg/l (20°C)	EFSA, 2013
logK _{ow}	Log Pow = 4.49 at 20°C	EFSA, 2013

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc} (l/kg)	2431	EFSA, 2013
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	Not readily biodegradable	EFSA, 2013
Bioaccumulation (BCF)	283 (whole fish)	EFSA, 2013

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source	
Tonnes/year	1-10 tonne registered substance	ECHA	
Uses	Approved as PPP APPROVED approved 01/09/2014 expiration 24/08/2024 Reg. (EU) No 571/2014 (Dossier complete 08/20/EC)	EU Pesticides database	
Spatial usage (by MS)	Authorised as PPP in: AT, BE, BG, CY, CZ, DE, EL, ES, FR, HR, HU, IE, IT, PL, PT, RO, SE, SK, UK (19 MS) In progress for: FI	EU Pesticides database	
Banned uses			
ERC code			
	N Europe, October-February, PECmax = 0.2719 µg/l		
	N Europe, March - May, PEC max = 0.1088 µg/l		
	N Europe, June - September, PEC max = 0.1088 μg/l		
	S Europe, October-February, PEC max = 0.2175 µg/l	10003 FLC, Step 2 (LI SA, 2013)	
	S Europe, March - May, PEC max = 0.2175 µg/l		
	S Europe, June - September, PEC max = 0.1631 µg/l		
PEC _{sed} (mg/kg dw)			
PEC _{biota} (mg/kg)			

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
No available monitoring data	Prioritisation dataset	

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
LC-MS/MS	0.05	DAR, 2011

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P)	Carcinogenic (C)	Endocrine
	Bioaccumulative (B) Toxic	Mutagenic (M)	Disruptive
	(T)	Reproduction toxicity (R)	(ED)
	P, vP (suspected)	CR (suspected)	

Note: Suspected=indication of concern. Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected persistent in the environment #Suspected toxic for reproduction (ECHA Annex III Inventory).

6. Hazard assessment

6.1 Ecotoxicology data

Freshwater

Trophic level	Endpoint	Value (µg/l)	Reference
Algae	EC ₅₀ Pseudokirchneriella subcapitata	620	EFSA, 2013
Invertebrates	Chronic 21 d reproduction NOEC <i>Daphnia magna</i>	10.9	EFSA, 2013
Fish	Chronic NOEC Pimephales promelas	0.44	EFSA, 2013

Sediment

Trophic level	Endpoint	Value (µg/l)	Reference	
Invertebrate	Chronic			
	28d (spiked water)	2520	EFSA, 2013	
	emergence and development rate NOEC	3520		
	Chironomus ruparus			

6.2 Mammalian toxicology data

6.3 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
PNEC _{fw}	NOEC Pimephales promelas	0.44	10	0.044 (AgriTox ANSES FR, 2019)
PNEC _{sed}				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	
RQ _{fw} (PEC/PNEC; PNEC = 0.044 µg/l)	2.5 (PECmax = 0.11 μg/l) 6.1 (PECmax = 0.27 μg/l)
RQ _{sed}	
RQbiota,sec pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

8. STE score

Not calculated since missing monitoring data.

9. References

AGRITOX-Database on active plant protection substances. ANSES. http://www.agritox. anses.fr/php/data-criteria.php

DAR, 2011. Report and Proposed Decision of the United Kingdom made to the European Commission under Regulation 1107/2009.

ECHA. Annex III inventory. https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817

EFSA, 2013. European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance [ipconazole]. EFSA Journal 11(4), 3181, 76 pp. doi: 10.2903/j.efsa.2013.3181. Available online: www.efsa.europa.eu/

<u>efsajournal</u>.

 EU
 Pesticides
 database.
 https://ec.europa.eu/food/plant/pesticides/eu-pesticides

 database/public/?event=activesubstance.selection&language=EN

Metconazole (CAS N. 125116-23-6)

1. Substance identity

EC name	(1RS,5RS;1RS,5SR)-5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H-1,2,4-triazol-1- ylmethyl)cyclopentanol
EC number	603-031-3
CAS number	125116-23-6
Molecular formula	C ₁₇ H ₂₂ ClN ₃ O
Molecular weight	319.8 g/mol
Structure	N N H ₃ C H ₃ C CI
SMILES	CC1(CCC(C1(CN2C=NC=N2)0)CC3=CC=C(C=C3)Cl)C

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	2.1 x 10-8 Pa at 20°C	EFSA, 2006
Water solubility (mg/l)	30.4 mg/l at 20°C in distilled Milli-Q water (pH ca. 7.5)	EFSA, 2006
logKow	3.85 at 20°C (pH 7.2 - 8)	EFSA, 2006

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc} (l/kg)	726-1718	EFSA, 2006
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability		

Bioaccumulation (BCF) 129	EFSA, 2006
---------------------------	------------

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	1-10 tonne registered substances	ECHA
Uses	APPROVED as PPP approval 01/06/2007 expiration 30/04/2021 Reg. (EU) 421/2020Reg. (EU) No 540/2011 (2006/74/EC,Reg. (EU) 2018/524,Reg. (EU) 2019/168,Reg. (EU) No 878/2014)	EU Pesticides database
Spatial usage (by MS)	Authorised AS PPP in: AT, BE, BG, CZ, DE, DK, EE, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, NL, PL, PT, RO, SE, SI, SK, UK (25 MS)	EU Pesticides database
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.1–1.2	FOCUS (EFSA, 2006)
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) data from 3 MS (702 sites) with 5742 samples are available. Only 3 samples are quantified.		
The data quality in Sc2 is not good. There are 4108 (70% from total) repeated non-quantified samples with LOQ = 0.05 µg/l coming from 1 MS.	Dataset of monitoring prioritisation 2014	MEC(P95) = 0.025 μg/l (Sc2)
The data are not Union-representative.		
Sc3 is not developed since the low data quality.		

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
Q Exactive high-performance benchtop quadrupole-Orbitrap LC–MS/MS	0.0108	Chitescu et al., 2015
LC-ESI-Q-Orbitrap-MS	0.0025	Casado et al., 2019

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
	P, vP and T	CR	
		(suspected)	

Note: Suspected=indication of concern. Harmonised classification for acute toxicity #Harmonised classification for aquatic toxicity #Harmonised classification for reprotoxicity #Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected persistent in the environment #Suspected toxic for reproduction. (ECHA Annex III Inventory)

6. Hazard assessment

6.1 Ecotoxicology data

Freshwater

Trophic level	Endpoint	Value (µg/l)	Reference
Algae	EC ₅₀ , biomass	1700	EFSA, 2006
	Pseudokirchneriella subcapitata		DAR, 2005
Algae	EC _{50, growth rate}	2200	DAR, 2005
	Pseudokirchneriella subcapitata		
Algae	NOEC growth rate	380	DAR, 2005
	Pseudokirchneriella subcapitata		
Invertebrates	Chronic 21d reproduction NOEC <i>Daphnia</i> magna	160	EFSA, 2006
Fish	Chronic 95d survival NOEC	2.91	EFSA, 2006
	Onchorhynchus mykiss		
Fish	Chronic 28d mortality NOEC	1140	EFSA, 2006
	Onchorhynchus mykiss		

Sediment

Trophic level	Endpoint	Value (µg/l)	Reference
Invertebrates	Chronic 28d emergence NOEC	2120	EFSA, 2006
	Chironomus riparus		

6.2 Mammalian toxicology data

6.3 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/L)	AF	PNEC value (µg/L)
	Chronic 95d survival NOEC <i>Onchorhynchus mykiss</i>	2.91	50	0.0582 (JRC derivation prioritization, Lettieri et al., 2016)
PNEC _{fw}				0.582 (AgriTox ANSES FR 2019)
	Chronic 95d survival NOEC <i>Onchorhynchus mykiss</i>	2.91	100	0.0291 (JRC derivation, 2019)
	Chronic 95d survival NOEC <i>Onchorhynchus mykiss</i>	2.91	10	0.291 (NL AA-EQS, Ctgb, 2010)
PNEC _{sed}				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

Note: Different AF were applied for the derivation of the $\mathsf{PNEC}_{\mathsf{fw}}$ depending on the trophic levels considered in the dataset.

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value	
	0.43 (PNEC = 0.0582 μg/l)	
	0.86 (PNEC = 0.0291 μg/l)	

RQ_{fw} (PEC/PNEC)	1.7-20.6 (PNEC = 0.0582 µg/l) 3.4-41 (PNEC = 0.0291 µg/l)
RQ _{sed}	
RQ _{biota,sec} pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

8. STE score

0 (PNEC = 0.0582 µg/l)

Not calculated for PNEC = 0.0291 μ g/l (according to available data it is expected to be low since MEC(p95) < PNEC)

9. References

AGRITOX-Database on active plant protection substances. ANSES. <u>http://www.agritox.</u> <u>anses.fr/php/data-criteria.php</u>

Casado, J., Brigden, K., Santillo, D. & Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Science of The Total Environment 670, pp. 1204-1225. doi: https://doi.org/10.1016/j.scitotenv.2019.03.207 (2019).

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511. doi: https://doi.org/10.1016/j.scitotenv.2015.06.010 (2015).

DAR 2005. Draft Assessment Report. Metconazole, vol.3, Annex B, B9

ECHA. Annex III inventory. https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817

EFSA, 2006. EFSA Scientific Report (2006) 64, 1-71, Conclusion regarding the peer review of the pesticide risk assessment of the active substance metconazole. doi: 10.2903/j.efsa.2006.64r

 EU
 Pesticides
 database.
 https://ec.europa.eu/food/plant/pesticides/eu-pesticides

 database/public/?event=activesubstance.selection&language=EN

Lettieri, T. et al. Modelling-based strategy for the prioritisation exercise under the Water Framework Directive, https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf) (2016).

Miconazole (CAS N. 22916-47-8)

1. Substance identity

EC name	Miconazole
EC number	245-324-5 (Miconazole) 245-256-6 (Miconazole nitrate)
CAS number	22916-47-8 (Miconazole) 22832-87-7 (Miconazole nitrate)
Molecular formula	C ₁₈ H ₁₄ Cl ₄ N ₂ O (Miconazole) C ₁₈ H ₁₅ Cl ₄ N ₃ O ₄ (Miconazole nitrate)
Molecular weight	416.1 g/mol (Miconazole) 479.1 g/mol (Miconazole nitrate)
Structure	$C_{i} + C_{i} + C_{i$
SMILES	C1=CC(=C(C=C1Cl)Cl)COC(CN2C=CN=C2)C3=C(C=C(C=C3)Cl)Cl (Miconazole) C1=CC(=C(C=C1Cl)Cl)COC(CN2C=CN=C2)C3=C(C=C(C=C3)Cl)Cl.[N+](=O)(O)[O-] (Miconazole nitrate)

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	2.36x10 ⁻⁸	Chen and Ying, 2015
Water solubility (mg/l)	0.01 1g/100ml (20°C; Experimental properties) 0.763 (Predicted properties)	Chen and Ying, 2015 DrugBank (https://www.drugbank.ca/drugs/ DB01110)
logK _{ow}	6.25	Chen and Ying, 2015

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc} (l/kg)	554800	INERIS https://substances.ineris.fr/fr/substan ce/nom/nitrate-de-miconazole
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	0.77 (Estimated rate in WWTP) Not ready biodegradable	Chen and Ying, 2015 Drugbank (https://www.drugbank.ca/drugs/DB0 1110)
Bioaccumulation (BCF)	6192	INERIS https://substances.ineris.fr/fr/substan ce/nom/nitrate-de-miconazole

4. Environmental exposure assessment

	Description	Source
Tonnes/year		
Uses	Synthetic antifungal agent with broad spectrum of activity against pathogenic fungi and gram-positive bacteria. Used to treat mycotic vulvovaginitis. Miconazole is classified as POM (List I or List II) in most of the member states. Human and veterinary uses.	EDQM, 2017
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.032	Minguez et al., 2016
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values

No available data in the dataset of the prioritisation exercise

Note:

After the WG Chemicals meeting on 15-16 January 2020, additional monitoring data were received as follows:

Disaggregated recent data (totally 42 samples) for inland surface water Sc2 from 1 MS (SE) with LOQ=0.005 μ g/l. All samples were non-quantified. The average concentration is 0.00025 μ g/l. Considering PNEC=0.2 μ g/l no exceedances were observed.

