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Abstract

Countries in Europe took different mobility containment measures to curb the spread of
COVID-19. The European Commission asked Mobile Network Operators to share on a vol-
untarily basis anonymised and aggregate mobile data to improve the quality of modelling
and forecasting for the pandemic at EU level. In fact, mobility data at EU scale can help
understand the dynamics of the pandemic and possibly limit the impact of future waves.
Still, since a reliable and consistent method to measure the evolution of contagion at inter-
national level is missing, a systematic analysis of the relationship between human mobility
and virus spread has never been conducted. A notable exceptions are France and Italy, for
which data on excess deaths, an indirect indicator which is generally considered to be less
affected by national and regional assumptions, are available at department and municipality
level respectively. Using these information together with anonymysed and aggregated mo-
bile data, this study shows that mobility alone can explain up to 92% of the initial spread in
these two EU countries, while it has a slow decay effect after lockdown measures, meaning
that mobility restrictions seem to have effectively contribute to save lives. It also emerges
that internal mobility is more important than mobility across provinces and that the typical
lagged positive effect of reduced human mobility on reducing excess deaths is around 14-
20 days. An analogous analysis relative to Spain, for which an IgG SARS-Cov-2 antibody
screening study at province level is used instead of excess deaths statistics, confirms the
findings. The same approach adopted in this study can be easily extended to other Euro-
pean countries, as soon as reliable data on the spreading of the virus at a suitable level of
granularity will be available. Looking at past data, relative to the initial phase of the out-
break in EU Member States, this study shows in which extent the spreading of the virus and
human mobility are connected. The findings will support policymakers in formulating the
best data-driven approaches for coming out of confinement, and mostly in building future
scenarios in case of new outbreaks.

Highlights

— this work shows the importance of mobility data in understanding the initial spread of
COVID-19;

— it is shown that mobility alone can explain from 52% up to 92% of the excess cumu-
lative deaths;

— it is also shown that mobility correlates with the IgG antibody screening data;

— in the analysed data, internal mobility within a region is more important than mobility
across regions;

— the reduction of mobility has a lagged effect of about 14-20 days in flattening the
cumulative excess deaths curve;

— further, when containment measures are in place, the impact of mobility on the spread
of the virus reduces.
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1 Introduction

By means of a letter sent on 8 April 2020, the European Commission asked European Mo-
bile Network Operators (MNOs) to share fully anonymised aggregate mobility data to deliver
insights to help fight COVID-19. The aim of the initiative is further specified by the rec-
ommendation to support exit strategies policies through mobile data and apps (European
Commission, 2020a) with data-driven models that indicate the potential effects of the re-
laxation of the physical distancing measures (European Commission, 2020b).
Indeed, MNOs can offer a wealth of data on mobility and social interactions. While the value
of mobile positioning personal data to describe human mobility has been explored (Csáji
et al., 2013) and its potential in epidemiology studies demonstrated (Wesolowski et al.,
2012,Jia et al., 2020,WU et al., 2020,Kraemer et al., 2020,Wesolowski et al., 2015), the
aim of this research is to show that also anonymised and aggregated MNOs data, in compli-
ance with the ‘Guidelines on the use of location data and contact tracing tools in the context
of the COVID-19 outbreak’ by the European Data Protection Board (EDPB, 04/2020), could
serve to explain the dynamics of the virus outbreak without the need of disclosing any per-
sonal data, nor using tracing applications.
The analysis in this technical report exploits data from four MNOs relatively to three EU
Member States (France, Italy and Spain), together with different types of official statistics
on the spread of COVID-19 across these countries; the objective is to understand whether
or not human mobility matters in the expansion phase of the pandemic.
The report is organised as follows. Section 2 describes the original data provided by the
MNOs, namely ‘Origin-Destination-Matrices’ (ODMs), and the derived mobility indicators
used in this study, namely ‘Connectivity Matrix’. Section 3 investigates the case of France,
taking into account the internal and outbound movements from the Haut-Rhin department
(one of the initial hotbeds) to the rest of the country, in order to establish the role of human
mobility in explaining the dynamics of the early spread of the virus. The result show that
significantly higher excess mortality in other departments can be explained by their con-
nectivity to Haut-Rhin (R2 up to 0.92). This relationship is valid until mobility is severely
reduced due to the national lockdown in force since the 16 March 2020. It also finds out
that the curve of cumulative excess deaths in Haut-Rhin correlates almost perfectly (from
R2 = 0.69 to R2 = 0.98 after shifting) to the curve of mobility reduction for the same region,
showing a lag of 14 days between the two curves. Section 4 focuses on the virus spread
in Italy, showing rather similar results to the French case (R2 up to 0.91 and lagged effect
of 14-20 days, depending on the provinces), and confirming that human mobility has an
high impact on the virus spread. Since the excess mortality data for Italy is available at
municipality level, we have tested the same method also at this higher spatial granularity
(the analysis fro France is at Departments level), finding an analogous relationship between
mobility and excess deaths in the initial phase of the outbrake; this confirms that the results
hold at different geographic scales. Section 5, focuses on Spain, for which instead of the
excess death statistics (that are not available at a suitable spatial granularity) we consider
the IgG SARS-Cov-2 antibody screening study put in place at province level between the
end of April and mid May 2020. In this case, only correlation can be tested, and the results
show that the number of people found to be positive to IgG test is highly correlated (r up
to 75%) with the human mobility derived by the mobile data from the MNOs. It is worth
underlining that since, as noticed in (Salje et al., 2020), population immunity appears in-
sufficient to avoid a second wave without lockdown or other containment measures, this
work may provide further insights on the effectiveness of containment measures.
Section 6 goes through the main caveats and limitation of the research, pointing out the
hypothesis adopted by the proposed analysis.
Finally, Section 7 draws some considerations about the research and highlights the main
findings.
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2 Mobile Positioning Data and Mobility Indicators

