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Foreword 

The construction sector1 is of strategic importance to the European Union (EU), as it 

delivers the buildings and infrastructures needed by the rest of the economy and society, 

having a direct impact on the safety of persons and the quality of citizens’ life. The sector 

contributes to about 11.5% of the EU’s Gross Domestic Product (GDP), providing directly 

about 12 million jobs in 3.3 million of companies2.  

Construction is a key element for the implementation of the European Single Market3 and 

for other relevant EU strategies. Ensuring more sustainable and climate resilient 

infrastructure and buildings are key priorities of the European Green Deal (COM(2019) 

6404,5). The adaptation of the construction sector to the inevitable impacts of climate 

change is foreseen in policy areas and initiatives under the Green Deal, noteworthy: 

- the revision of the Construction Products Regulation (Regulation (EU) No 

305/20116) and the launch of the 'renovation wave' initiative in the construction 

sector addressing challenges of more efficient and affordable energy and resources 

throughout the life cycle of buildings. 

- the new Circular Economy Action Plan (COM (2020) 98 final7) and the new Industrial 

Strategy for Europe (COM(2020) 102 final8) intending to accelerate the transition 

of the EU industry to a sustainable model based on the principles of circular 

economy and announcing the launch of a new initiative for a Sustainable Built 

Environment. 

In the framework of Administrative Arrangements between the European Commission’s 

Joint Research Centre (JRC) and the Directorate-General for Internal Market, Industry, 

Entrepreneurship and SMEs (DG GROW), the Safety and Security of Buildings Unit of the 

JRC is involved in the identification of further research needs for the adaptation of structural 

design to climate change. The activities acknowledge the importance of standardisation in 

strengthening Europe’s resilience to the impact of a changing climate as an instrument to 

regulate the construction sector. Of major relevance to the construction sector is the role 

of the Eurocodes9 that are a set of European standards (EN 1990 to EN 1999) for structural 

design. This work goes beyond the developments within the Mandate M/515 EN10 for a 

detailed work programme for amending existing Eurocodes and extending the scope of 

structural Eurocodes.  

The JRC Technical Report “Thermal design of structures and the changing climate” presents 

the work of JRC’s scientific network on adaptation of structural design to climate change 

towards a methodology for new thermal design maps for structural design considering the 

changing climate. The report first outlines the EU Strategy on adaptation to climate change, 

highlighting the ongoing action plan for adapting the European standards to a changing 

climate. It presents the general concept of the definition of thermal actions for structural 

design within the Eurocodes and discusses the potential implications of the thermal actions 

changes in structural design. It also presents a case study on future variations of climate 

 
1As defined by the Statistical classification of economic activities in the European Community (NACE) F section in 

Eurostat 
2EUROSTAT 2018, Structural Business Statistics 
3https://ec.europa.eu/growth/single-market_en  
4https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-

01aa75ed71a1.0002.02/DOC_1&format=PDF  
5https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en 
6Regulation (EU) No 305/2011 laying down harmonised conditions for the marketing of construction products and 

repealing Council Directive 89/106/EEC  
7https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-

01aa75ed71a1.0017.02/DOC_1&format=PDF 
8https://ec.europa.eu/info/sites/info/files/communication-eu-industrial-strategy-march-2020_en.pdf 
9The Eurocodes are a set of European standards (EN 1990 – EN 1999) for structural design. They provide common 

rules for the design of construction works and for checking their strength and stability against live extreme 
loads, such as fire and earthquakes. More details at the European Commission website “Eurocodes: Building 
the future” (https://eurocodes.jrc.ec.europa.eu/) 

10M/515 Mandate for amending existing Eurocodes and extending the scope of structural Eurocodes (12 December 
2012); http://eurocodes.jrc.ec.europa.eu/doc/mandate/m515_EN_Eurocodes.pdf  

https://ec.europa.eu/growth/single-market_en
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF
https://ec.europa.eu/info/sites/info/files/communication-eu-industrial-strategy-march-2020_en.pdf
https://eurocodes.jrc.ec.europa.eu/
http://eurocodes.jrc.ec.europa.eu/doc/mandate/m515_EN_Eurocodes.pdf
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factors that would directly affect the design values for thermal actions in the standards. A 

methodology for developing thermal maps for structural design taking into account the 

influence of climate change is also presented.  

The report presents scientific and technical background intended to stimulate debate and 

serves as a basis for further work to study the implications of climate change on the thermal 

design of structures. 

The editors and authors have sought to present useful and consistent information 

in this report. However, users of information contained in this report must satisfy 

themselves of its suitability for the purpose for which they intend to use it. 

The report is available to download from the “Eurocodes: Building the future” website 

(http://eurocodes.jrc.ec.europa.eu). 

Ispra, July 2020 
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Abstract 

The report presents the work of the Joint Research Centre’s scientific network on adaptation 

of structural design to climate change focusing on the thermal design of buildings and 

infrastructure considering the changing climate. It presents scientific and technical 

background intended to stimulate debate and serve as a basis for further work to study 

the implications of climate change on the thermal design of structures. 

The report first outlines recent EU policies in support of sustainability and climate resilience 

of infrastructure and buildings. It highlights how the construction sector is encouraged to 

adopt more sustainable and circular economy practices, extend the lifetime of buildings 

and strive for better performance of buildings and infrastructure throughout their life cycle. 

It further emphasises the ongoing action plan to adapt the European standards to a 

changing climate. 

Following, the report explains the concept of the definition of thermal actions for the design 

of buildings and infrastructure using the European standards for structural design, i.e. the 

Eurocodes. It is showed that the adaptation of structural design to the implications of 

climate change is strongly linked with the assessment of changing characteristics of climatic 

actions (including thermal ones) in terms of the Eurocodes concept for the variable climatic 

actions. 

Variations in temperature that would directly affect the design values for thermal actions 

in the European standards are studied in depth for the case study of Italy. It is concluded 

that an increase in the maximum and minimum temperature used for structural design is 

expected all over Italy. It is discussed that structures, as bridges for example, are expected 

to be influenced by stresses from extreme temperatures and thus, should be designed for 

temperature amplitudes justified from climate projections for the actual region. However, 

the current European maps for thermal design are based on climatic data which, with some 

exceptions, are mostly 10 to 15 years old and ignore the potential effects of climate change. 

Thus, new European maps for the thermal design of structures should be developed 

using data that project more realistically the future climate. To this end, the authors 

present a methodology for developing thermal maps for structural design taking into 

account the influence of the changing climate and present an implementation of the 

methodology using the example of Italy. 

The figure below shows the landscape of dry earth and the bridge viaduct during extreme drought 
in Entrepenas reservoir in Guadalajara, Castilla, Spain (© Q - stock.adobe.com) 
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1 Introduction 

Climate change is happening now and is expected to get worse in the future, even if global 

efforts to reduce emissions prove effective11. According to different observational records 

of global average annual near-surface (land and ocean) temperature, the last decade 

(2009–2018) was 0.91 °C to 0.96 °C warmer than the pre-industrial average12. Of the 18 

warmest years on record, 17 have occurred since 2000. Moreover, the average annual 

temperature for the European land area for the last decade was between 1.6 °C and 1.7 °C 

above the pre-industrial level, which makes it the warmest decade on record (EEA, 201913).  

The Special 2018 Report of the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 

2018)14 states, with high confidence, that global warming is likely to reach 1.5°C between 

2030 and 2052, if it continues to increase at the current rate. Figure 1 presents the human 

experience of present-day warming, as discussed in the Special 2018 IPCC Report. It is 

evident that Europe is expected to experience, in several areas, warming of 1.5°C and 

higher.  

Figure 1. Human experience of present-day warming. Different shades of pink to purple indicated 
by the inset histogram show estimated warming for the season that has warmed the most at a given 
location between the periods 1850–1900 and 2006–2015, during which global average temperatures 

rose by 0.91°C in this dataset (Cowtan and Way, 2014) and 0.87°C in the multi-dataset average 
(Table 1.1 and Figure 1.3). The density of dots indicates the population (in 2010) in any 1° × 1° grid 
box. The underlay shows national Sustainable Development Goal (SDG) Global Index Scores 
indicating performance across the 17 SDGs. Hatching indicates missing SDG index data (e.g., 
Greenland). The histogram shows the population living in regions experiencing different levels of 
warming (at 0.25°C increments) (Figure 1.1 in IPCC, 2018)15 

 

The consequences of climate change are being felt increasingly in Europe and worldwide. 

Extreme weather and climate-related risks to health, livelihoods, food security, water 

supply, human security, and economic growth are projected to increase with global 

warming of 1.5°C and increase further with 2°C (IPCC, 2018). Moreover, the frequency 

 
11European Environment Agency (EEA): https://www.eea.europa.eu/themes/climate-change-adaptation  
12The pre-industrial period refers to the multi-century period prior to the onset of large-scale industrial activity 

around 1750. The reference period 1850–1900 is used to approximate pre-industrial global mean surface 
temperature (IPCC, 2018) 

13European Environment Agency (EEA): https://www.eea.europa.eu/data-and-maps/indicators/global-and-
european-temperature-9/assessment  

14Intergovernmental Panel on Climate Change (IPCC): http://www.ipcc.ch/report/sr15/ 
15 The caption of the figure is as provided in IPCC, 2018 

https://www.eea.europa.eu/themes/climate-change-adaptation
https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-9/assessment
https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-9/assessment
http://www.ipcc.ch/report/sr15/
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and intensity of extreme weather events have higher likelihood due to climate change. As 

noted in the European Environment Agency’s (EEA) “The European environment — state 

and outlook 2020” report (EEA, 2020) “ […] Europe faces environmental challenges of 

unprecedented scale and urgency”. 

Efforts to control COVID-19 pandemic led to a drop on carbon emissions, and to localized 

improvements in air quality as revealed by Copernicus, the EU's climate monitoring service. 

However, the World Meteorological Organization (WMO)16 states that is too early to assess 

the implications of emissions decline for long-term climate change. Moreover, a temporary 

slowdown of anthropogenic emissions has little impact on concentrations of greenhouse 

gases, which are responsible for long-term climate change. Thus, the United Nations claim: 

“[…] climate change is not on pause”17, i.e., climate patterns will continue to change, unless 

there are worldwide sustainable adjustments towards a more climate-friendly economy and 

individual practices. 

Developing and implementing policies on mitigation and adaptation to climate change are 

worldwide challenges to communities and economies in the 21st century. Actions to adapt 

to the impacts of climate change should, however, be tailored to the specific circumstances 

in different parts of the world. The assessment of the impact of climate change on the built 

environment, and the identification of adaptation needs of infrastructure and buildings, are 

key aspects so as to set out adaptation strategies to climate change.  

To this end, state-of-the-art building standards can play an important part in strengthening 

Europe’s resilience and preparedness to the impact of the changing climate in the 

construction sector. In this context, the Eurocodes are a set of 10 European Standards, 

that provide common technical rules for the structural design of buildings and other civil 

engineering works and construction products. The Eurocodes cover in a comprehensive 

manner the basis of design, actions on structures, the principal construction materials, all 

major fields of structural engineering and a wide range of types of structures and products.  

The Eurocodes are the product of a long procedure of bringing together and harmonising 

the different design traditions in the EU Member States, leading to more uniform levels of 

safety in construction in Europe. At the same time, the Member States keep the exclusive 

competence and responsibility for the levels of safety of the construction works, since the 

Eurocodes are flexible enough to account for differences in national applications. In fact, 

the Eurocodes include the Nationally Determined Parameters (NDPs), which are the 

parameters used for design that are left open in the Eurocodes for national choice, in order 

to take into account country differences in geographical, geological or climatic conditions, 

different design cultures and procedures for structural analysis, as well as different 

requirements for safety levels in the Member States.  

The Safety and Security of Buildings Unit of the Joint Research Centre (JRC) conducts 

pre-normative research towards European standards for safety and security of the built 

environment, also addressing sustainability and resource and energy efficiency issues. The 

Unit is involved in activities for the adaptation of structural design to climate change in the 

framework of Administrative Arrangements between the Directorate-General for Internal 

Market, Industry, Entrepreneurship and SMEs (DG GROW) and the JRC on support to 

policies and standards for sustainable construction. The activities focus, among other 

topics, on the update and harmonisation of the European design maps for climatic (wind, 

snow and thermal) actions taking into account the changing climate and used for designing 

with the Eurocodes. 

In this context, the JRC established a scientific network to promote an interdisciplinary 

collaboration between experts in the fields of climate change, structural design, standard 

writers and policy makers. The members in the network are:  

— The chairmen of two Sub-Committees (SC) of CEN/Technical Committee 250 

“Structural Eurocodes” (CEN/TC 250)18 relevant to the adaptation to climate change: 

 
16 https://public.wmo.int/en/media/news/economic-slowdown-result-of-covid-no-substitute-climate-action 
17 https://www.un.org/sustainabledevelopment/climate-change/ 
18The European Standardisation Committee (CEN) Technical Committee (TC) 250 has the overall responsibility 

for all CEN work on structural design codes. CEN/TC250 had developed and is maintaining the Eurocodes. 

https://public.wmo.int/en/media/news/economic-slowdown-result-of-covid-no-substitute-climate-action
https://www.un.org/sustainabledevelopment/climate-change/
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CEN/TC 250/SC 10 “Basis of Structural Design” and CEN/TC 250/SC 1 “Actions on 

Structures” and the convenor of the CEN/TC 250 Horizontal Group (HG) “Bridges”. The 

chairman of SC10 and the convenor of HG “Bridges” also represent the University of 

Pisa in Italy. Both had previously participated in the European Snow Load Research 

Project (ESLRP, 1998) that produced the European snow load map incorporated in 

Annex C to EN 1991-1-319 (ESLRP, 1998). 

— The Project Team (PT) Leader for task SC1.T5 “Climate change”, under Mandate M/515 

on the second generation of the Eurocodes, also representing the Czech Technical 

University in Prague in the Czech Republic.  

— Experts on climatology, structural design, structural corrosion and economic 

assessment of climate adaptation from the Euro-Mediterranean Centre on Climate 

Change (CCMC) in Italy, the Czech Technical University in Prague, Delft University of 

Technology in the Netherlands, Coimbra University in Portugal, University of 

Nottingham in the United Kingdom and University of Nantes in France. 

— Representatives of the Directorate-General for Climate Action (DG CLIMA), DG GROW 

and the JRC dealing with adaptation strategies to climate change, European standards, 

climate change projections and impact models. 

The scientific network has already performed a pilot project on definition of snow load maps 

for structural design by use of recorded climatic data and climate change projections. A 

procedure for the derivation of snow load on the ground from data on daily temperatures 

and precipitation has been developed (Croce et al., 2018), which allows to derive 

characteristic snow loads from climate change projections and thus, to evaluate the future 

trends in the variation of snow loads. The work concludes that a European project on snow 

load maps shall be started as soon as possible, in order to update the existing snow load 

maps in Annex C of EN 1991-1-3 and to help National Authorities redraft their national 

snow load maps. The procedure established in the pilot project for defining the snow load 

from climate change projections allows to produce new national snow load maps in a 

harmonised way by using the best available knowledge. Thus, such a consistent 

development of maps will contribute to the reduction of inconsistencies at borders between 

neighbouring countries. 