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
LC–MS/MS	0.00171	Q-Exactive high-performance benchtop guadrupole-Orbitrap (Chitescu et al., 2015)

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P)Bioaccumula tive (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)	Comment
Miconazole	РВТ	R		ECHA
	(suspected)	(suspected)		

Note: Suspected=indication of concern. Miconazole: Suspected bioaccumulative #Suspected hazardous to the aquatic environment #Suspected persistent in the environment #Suspected toxic for reproduction Miconazole Nitrate: Suspected bioaccumulative #Suspected hazardous to the aquatic environment t#Suspected persistent in the environment #Suspected toxic for reproduction (ECHA. Annex III inventory)

6. Hazard assessment

6.1 Ecotoxicology data

Trophic level	Endpoint	Value (mg/l)	Reference
Aquatic Invertebrates	<i>Daphnia magna,</i> immobilisation, 48h, EC50	0.40	Minguez et al., 2014
Algae	<i>Pseudokirchneriella subcapitata,</i> growth inhibition 72h, EC ₅₀	1.35	Minguez et al., 2014
Fish	Acute E(L)C50 (Miconazole nitrate)	0.144	Vestel et al., 2016
Fish	Chronic NOEC (Miconazole nitrate)	0.012	Vestel et al., 2016

Green algae	Acute E(L)C50 (Miconazole nitrate)	0.03	Vestel et al., 2016
Green algae	Chronic NOEC (Miconazole nitrate)	0.01	Vestel et al., 2016
Algae	Acute EC ₅₀ ECOSAR	0.049	Zhou et al., 2019
Crustacean	Acute EC₅₀ ECOSAR	0.128	Zhou et al., 2019
Fish	Acute EC ₅₀ ECOSAR	0.044	Zhou et al., 2019

6.2 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
	Chronic NOEC green algae (Miconazole nitrate)	10	50	0.2 (FASS SE database, Vestel et a.,2019)
PNEC _{fw}	48h EC50 (<i>Daphnia magna</i>)	400	1000	0.4 (Minguez et al., 2014)
	Acute EC ₅₀ , Fish ECOSAR	44	1000	0.044 (Zhou et al., 2019)
PNEC _{sed}				
PNECbiota,sec pois				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	
RQ_{fw} (PEC/PNEC; PEC ^a = 0.032 μg/l; PNEC ^a = 0.2 μg/l)	0.16

RQ_{fw} (PEC/PNEC; PEC ^a = 0.032 μg/l; PNEC ^a = 0.4 μg/l)	0.079 ^a
RQ _{fw} (PEC/PNEC; PEC ^a = 0.032 μg/l; PNEC ^b = 0.044 μg/l)	0.73 ^b
RQ _{sed}	
RQbiota,sec pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

^a Minguez et al., 2014

^b Zhou et al., 2019

8. STE score

Not calculated since missing monitoring data.

9. References

Chen, Z.-F. and G.-G. Ying. Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: A review. Environment International, 84, pp. 142-153 (2015).

Chitescu, C.L., et al. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511 (2015).

ECHA. Annex III inventory. https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817

 EDQM
 2017
 (https://www.edqm.eu/sites/default/files/report_classification-justification_ of medicines belonging to the atc group gO1af and promethazine.pdf)

Minguez, L., et al. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research 23(6), pp. 4992-5001 (2016).

Zhou, S. et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International 128, pp. 1-10. doi: https://doi.org/10.1016/j.envint. 2019.04.034 (2019).

Norethisterone (CAS N. 68-22-4)

1. Substance identity

EC name	Norethisterone		
EC number	200-681-6		
CAS number	68-22-4		
Molecular formula	C ₂₀ H ₂₆ O ₂		
Molecular weight	298.4 g/mol		
Structure			
SMILES	CC12CCC3C(C1CCC2(C#C)0)CCC4=CC(=0)CCC34		

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	4.18x10 ⁻⁵	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compound/623</u> <u>O#section=Vapor-Pressure</u>)
Water solubility (mg/l)	7.04 mg/l (at 25°C)	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compound/623</u> <u>O#section=Solubility</u>)
logKow	2.97	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compound/623</u> <u>O#section=Octanol-Water-Partition-Coefficient</u>)

3. Environmental fate

Endpoint	Value	Source
----------	-------	--------
Sorption potential Koc	220	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compound/623</u> <u>O#section=Environmental-Fate</u>)
--	---	---
Partition coefficient solid- water in sediment Kp _{sed} (l/kg)		
Biodegradability	Data not available	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compound/623</u> <u>O#section=Ecological-Information</u>)
Bioaccumulation (BCF)	37.5 (at 25°C; experimental) 42 (predicted)	US EPA (<u>https://comptox.epa.gov/dashboard/dsstoxdb/res</u> <u>ults?search=DTXSID9023380#env-fate-</u> <u>transport</u>)

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	Manufactured and/or imported in the European Economic Area in 1- 10 tonnes per year.	ECHA (<u>https://echa.europa.eu/substance-</u> <u>information/-</u> /substanceinfo/100.000.619)
Uses		
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (mg/l)		
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) monitored in 1 MS (19 sites); available 20 samples.		
The data quality is good (100% quantified samples), however, the data are insufficient and not Union-representative for making a risk assessment.	Prioritisation exercise 2014	0.0034 µg/L

Note: After the WG Chemicals meeting on 15-16 January 2020, information for additional monitoring data was received as follows:

Disaggregated or aggregated recent data (totally 90 samples) for inland surface water (including monitoring of effluents) were provided by 3 MS (FI 24, DK 36 and LV 30 samples) with LOQs from 0.00008 μ g/l to 0.05 μ g/l. None of these MS is already in the prioritisation dataset. Considering PNEC=0.0354 μ g/l exceedances were observed in two MS (DK and LV).

In addition, a compilation of aggregated recent data (totally 77 samples; CWPharma project) for inland surface water (including monitoring of effluents) is received from 6 MS (Finland, Estonia, Germany, Latvia, Poland and Sweden). According these data MEC(p95)=0.002 ug/l which suggested no risk (PNEC= 0.0354µg/l).

4.3 Analytical Methods

Method	MDL (µg/l)	Description/Reference
LC-MS/MS	0.00001	Vulliet et al., 2011

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P)Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Norethisterone	PT	R (suspected)	ED

Note: Suspected=indication of concern. A majority of data submitters agree this substance is Toxic to Reproduction (ECHA). PT (Fass.se and ECHA dossier). Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected persistent in the environment #Suspected skin sensitiser #Suspected toxic for reproduction (Norethisterone acetate, ECHA)

6. Hazard assessment

6.1 Ecotoxicology data

Trophic level	Endpoint	Value (mg/l)	Reference
Algae	Acute EC₅₀ (ECOSAR)	18.768	Zhou et al., 2019
Crustacean	Chronic NOEC	500	Zhou et al., 2019
Fish	Chronic NOEC	0.00074	Zhou et al., 2019

6.2 Mammalian toxicology data

6.3 PNEC derivation

PNEC Endpoint va (μg/l)	AF PNEC value (µg/l)
----------------------------	----------------------

	Fish chronic NOEC	0.74	50	0.0148 (Zhou et al., 2019)
PNEC _{fw}				0.0354 (Prioritisation exercise, Lettieri et al., 2016 and Carvalho et al., 2016)
	EC₅₀ (72 h)	510	1000	0.51(freshwater, ECHA)
PNEC _{sed}				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value	
RQ_{fw} (MEC(P95)/PNEC)	0.1 (PNEC = 0.0354 μg/l) 0.23 (PNEC = 0.0148 μg/l)	
RQ _{fw} (PEC/PNEC)		
RQ _{sed}		
RQ _{biota,sec} pois		
RQ _{biota, hh}		
RQ _{dw, hh}		

8. STE score

STE is not calculated since the insufficient amount of data.

Note: The available monitoring data are insufficient and allow making a tentative initial risk assessment showing a threat in some MS (the physical-chemical properties also indicate a potential risk), therefore to complete the risk evaluation it is preferable to collected a sufficient amount of Union-representative monitoring data.

9. References

Carvalho, R. N. et al. Monitoring-based exercise: second review of the priority substances list under the Water Framework Directive (<u>https://circabc.europa.eu/w/browse/</u> <u>52c8d8d3-906c-48b5-a75e-53013702b20a</u>) (2016). Lettieri, T. et al. Modelling-based strategy for the prioritisation exercise under the Water Framework Directive, https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf). (2016).

Vulliet, E., C. Cren-Olivé, and M.-F. Grenier-Loustalot. Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environmental Chemistry Letters. 9(1), pp. 103-114 (2011).

Zhou, S. et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants -The case of pharmaceuticals in European surface waters. Environment International 128, pp. 1-10. doi: https://doi.org/10.1016/j.envint.2019.

04.034 (2019).

Omeprazole (CAS N. 73590-58-6) and its metabolite 4-hydroxy omeprazole sulphide (CAS N. 103876-98-8)

1. Substance identity

EC name	
EC number	615-996-8
CAS number	73590-58-6 (Omeprazole) 103876-98-8 (4-hydroxy omeprazole sulphide)
Molecular formula	$C_{17}H_{19}N_3O_3S$ (Omeprazole) $C_{16}H_{17}N_3O_2S$ (4-hydroxy omeprazole sulphide)
Molecular weight	345.4 g/mol (Omeprazole) 315.39 g/mol (4-hydroxy omeprazole sulphide)
Structure	$\begin{array}{c c} & H & O \\ & & & \\ & &$
	Omeprazole 4-hydroxy omeprazole sulphide
SMILES	CC1=CN=C(C(=C10C)C)CS(=0)C2=NC3=C(N2)C=C(C=C3)OC (Omeprazole) CC1=CNC(=C(C1=0)C)CSC2=NC3=C(N2)C=C(C=C3)OC (4-hydroxy omeprazole sulphide)

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)		
Water solubility (mg/l)		
logKow	 3.4 (Omeprazole, Theoretical) 2.23 (Omeprazole, Experimental) 3.59 (4-hydroxy omeprazole sulphide, Theoretical) 	Becker et al., 2020

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	871.3 kg/l	Domènech et al., 2011
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability		
Bioaccumulation (BCF)		

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year		
Uses		
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (mg/l)		
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
No available data in the dataset of the prioritization exercise.		

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
UHPLC-QTOF MS (surface and wastewater)		Boix et al., 2014
LC-MS/MS	0.00157	Kosma et al., 2016

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Omeprazole	PT (suspected)	MR (suspected)	
4-hydroxy omeprazole sulphide		M (suspected)	

Note: Suspected=indication of concern. # Suspected acutely toxic via the oral route#Suspected carcinogen#Suspected hazardous to the aquatic environment#Suspected mutagen#Suspected persistent in the environment#Suspected skin sensitiser#Suspected toxic for reproduction (Annex III Inventory, ECHA). Suspected mutagen (Wielens Becker et al., 2020).

