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Abstract

The present work reports on the activities for the implementation of a SMART City
testbed based on the EC CEF Context Broker and the open source platform FIWARE.
The system architecture complies with the EC JRC network IT security requirements and
provided the testbed for performance testing and analysis of the challenges for the inte-
gration of IoT and wireless commercial devices in a Smart City system. The integration
of the wireless sensor network systems in use at the JRC E.4 Unit for the monitoring
of structures during experimental tests provides real-world scenarios for realistic testing.
The implemented testbed will provide support for future works and developments of larger
systems and integration with heterogeneous Internet of Things (IoT) devices, numerous
communication protocols and the definition of strategies for big data analysis and urban
intelligence. The work was performed by Giovanni Vaglica from the Politecnico di Torino
during his traineeship at the JRC.
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1 Introduction

The strategy of connecting sensors to remote control systems in cities is not new. The first
systems used radio transmission to allow the monitoring of critical components (e.g. sewage
pumps) but hardware was initially expensive and required custom set up and software.

With the cost of sensor devices constantly dropping and the advent of new radio modules,
standard communication protocols and hardware interfaces, the paradigm of SMART Cities
evolved to unprecedented capability. Contemporary cities can now connect a number of devices
to collect real time information on the urban environment in support of decision making of
Public Administrations and towards an improved management of resources.

However, despite the wide availability of sensors and communication devices, the integration
process is still rather complex; vendors may lock-in their systems and hardware and, as a
consequence, data interoperability is often missing; this translates into the impossibility to fully
exploit the potential of interconnected systems and data exchange.

One possibility to overcome the difficulty of adopting heterogeneous devices for optimal Smart
City implementations is offered by the embracing of open source platforms and standards. Al-
though the adoption of open source (OS) might lead to an initial additional effort and possibly
the fear of lack of support and updates, there exist many examples of OS systems with per-
formance and support from communities fully comparable to commercial systems (one example
above all being the operative system Linux).

The innovative trends of the, so-called, Future Internet era are based on the advent of new
technologies and solutions such as cloud computing, the concept of software as a service (SaaS)
and the IoT. The European Commission funded innovative projects for the development of a
European cloud-based open service delivery platform, paving the way for the development of
the FIWARE system. As reported by the vision [1] of the initial FIWARE project, the aim is to
develop the Core Platform of the Future Internet and to “increase the global competitiveness of
the European ICT economy by introducing an innovative infrastructure for cost-effective creation
and delivery of versatile digital services, providing high QoS and security guarantees”. Such
platform had to be open and based on components, called Generic Enablers (GEs), providing
reusable functionalities to be applied in different applications.

The FIWARE initial project later evolved into an open source Smart City platform currently
adopted by a number of European Cities (Malaga, Copenhagen, Vienna, Helsinki among the
others) meeting consensus and adoption in extra-EU cities (e.g. in Japan and Brazil).

Moreover, the core component of the FIWARE platform, the Context Broker, was chosen in 2018
by the EU Member States as a standard component [2] of the Connecting European Facility
(CEF) Digital Building Blocks. The Context Broker is designed to manage context information
on a large scale for information sharing and data exchange.

Given the strategic importance of the FIWARE solution within the European policies of digital
innovation and transformation, the SMARTBUILD project aimed at investigating the challenges
and constraints of such platform for the integration of SMART buildings and infrastructures into
larger Smart City systems. Monitoring applications for the assessment of critical infrastructures,
like structural health monitoring (SHM) systems in bridges, requires high acquisition rates of
many sensors, and represents a high demanding application for data exchange, in terms of data
stream, data storage and processing.

Moreover, within the JRC E.4 Unit’s SMART PROTECT project started in 2019, the integration
of video streaming and AI-based analysis for security of public spaces into the FIWARE platform
is another demanding scenario that will be addressed in order to find feasible solutions for the
implementation of security systems in Smart and Safe Cities.
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The present work was carried out during the traineeship of Giovanni Vaglica, from the Politecnico
di Torino, with the objective of implementing a FIWARE testbed at the JRC E.4 Unit for
the future integration of heterogeneous sensors and wireless networks in order to assess the
performance and constraint of such platform.

The following paragraphs describe in detail the initial system architecture compliant to the IT
security requirements of the JRC network. Therefore, the solution here presented confronts with
additional constraints otherwise not necessarily needed in cities implementations.

The functioning FIWARE testbed allowed the initial testing of the performance and the analysis
of the integration of the commercial WSN system in use at the Unit for structural monitoring
during experimental tests. The implemented testbed will provide support for future works
and developments of larger systems along with the integration with heterogeneous IoT devices,
numerous communication protocols and big data analysis.
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2 Architecture of FIWARE

The FIWARE system is composed of a set of elements, each of which is contained in a specific
Docker container [3]. A Docker container is an isolated OS-level environment that bundles
software components including all applications, libraries and configuration files. The use of such
service allows to have a scalable and flexible environment, that fits perfectly with the structure
of FIWARE. In addition, all containers are run by a single operating-system kernel: in this
way they are more computationally lightweight than the virtual machines, as explained also in
the article “An updated performance comparison of virtual machines and Linux containers” [4],
where it is underlined how Docker equals or exceeds KVM1 performance in all the use cases
tested.