In June 2017, the network initiated work on thermal actions and the climate change. The 

initial discussion among the network emphasised that changes in the climate factors will 

directly affect the design values for climatic actions in the standards. The implications of 

periodic revisions of climate maps were underlined, namely the costs of establishing new 

climate maps, the enforcement of the new climate maps in the national regulatory 

frameworks for the Eurocodes and the resulting need for assessment and eventual 

retrofitting of existing structures. The work of the scientific network focused on a pilot 

project for deriving new thermal design maps for selected scenario(s) of climate change 

for the case of Italy.  

The scientific network also conducted work focused on the expected implications of climate 

change on the corrosion of structures. The network reviewed available studies on the 

corrosion of reinforced concrete and steel structures due to climate change, and assessed 

the corrosion impact, costs and effectiveness of adaptation strategies. Further research 

needs regarding the impact of future climate change on the corrosion of buildings at the 

European level were identified. The results of this study are published in the JRC Report 

“Expected implications of climate change on the corrosion of structures” (2020)20. Starting 

in 2020, the scientific network will focus on the definition of wind loading, taking into 

account the changing climate. 

  

 
19Eurocode 1: Actions on structures - Part 1-3: General actions - Snow loads, Annex C: European Ground Snow 

Load Maps 
20 M.L. Sousa, S. Dimova, A. Athanasopoulou, G. Rianna, P. Mercogliano, V.Villani, M. Nogal, H. Gervasio, L. 

Neves, E. Bastidas-Arteaga, G. Tsionis. Expected implications of climate change on the corrosion of 
structures. Publications Office of the European Union, 2020 (in press) 
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2 Adaptation of structural design to climate change  

2.1 Policy context 

Adaptation to climate change refers to an anticipatory approach to the adverse effects 

of climate change by taking appropriate action to prevent or minimise the damage they 

can cause, or by taking advantage of opportunities that may arise. Adaptation measures 

may extend from building flood defences and raising the levels of embankment to 

developing drought-tolerant crops or adapting building codes to future climate conditions 

and extreme weather events. Well planned, early adaptation action may save money and 

lives later21. 

The JRC PESETA IV22 study showed that ecosystems, people and economies in the EU will 

face major impacts from climate change if we do not urgently mitigate greenhouse gas 

emissions or adapt to climate change. It is demonstrated that limiting global warming to 

well below 2°C would considerably reduce climate change impacts in Europe. Adaptation 

to climate change would further minimize unavoidable impacts in a cost-effective manner, 

with considerable co-benefits from nature-based solutions. 

The European Commission already in 2013 adopted “The EU Strategy on Adaptation to 

Climate Change” (COM (2013) 21623), presenting a set of measures to be taken from 

local to regional and national levels for improving the EU’s preparedness for current and 

future climate impacts, anticipating the adverse effects of climate change24. The 

accompanying Staff Working Document “Adapting infrastructure to climate change” 

(SWD (2013) 137 final25) recognised a group of key vulnerable sectors in the EU, like 

energy and transport infrastructure, as well as buildings. The document stressed the 

central role played by technical standards in this area. In particular, the Eurocodes were 

considered a suitable instrument for addressing climate resilience in different infrastructure 

sectors. 

The strategy has been welcomed by the Member States and positively evaluated in 2018 

(SWD(2018) 461 final26). Even though all Member States adopted an adaptation strategy27, 

it was shown that Europe is still susceptible to climate impacts within and outside its 

borders and there are areas where more work needs to be done to prepare vulnerable 

regions and sectors. 

In December 2019, the European Commission presented the European Green Deal28 

(COM (2019) 64029), an ambitious roadmap aiming to make Europe the world’s first 

climate-neutral continent by 2050. The Green Deal supports a sustainable growth strategy, 

transforming the EU into a modern, resource-efficient and competitive economy. Figure 2 

illustrates the various policies areas of the Green Deal strategy. The financing pillars of the 

transition are highlighted in blue, i.e., the European Green Deal's Investment Plan (EGDIP, 

COM(2020) 21 final30) and a Proposal for Regulation establishing the Just Transition Fund 

(COM(2020) 22 final31). 

The Green Deal is the one of the six priorities of the European Commission’s 2020 Work 

Programme (COM(2020) 37 final32). The Programme was adjusted in May 2020 

 
21Adaptation to climate change as explained by the Directorate-General for Climate Action (DG CLIMA) web 

resources: https://ec.europa.eu/clima/policies/adaptation_en  
22More details at: https://ec.europa.eu/jrc/en/peseta-iv  
23 https://ec.europa.eu/transparency/regdoc/rep/1/2013/EN/1-2013-216-EN-F1-1.Pdf 
24https://ec.europa.eu/clima/sites/clima/files/docs/eu_strategy_en.pdf  
25 https://ec.europa.eu/clima/sites/clima/files/adaptation/what/docs/swd_2013_137_en.pdf 
26 https://ec.europa.eu/info/sites/info/files/swd_evaluation-of-eu-adaptation-strategy_en.pdf 
27https://climate-adapt.eea.europa.eu/countries-regions/countries   
28https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en   
29 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN 
30 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0021 
31 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0022 
32 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:0037:FIN 

https://ec.europa.eu/clima/policies/adaptation_en
https://ec.europa.eu/jrc/en/peseta-iv
https://ec.europa.eu/clima/sites/clima/files/docs/eu_strategy_en.pdf
https://climate-adapt.eea.europa.eu/countries-regions/countries
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
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(COM(2020) 440 final33), as part of Europe’s Recovery Plan (COM(2020) 456 final34) to the 

COVID-19 pandemic. The EU’s recovery aims to guide and build a more sustainable, 

resilient and fairer Europe for the next generation. The green and digital transitions are 

considered even more important challenges in the aftermath of the COVID-19 crisis. 

In the heart of the Green Deal is the Commission’s proposal for the first European Climate 

Law (COM (2020) 80 final35). The proposal aims to write into law, the goals set out in the 

European Green Deal for Europe’s economy and society, ensuring that all EU policies 

contribute to this goal and all sectors of the economy and society play their part. In parallel, 

the European Climate Pact36 is one of the first climate action initiatives to be launched 

under the Green Deal and an effort for sharing information, showcasing solutions and 

eventually engaging citizens and all parts of society in climate action. It is expected to be 

launched in the last quarter of 2020.  

Figure 2. The European Green Deal (COM(2019) 640) 

 

Another one of the main blocks of the European Green Deal is the New Circular Economy 

Action Plan  for a cleaner and more competitive Europe, adopted in March 2020 (COM 

(2020) 98 final37). Focus is given on the sectors that use most resources and where the 

potential for circularity is high, including construction and buildings.  

The climate change challenge also puts additional pressure on achieving greater efficiency 

in buildings. Management of cities facing accelerated population growth will be a major 

challenge: modern technology will play a key role in enabling resilient infrastructures for 

more efficient services and contribute to combating climate change. In this respect, the EU 

Industrial Strategy (COM(2020) 102 final38) adopted in March 2020, supports the twin 

challenge for a green and digital industrial transformation. A key aim will be to stimulate 

the development of new markets for climate neutral and circular products.  

 
33 https://ec.europa.eu/info/sites/info/files/cwp-2020-adjusted_en.pdf 
34 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:456:FIN 
35 https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588581905912&uri=CELEX:52020PC0080 
36 https://ec.europa.eu/clima/policies/eu-climate-action/pact_en; the European Climate Pact was open for public 

consultation from 4th March to 27th May 2020. 
37 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A98%3AFIN 
38 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0102 

https://ec.europa.eu/clima/policies/eu-climate-action/pact_en
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Many future key EU legislation and policies at the heart of the European Green Deal include 

the adaptation to the impacts of climate change39. In particular, the Commission aims to 

put forward a new, more ambitious, Adaptation Strategy in early 2021, building on the 

current one, which was adopted in 2013 and positively evaluated in 2018. The background 

framework of the new strategy is presented in a blueprint document that accompanies the 

public consultation of the new EU strategy40. The new adaptation strategy will be in full 

synergy with the other strategic initiatives under the European Green Deal relevant to the 

construction sector such as, the Renovation Wave41 and the Sustainable Industry. 

In parallel, the Commission will review the Construction Products Regulation 

(Regulation (EU) No 305/201142) to ensure the lowest cost for decarbonisation of the built 

environment, through (i) the design of new and renovated buildings in line with the 

principles of a circular economy, (ii) the increase of digitalisation, climate-proofing, and 

clean energy use, and (iii) the optimisation of lifecycle performance and life expectancy of 

built assets.  

Moreover, the Commission will launch a new comprehensive Strategy for a Sustainable 

Built Environment to exploit the potential for increasing material efficiency and reducing 

climate impacts. This Strategy will ensure coherence across the relevant policy areas such 

as climate, energy and resource efficiency, management of construction and demolition 

waste, accessibility, digitalisation and skills. Circularity principles will be promoted 

throughout the lifecycle of buildings by, among others: 

— Addressing the sustainability performance of construction products in the context of the 

revision of the Construction Product Regulation43. 

— Promoting measures to improve the durability and adaptability of built assets in line 

with the Circular economy - Principles for buildings design44, published in February 

2020.  

Using Level(s)45 which is a voluntary reporting framework to improve the sustainability of 

buildings, in order to integrate life cycle assessment in public procurement and to explore 

the appropriateness of setting of carbon reduction targets and the potential of carbon 

storage.  

As illustrated in Figure 3, the EU climate and environmental policy landscape increasingly 

connects the environmental, social and economic dimensions of sustainability through a 

range of policies, strategies and instruments aiming to address the short-, medium- and 

long-term time horizons. The policies, strategies and instruments mostly related to climate 

change have been discussed above where as several others complete the sustainability 

policy landscape, as the 7th Environment Action Program46, the Core Environmental 

Directives, the 2030 Climate & Energy Framework47, the Energy Union and the climate 

neutrality strategy48. The EU also plans to continue leading the way to a circular economy 

at the global level and use its influence, expertise and financial resources to implement the 

2030 Sustainable Development Goals49.  

 
39https://ec.europa.eu/clima/policies/adaptation_en  
40https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12381-EU-Strategy-on-Adaptation-

to-Climate-Change/public-consultation 
41 https://www.europarl.europa.eu/legislative-train/theme-a-european-green-deal/file-renovation-wave 
42 Regulation (EU) No 305/2011 laying down harmonised conditions for the marketing of construction products 

and repealing Council Directive 89/106/EEC 
43 https://ec.europa.eu/growth/sectors/construction/product-regulation/review_en 
44 https://ec.europa.eu/docsroom/documents/39984 
45 https://ec.europa.eu/environment/eussd/buildings.htm  
46 https://www.eea.europa.eu/policy-documents/7th-environmental-action-programme 
47 https://ec.europa.eu/clima/policies/strategies/2030_en 
48 https://ec.europa.eu/clima/policies/strategies/2050_en  
49 https://sustainabledevelopment.un.org/post2015/transformingourworld  

https://ec.europa.eu/clima/policies/adaptation_en
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12381-EU-Strategy-on-Adaptation-to-Climate-Change/public-consultation
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12381-EU-Strategy-on-Adaptation-to-Climate-Change/public-consultation
https://ec.europa.eu/growth/sectors/construction/product-regulation/review_en
https://ec.europa.eu/docsroom/documents/39984
https://ec.europa.eu/environment/eussd/buildings.htm
https://ec.europa.eu/clima/policies/strategies/2050_en
https://sustainabledevelopment.un.org/post2015/transformingourworld
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Figure 3. The emerging EU environmental and climate policy landscape (EEA: SOAR, 2020) 

 

2.2 Standardisation work  

The impacts of climate change are particularly pertinent to infrastructure and buildings 

given their essential role in the functioning of our societies and economies. They are 

characterised by a long lifespan and high economic value and thus need to adapt to, and 

be resilient to future impacts of a changing climate. Buildings and infrastructure can be 

vulnerable to climate change because of their design (e.g. because of their low resistance 

to storms) or location (e.g. in flood-prone areas, landslides, avalanches). They can be 

damaged or rendered unfit for use by any changing climatic condition or extreme weather 

event: rising of sea level, extreme precipitation and floods, occurrences of extreme low or 

high temperatures, heavy snowfalls, strong winds, etc. (SWD(2013) 137 final50). 

In view of the central role European technical standards can play in addressing climate 

resilience of infrastructures and buildings, assessment of the impact of climate change on 

new and existing structures is a key aspect in the future evolution of standards 

(SWD(2013) 137 final). The Commission is working with European standardisation 

organisations to look at how far standards, codes and other rules need to be strengthened 

so that transport, energy, buildings and other infrastructure can cope with climate impacts 

and extreme events. This is indeed intended for the second generation of the Eurocodes 

(Mandate M/515 of the European Commission, 201251), and all other standards relevant to 

transport infrastructure, energy infrastructure, and buildings/construction (Mandate M/526 

of the European Commission, 201452). 

In particular, the Mandate M/515 of the European Commission to the European 

Committee for Standardisation (CEN), requested the assessment of the climate change 

implications for the Eurocodes, the European standards for structural design. The work of 

CEN/Technical Committee 250 “Structural Eurocodes” (CEN/TC250) under the Mandate 

M/515 started in 2016 and the second generation of the Eurocodes is expected to be 

published by 2023. According to CEN/TC250 Response to Mandate M/515 (CEN/TC250, 

2013), the standardisation works relevant to the adaptation to climate change encompass: 

— Publication in 2017 of the final report of the Project Team SC1.T5 (PT5) “Climate 

change” (Fikke et al., 2017). It provides advice to the Eurocode writers on how to refer 

to and implement possible effects from the future changes in the climate in Europe. 

The report presents comprehensive analysis of the climate parameters of the Eurocodes 

and the related uncertainties.  

 
50 https://ec.europa.eu/clima/sites/clima/files/adaptation/what/docs/swd_2013_137_en.pdf 
51 https://ec.europa.eu/growth/tools-databases/mandates/index.cfm?fuseaction=search.detail&id=523 
52 https://ec.europa.eu/growth/tools-databases/mandates/index.cfm?fuseaction=search.detail&id=546 
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— Work of the Project Teams on the revision of the Eurocodes Parts on snow loading, wind 

actions and thermal actions.  

— On-going works by a Project Team on interdependence of climatic actions (wind, snow, 

thermal and atmospheric icing) and determination of relevant partial factors and load 

combination factors.  

The final report of the Project Team on SC1.T5 “Climate change” under Mandate M/515 

was published in 2017 and provided advice to the Eurocode writers on how to refer to and 

implement possible effects from the future changes in the climate in Europe. The report 

provided a comprehensive analysis of the climate parameters of the Eurocodes and of the 

related uncertainties. It referred to the most recent reports and scientific findings available, 

as well as to various socio-economic and other summary reports.  