6. Hazard assessment

6.1 Ecotoxicology data

Trophic level	Endpoint	Value (mg/l)	Reference
Green algae	Green algae, EC50 Omeprazole (ECOSAR)	0.38	Wielens Becker et al., 2020
Algae	Acute EC ₅₀ Omeprazole (ECOSAR)	0.21	Zhou et al., 2019
Green algae	Green algae, EC₅₀ 4-hydroxy omeprazole sulphide (ECOSAR)	0.28	Wielens Becker et al., 2020
Crustacean	Acute EC ₅₀ Omeprazole (ECOSAR)	1.27	Zhou et al., 2019
Aquatic Invertebrate	<i>Daphnid, L</i> C ₅₀ Omeprazole (ECOSAR)	3.26	Wielens Becker et al., 2020
Aquatic Invertebrate	<i>Daphnid, L</i> C ₅₀ 4-hydroxy omeprazole sulphide (ECOSAR)	2.27	Wielens Becker et al., 2020
Fish	Acute	41.9	FASS SE

(Danio rerio)			
Fish	Fish, <i>L</i> C ₅₀ Omeprazole (ECOSAR)	0.78	Wielens Becker et al., 2020
Fish	NOEC Omeprazole	4.99	Zhou et al., 2019
Fish	Fish, <i>L</i> C ₅₀ 4-hydroxy omeprazole sulphide (ECOSAR)	0.46	Wielens Becker et al., 2020

Predicted eco-toxicity data of the pharmaceuticals investigated based on the ECOSAR predictions for EC50 and LC50 towards *Green algae*, *Daphnid* and *Fish* (Wielens Becker et al., 2020 and Zhou et al., 2019)

6.2 Mammalian toxicology data

6.3 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
	Algae Acute EC50 Omeprazole (ECOSAR)	210	100	2.1 (Zhou et al., 2019)
PNEC _{fw}	Green algae, EC50 4-hydroxy omeprazole sulphide (ECOSAR)	280	1000	0.28 (Wielens Becker et al., 2020)
	NOEC value Pimephales promelas	1000	10	100 (AstraZeneca)*
	Acute Fish	41900	1000	41.9 (FASS SE)
PNEC _{sed}				
PNEC biota,sec pois				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

* The dataset used for the PNEC derivation refer both to esomeprazole and omperazole, as esomeprazole is the S-enantiomer of the racemate omeprazole. Therefore, the PNEC derived for esomeprazole is also applied to omeprazole.

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ_{fw} (MEC(P95)/PNEC)	
RQ _{fw} (PEC/PNEC)	
RQ _{sed}	
RQ _{biota,sec} pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

8. STE score

Not calculated since missing monitoring data.

9. References

Boix, C. et al. Identification of new omeprazole metabolites in wastewaters and surface waters. Science of The Total Environment 468-469, pp. 706-714. doi: https://doi.org/10.1016/j.scitotenv.2013.08.095 (2014).

Domènech, X., M. Ribera, and J. Peral, Assessment of Pharmaceuticals Fate in a Model Environment. Water, Air, & Soil Pollution 218(1), pp. 413-422 (2011).

Kosma, C. I., Lambropoulou, D. A. & Albanis, T. A. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review. Science of The Total Environment 569-570, pp. 732-750. doi: https://doi.org/10.1016/j.scitotenv.2016.06.160 (2016).

Wielens Becker, R., et al., Investigation of pharmaceuticals and their metabolites in Brazilian hospital wastewater by LC-QTOF MS screening combined with a preliminary exposure and in silico risk assessment. Science of The Total Environment 699, 134218 (2020).

Zhou, S., et al., Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International 128, pp. 1-10 (2019).

Penconazole (CAS N. 66246-88-6)

1. Substance identity

EC name	1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole
EC number	266-275-6
CAS number	66246-88-6
Molecular formula	C ₁₃ H ₁₅ Cl ₂ N ₃
Molecular weight	284.2
Structure	
SMILES	CCCC(CN1C=NC=N1)C2=C(C=C(C=C2)Cl)Cl

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	3.7x10⁻⁵ at 25℃	INERIS, 2012
Water solubility (mg/l)	73 at pH 6-7 and 20°C	INERIS, 2012
logK₀w	3.72 at 25°C	INERIS, 2012

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc} (l/kg)	786 - 4120	INERIS, 2012
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	Not readily biodegradable	INERIS, 2012
Bioaccumulation (BCF)	320	INERIS, 2012

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	1 - 10 tonne registered substances	ECHA
Uses	APPROVED as PPP approved 01/01/2010 expiration 31/12/2021 2009/77/EC2010/34/EU Reg. (EU) No 540/2011	EU Pesticides database
Spatial usage (by MS)	Authorised as PPP in: AT, BE, BG, CY, CZ, DE, EE, EL, ES, FI, FR, HR, HU, IT, LT, LU, LV, MT, NL, PL, PT, RO, SE, SI, SK, UK (26 MS)	EU Pesticides database
Banned uses		
ERC code		
PEC _{fw} (µg/l)	Step 2: 2 - 3.3 Step 3: 0.184 - 0.556	FOCUS PEC (EFSA, 2008)
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) monitored in 5 MS (1547 sites); available 14037 samples; only 2.8% quantified samples; the data quality seems poor, although all non-quantified samples were measured with LOQ ≤ 0.23 µg/l; there is a lot repeated non-quantified samples (7184; about 70.5% from all samples) with LOQ = 0.05 µg/l or LOQ = 0.02 µg/l; the data are not Union- representative (1 MS holds 52% of all samples, other 45% originate from 2 MS); Sc3 is not developed but is expected to be equal to Sc2 for considered PNEC.	Prioritisation dataset	Median = 0.025 µg/l MEC(p95) = 0.05 µg/l

4.3 Analytical Methods

Method LOQ (µg/l) Description/Reference

Q Exactive high-performance benchtop	0.0095	Chitescu et al., 2015
quadrupole-Orbitrap LC-MS/MS		

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)	Comment
	PT and	CR		ED
	B (suspected)	(suspected)		(suspected)

Note: Suspected=indication of concern. Suspected acutely toxic via the oral route #Harmonised classification for acute toxicity #Harmonised classification for aquatic toxicity #Harmonised classification for reprotoxicity #Suspected bioaccumulative #Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected persistent in the environment #Suspected toxic for reproduction (ECHA Annex III inventory). Suspected ED (http://endocrinedisruption.org).

6. Hazard assessment

6.1 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value
PNEC _{fw}	NOEC Daphnia magna	60	10	6 µg/l (AgriTox ANSES FR and INERIS, 2012)
				1.7 µg/l (NL MTR, Ctgb, 2000)
PNEC _{sed}				0.252 mg/kg dw (EqP, INERIS, 2012)
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	0.008 (PNEC = 6 µg/l)
RQ _{fw} (MEC(P95)/PNEC)	0.03 (PNEC = 1.7 μg/l)

RQ_{fw} (PEC/PNEC; PNEC = 6 μg/l)	Step 2: 0.33 - 0.55 Step 3: 0.03 - 0.09
RQ_{fw} (PEC/PNEC; PNEC = 1.7 µg/l)	Step 2: 1.17 – 1.94 Step 3: 0.11 - 0.33
RQ _{sed}	
RQ _{biota,sec} pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

8. STE score

STE (Sc2) is not calculated (according to available data it is expected to be low since MEC(P95) < PNEC).

9. References

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511. doi: https://doi.org/10.1016/j.scitotenv.2015.06.010 (2015).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817</u>

EFSA, 2008. Conclusion regarding the peer review of the pesticide risk assessment of the active substance penconazole. doi: 10.2903/j.efsa.2008.175r.

EU Pesticides database. <u>https://ec.europa.eu/food/plant/pesticides/eu-pesticides-</u> <u>database/public/?event=activesubstance.selection&language=EN</u>

INERIS, 2012. Penconazole. Validation groupe d'experts: Novembre 2012. Version 2: 24/03/2013. DRC-13-126836-03549A

Permethrin (CAS N. 52645-53-1)

1. Substance identity

EC name	m-phenoxybenzyl carboxylate	3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane
EC number	258-067-9	
CAS number	52645-53-1	
Molecular formula	C ₂₁ H ₂₀ Cl ₂ O ₃	
Molecular weight	391.28 g/mol	
Structure		a Ky Co
SMILES	CC1(C(C1C(=0)OCC	2=CC(=CC=C2)OC3=CC=CC=C3)C=C(Cl)Cl)C

2. Physico-chemical Properties

Endpoint	Value	Source
Vapour Pressure (Pa)	2.155 x 10⁻⁵ at 20°C, purity 99.30%	EU Assessment report, 2014
Water solubility (mg/l)	0.006 - 0.2; nearly insoluble in water 0.006 mg/l at 20°C	ССМЕ, 2006
Log K _{ow}	6.1	

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	26.930 (log K _{oc} = 4.43)	EU Assessment report, 2014
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	Not readily biodegradable (Log Pow > 3, BCF > 100)	

	500 – 570 ^m l/kg (fish) (Bayer/Sumitomo) 166 ^m l/kg (chironomid in water) (published study)	EU Assessment report 2014
Bioaccumulation (BCF)	415 ^m l/kg (chironomid in sediment) (published study)	
	166 ^m l/kg (chironomid in porewater) (published study)	
	15108 ^e l/kg (earthworm) (Bayer/Sumitomo)	

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	1 - 10 tonne registered substances	ECHA https://echa.europa.eu/it/substance- information/- /substanceinfo/100.052.771
	Permethrin is not approved anymore as PPP in the EU (in agriculture to protect crops or kill livestock parasites).	http://ec.europa.eu/food/plant/pestic ides/eu-pesticides- database/public/?event=activesubst ance.detail&language=EN&selecte dID=1687
	The authorisations for permethrin as a PPP were withdrawn by a Commission decision in 2000	http://eur-lex.europa.eu/legal- content/EN/TXT/?uri=CELEX%3A320 00D0817
Uses Permeth biocidal (Product acaricide other art Substan biocide o	Permethrin is approved in IE for use in biocidal products, wood preservatives (Product Typ 8), insecticides, acaricides and products to control other arthropods (Product Typ 18). Substance explicitly approved as biocide only.	http://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32 014R1090&from=ENhttps://echa.europa.eu/it/informatio n-on-chemicals/biocidal-active- substances?p p id=echarevbiocide s WAR echarevbiocidesportlet&p p lifecycle=0&p p col id=column- 1&p p col pos=1&p p col count= 2& echarevbiocides WAR echarev biocidesportlet_rml_id=100.052.77 1
	Approved as biocide: This substance is approved for use as a biocide in the EEA and/or Switzerland, for: wood preservation, controlling insects, ants, etc	ЕСНА
	Veterinary and human use:	

	This substance is approved for the treatment and prevention of external parasite infestations in dogs (caused by fleas and ticks) and as an insecticide against mosquities and repellent against sand flies.	
	Permethrin is also used in humans as antiparasitic for the treatment of scabies.	
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (mg/l)	250 (secondary poisoning) 0.225 (ECETOC calculations, tier 2)	EU Assessment report, 2014 (page 50) Calculations of JRC
PEC _{fw} (µg/l)	0.0885	EFSA conclusion, 2013
PEC _{sed} (µg/kg dw)	3.028	EFSA conclusion, 2013
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) data from 7 MS (2431 sites) with 29730 samples are available. Only 0.4% quantified samples. Data quality in Sc2 is not good. In Sc3 (inland whole water; PNEC = 0.00047 μg/L) data from 4 MS (74 sites) with 117 samples (98% quantified samples). Sc3 is not representative for EU-wide assessment.	Dataset of monitoring prioritisation 2014	MEC(P95) = 0.025 µg/l (Sc2) MEC(P95) = 0.09 µg/l (Sc3)
103 samples for monitoring in sediments (all non- quantified with LOQ=10 μg/kg dw)	Data received from EE after the WG Chemicals meeting on 15-16 January 2020	Mean=10 µg/kg dw (estimated by all reported samples; this value cannot be used in risk assessment since LOQ>PNEC)

Note: Sc2 includes all reported quantified and non-quantified samples. The data quality for Sc2 is verified by controlling the data accuracy, checking quantification frequency of sampling and applying the LOQ-PNEC criterion to non-quantified samples ($\frac{1}{2}$ LOQ \leq PNEC).

Sc3 is the main decisive dataset which includes the quantified measurements and these non-quantified samples when $\frac{1}{2}$ LOQ \leq PNEC (i.e. avoiding the non-confirmed exceedances when the non-quantified concentrations are set up equal to half of LOQ).

After the WG Chemicals meeting on 15-16 January 2020, information for monitoring in sediments was received as follows:

SE – available 90 samples (all non-detected); LOQ= $3.5 \mu g/kg$ dw (the data should not be used in risk assessment since are non-detected values);

FR – available 2900 samples (the data are not sent yet to JRC); quantification frequency 3%; all non-quantified samples have LOQ>PNEC (PNEC=1 μ g/kg dw)

FI – available 4 samples (all non-detected); LOQ=25 μ g/kg dw (the data should not be used in risk assessment since LOQ>PNEC).