The installation of Docker and docker-compose services are necessary in order to ensure the
correct functioning of the system.

Let us analyze now, in the following paragraphs, the main services of FIWARE.

2.1 Orion Context Broker

The Orion Context Broker (OCB) [5] is the core element of the FIWARE platform, completely
written in C++ language. It relies on an NGSI protocol with the following functionalities:

� Managing the context elements and their availability.

� Updating data and JSON format information through specific queries.

� Managing all the registration of a specific resources and subscriptions to context services.

� Notifing a service on the arrival of specific data2.

All the interactions between OCB and other FIWARE services are performed through the NGSI,
a REST-based protocol that provides with the possibility to encapsulate the context elements.
The REST paradigm is used to define a web service and the client-server interactions. This
means that each element is defined by an URL and the OCB can manage the queries through:

� A GET request, used to read a context element.

� A POST request, used to create a context element.

� A PUT request, used to update a context element.

� A DELETE request, used to eliminate a context element.

2.1.1 Context element

The context element is the data structure used for exchanging information related to a specific
entity. Generally it is described by:

� Id and type of entity.

1The KVM (Kernel-based Virtual Machine) is an open virtualization system built into Linux OS.
2Linked to the resource to which it was previously registered.
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� List of [attribute name/attribute type/attribute values] that allows to give information
about the entity.

� Name of the attribute domain.

� List of elements to apply to all the attributes of a specific domain.

All these information are written with a JSON syntax.

2.2 Database for the context information

The database used to contain all the entities is MongoDB [6], a non-relational document-oriented
database program. It is based on collections that regroup different documents in JSON format;
such format ensures a perfect interoperability between the database itself and the NGSI protocol
used by the FIWARE services.

The interaction with this DB is usually performed only by the FIWARE services, making the
process transparent for the user. Nevertheless, there is however the possibility to interact directly
with it through the OCB. As an example, it could be possible to send some messages in order
to read (GET request) or update (POST request) the entities contained in the MongoDB. In
any case, this type of approach is strongly not recommended.

2.3 IoT agent

The task of the IoT agent [7] is to convert WSN data into valid NGSI requests, in the proper for-
mat for OCB. Given the existence of different IoT communication protocols and data standards,
it is necessary to associate the correct IoT agent in order to have a proper NGSI conversion.
There are four IoT agents already implemented by the FIWARE community3:

1. IoTAgent-JSON, a bridge between JSON and NGSI.

2. IoTAgent-LWM2M, a bridge between the lightweight M2M protocol and NGSI.

3. IoTAgent-UL, a bridge between HTTP or MQTT protocol, with an Ultralight payload,
and NGSI.

4. IoTAgent-LoRaWAN, a bridge between LoRaWAN protocol and NGSI.

Problems may arise when a WSN uses different protocols with specific formats not covered by the
existing IoT agents. Therefore there is an incompatibility that prevents direct data uploading
to the existing IoT agents.

Considering the available IoT agent implementations, I have found three different strategies (see
figure 1) in order to create a possible interaction between sensors and the IoT agent:

a. The first one (simplest case) is to use an IoT network compatible with an IoT agent that
already exists; for example, I could use a LoRaWAN network associated to the IoTAgent-
LoRaWAN. This type of strategy, however, heavily depends on the sensors used that must
have a correspondent IoT agent implementation.

3Nevertheless, other IoT Agent are already in development for the main protocols.
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Figure 1: IoT agent strategies.

b. Another alternative is to use an intermediate layer with a program, that is able to con-
vert the specific IoT data format into an Ultralight string (see the paragraph 4.1 that
describe into details the ultralight conversion). Once converted into Ultralight, data can
be processed by the IoTAgent-UL that performs the conversion into a valid NGSI request.

c. The last option is to create a custom IoT agent to convert the specific IoT protocol into
the NGSI format. This solution is feasible given that all the FIWARE services are open
source.

2.4 Cygnus

The MongoDB database previously mentioned (see paragraph 2.2) is used by the system only
to contain the structure of the entities and their last value received. In order to maintain the
history of all the measurements or information submitted to the FIWARE platform, another
component of the FIWARE architecture is required: Cygnus [8].

Cygnus is an Apache-based service composed of two interfaces:

� The first is connected with the OCB, where it receives all the measurements.

� The second is linked to a database that will contain the historical data.

During the configuration phase, the flow of IoT sensor data must be registered to the OCB,
through a POST request: in this way, all entity changes will be notified at the Cygnus system.

The interaction between Cygnus and MongoDB follows these steps (see Figure 2):
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Figure 2: Cygnus architecture in the default FIWARE configuration.

� The HTTP source is extracted from the NGSI notification4.

� The HTTP source is converted into a Flume event that is memorized in a temporarily
FIFO queue.

� The Orion sink takes the Flume event from the memory and converts it in a query, that
is immediately written in the historical database.