The report concluded that the science of global climate change is still not sufficiently 

developed to identify any substantial methods for quantification of extreme values (with 

given return periods) for neither temperature, wind, rain, snow nor any combination of 

these, to be valid for the forecast of changing climate in Europe. It recommended 

re-examining at regular intervals (no more than 10 years) the weather parameters 

significant for specification of characteristic values, by using conventional methods 

(extreme value analyses). However, it was highlighted that bridges and other structures 

influenced by stresses from extreme temperatures should be designed for temperature 

amplitudes which may be justified using climate projections for the actual region. The 

report also recommended emphasizing and adjusting the inspections and maintenance 

schemes for structures approaching their expected life time. 

The Mandate M/526 of the European Commission requested the European Standards 

Organisations (ESOs) to contribute to building and maintaining a more climate resilient 

infrastructure throughout the EU in the three priority sectors: transport infrastructure, 

energy infrastructure, and buildings/construction. The work performed under this mandate 

does not addresses the Eurocodes, which are subject to Mandate M/515 and includes:  

— Establishing the Adaptation to Climate Change Coordination Group (ACC-CG)53 by 

CEN-CENELEC, to support the implementation of the EU Strategy on Adaptation to 

Climate Change. 

— Drafting, testing and issuing of the CEN CENELEC document a 'Guide for addressing 

climate change adaptation in standards'. Guide 3254 is intended to help standard writers 

address the consequences and implications of climate change. It includes a simple 

checklist to help establish whether climate change adaptation is relevant to a particular 

standardisation activity and a decision tree to help identify which actions should be 

taken. 

— Drafting, testing and issuing of the NEN/CEN CENELEC document “Tailored guidance 

for standardisation technical committees: how to include climate change adaptation in 

European infrastructure standards” (draft 9, 30 April 2019)55. The Guide is designed 

specifically for writers of CEN-CENELEC infrastructure standards (and similar 

documents). 

— Identification of twelve standards as priority for revision during the first phase of the 

works on the Mandate M/526.  

The work of the ACC-CG is expected to finish at the beginning of 2022. Its scope was 

extended in 2019 to cover further infrastructure standards and standards on adaptation 

options, as well as to facilitate the dialogue between meteorological institutions and the 

standard-writing communities (including under Eurocodes) in an effort to improve the use 

of climate models in standardisation. 

It shall be mentioned, that development of maps of climatic actions for design with the 

Eurocodes taking into account the implications of climate change, is not planned neither 

under Mandate M/515, nor under Mandate M/526. In view of this fact, the activities of the 

 
53 https://www.cencenelec.eu/standards/topics/environment/pages/climatechangeadaptation.aspx  
54 https://www.cencenelec.eu/standards/Guides/Pages/default.aspx 
55https://www.nen.nl/Standardisation/Adaptation-to-Climate-Change/Mandated-project-Adaptation-to-Climate-
Change.htm  

https://www.cencenelec.eu/standards/topics/environment/pages/climatechangeadaptation.aspx
https://www.nen.nl/Standardization/Adaptation-to-Climate-Change/Mandated-project-Adaptation-to-Climate-Change.htm
https://www.nen.nl/Standardization/Adaptation-to-Climate-Change/Mandated-project-Adaptation-to-Climate-Change.htm
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scientific network on implications of the climate change on structural design, presented in 

the Introduction of this report, support important synergies with the Mandates M/515 and 

M/526.  

2.3 Conclusions 

The EU has been putting in place a comprehensive package of strategies, plans and 

measures, and a legislative and regulatory framework as well, for addressing sustainability 

and climate resilience of infrastructures and buildings. Notably, European technical 

standards play a central role in strengthening Europe’s resilience to the impact of climate 

change since they are important instruments to regulate the construction sector and to 

guarantee the safety of investments in it. Thus, adaptation to the unavoidable impacts of 

climate change is a key aspect to take into account in the future evolution of standards 

and in particular the Eurocodes, being the state-of-the-art European standards for the 

structural design of buildings and other construction works. 
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3 Thermal actions in the Eurocodes and the climate change 

3.1 General 

Standardisation plays an important part in strengthening Europe’s resilience to the impact 

of a changing climate, since it is an important instrument to regulate the construction 

sector. In this context, the publication of the Eurocodes by the European Committee for 

Standardisation (CEN) in May 2007, marked a major milestone in the European 

standardisation for construction.  

The Eurocodes are a set of European standards (EN 1990 – EN 1999) for structural design. 

They provide common rules for the design of construction works and for checking their 

strength and stability against live extreme loads, such as fire and earthquakes. The 

Eurocodes are state of the art reference design codes for buildings, infrastructure and other 

civil engineering structures, aiming for more uniform levels of safety in construction in 

Europe. All Eurocodes’ Parts were published in 2007, while their implementation in the 

European countries started in 2010. Currently, there is considerable interest in the use of 

the Eurocodes outside the EU and several third countries are already in the process of or 

have already adopted them as national standards. 

The Eurocodes are used in different regulatory systems due to their flexibility to adapt to 

each country’s specific conditions and construction practice. In fact, the Eurocodes take 

into account country differences in geographical, geological or climatic conditions, different 

design cultures and procedures for structural analysis. They are already implemented 

within most of the CEN member countries (Dimova et al., 2015) and currently several third 

countries have adopted or are considering adopting them at national level56.  

The Commission Recommendation of 11th December 2003 (2003/887/EC)57 on the 

implementation and use of the Eurocodes for construction works and structural 

construction products recommends undertaking research to facilitate the integration of the 

latest developments in scientific and technological knowledge into the Eurocodes. In 

December 2012, the Directorate-General for Internal Market, Industry, Entrepreneurship 

and SMEs (DG GROW) issued the Mandate M/515 EN for detailed work programme for 

amending existing Eurocodes and extending the scope of structural Eurocodes. The 

Mandate includes, among other topics, standardisation works relevant to climate change. 

This second generation of the Eurocodes is expected to be published after 2023. The 

Directorate-General for Climate Action (DG CLIMA) issued in 2014 the Mandate M/526 EN, 

requesting the European Standardisation Organisations (ESO) to initiate standardisation 

activities in the fields not covered by the Mandate M/515 EN, in support to the 

implementation of the EU Strategy on Adaptation to Climate Change. 

One of the main concepts of the Eurocodes is the Design Working Life (DWL), which is 

defined as the period for which the structure shall be used with anticipated maintenance 

but without major repair (EN 1990 “Eurocode: Basis of structural design”, Section 1.5.2.8). 

EN 1990 gives indicative design working lives for design purposes for various types of 

structures. The DWL of buildings and other common structures designed with the 

Eurocodes is 50 years, and the DWL of monumental buildings and bridges is envisaged as 

100 years. Consequently, buildings and common structures designed in 2020 will have to 

withstand climatic actions (snow, wind, thermal) and extreme events expected in 2070, 

while bridges and monumental buildings designed in 2020 will have to withstand climatic 

actions and extreme events expected in 212058. Moreover, Section 2.4(1) of EN 1990 ‘Basis 

of design’ states that “the structure shall be designed such that deterioration over its design 

working life does not impair the performance of the structures below that intended, having 

due regard to its environment and the anticipated level of maintenance”.  

 
56 https://eurocodes.jrc.ec.europa.eu/showpage.php?id=8.map&alone  
57 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32003H0887 
58 Concept of DWL as explained in the document “Guidance on the climate Proofing of Infrastructure Investment 

Projects in the period 2021-2027” by DG CLIMA (draft version 16).  

https://eurocodes.jrc.ec.europa.eu/showpage.php?id=8.map&alone


12 

 

3.2 Definition of the thermal actions in the Eurocodes 

Generally, the effect of thermal action on a structure is a complex issue that depends on 

the geographical location and meteorological conditions at the specific location of the 

structure. Hence, this type of load is difficult to define precisely (Radovanovic and Grebovic, 

2015). The magnitude of the thermal effects depends on local climatic conditions, together 

with the orientation of the structure, the overall mass of the structure, external finishes 

(e.g. cladding in buildings), and in the case of buildings, heating and ventilation regimes 

and thermal insulation. Daily and seasonal changes in shade air temperature, solar 

radiation, reradiation, etc., will result in variations of the temperature distribution within 

individual elements of a structure. 

EN 1991 “Eurocode 1: Actions on structures” provides comprehensive information on 

actions to consider in the design of buildings and other civil engineering works. It comprises 

three parts that deal with climatic actions:  

— Part 1-3: General actions - Snow loads;  

— Part 1-4: General actions - Wind actions; 

— Part 1-5: General actions - Thermal actions. 

EN 1991-1-5 “Eurocodes 1 – Actions on structures – Part 1-5: General actions – Thermal 

actions” gives the principles and rules for calculating thermal actions on buildings, bridges 

and other structures, including their structural elements. Principles needed for cladding 

and other appendages of buildings are also provided. Thermal actions on a structure (or a 

structural element) are those actions that arise from the changes of temperature fields 

within a specified time interval.  

The main representative value of a given climatic action is its characteristic value, based 

on the probability of 0.02 of its time-varying part being exceeded for a reference period of 

one year. This is equivalent to a mean return period of 50 years for the time-varying part. 

This definition of the characteristic value, given in EN 1990 “Basis of structural design”, is 

accepted in the relevant Parts of EN 1991 dealing with climatic actions. It is noted that the 

draft of EN 1990 for the second generation of the Eurocodes does not change the definition 

of the characteristic value of climatic actions. 

The characteristic values of thermal actions defined in EN 1991-1-5 used in the design of 

structures which are exposed to daily and seasonal climate change are: 

— Tmax: maximum shade air temperature with an annual probability of being exceeded of 

0.02; 

— Tmin: minimum shade air temperature with an annual probability of being exceeded of 

0.02. 

The uncertainties inherent in the climatic actions defined in the Eurocodes are considered 

in Section 4.2. The clauses of the Eurocodes which specify the Nationally Determined 

Parameters (NDPs) that introduce the maps for thermal actions, are found in normative 

Annex A: “Isotherms of national minimum and maximum shade air temperatures” (A.1(1) 

NOTE 1 of EN 1991-1-5). The NDP regulates the information (e.g. maps of isotherms) on 

both annual minimum and annual maximum shade air temperature. Annex A.1 (1) NOTE 

1 is a parameter left open in the Eurocodes for country-driven choices with regard to the 

maximum and minimum values of shade air temperatures. These temperatures are defined 

for the annual probability of being exceeded of 0.02 and are based on the minimum and 

maximum hourly temperature recorded at the mean sea level in open country.  

Annex A in EN 1991-1-5 includes also adjustments for other values of probabilities, heights 

above sea level and local conditions. Part 1-5 of EN 1991 also provides the NDPs 

6.1.3.2(1)59 and 7.2.1(1)60 that have a similar description to the NDP Annex A.1(1) NOTE 

1, i.e., give Information (e.g. maps of isotherms) on minimum and maximum shade air 

temperatures to be used in a country; the former is related to temperature changes in 

 
59 EN 1991-1-5, Section 6: Temperature changes in bridges 
60 EN 1991-1-5, Section 7: Temperature changes in industrial chimneys, pipelines, silos, tanks and cooling towers 
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bridges and the latter to temperature changes in industrial chimneys, pipelines, silos, tanks 

and cooling towers. Most countries have adopted the same map in the Annex A.1(1) NOTE 

1 as in the NDPs 6.1.3.2(1) and 7.2.1(1). 

3.3 Maps for thermal actions for design with the Eurocodes 

The Eurocodes, and in particular EN 1991, do not include maps for climatic actions as such 

task is left up to the competent authorities at national level (usually the National 

Meteorological Institute). Hence, the users of the Eurocodes are obliged to use the maps 

for climatic actions specified in the National Annexes to the Eurocodes of the country where 

the structure to be designed will be situated. Naturally, climatic data for use with the 

Eurocodes are not to be found independently by the users.  

The elaboration of maps for climatic actions is a complex procedure. The JRC Report 

“Elaboration of maps for climatic and seismic actions for structural design with the 

Eurocodes” (Formichi et al., 2016) presents the general principles for the derivation of the 

snow load maps based on the European research project on snow loads, carried out in the 

period 1996-1999. Further to considerations pertaining to the peculiarities of snow loads, 

the concept on the elaboration of snow load maps as presented in the report is generally 

valid also for thermal actions. Moreover, the report presents examples of the elaboration 

of maps for climatic actions in Greece, Bulgaria and Italy. 

The national implementation of the Eurocodes as regards the choice of NDPs relevant to 

definition of climatic actions, is analysed in the JRC report on the state of harmonised use 

of the Eurocodes (Sousa et al., 2019). The report concludes that as regards the definition 

of wind and thermal actions, a good harmonisation has been achieved with acceptance rate 

of the recommended values of 72% and 70%, respectively. As regards the definition of 

snow actions, the acceptance rate of the recommended values is 51%. The report further 

presents the state of national maps for snow, wind and temperature loads.  

Figure 4 presents an overview of the maps of minimum shade air temperatures, Tmin, 

adopted by the EU Member States where as Figure 5 presents the available maps of 

maximum shade air temperatures, Tmax, as analysed in the report. 

The national choices made by the EU Member States for the minimum shade air 

temperature range from a minimum value less than – 50°C, in Finland, to a maximum 

value equal to 0°C, in Portugal and in Croatia. The maximum shade air temperatures range 

from 24°C in the Orkney Islands in Scotland to 46°C in Bulgaria. 

Overall, there are good examples of harmonisation in border values of the thermal action 

maps for neighbouring countries. However, the collected maps present dissimilar layouts 

and reveal discontinuities at countries borderlines, mainly in the levels of the minimum 

shade air temperatures, making it difficult to harmonise the use of EN 1991-1-5 “Thermal 

actions” in neighbouring areas of different Member States. 
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Figure 4. Minimum shade air temperature maps adopted by the Member States (Map made with 
Natural Earth. Free vector and raster map data @ naturalearthdata.com. Data sourced from the 

JRC Nationally Determined Parameters database. Originally published at Sousa et al., 2019) 
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Figure 5. Minimum shade air temperature maps adopted by the Member States (Map made with 
Natural Earth. Free vector and raster map data @ naturalearthdata.com. Data sourced from the 

JRC Nationally Determined Parameters database. Originally published at Sousa et al., 2019) 

 

3.4 Conclusions 

As stated in Section 2.2 of this report, updated thermal action maps to be used with the 

Eurocodes and taking into account the changing climate are not expected to be produced 

by the on-going standardisation works under Mandate M/515 on the Eurocodes. 

Nevertheless, to proceed with adaptation of structural design to the implications of climate 

change, the expected changes in the climatic actions (including thermal ones) shall be 

assessed in terms of the Eurocodes concept for the characteristic values of the variable 

climatic actions.  

The production of European maps for definition of snow, wind and thermal loading taking 

into account the climate change will help National Competent Authorities to redraft their 

national annexes in a harmonised way by using the best available knowledge, and will 
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contribute to the reduction of the inconsistencies at border(s) between neighbouring 

countries. These maps can be published in informative annexes in the respective Eurocodes 

Parts of the second generation of the Eurocodes, as is currently the case of the European 

scale snow load map, which is incorporated in Annex C “European Ground Snow Load Maps” 

to EN 1991-1-3.  