Method	LOQ	Description/Reference
LLE followed by HRGC/HRMS	0.000044 µg/l (LOD)	US EPA method 1699 (2007)
LLE-GC-MS	0.0015 µg/l	LLE of 1 L water; silica gel clean-up (Kupper et al., 2006)
n.a.	0.005 µg/l	Finland
GC-APCI-MS/MS	0.000125 µg/l	Surface water (Rösch et al., 2019)
GC-MS/MS	0.2 µg/kg	Sediment (USGS, 2009)
GC-MS/MS	0.10-1.54 µg/kg lw	Biota (Corcellas et al., 2015)

4.3 Analytical Methods

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Permethrin	T and	М	ED
	РВ	(suspected)	(suspected)*
	(suspected)		

Note: Suspected=indication of concern.Not listed in the PBT list from ECHA <u>https://echa.europa.eu/it/information-on-chemicals/pbt-vpvb-assessments-under-the-previous-eu-chemicals-legislation</u>. Harmonised classification for acute toxicity#Harmonised classification for aquatic toxicity#Harmonised classification for skin sensitisation#Suspected bioaccumulative#Suspected hazardous to the aquatic environment#Suspected mutagen#Suspected persistent in the environment#Suspected skin sensitiser (ECHA Annex III inventory).

*https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedxlist#sname=permethrin&searchfor=any&sortby=chemname&action=search&searchcats=all&sortby=chemna me

6. Hazard assessment

6.1 Ecotoxicology data

Freshwater

Species	Time-scale	Endpoint	Toxicity (µg/l)
Algae			
Pseudokirchneriella subcapitata	72 h, cell density	NOEC	< 3.1
Invertebrates			
Daphnia magna	21 d, reproduction	NOEC	0.0047
Fish			
Zebrafish	35 d, survival	NOEC	0.41
Pimephales promelas	32 d, survival	NOEC	0.66
Cyprinodon variegatus	28 d, survival	NOEC	10

Sediment

Species	Time-scale	Endpoint	Toxicity (µg/kg dw)
Chironomus riparius	5-day after last emergence	NOEC	100

6.2 Mammalian toxicology data

	Rat, acute toxicity, oral, LD50 480 mg/kg bw/day	EU Assessment report 2014 (Bayer/Sumitomo)
	Rat, chronic toxicity, NOAEL 5 mg/kg bw/day	EU Assessment report 2014
	Rat, acute toxicity, oral, LD50 554 mg/kg bw/day	EU Assessment report 2014 (Tagros)
Mammalian toxicity	Rat, acute toxicity, dermal, LD₅₀ > 2000 mg/kg bw/day	EU Assessment report 2014 (Bayer/Sumitomo and Tagros)
	Rat, acute toxicity, inhalation, LC50 23.5 mg/l	EU Assessment report 2014 (Bayer/Sumitomo)
	Rat, acute toxicity, inhalation, LC50 > 4.638 (MAC) mg/l	EU Assessment report 2014 (Tagros)

Dog, oral, adaptive hepatic changes, 1-year, NOAEL 5 mg/kg bw/day	EU Assessment report 2014 (Bayer/Sumitomo)
Dog, increased liver weight, 6-month, NOAEL 10 mg/kg bw/day	EU Assessment report 2014
Rat, dermal study, 90-day, NOAEL 1000 mg/kg bw/day, LOAEL 2000 mg/kg bw/day	EU Assessment report 2014 (Tagros)
Rat, inhalation, 90-day, NOAEL 0.2201 mg/l (equivalent to 59.43 mg/kg bw/day); LOAEL 0.4363 mg/l (equivalent to 117.8 mg/kg bw/day)	EU Assessment report 2014 (Tagros)
Rat, reproductive toxicity, NOAEL 180 mg/kg bw/day (high dose); LOAEL > 180 mg/kg bw/day (high dose)	EU Assessment report 2014 (Bayer/Sumitomo)
Rat, reproductive toxicity, NOAEL 500 mg/kg bw/day (high dose); LOAEL > 500 mg/kg bw/day (high dose)	EU Assessment report 2014 (Tagros)
Rabbit, developmental NOAEL 400 mg/kg bw/day	EU Assessment report 2014
Rat, carcinogenicity, 104-week, NOAEL 50 mg/kg bw/day	EU Assessment report 2014 and WHO, 2014
Mouse, carcinogenicity, 98-week, NOAEL 150 mg/kg bw/day	EU Assessment report 2014 and WHO, 2014

6.3 PNEC derivation

PNEC	Endpoint	Endpoint value	AF	PNEC value
PNEC _{fw}	21 d, reproduction (Daphnia magna)	0.0047 µg/l	10	0.00047 µg/l (JRC draft dossier, 2016)
				0.0002 µg/l (NL QS RIVM, 1997)
PNECsed	5-day (Chironomus riparus)	0.1 mg/kg	100	1 μg/kg dw (JRC draft dossier, 2016)
PNEC _{biota,sec pois}	NOAEL 5 mg/kg dog	5 mg/kg bw/day	30	1954 µg/kg ww (JRC derived, 2020)
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7 . Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (for MEC(P95) and PNEC = 0.00047 μ g/l)	53 (Sc2) 191 (Sc3)
RQ _{fw} (for MEC(P95) and PNEC = 0.0002 μ g/l)	125 (Sc2)
$\boldsymbol{RQ_{fw}}$ (PEC_fw/PNEC) (for PEC_fw=0.0885 $\mu g/l$ and PNEC= 0.00047 $\mu g/l)$	188
\textbf{RQ}_{fw} (PEC_fw/PNEC) (for PEC_fw=0.0885 $\mu g/l$ and PNEC= 0.0002 $\mu g/l)$	442
\textbf{RQ}_{sed} (PEC_{sed}/PNEC) (for PEC_{sed}=3.028 $\mu\text{g/kg}$ dw and PNEC=1 $\mu\text{g/kg}$ dw)	3

8 . STE scores

2.41 (Sc2; PNEC=0.00047 µg/l)

2.29 (Sc3; PNEC=0.00047 µg/l)

Note: STE is a risk-evaluation method/tool developed by the JRC (Loos et al., 2018, EUR 29173 EN). Minimal score = 0 (no risk); Maximal score = 3 (very high risk).

9 . References

Canadian Council of Ministers of the Environment. CCME. 2006. Canadian Water Quality Guidelines: Permethrin (PN 1358).

Corcellas, C., Eljarrat, E. & Barceló, D. First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). Environment International 75, 110-116, doi:https://doi.org/10.1016/j.envint.2014.11.007 (2015).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-</u>/dislist/details/AIII-100.047.817

EPA method 1699, 2007. Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS. U.S. Environmental Protection Agency; EPA-821-R-08-001. December 2007.

JRC, 2016. Draft Dossier of substances identified in the second prioritisation process https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp.

Kupper, T.; Plagellat, C., Braendli, R.C., de Alencastro, L.F., Grandjean, D., Tarradellas, J.; Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment; Water Research 40, pp. 2603-2612 (2006).

RIVM 1997. RIVM report no. 601501002. Maximum Permissible Concentrations and Negligible Concentrations for pesticides. https://www.rivm.nl/bibliotheek/rapporten/601501002.pdf

Rösch, A., Beck, B., Hollender, J. et al. Anal Bioanal Chem 411, 3151. <u>https://doi.org/10.1007/s00216-019-01787-1</u> (2015).

EU Assessment report, 2014. Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products. Evaluation of active substances. Assessment Report. Permethrin. Product-Type 8 (Wood Preservative); Rapporteur: Ireland.

http://dissemination.echa.europa.eu/Biocides/ActiveSubstances/1342-08/1342-08 Assessment Report.pdf

USGS. 2007. Hladik, M. & USGS. Methods Development for the Analysis of Pyrethroid Pesticides in Environmental Samples. FINAL REPORT FOR CALFED Recipient Agreement No. ERP-02-P42.

USGS. Hladik, M. L. & Kuivila, K. M. Assessing the Occurrence and Distribution of Pyrethroids in Water and Suspended Sediments. Journal of Agricultural and Food Chemistry 57, pp. 9079-9085. doi: 10.1021/jf9020448 (2009).

USGS. Hladik, M. L., Smalling, K. L. & Kuivila, K. M. Methods of Analysis—Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. Techniques and Methods 5–C2. U.S. Department of the Interior. U.S., Geological Survey, Reston, Virginia (2009).

Prochloraz (CAS N. 67747-09-5)

1. Substance identity

EC name	N-propyl-N-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide		
EC number	266-994-5		
CAS number	67747-09-5		
Molecular formula	C15H16Cl3N3O2		
Molecular weight	376.7 g/mol		
Structure			
SMILES	CCCN(CCOC1=C(C=C1Cl)Cl)Cl)C(=O)N2C=CN=C2		

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	1.5	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compound/Prochlor</u> <u>az#section=Vapor-Pressure</u>)
Water solubility (mg/l)	9.03	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compound/Prochlor</u> <u>az#section=Solubility</u>)
logK _{ow}	4.12	Cravedi et al., 2001

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	1440.5 -5650.5 l/kg	EFSA, 2011
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	No biodegradable	EFSA, 2011
Bioaccumulation (BCF)	196.5	EFSA, 2011

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	Criteria for 1-10 tonne registered substance	ECHA (<u>https://echa.europa.eu/substance-</u> <u>information/-</u> /substanceinfo/100.060.885)
Uses	Approved on 01/01/2012 with expiration date on 31/12/2023 Reg. (EU) No 1143/2011Reg. (EU) No 2019/291Reg. (EU) No 540/2011 (2008/934) Use authorised in: AT, BE, BG, CZ, DE, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, PL, RO, SI, SK, UK"	EU Pesticides Database (https://ec.europa.eu/food/plant/pest icides/eu-pesticides- database/public/?event=activesubst ance.detail&language=EN&selected ID=1753)
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.1 - 3	FOCUS Step 3 of PEC for winter cereals (EFSA, 2011)
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) monitored in 7 MS (2557 sites); available 32674 samples; only 1.6% are quantified samples; the data quality is not good, although all non-quantified samples have LOQ \leq 0.4 µg/l; there are many repeated non-quantified samples (23462; about 72% from total) with LOQs from 0.01 µg/l to 0.1 µg/l; the data are not Union-representative since one MS holds 84% of samples; Sc3 is not developed since the low data quality.	Prioritisation dataset	Median = 0.02 µg/l; MEC(P95) = 0.05 µg/l

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
Q Exactive high-performance benchtop quadrupole-Orbitrap LC–MS/MS	0.00851	Chitescu et al., 2015

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Prochloraz	Ρ, νΡ, Τ	CR (suspected)	ED (suspected)

Note: Suspected=indication of concern. Two PBT criteria (EU Pesticides database). # Harmonised classification for acute toxicity: The substance is listed in Annex VI of CLP as: Acute Tox. 4 # Harmonised classification for aquatic toxicity: The substance is listed in Annex VI of CLP as: Aquatic Acute 1; The substance is listed in Annex VI of CLP as: Aquatic Chronic 1 # Suspected hazardous to the aquatic environment: The Danish QSAR database contains information indicating that the substance has a 96h LC50 to fish of <1 mg/l; The Danish QSAR database contains information indicating that the substance has a 48h EC50 to Daphnia of <1 mg/l; The Danish QSAR database contains information indicating that the substance has a 96h EC50 to green algae of <1 mg/l # Suspected persistent in the environment: The Danish QSAR database contains information indicating that the substance has a 96h EC50 to green algae of <1 mg/l # Suspected persistent in the environment: The Danish QSAR database contains information indicating that the substance has a 96h EC50 to green algae of <1 mg/l # Suspected persistent in the environment: The Danish QSAR database contains information indicating that the substance has a 96h EC50 to green algae of <1 mg/l # Suspected persistent in the environment: The Danish QSAR database contains information indicating that the substance is predicted as non readily biodegradable # Suspected toxic for reproduction: The Toolbox profiler DART scheme v.1.0 gives an alert for toxicity to reproduction;Developmental/Reproductive Toxicity library (PG) in VEGA (Q)SAR platform predicts that the chemical is Toxicant (EXPERIMENTAL value); DART database in the Toolbox reports that this substance as Known developmental potential (ECHA, Annex inventory III). Suspected ED (http://endocrinedisruption.org).