2.5 Historical Database

The final repository is a third-party database used by Cygnus to store the historical data. There
is a specific set of databases compatible with Cygnus:

� HDFS, the Hadoop distributed file system.

� MySQL, the well-known relational database manager.

� CKAN, an Open Data platform.

� MongoDB, the NoSQL document-oriented database.

� STH Comet, a Short-Term Historic database built on top of MongoDB.

� Kafka, the publish-subscribe messaging broker.

� DynamoDB, a cloud-based NoSQL database by Amazon Web Services.

� PostgreSQL, the well-known relational database manager.

� Carto, the database specialized in georeferenced data.

In any case, there is a possibility to create a custom Cygnus service, compatible with a database
that does not appear in the list.

4This operation is possible because NGIS is based on REST paradigm.
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2.6 Interaction of FIWARE components

Let’s now consider a FIWARE architecture composed by the elements in figure 3), where each
service runs in a separated Docker container. The system initially requires a registration and
configuration phase (1-2). Once configured, in the system the following interactions occur:

Figure 3: Basic interaction in a FIWARE system.

1. The first part of the configuration requires a set of cURL commands5 which are sent from
the client. It contains two different information:

– The structure of the network and the IoT sensors.

– The subscription of Cygnus to the OCB notifications.

2. Data are converted into static context elements that are stored into the MongoDB.

3. A sensor node records a measurement and sends it to the IoT agent.

4. The IoT agent receives and converts the request in the appropriate format, as described in
paragraph 2.3. At this point the IoT agent is not yet capable of creating a valid NGSI re-
quest because it doesn’t known the data structure associated at this specific measurement.
This information is therefore requested to MongoDB.

5. The IoT agent uses the data received from the MongoDB and the IoT agent, to build a
valid NGSI request that contains the last measurement originating from the IoT sensor.

5cURL is a command-line tool used to create HTTP request for a specific URL.
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6. The IoT agent sends the NGSI request to the OCB.

7. The OCB updates the context element, stored in the MongoDB database, with the last
measurement.

8. The OCB notifies the new measurement to Cygnus.

9. Cygnus inserts the new entries into the historical DB.
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3 Implementation of FIWARE in the JRC site

In the first part of the report, I have described the functioning of the FIWARE system, without
specifying how to implement it in a real environment. Now, in the last part of this document,
I will describe the specific configuration of such system for the testbed implementation at the
JRC.

3.1 DMZ architecture

In a corporate network there is usually the need to have servers which offer public services to the
external network (e.g. data visualization 5). If these servers are positioned inside the corporate
network, an attacker from the external network could exploit a vulnerability on the server to
gain access to the internal network. A possible solution is to connect such servers in a zone
which is isolated from both the internal and the external network, called Demilitarized Zone
(DMZ).

On the basis of the previous security requirements, we decided to implement the FIWARE
platform within a double demilitarized zone, protected by a four-legged firewall (see figure 4)
that follows a whitelist approach:

1. The first DMZ is called “FIWARE DMRZ DC ”; it contains all FIWARE services imple-
mented in two different VMs. This is the internal and more protected area of the archi-
tecture, that will never be visible/accessible from the outside. The interactions between
services contained in the VM-A, follows the principles reported in paragraph 2.6.

2. The second DMZ is composed of two different zones:

– The “FIWARE DMZ DC ” zone contains the data visualization web application based
on Grafana interface (see paragraph 5 for more details).

– The “FIWARE DMZ CAMPUS”, a VLAN used to implement the gateway/IoT agent
interaction (see paragraph 4 for more details).

This zone is segregated from the internal JRC network, but still offering the possibility to
interact with the external network (restrictions apply).

All the interactions between the JRC network/DMRZ/DMZ/external network must be filtered
by the firewall while, on the other hand, communications are direct within the same area.

The VM located in the internal JRC scientific network is used to manage via ssh all the FIWARE
services.
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Figure 4: FIWARE implementation in the JRC.

3.2 Configuration of FIWARE services

All FIWARE services run in an isolated Docker container, located in one single virtual machine.
In order to optimize the launch of all containers, I created a set of script files to manage the
entire platform:

� fiware.sh, is the entry point of the configuration system. It accepts one argument in the
command line:

– “start” → It launches the services from “docker-compose.yml” file.

– “load” → It launches the services from “docker-compose.yml” file; besides it uploads
all data entities and Cygnus subscriptions, through “import-data” and “sensors.sh”
files.

– “stop” → It stops all the services contained in the “docker-compose.yml” file.

– “remove” → It stops all the services contained in the “docker-compose.yml” file. It
removes also the container associated at FIWARE platform.

– “removeAll” → It stops all the services contained in the “docker-compose.yml” file.
It removes also containers and images associated at FIWARE platform.
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– “cleanAll” → It stops all the services contained in the “docker-compose.yml” file. It
removes also containers, images and volumes associated at FIWARE platform.

� docker-compose.yml, contains the configuration of FIWARE services (see the paragraphs
3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.8 for more details).

� import-data, contains the cURL command used to configure the IoT network (see the
paragraph 3.2.1 for more details).