Moreover, with respect to the final report of the Project Team on SC1.T5 “Climate change” 

under Mandate M/515, the most relevant conclusions related to thermal actions in line with 

the work presented in this report, are as follows: 

— Models for extreme value calculations of basic variables will need to be updated based 

on new knowledge on variation of climate parameters, both with respect to traditional 

input data as well as model data and analysing tools.  

— The trends on temperature show increasing values over all Europe, although still not 

satisfactory quantifiable with respect to standard purposes.  

— Bridges and other structures influenced by stresses from extreme temperatures should 

be designed for temperature amplitudes justified from climate projections for the actual 

region. 

— Estimates of characteristic values of climatic actions should be updated with intervals 

no longer than ten years.  
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4 Case study: expected variations in temperatures for Italy 

due to climate change 

4.1 General 

This chapter presents the expected variations in temperatures for Italy due to climate 

change. Italy has been selected as a case study to allow the comparison with the 

estimations displayed in Chapter 6 that were already underway at the time the work 

started.  

4.2 Methodology 

As mentioned in section 3.2, EN 1991 Part 1-5 “General actions - Thermal actions” defines 

the characteristic values of thermal actions (Fk) on buildings, bridges and other structures 

as the minimum and maximum shade air temperatures for the site with an annual 

probability of being exceeded of 0.02, which is equivalent to a mean return period of 50 

years. The Eurocodes specify the thermal actions at national level, e.g., from national maps 

of isotherms, to take into consideration different climatic conditions, as explained in detail 

in Chapter 3. 

For Italy, Froli et al. (1994) carried out a study serving as basis to derive the characteristic 

values of thermal actions. The authors, using observed data obtained from different 

sources for a time span between 1951 and 1990, performed a statistical interpretation of 

the yearly maximum and minimum temperature values. It should be noted that a more 

recent study (AghaKouchak et al., 2013) found that the expected variations in weather 

induced by global warming (IPCC, 2013), may entail substantial changes in terms of the 

mean temperature value, especially on the extreme tails of the temperature probability 

distribution function.  

This chapter presents the expected variations in temperature characteristic values for Italy 

due to climate change. For this case study, the variations in the characteristic value of Tmax, 

Tmin and diurnal temperature range (i.e. the difference between maximum and minimum 

daily temperature) are given by the climate simulations of the EURO-CORDEX ensemble 

(Giorgi & Kutowski, 2016; Kotlarski et al., 2014; Casanueva et al., 2016). EURO-CORDEX61 

is the European branch of the international CORDEX62 initiative, a program sponsored by 

the World Climate Research Program (WRCP)63 aimed to develop an internationally 

coordinated framework for regional climate change projections for all land regions 

worldwide.  

In the case study discussed in this chapter, that is, the assessment of the regional climate 

change projections with a higher resolution, downscaling was performed dynamically 

through Regional Climate Models (RCMs)64 nested on the Earth System Models (ESMs)65 

 
61http://www.euro-cordex.net/  
62CORDEX: Coordinated Regional Climate Downscaling Experiment (https://www.cordex.org/) 
63https://www.wcrp-climate.org/  
64A regional climate model (RCM) is a numerical climate simulation model forced by specified lateral and ocean 

conditions from a general circulation model (GCM) or observation-based dataset (reanalysis) that simulates 
atmospheric and land surface processes, while accounting for high-resolution topographical data, land-sea 
contrasts, surface characteristics, and other components of the Earth-system. Since RCMs only cover a 
limited domain, the values at their boundaries must be specified explicitly, referred to as boundary conditions, 
by the results from a coarser ESM (or Global Climate Model, GCM) or reanalysis; RCMs are initialized with 
the initial conditions and driven along its lateral-atmospheric-boundaries and lower-surface boundaries with 
time-variable conditions. RCMs thus downscale global reanalysis or GCM runs to simulate climate variability 
with regional refinements (source: American Meteorological Society, Glossary of meteorology). 

65Earth system model (ESM): A coupled atmosphere–ocean general circulation model (AOGCM) in which a 
representation of the carbon cycle is included, allowing for interactive calculation of atmospheric carbon 
dioxide (CO2) or compatible emissions. Additional components (e.g., atmospheric chemistry, ice sheets, 
dynamic vegetation, nitrogen cycle, but also urban or crop models) may be included. (source: IPCC Glossary) 

http://www.euro-cordex.net/
https://www.cordex.org/
https://www.wcrp-climate.org/
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for the area of interest (Wilby, 2017). To favour the comparison among the findings, the 

same domain and horizontal resolution were used by all components of the ensemble66. 

In the analysis performed for the case study of Italy, the variations between the reference 

current period 1971-2000 and the future time span 2056-2085 were considered. The latter 

selected span is illustrative of the midterm scenario of year 2070, the central point of the 

interval 2056-2085. The analysis took only into account a future Representative 

Concentration Pathway (RCP), that is, the RCP8.5. This scenario estimates an increase in 

the radiative forcing value of about 8.5 W/m2 at a global scale in the year 2100 with respect 

to preindustrial era, based on findings of socio-economic approaches. It represents, at the 

moment, the more pessimistic (i.e. high greenhouse gas emission scenario) but “business 

as usual” available scenario, proposed by the IPCC.  

Moreover, seventeen simulations with a horizontal resolution of 0.11° (about 12 km) were 

taken into account, see Table 1 below.  

Table 1. Summary of climate simulation chains, provided by EURO-CORDEX ensemble at 0.11°, 
considered in the case study. 

Code Institution Driving model (ESM) RCM 

1 CLMcom CNRM-CM5_r1i1p1 CCLM4-8-17_v1 

2 CNRM CNRM-CM5_r1i1p1 Aladin53 

3 SMHI CNRM-CM5_r1i1p1 RCA4_v1 

4 KNMI EC-EARTH RACMO22E_v1 

5 DMI EC-EARTH HIRHAM5_v1 

6 CLMcom EC-EARTH CCLM4-8-17_v1 

7 SMHI EC-EARTH RCA4_v1 

8 IPSL-INERIS IPSL-CM5A-MR_r1i1p1 WRF331F_v1 

9 SMHI IPSL-CM5A-MR_r1i1p1 RCA4_v1 

10 CLMcom HadGEM2-ES CCLM4-8-17_v1 

11 KNMI HadGEM2-ES RACMO22E_v1 

12 SMHI HadGEM2-ES RCA4_v1 

13 CLMcom MPI-ESM-LR_r1i1p1 CCLM4-8-17_v1 

14 MPI-CSC MPI-ESM-LR_r1i1p1 REMO2009 

15 SMHI MPI-ESM-LR_r1i1p1 RCA4_v1 

16 MPI-CSC MPI-ESM-LR_r1i1p1 REMO2009 

17 DMI NorESM1-M HIRHAM5 

 
66 In this case, as ESMs and RCMs vary among the different simulations, it is considered a multi-model ensemble; 

on the other side, experiments in which the same simulation chain is adopted but varying tuning and physical 
parameterizations are commonly known as single-model ensemble. 
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Table 1 presents the institutions that performed the climate simulations and the adopted 

global Earth System Models (ESM) that provided the boundary and the initial conditions to 

the Regional Climate Models (RCM) nested on the EURO-CORDEX domain. Details about 

the specific models are retrievable from EURO-CORDEX. 

For each simulation, each year and each grid point, maximum values of the maximum air 

temperature and minimum values of the minimum air temperature were extracted for the 

current and future time span. A generalized extreme value (GEV) distribution (Coles, 2001) 

was fitted to the obtained temperature series. Finally, the differences between the current 

and future temperature values with a mean return period of 50 years were computed. 

4.3 Estimated variations in Tmax characteristic values  

The variations in the characteristic values of Tmax, between the future and current time 

span are reported in Figure 6 in terms of the ensemble mean of the simulations. Figure 

7 and Figure 8 show the lower and higher boundaries of the confidence intervals computed 

respectively by subtracting or adding the square deviation to the mean value, obtained by 

considering all available simulations.  

In average terms, the analysis shows that an increase in Tmax can be expected on the entire 

domain. The mean value of the expected Tmax variation is 4°C (with a 25th percentile equal 

to 3.7°C, and a 75th percentile equal to 4.4 °C). The most remarkable variations are 

estimated in North-West and the Alpine Region (up to 6°C). Such trends confirm that 

mountain regions could represent areas that are particularly sensitive to climate change. 

The findings presented in Figure 7 confirm the generalised expected increase in the Tmax 

characteristic values. As expected, the lower boundary of the confidence interval presented 

lower values than the ensemble mean showed in Figure 6; the temperature mean value 

in Figure 7 is 1.9°C (with a 25th percentile equal to 1.4°C, and a 75th percentile equal to 

2.3 C). The temperature increase is quite homogeneous on the entire area; in this case, 

minor increases were assessed in the Adriatic Coasts and Central Sardinia, while higher 

growths are shown in the Alpine region and the Central-Meridional Apennine backbone in 

central Italy.  

In contrast, considerably higher values were estimated for the upper boundary of the 

confidence interval shown in Figure 8; the temperature mean value is equal to 6.3°C (with 

a 25th percentile equal to 5.8°C, and a 75th percentile equal to 6.7°C); in this case, spatial 

patterns confirm the tendencies reported in the previous cases.  

Moreover, it is interesting to note that in three cases, the interquartile range (IQR)67, i.e. 

the difference between the 75th and 25th percentiles, did not exceed the value of 1°C, thus 

returning a substantial homogeneity on the investigated domain. 

The spatial variation of the square deviation, Δ, for Tmax values in Italy is reported in Figure 

9. It is noted that there is no evident clustering; the values do not exceed 4°C and over 

areas where larger increases were assessed (Figure 6), Δ values are generally lower than 

2°C. 

 
67 The interquartile range, also called the midspread or middle 50%, or technically H-spread, is a measure of 
statistical dispersion, being equal to the difference between 75th and 25th percentiles 
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Figure 6. Expected variation in Tmax characteristic values as provided by the ensemble mean of 
simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 

 

Figure 7. Expected variation in Tmax characteristic values computed by subtracting the square 
deviation to the ensemble mean, considering all available simulations included in EURO-CORDEX 

0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 
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Figure 8. Expected variation in Tmax characteristic values computed by adding the square deviation 
to the ensemble mean, considering all available simulations included in EURO-CORDEX 0.11° 

datasets (2056-2085 vs 1971-2000, RCP8.5). 

 

Figure 9. Expected variation in the square deviation Δ for Tmax values by considering all available 
simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5).  
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4.4 Estimated variations in Tmin characteristic values  

The corresponding calculations for the characteristic values of Tmin are presented in Figure 

10 to Figure 13 below.  

Figure 10 illustrates the expected variation in Tmin characteristic values as provided by the 

ensemble mean values, and allows to identify two elements: (i) the expected increase for 

the characteristic values of Tmin is substantially higher (with a mean value equal to 6.2°C; 

a 25th percentile equal to 4.4°C and a 75th percentile equal to 7.5 °C) than the increase of 

the respective values for Tmax; and (ii) spatial patterns are evident showing a higher 

increase in temperature mean values in Alps, Prealps and Apennine mountain chains (up 

to 10°C).  

Figure 10. Expected variation in Tmin characteristic values as provided by the ensemble mean of 
simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 

 

The growth trend in the minimum temperature values is eventually (or could be in the 

future) more consistent than in the maximum temperature values. This possibility has been 

widely investigated in the literature (Hartmann et al., 2013) and different explanations 

have been provided. In this perspective, the possibility that the minimum values are 

currently, or could be in the future, affected by growth trends is much more consistent 

than the maximum ones, has been widely investigated in the literature (Hartmann et al., 

2013), and different explanations have been provided. Several studies indicate upward 

trends in the cloud cover (Dai et al., 1997, 1999) as the main element forcing increases in 

vegetation and soil moisture (Collatz et al., 2000). Urbanization processes and associated 

urban heat island effects are recognized to play a relevant role in the observation trends 

while, at the moment, they may hardly be taken into account in global or regional climate 

modelling (Easterling et al., 1997; Braganza et al., 2004). 

Higher increases are also confirmed for the boundaries of the confidence intervals for the 

minimum temperature: for the lower boundary, the mean value is 2.7 °C (25th percentile 

equal to 1.7°C and 75th percentile equal to 3.5°C) while for the upper boundary, the mean 

value could attain, on average, a value equal to 9.5 °C (25th percentile equal to 6.7°C, 

75th percentile equal to 11.5°C). Finally, regarding the square deviation, Δ, (see Figure 

13) for the characteristic values of minimum temperature, higher values were estimated 
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for areas with high elevation. This is due to the higher disagreement among the climate 

simulation chains included in the EURO-CORDEX ensemble on areas characterized by 

complex geomorphological features. 

Figure 11. Expected variation in Tmin characteristic values computed by subtracting the square 
deviation to the ensemble mean, considering all available simulations included in EURO-CORDEX 

0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 

 

Figure 12. Expected variation in Tmin characteristic values computed by adding the square 
deviation to the ensemble mean, considering all available simulations included in EURO-CORDEX 

0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 
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Figure 13. Expected variation in the square deviation Δ for Tmin values by considering all available 
simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 

 

4.5 Estimated variations in Diurnal Temperature Range (DTR) 

characteristic values  

The variation in the characteristic values of the Diurnal Temperature Range (DTR) are 

reported in Figure 14 to Figure 16.  

According to the ensemble mean of the simulations (see Figure 14), no significant 

variations are expected in the characteristic values of DTR; on average, the variation is 

close to 0°C (-0.1°C) (with a 25th percentile equal to 0.5°C and a 75th percentile equal to 

0.2 °C); nevertheless, on the Alpine Region, higher decreases of DTR (up to 5°C) were 

estimated. 

Regarding the lower boundary of the confidence interval, the higher variations can be 

identified again on high elevation land areas where characteristic values of the DTR may 

decrease up to 8°C; in this regard, further investigations are required to better understand 

the mechanisms driving such patterns. On the other hand, the temperature values at the 

boundary of the confidence interval do not show strong variations compared to the 

ensemble mean; only in the southern part of the country and at the Sardinia coast, a slight 

increase in the DTR is assessed with values up to 5°C. 
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Figure 14. Expected variation in DTR characteristic values as provided by the ensemble mean of 
simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 

 

Figure 15. Expected variation in DTR characteristic values computed by subtracting the square 
deviation to the ensemble mean, considering all available simulations included in EURO-CORDEX 
0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 
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Figure 16. Expected variation in DTR characteristic values computed by adding the square 
deviation to the ensemble mean, considering all available simulations included in EURO-CORDEX 

0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). 

 

4.6 Conclusions 

The variations in the characteristic values of Tmax, Tmin, and Diurnal Temperature Range, 

were analysed taking into account a future Representative Concentration Pathway (RCP), 

RCP8.5 for Italy. The variations between the reference current period 1971-2000 and the 

future time span 2056-2085 considered illustrative of a midterm scenario 2070) show the 

following main trends:   

— The increase in Tmax and Tmin characteristic values is evident throughout Italy. 