6. Hazard assessment

6.1 Ecotoxicology data

Trophic level	Endpoint	Value (µg/l)	Reference
Algae	Short term L(E)C ₅₀	192	Zhou et al., 2019
Crustacean	Short term L(E)C ₅₀	1290	Zhou et al., 2019
Fish	Short term L(E)C ₅₀	161	Zhou et al., 2019

6.2 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
	Fish, Short term L(E)C ₅₀	161	1000	0.161 (Zhou et al., 2019)
PNEC _{fw}				10 (AgriTox ANSES FR)
				1.3 (NL indicative QS)
PNEC _{sed}				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ_{fw} (MEC(P95)/PNEC)	0.005 (PNEC = 10 μg/l) 0.3 (PNEC = 0.161 μg/l)
RQ fw (PEC/PNEC)	0.01 - 0.3 (PNEC = 10 μg/l) 0.6 - 18.6 (PNEC = 0.161 μg/l)
RQ _{sed}	
RQbiota,sec pois	

RQ _{biota, hh}	
RQ _{dw, hh}	

8. STE score

STE (Sc2) is not calculated (according to available data it is expected to be low since MEC(P95) < PNECs).

9. References

AgriTox ANSES FR. http://www.agritox.anses.fr/php/donnees-essentielles.php.

Chitescu, C.L., et al., High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511 (2015).

Cravedi, J.P., et al., Metabolic fate of 2,4-dichloroaniline, prochloraz and nonylphenol diethoxylate in rainbow trout: a comparative in vivo/in vitro approach. Aquatic Toxicology 53(3), pp. 159-172 (2001).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-</u>/dislist/details/AIII-100.047.817

EFSA European Food Safety Authority. Conclusion on Pesticide peer review: Conclusion on the peer review of the pesticide risk assessment of the active substance prochloraz. EFSA Journal 9(7), 2323. https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2011.2323 (2011).

 EU
 Pesticides
 database.
 https://ec.europa.eu/food/plant/pesticides/eu-pesticides

 database/public/?event=activesubstance.detail&language=EN&selectedID=1753

Zhou, S., et al., Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International 128, pp. 1-10 (2019).

Propiconazole (CAS N. 60207-90-1)

1. Substance identity

EC name	1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole
EC number	262-104-4
CAS number	60207-90-1
Molecular formula	C15H17Cl2N3O2
Molecular weight	342.2 g/mol
Structure	
SMILES	CCCC1COC(01)(CN2C=NC=N2)C3=C(C=C(C=C3)Cl)Cl

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	5,6.10 ⁻⁶ at 25℃	INERIS, 2016
Water solubility (mg/l)	150 at 20°C, pH 5,2	INERIS, 2016
logK _{ow}	3,72 at 25 °C and pH 6,6	INERIS, 2016

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc} (l/kg)	382 –1789	INERIS, 2016
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	Not readily biodegradable	INERIS, 2016
Bioaccumulation (BCF)	180	INERIS, 2016

4. Environmental exposure assessment

T.I I TEUICLEU LIIVII OIIITIEIILAL COIICEIILI ALIOI	4.1	Predicted	Environmental	Concentration
---	-----	-----------	---------------	---------------

	Description	Source
Tonnes/year	<u>1 - 10 tonne registered substances</u>	ECHA
Uses	Not approved as PPP Reg. (EU) 2018/1865 (03/70/EC,Reg. (EU) 2016/2016,Reg. (EU) No 540/2011,Reg. (EU) No 823/2012,Reg.(EU) 2018/84)	EU pesticides database
Uses	Approved for use as a Biocide. This substance is approved for use as a biocide in the EEA and/or Switzerland, for preservation films, wood preservation, preservation of fibres, leather, rubber, or polymers. Exp 31/03/2021	
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	4.1 - 6.4	FI Assessment report, 2015
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
50995 samples from 9 MS are available in Sc2 inland whole water. About 3.3% quantified samples. The majority of data (about 80%) originate from 2 MS. The data quality is acceptable.	Prioritisation exercise	MEC(p95)=0.05 µg/l

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference	
LC–MS/MS	0.0136	Chitescu et al., 2015	

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Propiconazole	РТ	R	ED
			(under assessment, ECHA)

Note: # Harmonised classification for acute toxicity: The substance has the following harmonised classification in Annex VI of CLP: Acute Tox. 4 # Harmonised classification for aquatic toxicity: The substance has the following harmonised classification in Annex VI of CLP: Aquatic Acute 1; The substance has the following harmonised classification in Annex VI of CLP: Aquatic Chronic 1 # Suspected carcinogen # Suspected hazardous to the aquatic environment # Suspected persistent in the environment # Suspected toxic for reproduction (ECHA Annex III inventory).

6. Hazard assessment

6.1. Ecotoxicology data

Freshwater

Trophic level	Endpoint	Value (µg/l)	Reference
Algae	NOEC Scenedesmus subspicatus	16	INERIS, 2016
Algae	NOEC	0.95	Zhou et al., 2019
Invertebrate	NOEC/EC10 Daphnia magna	310	INERIS, 2016
Invertebrate	NOEC Crustaceans	60	Zhou et al., 2019
Fish	NOEC/EC10 Pimephales promelas	95	INERIS, 2011
Fish	NOEC	5.8	Zhou et al., 2019

Sediment

Trophic level	Endpoint	Value (µg/kg dw)	Reference
Invertebreates	NOEC/EC10 Chironomus riparus	25000	INERIS, 2016

6.2. PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value
	Chronic NOEC			6.8 µg/l

				(FI Assessment report, 2015)
PNEC _{fw}	Chronic NOEC (Algae)	16	10	1.6 µg/l (AA-QS: INERIS, 2016)
	Chronic NOEC (Algae)	0.95	10	0.095 µg/l (Zhou et al., 2019)
PNEC _{sed}	Chronic NOEC	25000	1000	25 μg/Kg dw (INERIS, 2016)
PNEC _{sed}				54 µg/Kg ww (FI Assessment report, 2015)
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7 . Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	0.53 (PNEC = 0.095 μg/l)
RQ _{fw} (PEC/PNEC)	43 - 67 (PNEC = 0.095 μg/l)
RQ _{sed}	
RQ _{biota,sec} pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

8 . STE score

9 . References

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511. doi: https://doi.org/10.1016/j.scitotenv.2015.06.010 (2015).

FI, Assessment report, Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products. Assessment Report Propiconazole (2015)

ECHA. Annex III inventory. https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817

 EU
 Pesticides
 database.
 https://ec.europa.eu/food/plant/pesticides/eu-pesticides

 database/public/?event=activesubstance.selection&language=EN

INERIS. 2016. Valeur guide environnementale: Propiconazole. Version 2: 11/02/2016; DRC-11-118981-13678A

Sulfamethoxazole (CAS N. 723-46-6)

1. Substance identity

EC name	Sulfamethoxazole		
EC number	211-963-3		
CAS number	723-46-6		
Molecular formula	$C_{10}H_{11}N_3O_3S$		
Molecular weight	253.276 g/mol		
Structure	HN SO H ₂ H ₃ C		
SMILES	CC1=CC(=NO1)NS(=O)(=O)C2=CC=C(C=C2)N		

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	1.74E-05 (at 25°C) 3.96E-06 (at 15°C)	https://www.rivm.nl/bibliotheek/rapporten/60171100 3.pdf
Water solubility (mg/l)	610 (at 37°C) 454 (at 15°C)	https://www.drugbank.ca/drugs/DB01015 https://www.rivm.nl/bibliotheek/rapporten/60171100 3.pdf
logK _{ow}	0.89	HSDB (<u>https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+@rel+723-46-6</u>) https://www.rivm.nl/bibliotheek/rapporten/60171100 3.pdf

3. Environmental fate

Endpoint	Endpoint Value	
Sorption potential K_{oc}	258	https://www.rivm.nl/bibliotheek/rapport en/601711003.pdf
Partition coefficient solid- water in sediment Kp _{sed} (l/kg)	77.49 raw sewage 95.571 act. sludge	https://www.rivm.nl/bibliotheek/rapport en/601711003.pdf
Biodegradability	Sulfonamide antimicrobials are not readily biodegraded and persist in soils	https://pubchem.ncbi.nlm.nih.gov/comp ound/Sulfamethoxazole#section=Artifi cial-Pollution-Sources
Bioaccumulation (BCF)	3	HSDB (https://toxnet.nlm.nih.gov/cgi- bin/sis/search2/r?dbs+hsdb:@term+@r n+@rel+723-46-6)

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	<u>1 - 10 tonne registered substances</u>	ECHA https://echa.europa.eu/it/substanc e-information/- /substanceinfo/100.010.877
Uses	Antibacterial drug used since the 1960s to treat Acute urinary tract infections, gonorrhoea, meningitis and serious respiratory tract infections (Pneumocystis carinii) and prophylactically against susceptible meningococcus. The combination with trimethoprim is used mainly for the treatment of urinary tract infections, with pyrimethamine, it is used in the treatment of chloroquine-resistant <i>Plasmodium falciparum</i> malaria.	https://monographs.iarc.fr/wp- content/uploads/2018/06/mono7 9-15.pdf
Spatial usage (by MS)	Listed in the pharmacopoeias of France, Germany, Italy, Poland, and Czech Republic. Registered for human use in Finland, Ireland, Netherlands, Portugal, Spain and Sweden.	<u>https://monographs.iarc.fr/wp-</u> <u>content/uploads/2018/06/mono7</u> <u>9-15.pdf</u>
Banned uses		

ERC code		
PEC _{fw} (µg/l)	0.0513	<u>RIVM, 2011</u> It should be noted that hospital use is not included in this study, nor are over-the-counter use or veterinarian use. Including these in the calculations would lead to higher PEC.
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) data from 14 MS (1023 sites) with 11684 samples are available. About 65% of samples are quantified. The data quality in Sc2 seems to be acceptable (LOQs ≤ 0.1 µg/l for non-quantified samples; lowest PNEC = 0.1 µg/l) but the data are not Union-representative (65% of all samples originate from one MS; 18.6% from another MS). Sc3 is expected to be equal to Sc2 for considered PNECs.	Dataset of monitoring prioritisation 2014	MEC(P95) = 1.17 µg/l (Sc2)

Note:

After the WG Chemicals meeting on 15-16 January 2020, information for monitoring was received as follows:

Sulfamethoxazole

Disaggregated recent data (totally 957 samples) for inland surface water Sc2 were received from 2 MS (40 (AT) and 917 (BE Flanders)) with LOQ=0.001 μ g/l (AT) and LOQ=0.01 μ g/l (BE Flanders). Both MS are already in the prioritisation dataset. Median concentrations 0.0027 μ g/l and 0.044 μ g/l; MEC(P95) respectively 0.069 μ g/l and 0.162 μ g/l. Considering PNEC=0.1 μ g/l exceedances were observed in one MS (BE Flanders).

Additional recent data (totally 131 samples) for inland surface water (including monitoring of effluents) were provided by 3 MS (FI 16, DK 98 (all non-quantified) and SE 17 samples). The LOQs equal to 0.005-0.1 μ g/l (FI), 0.05 μ g/l (DK) and 0.005 μ g/l (SE). Solely one of these MS (SE) is already in the prioritisation dataset. Considering PNEC=0.1 μ g/l exceedances were observed only in effluents of one MS (FI).

Acetyl-sulfamethoxazole

Disaggregated recent data (totally 40 samples) for inland surface were received from 1 MS (AT) with LOQ=0.0001 μ g/l. This MS is already in the prioritisation dataset. Median concentration 0.0006 μ g/l and MEC(P95)=0.0164 μ g/l.