� sensors.sh, contains the cURL commands used to configure:

– The token used by the IoT sensor in order to authenticate itself against the IoT agent.

– The IoT sensor structure (see the paragraph 3.2.1 for more details).

– The Cygnus subscription.

3.2.1 Data structure

The IoT network structure is contained in the “import-data” file:

{

"id":"urn:ngsi-ld:Gateway:LORD:MicroStrain",

"type":"Gateway",

"address":{

"type":"PostalAddress",

"value":{

...

}

},

"location":{

...

},

"number_of_sensors":{

"type":"Integer",

"value":"1"

},

"technology":{

"type":"String",

"value":"Wireless"

}

}

This is a static entity that, through the id “urn:ngsi-ld:Gateway:LORD:MicroStrain”, allows to
create a reference to the other IoT sensors.

The only sensor registered in the system at this stage for testing purposes is configured as
following:

{

"device_id": "Node44023",

"entity_name": "Node:44023",

"entity_type": "accelerometer",

"protocol": "PDI-IoTA-UltraLight",

"timezone": "Europe/Berlin",

"attributes": [
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{ "object_id": "t", "name":"timestamp", "type":"Integer" },

{ "object_id": "x", "name":"axisX", "type":"Float" },

{ "object_id": "y", "name":"axisY", "type":"Float" },

{ "object_id": "z", "name":"axisZ", "type":"Float" },

{ "object_id": "c", "name":"temperature", "type":"Float" }

],

"static_attributes": [

{ "name":"refGateway", "type":"Relationship",

"value":"urn:ngsi-ld:Gateway:LORD:MicroStrain"},

{ "name":"location", "type":"geo:json",

"value":{"type":"Point","coordinates":[45.812407, 8.629327]}}

]

}

This JSON structure is based on two static attributes that don’t change over time (reference
gateway and geographic coordinates), and five dynamic attributes which depend on the sensor
measurements:

� Timestamp

� Axis X

� Axis Y

� Axis Z

� Temperature

3.2.2 Wireless Sensor Network components

The physical equipment used for the preliminary simulations are:

� G-Link LXRS Integrated Accelerometer Node [9].

� WSDA Base 101 LXRS Data Gateway [10].

3.2.3 Orion Context Broker

The configuration of the OCB service is:

orion:

image: fiware/orion:2.0.0

hostname: orion

container_name: fiware-orion

depends_on:

- postgres-db

networks:

- default

expose:

- "1026"

ports:

- "1026:1026"

command: -dbhost mongo-db -logLevel DEBUG

It uses the offical “fiware/orion” Docker image.
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3.2.4 IoT Agent

The IoT agent that I decided to use in this architecture is the IoTAgent-UL (see the paragraph
2.3 to see the list of available IoT agents). It is therefore necessary to implement a script in
order to convert IoT node data into the Ultralight format. The configuration of the IoT agent
service is as following:

iot-agent:

image: fiware/iotagent-ul:1.7.0

hostname: iot-agent

container_name: fiware-iot-agent

depends_on:

- mongo-db

networks:

- default

expose:

- "4041"

- "7896"

ports:

- "4041:4041"

- "7896:7896"

Such configuration uses the offical “fiware/iotagent-ul” Docker image and requires the following
environment variables:

� "IOTA_CB_HOST=orion"

The name of the OCB service in order to update the context entities.

� "IOTA_CB_PORT=1026"

The exposed port of the OCB.

� "IOTA_REGISTRY_TYPE=mongodb"

It defines the database name where the IoT device structure is memorized.

� "IOTA_MONGO_PORT=27017"

The exposed port of the MongoDB.

� "IOTA_PROVIDER_URL=http://iot-agent:4041"

The URL used to communicate with the IoT agent.

The IoT agent is also configured to accept only the requests that contain a valid token6. If the
token is invalid or it is not present, the IoT sensor data are discarded.

6The value of token is set through a cURL command, contained in the “sensor.sh” configuration file.
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3.2.5 MongoDB for the context information

The configuration of the mongoDB database is the following:

mongo-db:

image: mongo:3.6

hostname: mongo-db

container_name: db-mongo

ports:

- "27017:27017"

networks:

- default

command: --bind_ip_all --smallfiles

volumes:

- mongo-db:/data

It uses the offical “mongo” Docker image. The container is linked to a separated virtual volume
(mongo-db:/data), that stores all the data.

3.2.6 Cygnus

The configuration of the Cygnus service is:

cygnus:

image: jrcfiware/cygnus-opt:latest

hostname: cygnus

container_name: fiware-cygnus

networks:

- default

depends_on:

- postgres-db

expose:

- "5080"

ports:

- "5050:5050"

- "5080:5080"

It requires some environment variables:

� "CYGNUS_POSTGRESQL_HOST=postgres-db"

The hostname of the PostgreSQL database used to persist historical context data.

� "CYGNUS_POSTGRESQL_PORT=5432"

It exposes the port of the PostgreSQL db.