— In average terms, an increase in Tmax can be expected on the entire domain. A 4°C 

mean value is expected (with a 25th percentile equal to 3.7°C and a 75th percentile 

equal to 4.4°C). In spatial terms, no clear patterns are recognizable. The most 

remarkable variations are estimated in the North-West and the Alpine Region (up to 

6°C). Such trends confirm how mountain regions could represent particularly sensitive 

areas to climate change. 

— The expected increase in the characteristic values of Tmin exhibits a mean value of 6.2°C 

(with a 25th percentile equal to 4.4°C and a 75th percentile equal to 7.5°C); spatial 

patterns are evident with higher increase (up to 10°C) in the Alps, Prealps and Apennine 

mountain chains.  

— According to the ensemble mean, no significant changes are expected in the 

characteristic values of the Diurnal Temperature Range; on average, the variation is 

close to 0°C (-0.1°C) (with a 25th percentile equal to -0.5°C, and a 75th percentile 

equal to 0.2°C).  

— The growth trend in the minimum temperature values seems (or could be in the future) 

more consistent than in the maximum temperature values. This possibility has been 

widely investigated in the literature (Hartmann et al., 2013) and different explanations 

have been provided. Several studies indicate upward trends in cloud cover as the main 

forcing; nevertheless, increases in vegetation and soil moisture, or in urbanization 
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processes and associated urban heat island effects, are recognized as playing a relevant 

role in the observation trends.  
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5 Methodology for developing thermal design maps 

5.1 General procedure 

At present, thermal design maps, like maps for other climatic actions (for example snow 

maps), are usually developed according to a general procedure based on the following 

steps: 

— Collection of annual extremes for a suitable period (40 or more years) for an appropriate 

number of weather stations over the considered region. 

— Fitting of an extreme value probability distribution to the available data of each weather 

station, in order to derive the characteristic values of the thermal action with an 

assigned annual probability of exceedance. 

— Identification of proper altitude-action relationship, in order to be able, if necessary, to 

transpose the characteristic values to the sea level. 

— Drawing of isopleths over the considered region to plot the climatic map for a given 

annual probability of exceedance. 

The aforementioned procedure relies on the assumption of a stationary climate; therefore, 

to take into account the influence of climate change in the development of thermal design 

maps, information about past climate based on observations should be combined with 

future climate projections derived from climate models. 

When using climate projections, it should be considered that assessed temperature data 

are affected by uncertainty coming from three different sources (Hawkins & Sutton, 2009):  

— Model uncertainty: starting from the same radiative forcing assumption, different 

climate models give different outcomes. 

— Scenario uncertainty: radiative forcing and then climate evolution depends on future 

emissions of greenhouse gases which cannot be defined a priori. 

— Internal variability of the climate system: even in the absence of any radiative forcing 

of the planet, climate is subject to natural fluctuations, in some cases neutralizing 

alterations associated with anthropogenic influences. 

Moreover, a gap remains between the scale of the Regional Climate Model (RCM) 

projections and local scale observations even at the highest resolution of the RCMs, which 

currently is achieving 2 to 5 kilometres.  

When assessing future trends in climate extremes, all these aspects should be duly taken 

into account.  

The delta change approach, also known as “factor of change” approach, is the proposed 

approach to develop thermal design maps taking into account the influence of climate 

change. The factor of change approach has a long history in climate impact research and 

aims to bridge the gap between large scale model and local conditions, duly considering 

the aforesaid sources of uncertainty. Factors of changes can be derived from the analysis 

of an ensemble of different RCMs runs, according to different concentration scenarios 

(RCPs), while the internal variability of each climate model can be estimated by 

implementing suitable weather generators.  

Weather generators are currently used as a statistical downscaling technique in climate 

change impact studies (Fowler et al., 2007) to generate time-series of climatic variables 

with statistical properties similar to the input ones.  

Weather generators are statistical models whose parameters are usually derived through 

regression analysis of daily climatic variables. In climate change studies, they are usually 

applied to generate future weather series from the observed climate statistics factored by 

a factor of change derived from analysing the climate model (CM) output. The basic 

assumption is that the climate model could better represent the change in the statistical 

properties of the climate variable, from the present to the future climate, than the absolute 

values of the variables. 
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The main steps of the procedure are: 

— Collection of high-resolution climate projections for the period 1951-2100 (e.g. from 

the EURO-CORDEX ensemble) assuming different concentration scenarios (RCPs). 

— Generation of weather series from each climate projection data series. 

— Extreme value analysis of weather series corresponding to moving time windows of 

fixed length, in such a way that factors of change can be derived for thermal actions. 

— Estimation of the variation of the characteristic value of the temperature, in the 

considered time interval, applying the suitable factor of change. 

— Update of thermal design maps, adopting the maximum or minimum characteristic 

value of the temperature obtained in each site, in the considered time interval. 

Based on climate projections data, future weather series can be generated according to 

the algorithm presented by Croce et al. (2017a; 2019a; 2019b; 2019c; 2019d), 

summarized in the flowchart reported in Figure 17. 

Figure 17. Flow chart of the weather generator algorithm (adapted from Croce et al. (2019a)) 

 

In the new approach presented in Croce et al. (2017a; 2019a), climate data series are 

directly generated by sampling the climate model outputs, instead of weather series being 

generated from the statistics of the climate variables. This approach leads to an 

improvement of the statistical representativeness of the climate model ensemble and, 

consequently, to a better estimation of the internal variability of climate models and the 

factors of change. 

The input data of the algorithm presented in Figure 17 are the climate series of daily 

maximum and minimum air temperatures, provided by the considered climate model.  

Then, the generated daily data for the Date n (i.e., Day i in Month m in Year j) is randomly 

sampled, (s) from the daily data of the climate variables at the same month, m in the 

period defined by the considered year plus and minus five years [j-5;j+5], and referred as 
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TMax,s,n and TMin,s,n, respectively. The idea is to derive a representative sample of the daily 

data from the model outputs. The basic assumption is that weather parameters in a given 

day i in month m belong to a homogenous population composed of daily data predicted by 

the climate model for the given month m in a time window of eleven years, centred on the 

considered year. A time window of eleven years for the sampling interval is considered a 

good compromise to obtain a representative sample of daily data. In fact, this time window 

is relatively long, allowing to derive samples of reasonable size (around 330 elements), but 

short enough to exclude influences of climate change on the sample population of climate 

variables.  

The random sampling procedure is implemented with some physical constraints, in order 

to avoid the generation of unrealistic weather data series. In particular, for each Day i, the 

algorithm imposes constraints for maximum and minimum temperatures in two, three and 

five consecutive days (see Figure 17). In the Figure 17, the summations are extended 

to all the relevant days considered in the corresponding step of the analysis. 

Using these constraints, the methodology proposed by Croce et al. (2017b) generates 

consistent climate data series of daily maximum and minimum air temperature (TMax,s and 

TMin,s) for the considered period (1956-2095 for the climate model ensemble). For a proper 

definition of non-stationary extremes, climate data series were analysed considering 

moving time windows. The considered time windows were 40 years long and two 

consecutive windows were shifted by 10 years (1956-1995, 1966-2005, 1976-2015,…., 

2046-2085,2056-2095). 

For each time window, an extreme value analysis was carried out according to the block 

maxima approach (Coles, 2001) to evaluate characteristic values, having a probability of 

exceedance of 2% in one year, in accordance to EN1990 concept for characteristic values. 

Following the procedure by Froli et al. (1994) for the elaboration of the current thermal 

maps in Italy, an extreme value distribution Type I (Gumbel) was assumed as the limiting 

distribution for the maxima.  

Delta change factors are thus derived as the difference between the characteristic values 

TMax,k(t)  and TMin,k(t) at each time window t and the corresponding one at the first time 

window (t=1), TMax,k (t = 1) and TMin,k (t = 1), respectively:  

TMax,k(t) = TMax,k(t) – TMax,k (t = 1)           (5.1) 

TMin,k(t) = TMin,k(t) – TMin,k (t = 1)          (5.2) 

Subsequently, the expected delta factors of change and uncertainty interval can be 

computed combining the results obtained for each investigated series.  

Finally, trends in characteristic temperature values (TMax,k(t)) are computed for the whole 

region applying the derived delta changes (TMax,k(t)) to the current characteristic values 

provided by thermal maps, which are based on the analysis of observations (TMax,k,obs): 

TMax,k(t) = TMax,k,obs(t = 1) + TMax,k(t)            (5.3) 

TMin,k(t) = TMin,k,obs(t = 1) + TMin,k(t)           (5.4) 

For example, in Italy, the characteristic values of TMax and TMin obtained by Froli et al. 

(1994) from the analysis of observations collected in the period 1951-1990 and reported 

in the thermal maps given in the Italian National Annex to EN1991-1-5 can be updated 

according to the estimated delta changes. Some relevant examples are reported in the 

next sub-section. 

In this way, at each time window t, an updated value for the characteristic maximum and 

minimum temperature will be available.  
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5.2 Selected results for Italy 

The general procedure described in the previous paragraph has been applied to an 

ensemble of daily climate projections of maximum and minimum temperatures (TMax and 

TMin) developed within the EURO-CORDEX initiative for the control period 1951-2005 

(Historical Experiment) and for the future period 2006-2100 (RCP4.5 and RCP8.5 

Experiment).  

Table 2 reports the model specifications of the considered climate projections. The three 

columns report the institution carrying out the simulation, the adopted Earth System Model 

and the Regional Climate Model exploited for dynamical downscaling. The simulations were 

carried out with a horizontal resolution of 0.11° (about 12 km).  

Table 2 . Summary of climate simulation chains provided by EURO-CORDEX ensemble, codes refer 
to Table 1 in Chapter 4. 

Code Institution Driving model (ESM) RCM 

5 DMI EC-EARTH HIRHAM5_v1 

18 CLMcom CNRM-CM5_LR CCLM4-8-17 

6 CLMcom EC-EARTH CCLM4-8-17_v1 

4 KNMI EC-EARTH RACMO22E_v1 

14 MPI-CSC MPI-ESM-LR_r1i1p1 REMO2009 

8 IPSL-INERIS IPSL-CM5A-MR_r1i1p1 WRF331F_v1 

Future trends of TMax and TMin for a region in Italy have been assessed. The region studied 

is illustrated in Figure 18, derived from Croce et al. (2019a, b and c). The region studied 

includes the Zones 3-4 of the Mediterranean climatic region in EN 1991-1-3 “Eurocode 1 - 

Actions on structures - Part 1-3: General actions -Snow loads” (as illustrated in Figure C.6 

in EN 1991-1-3). Figure 18 also presents the 272 cells of the EUR-11 grid (12.5 km x 

12.5 km resolution) for which the climate projections were provided. 

Implementing the procedure described in the previous section, delta changes and 

prediction intervals are derived for each cell in the investigated region. Figure 19 shows 

an example of the evolution of the delta changes in TMax,k for cell number 120 together with 

the prediction interval corresponding to the 25% and 75% percentiles. The intermediate 

emission scenario (RCP4.5), in blue, and the highest emission scenario (RCP8.5), in green, 

were considered.  

The results obtained in terms of delta factors of change for characteristic values of 

maximum and minimum air temperatures at each cell in the studied region are then 

summarized in Figure 20 to Figure 23 using bivariate colour maps (Teuling et al., 2011). 

In this way, two limit percentiles (25% and 75%) of the prediction interval are drawn for 

each cell of the maps obtaining a convenient representation of the evolution of extreme 

temperatures together with their uncertainty intervals. 

In particular, uncertainty maps of the delta factor of change for the maximum temperature 

(TMax,k) considering RCP4.5 and RCP8.5 scenarios for time windows 1976-2015, 1996-2035, 

2016-2055 and 2036-2075, are reported in Figure 20 and Figure 21, respectively. Similar 

maps regarding the uncertainty on the delta factor of change for the characteristic 

minimum temperature (TMin,k) are shown in Figure 22 and Figure 23. 
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Figure 18. Investigated region in the Italian Mediterranean climatic area (adapted from Croce et 
al., 2019) 

 

 

Figure 19. Median values of factor of change TMax,k(t) for an investigated cell according the 
RCP4.5 (in blue) and RCP8.5 (in green) scenarios together with the prediction interval [25%-75%]. 
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Figure 20. Delta changes [°C] uncertainty maps for TMax,k with respect to 1956-1995 – Prediction 
interval [25%-75%] map (RCP4.5). 

 

 

Figure 21. Delta changes [°C] uncertainty maps for TMax,k with respect to 1956-1995 – Prediction 

interval [25%-75%] map (RCP8.5). 

 

  



35 

 

Figure 22. Delta changes [°C] uncertainty maps for TMin,k with respect to 1956-1995 – Prediction 
interval [25%-75%] map (RCP4.5). 

 

 

Figure 23. Delta changes [°C] uncertainty maps for TMin,k with respect to 1956-1995 – Prediction 

interval [25%-75%] map (RCP8.5). 
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Finally, Table 3 and Table 4 present the average values of factors of change percentiles 

(25%, 50%, 75%), obtained according to the two different scenarios for the region with 

reference to the first-time window 1956-1995, for the maximum and minimum 

temperature, respectively.  

Table 3. Average of delta change for TMax,k [°C] for percentiles 25%, 50% and 75% in the considered 
region. 

Time window RCP 4.5 RCP8.5 

25% 50% 75% 25% 50% 75% 

1966-2005 0.04 0.41 0.82 0.03 0.36 0.72 

1976-2015 0.31 0.87 1.42 0.35 0.88 1.42 

1986-2025 0.45 1.16 1.87 0.81 1.43 2.06 

1996-2035 0.65 1.49 2.25 1.26 1.93 2.67 

2006-2045 0.89 2.01 3.10 1.44 2.19 2.85 

2016-2055 1.33 2.33 3.31 1.77 2.51 3.19 

2026-2065 1.58 2.63 3.63 2.00 2.76 3.54 

2036-2075 1.87 2.75 3.55 2.47 3.37 4.17 

2046-2085 2.18 2.83 3.67 3.93 5.10 6.08 

Table 4. Average of delta changes for TMin,k [°C] for percentiles 25%, 50% and 75% in the studied 

region. 

Time window RCP 4.5 RCP8.5 

25% 50% 75% 25% 50% 75% 

1966-2005 -0.30 0.14 0.73 -0.28 0.15 0.73 

1976-2015 -0.23 0.56 1.60 -0.16 0.63 1.66 

1986-2025 -0.12 0.98 2.48 -0.29 0.84 2.44 

1996-2035 0.31 1.57 3.16 -0.08 1.23 2.92 

2006-2045 0.65 2.01 3.89 0.24 1.63 3.39 

2016-2055 1.01 2.59 4.52 0.83 2.13 3.67 

2026-2065 1.48 3.03 4.87 1.55 2.75 4.19 

2036-2075 1.59 3.18 5.22 2.29 3.52 5.23 

2046-2085 2.40 3.81 6.02 2.83 4.42 8.55 
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The results confirm that an increase in extreme temperatures will be significant in the near 

future with a high confidence level. For example, considering the time window 2036-2075, 

an increase is expected for TMax,k in the region, reaching a value of 2.75°C for RCP4.5 (with 

a 50% prediction interval between 1.87°C and 3.55°C) and 3.37°C for RCP8.5 (with a 50% 

prediction interval between 2.47°C and 4.17°C) . In the same time window, even an higher 

increase is expected for TMin,k reaching a value of 3.18°C for RCP4.5 (with a prediction 

interval between 1.59°C and 5.22°C) and 3.52°C for RCP8.5 (with a prediction interval 

between 2.29°C and 5.23°C). 