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
Q Exactive high-performance benchtop quadrupole- Orbitrap LC–MS/MS	0.0030	Chitescu et al., 2015

LC-MS/MS	0.0022	Papageorgiou et al., 2019
SPE followed by UHPLC-QqLIT-MS	0.0008 (river water)	Mandaric et al., 2017

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)	Comment
Sulfamethoxazole	P, T (suspected)	C, M, R (suspected)		AMR

NOTE: Suspected=indication of concer. Suspected in ECHA. Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected mutagen #Suspected persistent in the environment #Suspected toxic for reproduction (ECHA. Annex III inventory)

6. Hazard assessment

Trophic level	Endpoint	Value (mg/l)	Reference
Algae	Chronic	0.5	Zhou et al., 2019
Algae	Chronic NOEC	0.22	RIVM, 2011
Algae (Synechococcus liopolensis)	NOEC 96 h growth rate	0.0059	Ferrari et al., 2004
Invertebrate	Chronic NOEC Crustaceans	0.0059	RIVM, 2011
Invertebrate	Chronic Crustaceans	0.120	Zhou et al., 2019
Amphibians (Limnodynastes peronei)	NOEC 21 d	0.01	Melvin et al., 2014
Fish	Chronic NOEC	0.01	RIVM, 2011
Fish	Chronic NOEC	0.533	Zhou et al., 2019

6.1 PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value (µg/l)
	NOEC 21 d (Limnodynastes peronei)	10	100	0.1 (JRC derivation, 2019)
				0.48 (SSD approach, EQS JRC dossier, 2015)
DNEC	Chronic NOEC Crustaceans	5.9	10	0.59 (RIVM, 2011)
PNEC _{fw}	Chronic NOEC Algae	5.9	10	0.6 (EQS chronic, Swiss ECOTOX centre, 2016/JRC dossier, 2015)
	NOEC Crustaceans	120	50	2.4 (Zhou et al., 2019)
				16 (PNEC-MIC, AMR industry alliance)
				0.6 (PNEC-ENV, AMR industry alliance)
PNEC _{sed}				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

Note: Different PNEC values were derived depending on the studies considered relevant in the dataset.

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ_{fw} (MEC(P95)/PNEC)	2.9 (Sc2; PNEC = 0.4 μg/l) 11.7 (PNEC = 0.1 μg/l)
RQ_{fw}(PEC/PNEC)	0.13 (PNEC = 0.4 µg/l) (RIVM, 2011)
RQ _{sed}	
RQbiota,sec pois	
RQ _{biota, hh}	
-------------------------	--
RQ _{dw, hh}	

8. STE score

0.42 (Sc2; PNEC = 0.4 µg/l)

0.61 (Sc2; PNEC = 0.1 μg/l)

Note: The preliminary risk assessment analysis (RQ and STE) indicated a risk but the available monitoring data are not representative for making a Union-wide evaluation.

Note: After the WG Chemicals meeting on 15-16 January 2020, additional disaggregated monitoring data were received from MULNV (NRW, DE)

Totally 860 samples for inland surface whole water (708 quantified); LOQs of non-quantified samples $0.002 - 0.025 \mu g/l$; MEC(p95)=0.13 $\mu g/l$; these data indicate a risk for PNEC=0.1 $\mu g/l$ (RQ=1.3) and no risk for PNEC=0.4 $\mu g/l$ (RQ=0.325).

9. References

AMR Industry Alliance Antibiotic Discharge Targets. List of Predicted No-Effect Concentrations (PNECs) (2018).

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511. doi: https://doi.org/

10.1016/j.scitotenv.2015.06.010 (2015).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-</u>/dislist/details/AIII-100.047.817

Mandaric, L. et al. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Science of The Total Environment 590-591, 484-494. doi: https://doi.org/10.1016/j.scitotenv.2017.

02.185 (2017).

Melvin, S.D., Cameron M.C., Lanctot C.M.. Individual and Mixture Toxicity of Pharmaceuticals Naproxen, Carbamazepine, and Sulfamethoxazole to Australian Stripe Marsh Frog Tadpoles (Limnodynastes peronii). J. Toxicol. Env. Health Part A77(6): 337-345, 2014.

Papageorgiou, M., Zioris, I., Danis, T., Bikiaris, D. & Lambropoulou, D. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Science of The Total Environment 694, 133565. doi: https://doi.org/10.1016/j.scitotenv.2019.07.371 (2019).

RIVM, 2011. N.G.F.M. van der Aa et al. Assessment of potential risks of 11 pharmaceuticals for the environment Using environmental information from public databases RIVM Letter Report 601711003/2011. https://www.rivm.nl/bibliotheek/ rapporten/601711003.pdf

Zhou, S. et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International 128, pp. 1-10. doi: https://doi.org/10.1016/j.envint.2019.04.034 (2019).

Tebuconazole (CAS N. 107534-96-3)

1. Substance identity

EC name	1-(4-chlorophenyl)-4,4-dimethyl-3-(1,2,4-triazol-1-ylmethyl)pentan-3-ol
EC number	403-640-2
CAS number	107534-96-3
Molecular formula	C16H22ClN30
Molecular weight	307.82 g/mol
Structure	
SMILES	ClC1=CC=C(CCC(0)(CN2N=CN=C2)C(C)(C)C)C=C1

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	3.1.10 ⁻⁶ at 25℃	INERIS, 2011
Water solubility (mg/l)	at 20°C, pH 5,2	INERIS, 2011
logK _{ow}	3.49 at 20 °C	INERIS, 2011

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc} (l/kg)	992	INERIS, 2011
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	Not readily biodegradable	INERIS, 2011
Bioaccumulation (BCF)	78	INERIS, 2011

4. Environmental exposure assessment

	Description	Source
Tonnes/year	<u>1 - 10 tonne registered substances</u>	ECHA
Uses	Approved as PPP Date of approval: 01/09/2009 Expiration of approval: 31/08/2020 2008/125Reg. (EU) No 540/2011Reg. (EU) No 921/2014Reg. (eU) No 2019/707	EU pesticides database
Uses	This substance is approved for use as a biocide in the EEA and/or Switzerland, for: preservation films, wood preservation, preservation for construction materials.	ЕСНА
Spatial usage (by MS)	Authorised as PPP in 28 MS: AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, PL, PT, RO, SE, SI, SK, UK	EU Pesticides database
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.543 – 1.131	FOCUS (EFSA, 2014)
PEC _{sed} (µg/kg dw)	3.555	FOCUS (EFSA, 2014)
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
38498 samples from 8 MS are available in Sc2 inland whole water. About 6.7% are quantified samples. Two MS hold 84% from all samples. The quality of monitoring is acceptable.	Prioritisation exercise	MEC(p95)=0.05 μg/l

4.3 Analytical Methods

Method LOQ (µg/l)		Description/Reference	
LC–MS/MS	0.0083	Chitescu et al., 2015	

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Tebuconazole	РТ	R (suspected)	

Note: Suspected = indication of concern. PT, EU Pesticides database. Suspected R, ECHA.

6. Hazard assessment

6.1. Ecotoxicology data

Freshwater

Trophic level	Endpoint	Value (µg/l)	Reference
Algae	NOEC Scenedesmus subspicatus	34.2	INERIS, 2011
Invertebrates	NOEC/EC10 Daphnia magna	10	INERIS, 2011
Fish	NOEC/EC10 Oncorhynchus mykiss	10	INERIS, 2011

Sediment

Trophic level	Endpoint	Value (µg/kg dw)	Reference
Invertebrates	NOEC Chironomus riparus	54500	(DK Assessment report, 2013)

6. PNEC derivation

PNEC	Endpoint	Endpoint value (µg/l)	AF	PNEC value
PNEC _{fw}	Chronic NOEC			1 μg/l (DK Assessment report, 2013)

	Chronic NOEC (Daphnia and fish)	10	10	1 µg/l (AA-QS: INERIS, 2011)
	Chronic			0.24 µg/l (QS: CH ECOTOX Centre, 2016)
PNECsed	NOEC	54500	100	550 μg/kg suspended sediment (SPM) (Bayer and DK Assessment report, 2013)
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7 . Risk Quotient (MEC or PEC/PNEC)

RQ	Value
	0.05 (PNEC = 1 µg/l)
KQfw (MEC(P95)/PNEC)	0.21 (PNEC = 0.24 μg/l)
	0.543 (PECsw=0.543 µg/l)
$\mathbf{RQ}_{\mathbf{fw}}$ (PEC/PNEC; PNEC = I µg/l)	1.131 (PECsw=1.131 μg/l)
	2.26 (PECsw=0.543 μg/l)
$\mathbf{RQ}_{\mathbf{fw}}$ (PEC/PNEC; PNEC = 0.24 μ g/l)	4.71 (PECsw=1.131 μg/l)
RQ _{sed}	
RQ _{biota,sec} pois	
RQ _{biota, hh}	
RQ _{dw, hh}	

8 . STE score

9 . References

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the

Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511. doi: https://doi.org/10.1016/j.scitotenv.2015.06.010 (2015).

DK, Assessment Report. Regulation (EU) n°528/2012 concerning the making available on the market and use of biocidal products. Assessment Report Tebuconazole (2013). https://echa.europa.eu/documents/10162/b02f4de6-574e-6ba3-7f80-af8ea03df463

ECHA. Annex III inventory. https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817

 EU
 Pesticides
 database.
 https://ec.europa.eu/food/plant/pesticides/eu-pesticides

 database/public/?event=activesubstance.selection&language=EN

INERIS. 2011. Normes de qualité environnementale: Propiconazole. Version 2: 29/03/2011; DRC-11-112070-04266A

Tetraconazole (CAS N. 112281-77-3)

1. Substance identity

EC name	
EC number	407-760-6
	691-058-1
CAS number	112281-77-3
Molecular formula	C ₁₃ H ₁₁ C ₁₂ F ₄ N ₃ O
Molecular weight	372.14 g/mol
Structure	
SMILES	C1=CC(=C(C=C1Cl)Cl)C(CN2C=NC=N2)COC(C(F)F)(F)F

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	1.8x10 ⁻⁴	INERIS, 2011 PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compo</u> <u>und/Tetraconazole#section=Vapor-</u> <u>Pressure</u>)
Water solubility (mg/l)	150 (at 20°C) 156.6 (at 20°C, pH 7)	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compo</u> und/Tetraconazole#section=Density) INERIS, 2011

Log Kow	3.56	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/compo</u> <u>und/Tetraconazole#section=Octanol-</u> <u>Water-Partition-Coefficient</u>)
---------	------	---

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	531-1922	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/co</u> <u>mpound/Tetraconazole#section=Envi</u> <u>ronmental-Fate-Exposure-Summary</u>)
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)		
Biodegradability	Non biodegradable	INERIS, 2011
Bioaccumulation (BCF)	110 42	PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/co</u> <u>mpound/Tetraconazole#section=Envi</u> <u>ronmental-Fate-Exposure-Summary</u>) INERIS, 2011

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year	Registred substance 1-10 Tonne	ECHA (<u>https://echa.europa.eu/substance-</u> information/-/substanceinfo/100.218.522)
Uses	ApprovedasPPPon01/01/2010,expirationofapproval31/12/2021Legislation:2009/82/EUReg.(EU)No540/2011Authorised in:AT, BE, BG, CZ, DE,EL, ES, FR, HR, HU, IT, MT, PL, PT,RO, SI, SK, UK	EU Pesticides Database (https://ec.europa.eu/food/plant/pesticides/ eu-pesticides- database/public/?event=activesubstance.d etail&language=EN&selectedID=1928)
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	2 - 3	FOCUS Step 2 (EFSA, 2008)

PEC _{sed} (mg/kg dw)	
PEC _{biota} (mg/kg)	

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) monitored in 2 MS (1132 sites); available 11075 samples; only 0.1% quantified samples; the data quality seems poor since there is a lot repeated non-quantified samples (9778; about 88% from total) with LOQs of 0.02; 0.05 and 0.1 µg/l coming from 1 MS; the data are not Union-representative (one MS holds about 88% from all samples);	Prioritisation dataset	MEC(P95) = 0.05 μg/l
Sc3 is not developed since the low data quality but is expected to be equal to Sc2 for considered PNECs.		