� "CYGNUS_POSTGRESQL_USER=postgres"

"CYGNUS_POSTGRESQL_PASS=password"

The username and password for the PostgreSQL database user.

� "CYGNUS_SERVICE_PORT=5050"
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Notification port where Cygnus listens when subscribing to context data changes.

The standard Cygnus service [8] is not designed to cope with high-rates acquisitions in real-
time. However, this aspect is part of the testing campaign aiming at identifying constraints and
challenges of the system. For this reason, the Docker image used to create the Cygnus service
is optimized in order to support real-time acquisition. The name of the custom Cygnus image
is “jrcfiware/cygnus-opt” and it is located in a private Docker Hub repository.

3.2.7 Cygnus optimization

There are different options to optimize the Cygnus service:

� The first one is to increase the capacity of the channel used by Cygnus to stop pending
requests. The channel is designed as a FIFO queue7 that manages a list of pointers to the
Flume events: the only operation that Cygnus performs on this structure is the iteration.
For this reason, the use of a bigger channel doesn’t affect the Cygnus performance.

Nevertheless, this type of optimization is useful only if the notification throughput is not
regular while, in real-time acquisition, it will only delay the occurrence of issues related to
the saturation of the channel.

� From a physical perspective, input/output operations per second (IOPS) are crucial; the
use of an SSD, instead of traditional disk, can improve the processing speed of collected
data. The cost of an SSD storage can be expensive but there is also the possibility to use
hybrid systems [11, 12, 13].

� The batch processing is the alternative approach used by Cygnus to process a set of OCB
notifications all together instead of one by one. With this approach, the Cygnus sink
can aggregate different requests and therefore a single write operation is required. This
type of processing is often associated with a timeout that stops the execution of all the
pending requests contained in the batch queue being written into the DB (even if the limit
of batching is not reached). In this way if, for example, the batch size is equal to 100 and
the OCB sends 99 NGSI notifications, Cygnus will be able to persist data in the database
after the expiration of the timer8.

By default the batch mechanism is not enabled:

<agent_name>.synks.<synk_name>.batch_size = 1

<agent_name>.synks.<synk_name>.batch_timeout = 30

Another problem is that, if Cygnus crashes (due to overhead), all data contained in the
batch queue are lost because Cygnus is not capable of persisting packets. A possible
solution is to apply a retry mechanism (with the OCB service) composed by:

– A Time-To-Live (TTL) that specifies the number of retries that Cygnus will perform
before definitely dropping the event (0 means no retires, -1 means infinite retries).

– A list of retry intervals associated to the TTL variable.

� By default Cygnus uses a unique sink to process the NGSI notification but this can be a
bottleneck in some cases. To avoid such limitation, there is the possibility to add more
sinks in two different situations:

7First In First Out behaviour.
8Without the timer, the batch will never ready to be processed by Cygnus.
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1. Multiple sinks, single channel - This type of configuration can potentially increase
the performance of the system but it creates also a competition between sinks. If they
are too fast to process event, this type of implementation can induce a significant loss
of performance.

2. Multiple sinks, multiple channels - The problem mentioned above can be solved in
a multiple channel system, where the competition for the single channel is avoided.
However, this type of architecture requires a load balancing system to manage differ-
ent sinks.

The “jrcfiware/Cygnus-opt” service uses the following configuration (see the figure 5), replicated
on a double sinks architecture:

...

cygnus-ngsi.sinks.postgresql-sink.batch_size = 100

cygnus-ngsi.sinks.postgresql-sink.batch_timeout = 30

cygnus-ngsi.sinks.postgresql-sink.batch_ttl = 10

...

cygnus-ngsi.channels.postgresql-channel.capacity = 1000

Figure 5: Cygnus architecture with improvements.

3.2.8 PostgreSQL for the data history

The configuration of the PostgreSQL database is:

postgres-db:

image: postgres:latest
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hostname: postgres-db

container_name: db-postgres

expose:

- "5432"

ports:

- "5432:5432"

networks:

- default

environment:

- "POSTGRES_PASSWORD=<postgres_password>"

- "POSTGRES_USER=<postgres_user>"

- "POSTGRES_DB=<postgres_db>"

volumes:

- postgres-db:/var/lib/postgresql/data

It uses the official “postgres” Docker image. The container is linked to a separated virtual
volume (postgres-db:/var/lib/postgresql/data), that will be memorize the historical data.
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4 Interaction between the gateway and the IoT agent

On the basis of the solution defined in the paragraph 2.3, I decided to implement the technique
“b”. A python script is used to read in real-time the incoming data and convert them in the
Ultralight format. Finally, all the requests are aggregated into a single payload that it then sent
via ssh to the VM-A.

The python program and the gateway are located within the “FIWARE DMZ CAMPUS”
VLAN.