Comparing the obtained results with those provided in Chapter 4, it is clear that an increase 

for characteristic values of maximum and minimum temperatures is expected. However, 

under the fixed concentration scenario RCP8.5, the magnitude of such increases results 

slightly different. For maximum temperatures, the expected increase in values with 50-

year return period is about 4°C while, exploiting statistical downscaling, it attains 5 °C. 

The last value is largely included in the prediction interval assessed considering all the 

climate projections available in EURO-CORDEX ensemble (at 2018).  

On the other hand, as stressed in Chapter 4, the increase in the characteristic value for 

minimum temperature exceeds 6°C on the pilot area identified in Section 5.2, while using 

statistical downscaling, the increase stands at about 5°C. Also, in this case, such value is 

included in the prediction interval outlined by considering a larger set of climate projections 

(see Figure 6 to Figure 9). The discrepancies can be motivated by the differences in the 

used control period, 1971-2000 in Chapter 4 and 1956-1995 in Chapter 5, or the 30-years-

long period taken into account in the first case and the 40-years-long in the second. Finally, 

in Chapter 5, the simulation chain coupling dynamical and statistical downscaling is carried 

out on a subset of climate projections used in Chapter 4. The inter-variability could be 

reduced and the obtained values could vary when considering a larger number of 

projections. 

5.3 Recommendation for producing national thermal design maps  

This chapter described the classical procedure to derive temperature design maps and a 

general procedure to consider the influence of climate change on the characteristic values 

of maximum and minimum temperatures, taking into account different sources of 

uncertainty in climate projections. A case study including an Italian region was carried out 

to illustrate the application of the procedure.  

Maps of delta factors of change represent the starting point for the amendments of thermal 

maps in structural codes, taking a changing climate into consideration. It should be noted 

that the proposed procedure is susceptible to wider applications. 

Since structures shall withstand climatic actions during their whole real life, which can be 

significantly greater than the design service life, the procedure for deriving the maps for 

thermal design from existing data needs further refinement to ensure the achievement of 

an adequate reliability level.  

In brief, the characteristic values of the maximum and minimum temperature at each site 

should be evaluated enveloping the factors of change obtained for a given time interval t, 

as follow: 

TMax,k = TMax,k,obs + max (TMax,k(t))           (5.5) 

TMin,k = TMin,k,obs + min (TMin,k(t))           (5.6) 

In this case, the updated thermal maps are obtained considering the maximum change for 

TMax,k in the investigated period and the minimum change for TMin,k and the isopleths over 

the region should be derived accordingly. It must be highlighted that in Eq. 5.6 the 

reference is obviously the minimum delta change, because in this way it is maximized the 

difference between TMax,k and TMin,k.  
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6 Potential implications of changes in thermal actions on 

structural design 

6.1 Preliminary note  

Most of the material presented in this chapter incorporates relevant parts of the report 

“Climate change. Final report” by Fikke et al. (2017), prepared by the CEN/TC250 Project 

Team SC1.T5 working on the second generation of the Eurocodes. The author of the current 

chapter is also a co-author of the report by Fikke et al. (2017). 

6.2 Background 

An important task in the further development of the Eurocodes is to evaluate the potential 

impact of climate change on construction works, in particular on bridges and other 

structures with longer design life. It is important to analyse how the anticipated changes 

in the European climate could affect the assessment of the extremes and the design 

weather parameters, including the consideration of partial safety factors, based on 

knowledge gained from the projection models of the future climate in Europe. 

In the framework of the activities of the Project Team SC1.T5 “Climate Change”, Fikke et 

al. (2017) pointed out the biggest contributors to the inherent uncertainty in the estimation 

of climate projections. Some of these contributors are listed in the following: 

— Uncertainties connected to the future emissions of greenhouse gases and other 

resources. 

— Variations in climate due to solar activity and other natural contributors like volcanic 

forcing. 

— Some essential properties of the climate models themselves, their spatial and temporal 

characteristics. 

These uncertainties make it rather difficult to provide full set of recommendations 

concerning design parameters for actions on structures regarding climate change on a 

regional scale. However, the members of the Project Team SC1.T5 “Climate Change” also 

concluded that it is possible to indicate certain trends of selected basic variables, which 

influence the models of climatic actions on structures, environmental actions and the 

intensity of degradation of materials, e.g., the carbonation of concrete, steel corrosion, 

decay of wood. 

6.3 Trends in temperature developments 

6.3.1 Technical and research reports 

Several technical and research reports have been developed focused on prediction of future 

regional climate change, for instance, the IPCC Fifth Assessment Report (IPCC, 2014) 

revealed a high confidence in model projections of mean temperature within Europe stating 

that it is very likely that temperatures will continue to increase throughout the 21st century 

all over Europe and the Mediterranean region. The EASAC report68 (Hov et al., 2013) 

examined trends in extreme weather events in Europe and implications for national and 

European Union adaptation strategies. The report highlights that most severe risks posed 

by climate change do not stem from changes in the mean of climate variables such as 

temperature, but rather from changes in the extremes of these variables. 

Figure 24 illustrates the expected variations on average temperature distribution, showing 

how global warming can induce a shift in the distribution, but also a change in its shape. 

 
68 Report “Extreme Events in Europe: preparing for climate change adaptation” issued by the Norwegian 

Meteorological Institute and the Norwegian Academy of Sciences and Letters, in collaboration with the 
European Academies Science Advisory Council (EASAC) 
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The blue curve indicating the probability density in the figure represents the present 

situation that will be shifted to the orange curve in the future (Hov et al., 2013). A more 

flattened distribution with a higher average temperature indicates a higher variability and 

an increase of the frequency of “extreme” events, i.e., more very hot days. It is, thus, 

shown that the increase in the mean temperature will result in an increase of the frequency 

of hot days, and days hotter than ever are also likely to occur. The figure also indicates 

that there will be fewer days with the current average temperature and less very cold days 

relatively to today’s distribution.  

Figure 24. Possible changes in the mean value and variance in future temperatures, due to 

changes in the temperature probability density function (PDF) (adapted from: CH2011, Hov et al., 

2013; Fikke et al., 2017) 

According to Fikke et al. (2017) the winter mean temperature will rise more in Northern 

Europe than in Central Europe or Mediterranean, whereas summer warming will likely be 

less intense in Northern Europe. The trends in temperature were summarized as follows: 

— Observations show a trend to fewer cold days over most parts of Europe since the mid-

20th century. 

— Increase frequency of hot days and heat waves. 

— Most places in Europe will very likely experience more hot and fewer cold extremes as 

global temperature increases. 

— The magnitude of hot extremes is expected to increase faster and more severely than 

mean temperatures over large parts of Europe. 

6.3.2 Trends in temperature developments in the Czech Republic 

The trends of average temperatures based on the measurements carried out by the oldest 

Czech meteorological station Klementinum in Prague in the past three 50-year periods is 

illustrated in Figure 25. However, in this case, large scale variations potentially associated 

to global warming could be exacerbated by Urban Heat Island69 dynamics induced by 

urbanization processes.  

The increase of the mean shade air temperature in various regions in the Czech Republic 

in the year 2030 as assessed by the Czech Hydro-meteorological Institute (CHMI) is 

illustrated in Figure 26. The projected near-term change in global mean surface air 

temperature will likely be in the range from 0.3 to 0.7°C (medium confidence). This 

projection assumes there will be no major volcanic eruptions or significant changes in total 

solar irradiance before 2035. It is expected that for the period 2016–2035, the global mean 

surface air temperature will increase not more than 1°C relative to 2016. In most land 

 
69 An urban heat island (UHI) is an urban area or metropolitan area that is significantly warmer than its 

surrounding rural areas due to human activities. 
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regions, the frequency of warm days and warm nights will likely increase in the next 

decades, while the number of cold days and cold nights will decrease. Also, in this case, 

increasing urban heat island phenomena, usually not explicitly taken into account in climate 

modelling, could be overlapped by local climate changes, thus enforcing the increases. 

Figure 25. The trends of average temperatures based on the measurements in the meteorological 
station Klementinum in Prague (since 1861) (Figure from Climate change in CZ [Změna klimatu v 

ČR), ČHMÚ / CC BY-NC-ND 3.0 CZ]) 

 

Figure 26. Projected increase of the mean shade air temperature in the Czech Republic (till the 
year 2035) relative to 2016 year (Figure from Climate change in CZ [Změna klimatu v ČR), ČHMÚ / 

CC BY-NC-ND 3.0 CZ]) 

 

Projections of temperature changes in the ‘long term’ show that global mean temperatures 

will continue to rise over the 21st century if greenhouse gas emissions continue unabated. 

The IPCC Fifth Assessment Report (IPCC, 2014) shows that the global mean surface 

temperatures for 2081–2100 will increase from 0.3°C - 1.7°C (RCP2.670) up to 2.6°C – 

4.8°C (RCP8.5), relative to 1986–2005. 

Temperature changes will not be regionally uniform. There is very high confidence that 

globally averaged changes over land will exceed changes over the ocean at the end of the 

21st century. 

 
70 The Representative Concentration Pathways (RCPs) are a set of pathways developed for the climate modelling 

community as a basis for long-term and near-term modelling experiments. Based on assumptions about 
future trends in socio-economic dynamics (economic growth, technological progress, demographic pressure) 
scenarios for future concentrations of greenhouse gases, aerosols, chemically active gases and variations in 
land use/cover, the Intergovernmental Panel on Climate Change (IPCC) has selected four RCPs characterized 
by an estimated increase in radiative forcing in year 2100 compared to pre-industrial era respectively equal 
to 2.6, 4.5, 6 and 8.5 W/m2, i.e., RCP2.6, RCP4.5, RCP6.0 and RCP8.5.  

http://portal.chmi.cz/files/portal/docs/meteo/ok/klimazmena/files/cc_chap10.pdf
http://portal.chmi.cz/files/portal/docs/meteo/ok/klimazmena/files/cc_chap10.pdf
http://portal.chmi.cz/
https://creativecommons.org/licenses/by-nc-nd/3.0/cz/deed.en
http://portal.chmi.cz/files/portal/docs/meteo/ok/klimazmena/files/cc_chap10.pdf
http://portal.chmi.cz/
https://creativecommons.org/licenses/by-nc-nd/3.0/cz/deed.en
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6.4 Climate related parameters in the Eurocodes 

6.4.1 Influence of climate change 

Climate change might have influence on the design values of climatic and environmental 

actions leading to increase of: 

- the mean value; 

- the coefficient of variation due to uncertain development of the effects (aleatory 

uncertainty) and due to the limited knowledge and modelling of those effects (epistemic 

uncertainty). 

Climate change might influence the probabilistic distribution of the extreme values of 

climatic actions. In addition, there exist uncertainties relating to how climate change will 

influence action effects on materials, structural components and construction systems. 

There might be needs for:  

− changing the material composition of structures and their structural robustness to adapt 

to the expected changes in operating conditions, and  

− an increase in maintenance to achieve the planned working life of structures or 

construction products. 

Currently, the analytical models for determination of climatic actions in Eurocodes are 

based on the characteristic values of climatic actions and some conversion or influence 

factors for consideration of specific types, characteristics and location of buildings or civil 

engineering works. Uncertainties connected with possible impacts of climate change have 

not been considered in the Eurocodes till now. 

6.4.2 Uncertainties of climatic actions dealt within the Eurocodes 

EN 1990 "Basis of design"  

Climatic actions are presently based on previously registered measurements of basic 

climate parameters. There can be observed changes in the natural variability of some 

climate parameters, some mixture between changing climate and natural variability, and 

therefore, various sources of uncertainty might arise in the determination of probabilistic 

models of climatic actions and estimation of a potential effect of climate change. Effects of 

non-climate related causes of change of the climatic actions might also arise in some 

regions due to changes in the built environment, e.g. increasing the area of buildings in 

urban areas and urban heat island effects.  

The partial factor method is the basic method for the design of structures in the Eurocodes. 

This method makes it possible to take into account various types of uncertainties in 

modelling of actions, action effects and structural resistances. As explained in Chapter 3, 

in EN 1990, the main representative value of the action is its characteristic value. The 

characteristic value of a climatic action is based on the probability of 0.02 of its time-

varying part being exceeded for a reference period of one year (equivalent to a mean return 

period of 50 years).  

EN 1990 states that in some cases the character of the climatic action, or the selected 

design situation, could make another fractile or return period more appropriate. The 

possibility to apply a different fractile for a shorter time period is provided for short 

execution phases in EN 1991-1-6 “General actions - Actions during execution”. Specific 

expressions for the characteristic values of snow, wind and thermal actions for different 

return periods, are given in relevant Parts of EN 1991 based on Gumbel or Weibull 

distributions.  

The design value of an action effect given in EN 1990 is related to the characteristic value 

of the action, multiplied by partial factors f and Sd. The partial factor f for the action takes 

account of the possibility of unfavourable deviations of the action values from the 

representative values. The factor Sd takes account of uncertainties in modelling the actions 

or their effects (recommended in a range from 1.05 to 1.15 in EN 1990). The relationships 
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between individual partial factors are given in EN 1990, Annex C. For all adverse climatic 

actions, a partial factor of 1.5 is currently recommended for the verification of structures 

in the Ultimate Limit States of type strength (STR) in EN 1990. 

Similarly, for modelling the resistance of a structure, the partial factor m for the material 

or product property takes account of the possibility of an unfavourable deviation of the 

property from its characteristic value, and of the random part of the conversion factor. 

Modelling uncertainty in structural resistance is considered by implementing the partial 

factor associated with the uncertainty of the resistance model Rd.  

Apart from the implementation of the partial factor method, which is still the main method 

for the design of structures in Eurocodes, probabilistic methods might be used under certain 

conditions as an alternative approach for structural design. Application of Normal 

distribution for self-weight and permanent actions and Lognormal or Weibull distributions 

for material and structural resistance, are recommended in Annex C of EN 1990. For 

variable actions, the possibility of application of extreme value distribution is noted. 

Guidance on uncertainties in the modelling of the long-term course of climatic actions and 

predictions of their trends considering also climate change are not included in EN 1990.  

Detailed information on probabilistic models of variable actions including climatic actions is 

not given in EN 1990, (Holicky and Markova, 2014). Other sources are available, e.g. 

ISO 2394:2015 and, more specifically, the Probabilistic Model Code (PMC) of the Joint 

Committee on Structural Safety (JCSS, 2014) where additional information on probabilistic 

methods, models of climatic actions and various climatic parameters are available. In some 

cases, these methods could also facilitate the description of different sources of 

uncertainties. 