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference
LC-ESI-Q-Orbitrap-MS	0.0025	Casado et al., 2019

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Tetraconazole	P,T, vP	R (suspected)	

Note: Suspected=indication of concern. Substances predicted as likely to meet criteria for category 1A or 1B (ECHA: https://echa.europa.eu/substance-information/-/substanceinfo/100.218.522 (ECHA Annex III inventory).

6. Hazard assessment

6.1 Ecotoxicology data

Trophic level	Endpoint	Value (µg/l)	Reference
Algae	Scenedesmus subspicatus EC ₅₀	410	INERIS, 2011

Algae	<i>Lemna gibba</i> EC ₁₀	32	INERIS, 2011
Aquatic invertebrate	Daphnia magna EC50	3000	INERIS, 2011
Aquatic invertebrate	Daphnia magna EC10	190	INERIS, 2011
Fish	<i>Lepomis macrochirus</i> EC ₅₀	4300	INERIS, 2011
Fish	Pimephales promelas EC10	300	INERIS, 2011

6.2 PNEC derivation

PNEC	Endpoint (µg/l)	Endpoint value (µg/l)	AF	PNEC value (µg/l)
				1.9 (JRC Prioritisation, Carvalho et al., 2016 and Lettieri et al., 2016)
PNEC _{fw}	<i>Lemna gibba</i> EC10	32	10	3.2 (INERIS, 2011)
				4.2 (AgriTox ANSES FR)
PNEC _{sed}				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value	
RQ _{fw} (MEC(P95)/PNEC)	0.03 (PNEC= 1.9 μg/l)	
RQ _{fw} (PEC/PNEC)	1.1 - 1.6 (PNEC= 1.9 μg/l)	
RQ _{fw}		

8. STE score

0 (PNEC = 1.9 µg/l)

9. References

Casado, J., Brigden, K., Santillo, D. & Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Science of The Total Environment 670, pp. 1204-1225. doi: https://doi.org/10.1016/j.scitotenv.2019.03.207 (2019).

Carvalho, R. N. et al. Monitoring-based exercise: second review of the priority substances list under the Water Framework Directive (https://circabc.europa.eu/w/browse/ 52c8d8d3-906c-48b5-a75e-53013702b20a) (2016).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817</u>

EFSA, 2008. Conclusion regarding the peer review of the pesticide risk assessment of the active substance Tetraconazole. EFSA Scientific Report (2008) 152, 1-86

EU Pesticides Database https://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&language=EN&selectedID=1928

INERIS, 2011. Tetraconazole. Validation groupe d'experts: Octobre 2011. Version 1: 06/01/2012. DRC-12-118981-00250.

Lettieri, T. et al. Modelling-based strategy for the prioritisation exercise under the Water Framework Directive, https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf) (2016).

Trimethoprim (CAS N. 738-70-5)

1. Substance identity

EC name	Trimethoprim
EC number	212-006-2
CAS number	738-70-5
Molecular formula	C ₁₄ H ₁₈ N ₄ O ₃
Molecular weight	290.323 g/mol
Structure	NH2 NH2 CH3 CH3 H3C
SMILES	COC1=CC(=CC(=C10C)OC)CC2=CN=C(N=C2N)N

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	1.00E-06 (at 25°C) 4.97E-07(at 15°C)	https://www.rivm.nl/bibliotheek/rapporten/6017 11003.pdf
Water solubility (mg/l)	400 (at 25°C)	HSDB (<u>https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+@rel+</u> 738-70-5)
logK _{ow}	0.91 0.64 to 1.15	RIVM, 2011 Straub, 2013

3. Environmental fate

Endpoint	Value	Source
Sorption potential K _{oc} (l/kg)	760	RIVM, 2011
Partition coefficient solid-water in sediment Kp _{sed} (l/kg)	22.8 Raw sewage 28.12 Act. Sludge	RIVM, 2011
Biodegradability	TMP is recalcitrant to biodegradation in standard ready and inherent tests and also in a standard sewage treatment plants model test at low concentration. However, good removal (> 50%) was seen in tests performed with aerobic activated sludge with a long sludge retention time.	Straub, 2013
Bioaccumulation (BCF)	3	HSDB (<u>https://toxnet.nlm.nih.gov/cgi-</u> <u>bin/sis/search2/r?dbs+</u> <u>hsdb:@term+@rn+@rel+738-70-5</u>)

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year		
Uses		
Spatial usage (by MS)		
Banned uses		
ERC code		
PEC _{fw} (µg/l)	0.0734	RIVM, 2011
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS m	Source of nonitoring data	MEC values
------------	------------------------------	------------

In Sc2 (inland whole water) data from 4 MS (352 sites)		
with 4613 samples are available. About 26% of samples		
are quantified. Data quality in Sc2 seems to be acceptable	Dataset of	
(LOQs \leq 0.03 µg/l for non-quantified samples) but the	monitorina	$MEC(P95) = 0.07 \mu g/l$
data are not Union-representative (76% of all samples	prioritisation 2014	(Sc2)
originate from one MS; 21% from another MS).		

Sc3 is expected to be equal to Sc2 for considered PNECs.

Note:

After the WG Chemicals meeting on 15-16 January 2020, information for additional monitoring data was received as follows:

Disaggregated recent data (totally 957 samples) for inland surface water Sc2 were received from 2 MS (40 (AT) and 917 (BE Flanders)) with LOQ=0.0001 μ g/l (AT) and LOQ=0.01 μ g/l (BE Flanders). Both MS are not in the prioritisation dataset. The MEC(P95) are respectively 0.041 μ g/l and 0.044 μ g/l. Considering PNEC=0.5 μ g/l no exceedances were observed.

Additional recent data (totally 528 samples) for inland surface water (including monitoring of effluents) were provided by 4 MS (FI 50, DK 430 (all non-quantified), LV 31 and SE 17 samples). The LOQs are from 0.0001 μ g/l to 0.05 μ g/l. None of these MS is already in the prioritisation dataset. Considering PNEC=0.5 μ g/l exceedances were observed in two MS (FI and LV).

In addition, a compilation of aggregated recent data (totally 81 samples; CWPharma project) for inland surface water (including monitoring of effluents) is received from 6 MS (Finland, Estonia, Germany, Latvia, Poland and Sweden). MEC(p95)=0.034 μ g/l, so these data suggest no risk (PNEC=0.5 μ g/l).

Method	LOQ (µg/l)	Description/Reference
LC-MS/MS	0.01721	Chitescu et al., 2015
LC-MS/MS	0.0005	Papageorgiou et al., 2019
SPE followed by UHPLC-QqLIT-MS	river water 0.0002	Mandaric et al., 2017

4.3 Analytical Methods

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)	Comment
Trimethoprim	РТ	CMR(suspected)		AMR
	(suspected)			

NOTE: #Suspected carcinogen #Suspected hazardous to the aquatic environment #Suspected mutagen #Suspected persistent in the environment #Suspected toxic for reproduction (ECHA. Annex III inventory)

6. Hazard assessment

Trophic level	Endpoint	Value (mg/l)	Reference
Algae	Chronic NOEC <i>Pseudokirchneriella subcapitata</i> growth inhibition	16	Young et al., 2008
Invertebrate	Chronic NOEC Crustacea	3.12	De Liguoro et al., 2012
Fish	Chronic NOEC	0.157	Zhou et al., 2019

6.1 PNEC derivation

PNEC	Endpoint	Endpoint value	AF	PNEC value (µg/l)
	Acute algae	16	1000	16 (RIVM, 2011)
				0.5 (PNEC-MIC, AMR industry alliance)
DNEC	NOEC (Fish)	157 µg/l	10	15.7 (Zhou et al., 2019)
FNEU fw	NOEC 21 d (<i>Daphnia</i> magna) 4326.66 µg/l 10	100	43.3 (JRC derivation 2019)	
				60 (Swiss ECOTOX centre modelling-based exercise 2016)
				120 (EQS chronic, Swiss ECOTOX centre 2015)
PNEC _{sed}				
PNEC biota,sec pois				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value
RQ _{fw} (MEC(P95)/PNEC)	0.001 (Sc2; PNEC = 60 μg/l)

	0.13 (PNEC = 0.5 μg/l)	
RQ fw(PEC/PNEC)	0.15 (PNEC = 0.5 μg/l) (RIVM, 2011)	
RQ _{fw} (PEC/PNEC) 0.0046 (PNEC = 16 μg/l) (RIVM, 2011)		
RQ _{sed}		
RQbiota,sec pois		
RQ _{biota, hh}		
RQ _{dw, hh}		

8. STE score

$0 (Sc2; PNEC = 60 \mu g/l)$

Note: The available monitoring data are not Union-representative and are insiffcient for making a risk assessment. The preliminary analysis showed a low risk but the physical-chemical properties of Trimethoprim and the additional data (collected in January 2020) show that potential threat could be expected.

9. References

AMR Industry Alliance Antibiotic Discharge Targets. List of Predicted No-Effect Concentrations (PNECs) (2018).

Chitescu, C. L., Kaklamanos, G., Nicolau, A. I. & Stolker, A. A. M. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-Exactive Orbitrap HRMS. Application to the Danube river basin on the Romanian territory. Science of The Total Environment 532, pp. 501-511. doi: https://doi.org/10.

1016/j.scitotenv.2015.06.010 (2015).

De Liguoro, M., Di Leva, V., Dalla Bona, M., Merlanti, R., Caporale, G., Radaelli, G. Sublethal effects of trimethoprim on four freshwater organisms. Ecotoxicol. Environ. Saf. 82, pp. 114–121 (2012).

ECHA. Annex III inventory. <u>https://echa.europa.eu/information-on-chemicals/annex-iii-inventory/-/dislist/details/AIII-100.047.817</u>

Mandaric, L. et al. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Science of The Total Environment 590-591, pp. 484-494, doi: https://doi.org/10.1016/j.scitotenv.2017.

02.185 (2017).

Papageorgiou, M., Zioris, I., Danis, T., Bikiaris, D. & Lambropoulou, D. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Science of The Total Environment 694, 133565, doi: https://doi.org/10.1016/j.scitotenv.2019.07.371 (2019).

RIVM, 2011. N.G.F.M. van der Aa et al. Assessment of potential risks of 11 pharmaceuticals for the environment Using environmental information from public databases RIVM Letter Report 601711003/2011. https://www.rivm.nl/bibliotheek/ rapporten/601711003.pdf

Straub, JO. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters. Antibiotics (Basel). doi: 10.3390/antibiotics2010115 (2013).

Yang, L.-H., Ying, G.-G., Su, H.-C., Stauber, J.L., Adams, M.S. and Binet, M.T. (2008), Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry 27, pp. 1201-1208. doi: 10.1897/07-471.1

Zhou, S. et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International 128, pp. 1-10. doi: https://doi.org/10.1016/j.envint.

<u>2019.04.034</u> (2019).