4.1 The Ultralight 2.0 protocol

Ultralight 2.0 is a lightweight text based protocol developed for low-performance devices and
communications where the bandwidth and device onboard memory are limited. The syntax is
based on a list of key-value pairs separated by the pipe character “|”; there is also the possibility
to aggregate more requests into the same payload with the “#” symbol.

t|1542698168001|x|0,03443152271|y|-0,0755809946|z|-0,9884393737|c|22,27757504#

t|1542698168009|x|0,04017862258|y|-0,08139494807|z|-0,9884393737|c|22,27757504#

t|1542698168017|x|0,02868442284|y|-0,0755809946|z|-0,9884393737|c|22,27757504#

t|1542698168025|x|0,03443152271|y|-0,0755809946|z|-0,9884393737|c|22,27757504#

t|1542698168033|x|0,04017862258|y|-0,06976704113|z|-0,982659027|c|22,27757504#

t|1542698168040|x|0,04017862258|y|-0,08139494807|z|-0,9768786803|c|22,27757504#

t|1542698168048|x|0,03443152271|y|-0,0755809946|z|-0,9768786803|c|22,27757504#

...

4.2 Python script

The script is developed in Python 2.7 and the following external libraries are used:

� sys, a mandatory library used to manage the principal python functions.

� mscl, that contains the APIs of LORD Microstrain [14].

� time and calendar, used to manage the timestamp (see below for details).

� paramiko used to create, manage and destroy the ssh connection.

The global variables are:

� COM PORT - The com port used by the gateway.

� NODE ADDRESS - The address of WSN.

� Max aggregation - The maximum aggregation of data (default value is 100).

� Command - It contains the header of command used to send data in Ultralight format.

The first part of the program establishes an ssh connection with the VM that contains the main
system: if the connection fails, an exception is raised and the program is terminated.
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ssh = paramiko.SSHClient()

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

try:

ssh.connect(...)

except paramiko.SSHException:

print "Connection Failed"

quit()

If the connection is successfully established, the base station is configured through the MSCL
library:

� I create a serial connection with the specified COM Port (if the second argument is not
inserted, the default baud rate is 921600).

connection = mscl.Connection.Serial(COM_PORT)

� I associate the base station to the connection.

baseStation = mscl.BaseStation(connection)

Before establishing the connection with the node, it is necessary to reset the base station in
order to create a new connection with a WSN.

baseStation.resetRadio()

Then, the creation of the node based on the address (global variable) and the base station is
performed:

node = mscl.WirelessNode(NODE_ADDRESS, baseStation)

A Wireless Node, when powered on, can be in one of the following statuses:

� Idle - The Node is awake and waiting for commands.

� Sleep - The Node is in a low power sleep status.

� Sampling - The Node is actively sampling or sending data.

If a Node is in the idle status, it will respond to pings, can be configured, and can be put into
the other statuses (sleep or sampling). On the other hand, if a Node is in the sleep status or
sampling status, it cannot be direct communicated with the Node is not possible. In order to
communicate with the Node, this must be put back into the idle status. This is done with the
command setToIdle():

idleStatus = node.setToIdle()

Now, the node can execute a ping to verify the connectivity with the base station. If a reply is
received, it means that the network was successfully created:

network = mscl.SyncSamplingNetwork(baseStation)

network.addNode(node)

Once the network is established, the data acquisition can be activated,

network.startSampling();
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I use an infinite loop in order to read all the data.

# get all of the data sweeps that have been collected by the BaseStation,

with a timeout of 500 milliseconds

sweeps = baseStation.getData(500)

for sweep in sweeps:

For each data contained in the sweep variable, the following actions are performed:

� The acquisition timestamp is retrieved:

date_str = str(sweep.timestamp())

Then, it must be converted to a float timestamp:

date = date_str[:19]

time_tuple = time.strptime(date, "%Y-%m-%d %H:%M:%S")

#time tuple to timestamp format

timestamp=calendar.timegm(time_tuple)

#now we have the timestamp in second. It is necessary transform it in

millisecond and than add the .\%f remaining ones.

ts_int = int(timestamp)

ts_int*=1000

fff=int(date_str[20:23])

ts_int+=fff #final_timestamp

Finally the timestamp is added to the “to send” variable.

to_send += "t|" + str(ts_int) + "|x|"

� At this point, all the values contained in the 4 channels are read.

for dataPoint in sweep.data():

There are now 4 cases depending on the sensor node channel being processed:

– The data belongs to the first channel.

if dataPoint.channelName() == "ch1":

val_raw = dataPoint.as_float()

val_fin = val_raw*0.005747

val_fin = val_fin-11.20689

to_send += str(val_fin) + "|y|"

– The data belongs to the second channel.

elif dataPoint.channelName() == "ch2":

val_raw = dataPoint.as_float()

val_fin = val_raw*0.005813

val_fin = val_fin-11.56976

to_send += str(val_fin) + "|z|"
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– The data belongs to the third channel.

elif dataPoint.channelName() == "ch3":

val_raw = dataPoint.as_float()

val_fin = val_raw*0.00578

val_fin = val_fin-11.39884

to_send += str(val_fin) + "|c|"

– The data belongs to the fourth channel.

elif dataPoint.channelName() == "ch4":

val_raw = dataPoint.as_float()

val_fin = val_raw*0.117188

val_fin = val_fin-67.83999

to_send += str(val_fin)

if i < max_aggregation:

to_send+="#"

In this case, the temperature value represents the last element of the packet. If the
current index is less than the maximum aggregation limit, it is necessary to insert a
“#” symbol in order to split separated elements.