EN 1991-1-5 "Thermal actions" 

a. Temperature components 

Two basic temperature components are given in Eurocode EN 1991-1-5: the uniform 

temperature and the temperature difference components, in the vertical and the horizontal 

directions. The shade air temperature has considerable influence on the uniform 

temperature component, and the solar radiation on the temperature difference component. 

The basic variables involved in the assessment of thermal actions on structures contain 

many uncertainties. Several factors influence the magnitude of resulting temperatures and 

their effects on structures: the structural materials, their thermal properties, the colours 

used, surfacing, geometry of the structure, the structure’s sun exposure, shading by 

objects, air humidity, geographical and geomorphological position of site, etc. It is also 

necessary to consider the accuracy of measurements (selected cross-sections, 

instrumentation), time period and procedure of evaluation.  

The daily temperatures (instantaneous part) and the seasonal temperatures (long-term 

part) influence the thermal course within the structure. The Weibull or three-parameter 

lognormal distributions could be preferably applied for modelling the temperature 

difference component. 

Increasing temperature demands should be considered in the design of structures or their 

parts subjected to temperature variations. The increase in frequency and magnitude of 

heat waves might have impacts on temperature sensitive structures and their members, 

e.g. on the bridges and their bearings, and on expansion joints. 

The anticipated increase of shade air temperature due to climate change will lead to the 

augmentation of the uniform temperature component in structures. The increase of the 

uniform component will result in volume changes in unrestrained structures, e.g. 

elongation of a bridge, and in increase of stresses in restrained structures. 

b. Design of bridges 

EN 1991-1-5 provides a relationship for estimation of the uniform temperature component 

for bridges made from different materials, which is considered to be valid for a daily range 
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of 10°C. The ranges of daily temperatures should be nationally checked for the potential 

updating of the relationship between the shade air temperature and the uniform 

temperature component for bridges (University of Pisa, 1999). The influence of different 

ranges of daily temperatures (10 °C and 30 °C) for composite steel-concrete bridges is 

illustrated as an example in Figure 27. 

Figure 27. Relationship between the shade air temperature and the uniform temperature 
component for steel bridges (Type 1), for composite steel concrete bridges (Type 2) and concrete 

bridges (Type 3). For composite bridges two different ranges of daily temperatures (10 and 30 °C) 
are illustrated. (Figure first published in Fikke et al., 2017. Data sources from EN 1991-1-5 [Fig. 

6.1] and Konig et al. (1999) [Fig. 3.6.2 in p. 51]). 
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Currently, EN 1991-1-5 specifies that the initial bridge temperature T0 should be taken as 

the “temperature of a structural member at the relevant stage of its restraint 

(completion)”, i.e. it is the initial temperature when structural element is restrained. If no 

information is available, the recommended value T0 = 10°C could be considered (NDP 

A.1(3) in EN 1991-1-5).  

The analyses of 20 available National Annexes have shown that 13 countries accepted the 

recommended value, 3 countries adopted a value of 15°C, 3 countries adopted values of 

20°C for the summer and 0°C for the winter, and 1 country adopted a value of 5°C.  

The final draft of prEN 1991-1-5 of the second generation of the Eurocodes presently 

recommends to consider T0,inf for calculating contraction down to the minimum initial bridge 

temperature, and T0,sup for calculating expansion up to the maximum initial bridge 

temperature given as  

T0,sup = T0 + ΔT0  and T0,inf = T0 - ΔT0       (6.1) 

where ΔT0 is a range of initial bridge temperature which can be set by the National Annex 

or defined on a project specific basis using local climatic data (see Figure 28).  

The values for T0,inf and T0,sup are clearly dependent on a variety of factors, such as 

geographical location and the local climate of the individual site, as well as the time of year 

during which any restraint may be imposed. Therefore, this consideration involves far too 

many variables to allow providing definitive, codified guidance on these values. 
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The characteristic value of the maximum contraction range of the uniform bridge 

temperature component, ΔTN,con, could be expressed as: 

ΔTN,con = T0,sup – TN,min        (6.2) 

and the characteristic value of the maximum expansion range of the uniform bridge 

temperature component, ΔTN,exp, could be expressed as: 

ΔTN,exp  = TN,max – T0,inf        (6.3) 

Figure 28. Characteristic value of the maximum contraction (ΔTN,con) and expansion (ΔTN,exp) 
range of the uniform bridge temperature component 

 

Currently, for the design of bearings and expansion joints, EN 1991-1-5 allows to specify 

in the National Annex the maximum expansion range of the uniform bridge temperature 

component, and the maximum contraction range of the uniform bridge temperature 

component, given that no other provisions are required. The recommended values are 

provided in NOTE 2 of NDP 6.1.3.3(3) of EN 1991-1-5. 

c. Estimation of the influence of thermal changes for the Czech Republic 

The IPCC Fifth Assessment Report (IPCC, 2014) predicts an increase of mean temperatures 

due to the climate change from 2 to 4 °C for 2100 for different representative concentration 

pathways. It might be assumed, for example, that the shade air temperature will increase 

4°C. Based on the thermal models, the uniform (effective) temperature component will 

also increase, for the conditions in the Czech Republic, from the presently used uniform 

temperature component 56°C to 60°C for concrete bridges, from 44.5°C to 48.5°C for 

composite bridges and from 41.5 to 45.5°C for steel bridges. Therefore, the modification 

factor due to the climate change could be estimated to be about 1.07 for concrete bridges 

and 1.1 for composite and steel bridges. The recommended value of the partial factor for 

thermal actions in the Eurocodes is currently 1.5. This value could be reduced to about 1.3 

in the second generation of Eurocodes. The application of the enhancement factor 1.1 

would then result in a partial factor of about 1.4. Hence, the value of the partial factor 1.5 

for the consideration of the uniform temperature component encompasses by itself some 

reserve for climate change for the Ultimate Limit States verifications.  

However, for structures sensitive to thermal actions and having a long-term working life, 

a modification factor to the partial factor for thermal actions may be used for the design or 

verification with respect to the Serviceability Limit States. 

6.5 Conclusions 

The anticipated increase of the shade air temperature due to the climate change will lead 

to augmentation of the uniform temperature component of the thermal loading on 

structures. The increase of the uniform component will cause volume changes in 

unrestrained structures, e.g. elongation of a bridge. The increase of temperature will also 

impact (Fikke et al., 2017): 

- the ranges of structural movements, which are important for the design of bearings 

and expansion joints; 

- the effects of structural restraint leading to additional stresses; 

- the additional stresses in structures and interaction of structures made of different 

materials in their joints; 
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- the interaction between a track and bridge for railway bridges. 

The expected increase of solar radiation will lead mainly to the augmentation of the 

temperature difference component. This will influence temperature profiles in construction 

works, will cause additional stresses in structures, and interaction of structures made of 

different materials in their interface.  

As referred in Chapter 3, the European maps for thermal design currently in use by 

countries are based on climatic data which, with some exceptions, is mostly 10 to 15 years 

old. These European maps ignore the potential effects of climate change and as a result, 

new maps should be developed using data better describing the future climate.  

The partial factors for climatic actions should be further calibrated taking into account the 

changed characteristics of climatic actions. A modification factor considering the climate 

change should be specified to refine the relevant partial factor of a climatic action 

depending on the verified type of the limit state of the structure. 



47 

 

7 Conclusions and further developments 

7.1 Rational and policy context synopsis 

The European Green Deal is the roadmap for making the EU's economy sustainable by 

turning climate and environmental challenges into opportunities across all policy areas and 

making the transition just and inclusive for all. Within the Green Deal objectives, buildings 

and the construction sector as a whole are encouraged to adopt more sustainable and 

circular practices, extend the lifetime of buildings, strive for a better life-cycle performance 

of buildings and infrastructure and enhance the climate-proofing of buildings.  

The assessment of the impact of climate change on the built environment and the 

identification of adaptation needs of infrastructure and buildings, are key aspects in 

defining adaptation strategies to climate change. In particular, extreme climatic events 

lead to variable loads on the buildings and construction works and changes in climate will 

have an effect on the design loads (i.e. wind, snow and temperature). Thus, building 

standards as a vital instrument for regulating the construction sector, should adapt to the 

new frequency and intensity of climate-related impacts in order to safeguard existing and 

new infrastructure and buildings, strengthening Europe’s resilience to the impact of a 

changing climate. 

In this context, the Eurocodes (EN 1990 – EN 1999), implemented in the EU Member States 

since 2010, play a major role as they are the common European standards for the structural 

design of buildings and other construction works. The users of the Eurocodes are obliged 

to use the maps for climatic actions specified in the National Annexes to the Eurocodes of 

the country, on whose territory is situated the structure to design. As explained in Chapter 

3, the European maps for thermal design currently in use by the EU countries, are 

based on climatic data that are mostly 10 to 15 years old and also ignore the 

potential effects of climate change.  

The Mandate M/515 of the European Commission to CEN requested the assessment of the 

climate change implications for the Eurocodes. In parallel, Mandate M/526 by the European 

Commission invited the European Standards Organisations to contribute to building and 

maintaining a more climate resilient infrastructure throughout the EU in the three priority 

sectors: transport infrastructure, energy infrastructure, and buildings/construction but not 

addressing the Eurocodes. However, under the ongoing standardisation works under the 

two mandates, the development of maps of climatic actions for design with the Eurocodes 

taking into account the implications of climate change is not planned.  

7.2 Conclusions and recommendations 

The national implementation of the Eurocodes in the EU Member States as regards the 

choice of Nationally Determined Parameters (NDPs) relevant to the definition of thermal 

actions (maximum and minimum shade air temperature) shows a good level of 

harmonisation. There are good examples of harmonisation in border values of the thermal 

action maps for neighbouring countries. However, the thermal maps present dissimilar 

layouts and reveal discontinuities at countries borderlines, mainly in the level of the 

minimum shade air temperatures, making it difficult to harmonise the use of Eurocodes in 

neighbouring areas of different EU Member States. 

To proceed with the adaptation of structural design to the implications of climate change, 

the expected changes in the climatic actions shall be assessed in terms of the 

Eurocodes concept for the characteristic values of the variable climatic actions. Thus, 

updated European maps for the definition of thermal loading taking into account the climate 

change are necessary. Such maps can be published in informative annexes in the 

respective Eurocodes Parts of the second generation of the Eurocodes, as is currently the 

case of the European scale snow load map, which is incorporated in Annex C to EN 1991-

1-3. The production of updated thermal design maps taking into account the climate 
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change will help National Competent Authorities to redraft their national thermal action 

design maps in a harmonised way by using the best available knowledge, and reduce 

inconsistencies at the borders between neighbouring countries.  

The analysis for the expected variations due to climate change in the characteristic values 

of Tmax, Tmin and Diurnal Temperature Range for the case study of Italy, taking into account 

a future Representative Concentration Pathway (RCP), RCP8.5, was presented in this 

report. The variations between the reference current period 1971-2000 and the future time 

span 2056-2085 (considered illustrative of a midterm scenario 2070) showed that the 

increase in Tmax and Tmin characteristic values is evident throughout Italy, 

highlighting the need to revise and update the thermal design maps based on climatic data 

that take into account the climate change.  

In particular, in average terms, an increase in Tmax can be expected on the entire 

domain in Italy. A 4°C mean value is expected and the most remarkable variations are 

estimated in the North-West and Alpine Region (up to 6°C) of Italy. Such trends confirm 

how mountain regions could represent particularly sensitive areas to climate 

change. Moreover, the expected increase in the characteristic values of Tmin exhibits a 

mean value of 6.2°C; spatial patterns are evident with higher increase (up to 10°C) in the 

Alps, Prealps and Apennine mountain chains of Italy. According to the ensemble mean, no 

significant changes are expected in the characteristic values of the Diurnal Temperature 

Range.  

In support of the development of updated European climatic action maps, the authors 

present a proposal for a procedure to derive thermal design maps considering the 

influence of climate change on the characteristic values of maximum and minimum 

temperatures and taking into account different sources of uncertainty in climate 

projections. A case study including an Italian region was carried out to illustrate the 

application of the procedure. The case study analysis confirmed that an increase in 

extreme temperatures will be significant in the near future with a high confidence 

level. 

Maps of delta factors of change represent the starting point for the amendments of thermal 

maps in structural codes having a changing climate into consideration. The proposed 

procedure for deriving thermal design maps taking into account the changing climate is 

susceptible to wider applications. Since structures shall withstand climatic actions during 

their whole real life, which can be significantly greater than the design service life, the 

procedure for deriving the maps for thermal design from existing data needs further 

refinement to ensure the achievement of an adequate reliability level. 

The study of CEN/TC250 Project Team SC1.T5 “Climate Change” working under Mandate 

M/515 concluded that the anticipated increase of the shade air temperature due to the 

climate change will lead to augmentation of the uniform temperature component of the 

thermal loading on structures. This increase will cause volume changes in unrestrained 

structures, e.g. elongation of a bridge. Such augmentation influences temperature 

profiles in construction works, leading to additional stresses in structures, and 

affecting the interaction of structures made of different materials in their interface (Fikke 

et al., 2017).  

Moreover, the final report of the Project Team on SC1.T5 recommended that bridges and 

other structures influenced by stresses from extreme temperatures should be designed for 

temperature amplitudes justified from climate projections for the actual region. It 

highlighted that the models used for extreme value calculations of basic variables should 

be updated based on new knowledge on variation of climate parameters, both with respect 

to traditional input data as well as model data and analysing tools. In addition, estimates 

of characteristic values of climatic actions should be updated with intervals no longer than 

ten years.  

  



49 

 

References 

AghaKouchak, A., D. Easterling, K. Hsu, S. Schubert and S. Sorooshian (Eds.) (2013). 

Extremes in a Changing Climate: Detection, Analysis and Uncertainty, Springer, Dordrecht, 

Netherlands, 2013, doi:10.1007/978-94-007-4479-0. 

Braganza, K., Karoly, D. J. and J. M. Arblaster J. M. (2004). Diurnal temperature range as 

an index of global climate change during the twentieth century, Geophys. Res. Lett., 31, 

L13217, doi:10.1029/2004GL019998. 

Casanueva A., Herrera S., Fernández J., Gutiérrez J.M. (2016). Towards a fair comparison 

of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative.  

Climatic Change, 137 (3-4), pp. 411-426. 

CEN/TC250 (2013). Response to Mandate M/515: Towards a second generation of EN 

Eurocodes. 

CH2011 (2011). Swiss Climate Change Scenarios CH2011, published by C2SM, 

MeteoSwiss, ETH, NCCR Climate, and OcCC, Zurich, Switzerland, 88 pp. ISBN: 978-3-033-

03065-7. 

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series 

in Statistics. Springer Verlag London. 208p. 

Collatz, G. J., Bounoua L., Los S. O., Randall D. A., Fung I. Y., and Sellers P. J. (2000). A 

mechanism for the influence of vegetation on the response of the diurnal temperature 

range to changing climate, Geophys.Res. Lett., 27, 3381– 3384. 