Venlafaxine (CAS N. 93413-69-5)

1. Substance identity

EC name	1-[2-(dimethylamino)-1-(4-methoxyphenyl)ethyl]cyclohexanol		
EC number	618-944-2		
CAS number	93413-69-5		
Molecular formula	C ₁₇ H ₂₇ NO ₂		
Molecular weight	277.4 g/mol		
Structure	OH O		
SMILES	CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O		

2. Physico-chemical properties

Endpoint	Value	Source
Vapour Pressure (Pa)	2.46X10-7 mm Hg at 25°C (est) 32.9 mPa	US EPA, 2011
Water solubility (mg/l)	230 mg/l predicted) 267 mg/l at 25°C (est)	https://www.drugbank.ca/salts/DBSALT000186 https://www.drugbank.ca/drugs/DB00285 US EPA, 2011
logK₀w 0.43 3.2		http://datasheets.scbt.com/sc-201102.pdf Sangster J; LOGKOW Database. A databank of evaluated octanol-water partition coefficients (Log P). Available from, as of Oct 26, 2011: http://logkow.cisti.nrc.ca/logkow/search.html

3. Environmental fate

Endpoint	Value	Source
Sorption potential K_{oc}	190	Estimated Koc value of 190(SRC), determined from a log Kow of 3.20 and a regression-derived equation ToxNet <u>https://toxnet</u> .nlm.nih.gov/cgi- bin/sis/search2/r?dbs+hsdb:@term+@D0CN0+6699
Partition coefficient solid- water in sediment Kp _{sed} (l/kg)		
Biodegradability		
Bioaccumulation (BCF)	28.93 60	US EPA, 2011 through INERIS https://substances.ineris.fr/fr/substance/3171 https://toxnet.nlm.nih.gov/cgi- bin/sis/search2/r?dbs+hsdb:@term+@DOCN0+6699

4. Environmental exposure assessment

4.1 Predicted Environmental Concentration

	Description	Source
Tonnes/year		
Uses	Antidepressant drug Venlafaxine is used in the following MS: CZ, FI, IRL, RO, SK	
Spatial usage (by MS)	Not known	-
Banned uses		
ERC code		
PEC _{fw} (mg/l)		
PEC _{sed} (mg/kg dw)		
PEC _{biota} (mg/kg)		

4.2 Measured Environmental Concentration

n. of MS	Source of monitoring data	MEC values
Europe (90 samples	WWTP effluents	0.119 µg/l (mean)
from 18 countries)	Loos et al., 2013	0.548 µg/l (max.)

DE	WWTP effluents (Germany; DE) Schlüsener et al., 2015	0.225 µg/l (mean)
DE	Rhine River Schlüsener et al., 2015	0.014 µg/l (annual mean)
DE	Emscher River (small river) Schlüsener et al., 2015	0.180 µg/l (mean)
SE	Surface waters downstream WWTPs; also found in blood samples from otters (in 10/10 pooled samples).	< LOQ (0.1 ng/l) up to 0.440 µg/l

n. of MS	Source of monitoring data	MEC values
In Sc2 (inland whole water) data from only 1 MS (93 sites) with 1395 samples are available. 76.8% quantified samples. The quality of monitoring in this country is acceptable but data are not representative for an EU-wide assessment.	Dataset of monitoring prioritisation 2014	Median=0.03 µg/l (Sc2) MEC(P95)= 0.19 µg/l (Sc2)
Sc3 was not developed since data scarcity but it is		
expected to be similar to Sc2 since the majority of		
samples are quantified.		

Note:

After the WG Chemicals meeting on 15-16 January 2020, information for additional monitoring data was received as follows:

<u>Venlafaxine</u>

Disaggregated recent data (totally 40 samples) for inland surface water Sc2 were received from one MS (40 (AT) with LOQ= $0.0001 \mu g/l$ (AT). This MS is not in the prioritisation dataset. MEC(P95)= $0.083 \mu g/l$ and considering PNEC= $0.03835 \mu g/l$ exceedances were observed.

Additional recent data (more than 100 samples) for inland surface water (including monitoring of effluents) were provided by 4 MS (BE(Wallonia), FI, LV and SE) with LOQs from 0.00003 μ g/l to 0.001 μ g/l. None of these MS is already in the prioritisation dataset. All four MS showed exceedances when PNEC=0.03835 μ g/l was used.

In addition, a compilation of aggregated recent data (totally 81 samples; CWPharma project) for inland surface water (including monitoring of effluents) is received from 6 MS (Finland, Estonia, Germany, Latvia, Poland and Sweden). MEC(P95)=0.068 µg/l, so these data suggest a risk (PNEC= 0.03835 µg/l).

Venlafaxine metabolite: O-desmethylvenlafaxine (CAS 93413-62-8)

In Sc2 (inland whole water) data from 1 MS (60 sites) with 989 samples are available (83.2% quantified samples). The quality of monitoring in this country is acceptable but data are not representative for an EU-wide assessment. Median = $0.08 \mu g/l$ and MEC(p95) = $0.47 \mu g/l$. If the PNEC= $0.03835 \mu g/l$ is used then a higher risk should be expected (RQ=12.2).

4.3 Analytical Methods

Method	LOQ (µg/l)	Description/Reference	
SPE-LC-MS-MS	0.0007	Extraction of 100 ml water (Gros et al., 2012)	
SPE-LC-MS-MS	0.0005	Extraction of 100 ml water (Loos et al., 2013)	
SPE-LC-MS-MS	0.0003	Extraction of 1 l water (Schlüsener et al., 2015)	
LC-MS/MS	0.0004	Papageorgiou et al., 2019	
SPE followed by UHPLC- QqLIT-MS	0.0015 (river water)	Mandaric et al., 2017	
LC-MS-MS	0.01	CZ	
n.a.	0.0001	SE	
n.a.	0.0005	BE-Wallonia	

5. P, B, T, C, M, R, ED properties

Substance	Persistent (P) Bioaccumulative (B) Toxic (T)	Carcinogenic (C) Mutagenic (M) Reproduction toxicity (R)	Endocrine Disruptive (ED)
Venlafaxine	РТ	R	
	(suspected)	(suspected)	

Note: Suspected=indication of concern. REACH registration dossiers notificationsand Fass.se

6. Hazard assessment

6.1 Ecotoxicology data

Trophic level	Endpoint	Value (mg/l)	Reference
Green algae	EC₅₀ (ECOSAR)	0.65	Wielens Becker et al., 2020
Algae	EC _{s0}	51.7 29.7 47.58 E3.22	
Green algae	LC ₅₀ (ECOSAR)	265.34	Zhou et al., 2019
Algae (Desmodesmus subspicatus)	NOEC (72 h)	NOECr: 9,8 ErC10: 29,5 NOECy: 19,6	UBA, 2019

Fish (Pimephales promelas)	NOEC (168 days)	0.0088	UBA, 2019
Fish	NOEC	0.000305	Zhou et al., 2019 Schultz et al. 2011
Fish	EC ₅₀ (ECOSAR)	7.68	Wielens Becker et al., 2020
Aquatic invertebrate	NOEC	141.28	Zhou et al., 2019 Minguez et al. 2014
Aquatic invertebrate	Daphnid, EC₅₀ (ECOSAR)	1.06	Wielens Becker et al., 2020
		NOEC: >5	
		EvC10: 147	

6.2 PNEC derivation

PNEC	Endpoint	Endpoint value	AF	PNEC value
PNEC _{fw}	Long Term NOEC (Fish)	0.305 µg/l	50	0.0061 µg/l (Zhou et al., 2019)
				0.03835 (prioritisation exercise, Carvalho et al., 2016 and Lettieri et al., 2016)
	EC₅₀ (green algae, ECOSAR)	650 µg/l	1000	0.650 µg/l (Wielens Becker et al., 2020)
	NOEC (168 days) (Fish)	8.8 µg/l	10	0.88µg/l (UBA, 2019)*
PNEC _{sed}				
PNEC _{biota,sec pois}				
PNEC _{biota, hh}				
PNEC _{dw, hh}				

*The same value is used for the PNEC derivation of venlafaxine's metabolite (O-Desmethylvenlafaxine) since there is no chronic data for the metabolite.

7. Risk Quotient (MEC or PEC/PNEC)

RQ	Value			
RQ fw (MEC(P95)/PNEC)	5 (Sc2; PNEC = 0.03835 µg/l) 31 (Sc2; PNEC = 0.0061 µg/l)			
RQ _{fw} (PEC/PNEC)				
RQ _{sed}				
RQbiota,sec pois				
RQ _{biota, hh}				
RQ _{dw, hh}				

8. STE score

1.36 (Sc2; PNEC = 0.03835 μg/l)

STE score is not calculated for PNEC = 0.0061 μ g/L but it is expected to be high because Median (0.03 μ g/l) > PNEC.

Note: The available monitoring data are insufficient and are not Union-representative but allow making a tentative initial risk assessment showing a threat in several MS (confirmed as well by RQ and STE; the physical-chemical properties also indicate a potential risk), therefore to complete the risk evaluation it is preferable to collect a sufficient amount of Union-representative monitoring data.

9. References

Carvalho, R. N. et al. Monitoring-based exercise: second review of the priority substances list under the Water Framework Directive (<u>https://circabc.europa.eu/w/browse/</u> <u>52c8d8d3-906c-48b5-a75e-53013702b20a</u>) (2016).

Gros, M., Rodríguez-Mozaz, S., Barceló, D. 2012. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultrahigh-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. Journal of Chromatography A, 1248, 104–121 (2012).

Lettieri, T. et al. Modelling-based strategy for the prioritisation exercise under the Water Framework Directive, <u>https://circabc.europa.eu/w/browse/85b46283-9353-4e67-bf56-e4d18b32cbaf</u>) (2016).

Loos, R., Carvalho, R., Antonio, D.C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fick, J., Lindberg, R.H., Schwesig, D., Gawlik, B.M. 2013. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research 47(17), pp. 6475-87. doi: 10.1016/j.watres.2013.08.024 (2013).

Mandaric, L. et al. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Science of The Total Environment 590-591, 484-494. doi: https://doi.org/10.1016/j.scitotenv.

<u>2017.02.185</u> (2017).

Minguez, L. *et al.* Acute toxicity of 8 antidepressants: What are their modes of action? *Chemosphere* **108**, 314-319, doi:<u>https://doi.org/10.1016/j.chemosphere.2014.01.057</u> (2014).

Papageorgiou, M., Zioris, I., Danis, T., Bikiaris, D. & Lambropoulou, D. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Science of The Total Environment 694, 133565. doi: <u>https://doi.org/10.1016/j.scitotenv.2019.07.371</u> (2019).

Schlüsener, M.P., Hardenbicker, P., Nilson, E., Schulz, M., Viergutz, C., Ternes, T.A. 2015. Occurrence of venlafaxine, other antidepressants and selected metabolites in the Rhine catchment in the face of climate change. Environmental Pollution 196, 247-256. (2015).

Schultz, M. M. *et al.* Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. *Aquat Toxicol* **104**, 38-47, doi:10.1016/j.aquatox.2011.03.011 (2011).

UBA, 2019. veDatenblatt. Vorschlag für einen Umweltqualitätsstandard EQS (environmental quality standard) für die Bewertung der Gewässerrelevanz von Venlafaxin und O-Desmethylvenlafaxin.

US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Jan, 2011. Available from, as of Oct 26, 2011: <u>http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm</u>]

Wielens Becker, R., et al., Investigation of pharmaceuticals and their metabolites in Brazilian hospital wastewater by LC-QTOF MS screening combined with a preliminary exposure and in silico risk assessment. Science of The Total Environment, 699: p. 134218 (2020).

Zhou, S., Di Paolo, C., Wu, X., Shao, Y., Seiler, T.B., Hollert, H. Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters, Environment International, 128, pp. 1-10. ISSN 0160-4120, <u>https://doi.org/10.1016/j.envint.2019.04.034</u> (2019).

GETTING IN TOUCH WITH THE EU

In person

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre nearest you at: <u>https://europa.eu/european-union/contact_en</u>

On the phone or by email

Europe Direct is a service that answers your questions about the European Union. You can contact this service:

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),

- at the following standard number: +32 22999696, or

- by electronic mail via: <u>https://europa.eu/european-union/contact_en</u>

FINDING INFORMATION ABOUT THE EU

Online

Information about the European Union in all the official languages of the EU is available on the Europa website at: https://europa.eu/european-union/index_en

EU publications

You can download or order free and priced EU publications from EU Bookshop at: <u>https://publications.europa.eu/en/publications</u>. Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see <u>https://europa.eu/european-union/contact_en</u>).

The European Commission's science and knowledge service Joint Research Centre

JRC Mission

As the science and knowledge service of the European Commission, the Joint Research Centre's mission is to support EU policies with independent evidence throughout the whole policy cycle.

EU Science Hub ec.europa.eu/jrc

@EU_ScienceHub

f EU Science Hub - Joint Research Centre

in EU Science, Research and Innovation

EU Science Hub

doi:10.2760/194067 ISBN 978-92-76-19426-2