If the limit of maximum aggregation is reached, the command ssh is prepared:

payload = "’" + to_send + "’"

ssh.exec_command(command + payload)

Otherwise the “i” variable is increased.
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5 Grafana

Grafana [15] is an open source visualization tool that can be used to visualize data residing on
different storage backends. It is composed by a set of plugins that users can use in order to
create a feature-rich custom dashboard.

Figure 6: JRC FIWARE GUI loging page.

In our implementation, the Grafana system has been installed on the VM-B virtual machine,
within the “FIWARE DMZ DC ”. At the moment, there are only two ways to access the Grafana
web application:

� From scientific network, the service can be reached through

http://<vm-b_IP_address>:<vm-b_port>

� From the corporate network NET1, the service can be reached through

http://<reverse-proxy_IP_address>

In the last case, a reverse-proxy server is used in order to protect the original server where
Grafana is running.
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Figure 7: JRC FIWARE: wireless sensor nodes and base details page with geographical position.

Figure 8: Accelerometer acquisition visualization page.
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Figure 9: Multiple axes details visualization of accelerometer wireless node.

Figure 10: JRC FIWARE acquired data listing.
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6 Future enhancements

The initial architecture of the JRC implementation of the FIWARE system will be improved
towards better performance. I am going to explain here some of the improvements that will be
introduced in the future release of the system.

Figure 11: FIWARE implementation with improvements.

6.1 Custom IoT agent

The FIWARE architecture envisages the possibility to introduce different IoT networks. In this
case, it is necessary (see 2.3 for more details) to associate each new WSN to a dedicated IoT
agent service.

6.2 VM-C

The PostgreSQL database can cause slowdowns for Cygnus and Grafana services. In order to
relieve the load from the DB, a distributed databases environment can be adopted:
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� The PostgreSQL DB in VM-A is used to memorize temporarily the data collected by
Cygnus.

� A new VM (VM-C in figure 11) will be used to store all the historical data9.

6.3 Security in the IoT network

Security is a key aspect in IoT networks, in order to avoid that a possible MITM attack could
eavesdrop or modify the communication between the sensor and the associated gateway. There
are three rules to be observed during data transmission:

� Non repudiation: a security system offers the non-repudiation property if it allows to
create a formal proof, acceptable by a court of justices that gives undeniable evidence of
the data creator.

� Confidentiality : a security system offers the confidentiality property if it allows to guar-
antee that no one can access confidential information without being authorized.

� Integrity : a security system offers the integrity property if it allows to check if data has
been manipulated, through the following techniques:

1. modification

2. cancellation

3. replay10

In order to address such concerns, I have elaborated the following architecture (see the figure
12), assuming that the negotiation of cryptographic keys used during the session has already
been performed.

Figure 12: Security interaction between a sensor and the gateway, in an IoT network.

For each data sent, at the level of the sensor node the following tasks are performed:

9You can also use a different database strategy through, for example, a Big Data implementation.
10Data in transit could be copied and transmitted more times.
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a. The sensor associates an internal counter to each packet in order to be able to identify the
frame. If a sensor already uses a timestamp by default, this step is not needed.

b. The sensor applies a hash function to the couple “[counter + datagram]” in order to obtain
a message digest: it will be used to satisfy the integrity property during data transport.

c. The digest is encrypted, via the private key of the sensor node, to obtain the digital
signature; this allows to ensure the non repudiation property of the resource.

d. The data triplet of data “[counter + datagram + digital signature]” is then encrypted
through a symmetric encryption algorithm (shared with the gateway): in this way, the
confidentially property is ensured. In terms of cybersecurity, the best compromise is the
AES-256-CBC algorithm [16, 17].

e. Finally, the datagram is sent and the sensor waits for an acknowledge response. If an
ACK signal is not received before the predefined expiring, the frame is sent back. This
mechanism is necessary to avoid jamming problems.

At the gateway, for each data received the following actions are performed:

� The gateway uses the symmetric encryption key to obtain the clear datagram.

� Then, the string that identify the sensor is read: in this way the public key and the counter
associated with it are derived.

� If the counter contained in the datagram received is less than or equal to the other counter,
the whole data is dropped (because there could be a replay attack). Otherwise, the
datagram is considered valid and the counter in the file is updated.

� The hash function is not invertible and, for this reason, it is not possible to obtain the
couple “[counter + datagram]” from the digital signature. The only operation permitted
to verify the integrity of datagram is:

– Application of the hash function to “[counter + datagram]” in order to produce a
digest.

– Decryption of the original digital signature with the sensor node’s public key to
obtain, in this way, the digest product from datagram.

If the comparison between the digest calculated and the original digest is positive, the
integrity property is satisfied. Otherwise the datagram is dropped.