Cowtan, K. and R.G. Way (2014). Coverage bias in the HadCRUT4 temperature series and 

its impact on recent temperature trends. Quarterly Journal of the Royal Meteorological 

Society, 140(683), 1935–1944, doi:10.1002/qj.2297. 

Croce, P., Landi, F., Formichi, P., Castelluccio R. (2017a). Use of weather generators to 

assess impact of climate change: thermal actions on structures, Proc. of the Fifth Intl. Conf. 

Advances in Civil, Structural and Mechanical Engineering - CSM 2017, pp. 32-36, doi: 

10.15224/ 978-1-63248-132-0-37. 

Croce P., Formichi P., Friedman N., Landi F., Marsili F. (2017b). Snow load on structures 

under changing climate conditions. In: Christian Bucher, Bruce R. Ellingwood, Dan M. 

Frangopol (Editors) Safety, Reliability, Risk, Resilience and Sustainability of Structures and 

Infrastructure. TU-Verlag, Vienna, pp.3504-3513. 

Croce, P.; Formichi, P.; Landi, F.; Mercogliano, P.; Bucchignani, E.; Dosio, A.; Dimova, S., 

(2018). The snow load in Europe and the climate change, Climate Risk Management, Vol. 

20, 2018, pp. 138-154; https://doi.org/10.1016/j.crm.2018.03.001. 

Croce P., Formichi P., Landi F. Marsili F. (2019a). Evaluating the effect of climate change 

on thermal actions on structures. In: R. Caspeele, L. Taerwe, D. M. Frangopol (Editors) 

Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision, 

Taylor & Francis Group, pp. 1751–1758. 

Croce P., Formichi P., Landi F. and Marsili F. (2019b). Evaluating the effect of climate 

change on snow load on structures. IABSE Symposium Guimaraes 2019 – Report, pp.666-

673.  

Croce P., Formichi P. and Landi F. (2019c). A Bayesian hierarchical model for climatic loads 

under climate change, Eccomas Proceedia UNCECOMP 2019, 298-308. 

Croce P., Formichi P. and Landi F. (2019d). Climate Change: Impacts on Climatic Actions 

and Structural Reliability, Appl. Sci. 9(24), 5416; doi: 10.3390/app9245416.Dai, A., A. D. 

Del Genio, and I. Y. Fung (1997), Clouds, precipitation and temperature range, Nature, 

386, 665– 666. 

Dai, A., K. E. Trenberth, and T. R. Karl (1999). Effects of clouds, soil moisture, precipitation, 

and water vapor on diurnal temperature range, J. Clim., 12, 2451– 2473. 



50 

 

Dimova, S., Fuchs, M., Pinto, A., Nikolova, B., Sousa, L., Iannaccone, A., (2015). State of 

Implementation of the Eurocodes in the European Union, EUR27511. 

http://dx.doi.org/10.2788/854939  

Easterling, D. R., et al. (1997). Maximum and minimum temperature trends for the globe, 

Science, 277, 364– 367. 

European Environmental Agency (EEA), 2012. Climate change, impacts and vulnerability 

in Europe 2012. Report No12/2012, European Environmental Agency, Copenhagen.  

https://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012 

European Environmental Agency (EEA), 2020. The European environment - State and 

outlook 2020: knowledge for transition to a sustainable Europe, Luxembourg: Publications 

Office of the European Union, 2019, ISBN 978-92-9480-090-9, doi: 10.2800/96749. 

ESLRP, 1998. European Snow Load Research Project.  Structural Stability of Civil 

Engineering Works. Snow loads – Final Report. http://www2.ing.unipi.it/dic/snowloads/ 

Fikke S., Markova J., Hoffer R., Wichure B. and Malakatas N. (2017). Report. Project Team 

SC1.T5 “Climate Change” under Mandate M/515 (2017) Final Report to CEN/TC250, April 

2017. 

Formichi, P., Danciu, L., Akkar, S., Kale, O. Malakatas, N., Croce, P., Nikolov, A. Gocheva, 

A., Luechinger P., Fardis, M., Yakut, A., Apostolska,R., Sousa, M.L.,  Dimova, S., Pinto, A.. 

(2016). Eurocodes: background and applications. Elaboration of maps for climatic and 

seismic actions for structural design with the Eurocodes; EUR 28217 EN; 

doi:10.2788/534912. 

Fowler, H.J., Blenkinsop S. Tebaldi, C. 2007. Linking climate change modelling to impacts 

studies: recent advances in downscaling techniques for hydrological modelling, Int. J. 

Climatol. 27: 1547–1578. 

Froli M., Barsotti, R., Libertà, A., L. Perini. (1994). Maps of extreme values of air 

temperature in Italy for the estimation of climatic actions in bridges according Eurocode 1 

(in Italian). Giornale del Genio Civile, (4, 5, 6): 102-22. 

Giorgi F., and Gutowski. WJ (2016). Coordinated Experiments for Projections of Regional 

Climate Change. Current Climate Change Reports. 

Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. 

Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. 

Thorne, M. Wild and P.M. Zhai (2013). Observations: Atmosphere and Surface. In: Climate 

Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. 

Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. 

Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, 

NY, USA. 

Hawkins E., Sutton R.T. (2009). The potential to narrow uncertainty in regional climate 

predictions. Bull. Am. Meteorol. Soc. 90(8):1095–1107. 

Holicky, M. & Markova, J. (2014). Reliability of structures in national codes to Eurocodes, 

In: Safety and Reliability, Methodology and Applications. Wroclaw, p. 2207-2212.  

Hov O. et al. (2013). Extreme Weather Events in Europe: Preparing for climate change 

adaptation, Norwegian Meteorological Institute. 

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, 

V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom 

and New York, NY, USA, 1535 pp. 

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, 

II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

http://dx.doi.org/10.2788/854939
https://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012
http://www2.ing.unipi.it/dic/snowloads/


51 

 

[Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 

pp. 

IPCC (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global 

warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission 

pathways, in the context of strengthening the global response to the threat of climate 

change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., 

P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. 

Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, 

T. Maycock, M. Tignor, and T. Waterfield (eds.)]. 

ISO 2394 (2015). General principles on reliability for structures. 

Joint Committee on Structural Safety (JCSS). PMC (2014). JCSS Probabilistic Model Code. 

Thermal actions. www.jcss.byg.dtu.dk 

Konig et al. (1999), New European code for thermal actions, University Pisa, Rapporto No. 

6. 

Kotlarski, S et al. (2014). Regional Climate Modeling on European Scales: A Joint Standard 

Evaluation of the EURO-CORDEX RCM Ensemble. Geosci. Model Dev 7: 1297–1333. 

Marková, J. & Holický. M. (2013). Calibration of Thermal Actions on Bridges. In: Safety, 

Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures. 11th 

International Conference on Structural Safety and Reliability. New York, Leiden: CRC 

Press/Balkema., pp. 3755-3760, ISBN 978-1-138-00086-5. 

Radovanovic Z. and Grebovic R. S., (2015). Definition of Thermal Actions on the Building 

in Accordance with the Standard EN 1991-1-5, International Scientific Conference Urban 

Civil Engineering and Municipal Facilities, SPbUCEMF-2015, Procedia Engineering 117 628 

– 636. 

Sousa, M.L., Dimova, S., Athanasopoulou, A., Iannaccone, S. Markova J. (2019). State of 

harmonised use of the Eurocodes, EUR 29732 EN, Publications Office of the European 

Union, Luxembourg, doi:10.2760/22104. 

Teuling, A. J., Stöcklic, R.  Seneviratne, S. I. (2011). Bivariate colour maps for visualizing 

climate data. Int. J. Climatol. 31: 1408–1412. 

University of Pisa (1999). Background document. New European Code for Thermal Actions.  

Wilby G. (2017). Climate change in practice, Cambridge University press. 

 

  

http://www.jcss.byg.dtu.dk/


52 

 

 

 

  



53 

 

List of figures 

Figure 1. Human experience of present-day warming. Different shades of pink to purple 

indicated by the inset histogram show estimated warming for the season that has 

warmed the most at a given location between the periods 1850–1900 and 2006–2015, 

during which global average temperatures rose by 0.91°C in this dataset (Cowtan and 

Way, 2014) and 0.87°C in the multi-dataset average (Table 1.1 and Figure 1.3). The 

density of dots indicates the population (in 2010) in any 1° × 1° grid box. The underlay 

shows national Sustainable Development Goal (SDG) Global Index Scores indicating 

performance across the 17 SDGs. Hatching indicates missing SDG index data (e.g., 

Greenland). The histogram shows the population living in regions experiencing different 

levels of warming (at 0.25°C increments) (Figure 1.1 in IPCC, 2018) ........................... 1 

Figure 2. The European Green Deal (COM(2019) 640) .............................................. 6 

Figure 3. The emerging EU environmental and climate policy landscape (EEA: SOAR, 

2020) ................................................................................................................... 8 

Figure 4. Minimum shade air temperature maps adopted by the Member States (Map 

made with Natural Earth. Free vector and raster map data @ naturalearthdata.com. Data 

sourced from the JRC Nationally Determined Parameters database. Originally published at 

Sousa et al., 2019) ............................................................................................... 14 

Figure 5. Minimum shade air temperature maps adopted by the Member States (Map 

made with Natural Earth. Free vector and raster map data @ naturalearthdata.com. Data 

sourced from the JRC Nationally Determined Parameters database. Originally published at 

Sousa et al., 2019) ............................................................................................... 15 

Figure 6. Expected variation in Tmax characteristic values as provided by the ensemble 

mean of simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-

2000, RCP8.5)...................................................................................................... 20 

Figure 7. Expected variation in Tmax characteristic values computed by subtracting the 

square deviation to the ensemble mean, considering all available simulations included in 

EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). ........................... 20 

Figure 8. Expected variation in Tmax characteristic values computed by adding the square 

deviation to the ensemble mean, considering all available simulations included in EURO-

CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). .................................... 21 

Figure 9. Expected variation in the square deviation Δ for Tmax values by considering all 

available simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-

2000, RCP8.5)...................................................................................................... 21 

Figure 10. Expected variation in Tmin characteristic values as provided by the ensemble 

mean of simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-

2000, RCP8.5)...................................................................................................... 22 

Figure 11. Expected variation in Tmin characteristic values computed by subtracting the 

square deviation to the ensemble mean, considering all available simulations included in 

EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). ........................... 23 

Figure 12. Expected variation in Tmin characteristic values computed by adding the 

square deviation to the ensemble mean, considering all available simulations included in 

EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5).  .......................... 23 

Figure 13. Expected variation in the square deviation Δ for Tmin values by considering all 

available simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-

2000, RCP8.5)...................................................................................................... 24 

Figure 14. Expected variation in DTR characteristic values as provided by the ensemble 

mean of simulations included in EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-

2000, RCP8.5)...................................................................................................... 25 



54 

 

Figure 15. Expected variation in DTR characteristic values computed by subtracting the 

square deviation to the ensemble mean, considering all available simulations included in 

EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). ........................... 25 

Figure 16. Expected variation in DTR characteristic values computed by adding the 

square deviation to the ensemble mean, considering all available simulations included in 

EURO-CORDEX 0.11° datasets (2056-2085 vs 1971-2000, RCP8.5). ........................... 26 

Figure 17. Flow chart of the weather generator algorithm (adapted from Croce et al. 

(2019a)) ............................................................................................................. 30 

Figure 18. Investigated region in the Italian Mediterranean climatic area (adapted from 

Croce et al., 2019) ................................................................................................ 33 

Figure 19. Median values of factor of change TMax,k(t) for an investigated cell according 

the RCP4.5 (in blue) and RCP8.5 (in green) scenarios together with the prediction interval 

[25%-75%]. ........................................................................................................ 33 

Figure 20. Delta changes [°C] uncertainty maps for TMax,k with respect to 1956-1995 – 

Prediction interval [25%-75%] map (RCP4.5). ......................................................... 34 

Figure 21. Delta changes [°C] uncertainty maps for TMax,k with respect to 1956-1995 – 

Prediction interval [25%-75%] map (RCP8.5). ......................................................... 34 

Figure 22. Delta changes [°C] uncertainty maps for TMin,k with respect to 1956-1995 – 

Prediction interval [25%-75%] map (RCP4.5). ......................................................... 35 

Figure 23. Delta changes [°C] uncertainty maps for TMin,k with respect to 1956-1995 – 

Prediction interval [25%-75%] map (RCP8.5). ......................................................... 35 

Figure 24. Possible changes in the mean value and variance in future temperatures, due 

to changes in the temperature probability density function (PDF) (adapted from: CH2011, 

Hov et al., 2013; Fikke et al., 2017) ....................................................................... 40 

Figure 25. The trends of average temperatures based on the measurements in the 

meteorological station Klementinum in Prague (since 1861) (Figure from Climate change 

in CZ [Změna klimatu v ČR), ČHMÚ / CC BY-NC-ND 3.0 CZ]) ..................................... 41 

Figure 26. Projected increase of the mean shade air temperature in the Czech Republic 

(till the year 2035) relative to 2016 year (Figure from Climate change in CZ [Změna 

klimatu v ČR), ČHMÚ / CC BY-NC-ND 3.0 CZ]) ......................................................... 41 

Figure 27. Relationship between the shade air temperature and the uniform temperature 

component for steel bridges (Type 1), for composite steel concrete bridges (Type 2) and 

concrete bridges (Type 3). For composite bridges two different ranges of daily 

temperatures (10 and 30 °C) are illustrated. (Figure first published in Fikke et al., 2017. 

Data sources from EN 1991-1-5 [Fig. 6.1] and Konig et al. (1999) [Fig. 3.6.2 in p. 51]).

 .......................................................................................................................... 44 

Figure 28. Characteristic value of the maximum contraction (ΔTN,con) and expansion 

(ΔTN,exp) range of the uniform bridge temperature component .................................... 45 

 



55 

 

List of tables 

Table 1. Summary of climate simulation chains, provided by EURO-CORDEX ensemble at 

0.11°, considered in the case study. ....................................................................... 18 

Table 2 . Summary of climate simulation chains provided by EURO-CORDEX ensemble, 

codes refer to Table 1 in Chapter 4. ........................................................................ 32 

Table 3. Average of delta change for TMax,k [°C] for percentiles 25%, 50% and 75% in 

the considered region. ........................................................................................... 36 

Table 4. Average of delta changes for TMin,k [°C] for percentiles 25%, 50% and 75% in 

the studied region. ............................................................................................... 36 

 

 

 

 

  



56 

 

  



57 

 

 

 

GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre 

nearest you at: https://europa.eu/european-union/contact_en 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: https://europa.eu/european-union/contact_en 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa website at: 

https://europa.eu/european-union/index_en 

EU publications 

You can download or order free and priced EU publications from EU Bookshop at: 
https://publications.europa.eu/en/publications. Multiple copies of free publications may be obtained by contacting 

Europe Direct or your local information centre (see https://europa.eu/european-union/contact_en). 

https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/index_en
https://publications.europa.eu/en/publications
https://europa.eu/european-union/contact_en


58 

 

 

K
J-N

A
-3

0
3

0
2

-EN
-N

 

doi:10.2760/128894 

ISBN 978-92-76-20776-4 