� After checking all the security properties, the gateway sends the acknowledge response
at the sensor. If the ACK is lost during the transmission, the sensor will send again the
datagram which will be dropped by the gateway. In this case, the gateway would transmit
again the ACK. Generally, this type of situation is equivalent to a temporary local failure
that converges automatically to a stable solution.

The approach explained in this paragraph is the best implementation in terms of security, but
it may cause a too high energy consumption for an IoT sensor. Moreover, in order to guarantee
a proper functioning of the system, it would be necessary that all the keys used are stored in a
security safe place11

11Possibly in a different place from that used by devices.
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6.4 Security in the FIWARE system

The application security of the FIWARE platform is not yet implemented in the JRC current
preliminary implementation12. Each user could have access to each service residing in the VM-
A, without any restrictions. To limit and control users access it is necessary to introduce an
authentication and authorization system.

6.4.1 Authentication system

Keyrock [18] is an authentication system (part of the FIWARE project) based on traditional
username/password. Even if this type of system is not the most advanced implementation in
terms of security and usability, it can still be considered a good mechanism because it integrates
seamlessly with the FIWARE architecture. Keyrock requires a SQL database to store the
encrypted user credentials.

6.4.2 Authorization system

In order to prevent all authenticated users from having full privileges on the FIWARE system
and collected data, it would be advisable to introduce an authorization system. A possible
solution is XACML, a language used to evaluate access requests according to the rules defined
in the policy. In the article “Evaluating the FIWARE Platform” [19] a possible implementation
of XACML mechanism within the FIWARE architecture is explained. It involves three different
components:

� The Identity Manager (IdM), allows the definition of different policies for users or groups.

� The Policy Decision Point (PDP) which, on the basis of the policy evaluation, can deny
or authorize the action of the user on a specific resource.

� The Policy Enforcement Point (PEP), an intermediary between user and PDP.

In figure 13 the interactions between these services are shown. After having verified the access
token validity with the IdM, the PEP sends a request containing user details to the PDP.
The PDP retrieves the policy associated with the user and generates a response (positive or
negative) then transmitted to the PEP. The language used between PEP and PDP is XACML
while the IdM only accepts HTTP messages. The translation from XACML to HTTP is done
automatically by the system.

12If the security and network limitations are ignored.
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Figure 13: Interaction scheme between PEP, PDP and IdM.
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M. Alexander, M. Forsell, A. Knüpfer, R. Prodan, L. Sousa, and A. Streit, eds.), Berlin,
Heidelberg, 2010, pp. 375–384

[14] “LORD-MicroStrain MSCL.” https://github.com/LORD-MicroStrain/MSCL

[15] “Grafana.” https://grafana.com/

[16] S. K. S. Frankel, R. Glenn, “The AES-CBC Cipher Algorithm and Its Use with IPsec”,
September 2003, DOI 10.17487/RFC3602

[17] K. M. U. Blumenthal, F. Maino, “The Advanced Encryption Standard (AES) Cipher Al-
gorithm in the SNMP User-based Security Model”, June 2004, DOI 10.17487/RFC3826

[18] “Keyrock.” https://github.com/ging/fiware-idm

[19] P. Salhofer, “Evaluating the FIWARE Platform: A Case-Study on Implementing Smart
Application with FIWARE”, January 2018, DOI 10.24251/HICSS.2018.726

35

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Overall_FI-WARE_Vision
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Overall_FI-WARE_Vision
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/2018/11/12/Context+Broker+joins+CEF
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/2018/11/12/Context+Broker+joins+CEF
https://www.docker.com/
https://doi.org/10.1109/ISPASS.2015.7095802
https://github.com/telefonicaid/fiware-orion/
https://www.mongodb.com/
https://github.com/telefonicaid/iotagent-ul
https://github.com/telefonicaid/fiware-cygnus
https://www.microstrain.com/wireless/g-link 
https://www.microstrain.com/wireless/g-link 
https://www.microstrain.com/wireless/wsda-base-analog
https://www.microstrain.com/wireless/wsda-base-analog
https://doi.org/10.1109/IPDPS.2012.70
https://doi.org/10.1109/MSST.2013.6558434
https://github.com/LORD-MicroStrain/MSCL
https://grafana.com/
https://doi.org/10.17487/RFC3602
https://doi.org/10.17487/RFC3826
https://github.com/ging/fiware-idm
https://doi.org/10.24251/HICSS.2018.726


 

 

GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre 
nearest you at: https://europa.eu/european-union/contact_en 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: https://europa.eu/european-union/contact_en 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa website at: 
https://europa.eu/european-union/index_en 

EU publications 

You can download or order free and priced EU publications from EU Bookshop at: https://publications.europa.eu/en/publications. 
Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see 
https://europa.eu/european-union/contact_en). 

https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/index_en
https://publications.europa.eu/en/publications
https://europa.eu/european-union/contact_en


 

 

K
J-N

A
-3

0
0

3
8

-EN
-N

 

doi:10.2760/314017  
ISBN 978-92-76-14658-2 


	Introduction
	Architecture of FIWARE
	Implementation of FIWARE in the JRC site
	Interaction between the gateway and the IoT agent
	Grafana
	Future enhancements