The agreement between the European Commission and the Mobile Network Operators
(MNOs) defines the basic characteristics of fully anonymised and aggregate data to be
shared with the Commission’s Joint Research Centre (JRC5). The JRC processes the hetero-
geneous sets of data from the MNOs and creates a set of mobility indicators and maps at a
level suitable to study mobility comparatively across countries; this level is referred to as
‘common denominator’.
The following subsections briefly describe the original mobile positioning data from the
MNOs and the mobility indicator derived by JRC, respectively.

2.1 Origin-Destination Matrix

Data from MNOs are provided to JRC in the form of Origin-Destination-Matrices (ODMs)
(Mamei, 2019, Fekih, 2020). Each cell [i − j] of the ODM shows the overall number of
‘movements’ (also referred to as ‘trips’ or ‘visits’) that have been recorded from the origin
geographical reference area i to the destination geographical reference area j over the
reference period. In general, an ODM is structured as a table showing:

— reference period (date and, eventually, time);

— area of origin;

— area of destination;

— count of movements.

Despite the fact that the ODMs provided by different MNOs have similar structure, they
are often very heterogeneous. Their differences can be due to the methodology applied
to count the movements, to the spatial granularity or to the time coverage. Nevertheless,
each ODM is consistent over time and relative changes are possible to be estimated. This
allows defining common indicators (such as ‘mobility indicators’ (Santamaria et al., 2020),
‘connectivity matrices’ and ‘mobility functional areas’ (Iacus et al., 2020) that can be used,
with all their caveats, by JRC in the framework of this joint initiative.
Although the ODM contains only anonymised and aggregate data, in compliance with

the EDPB guidelines (EDPB, 04/2020), upon the reception of each ODM, the JRC carries out
a ‘Reasonability Test’. Both the reasonability test and the processing of the ODM to derive
mobility indicators take place within the JRC’s Secure Platform for Epidemiological Analysis
and Research (SPEAR).
This report presents an exploratory analysis for specific outbreaks in France, Italy and

Spain, showing and quantifying the relative importance of mobility in the early stages of
the virus outbreak in the country. The choice of these three countries is attributed to the
availability of ancillary data at high level of granularity in space and time, which are needed
for correlation analysis with mobility insights. The mobility within the country is derived
using the ‘connectivity matrices’ that are introduced in the following section.

2.2 Connectivity Matrix

Besides the formulation of ‘mobility indicators’ (Santamaria et al., 2020)) and ‘Mobility
Functional Areas’ (Iacus et al., 2020), an additional example of ‘common denominator’ to
guarantee comparable indicators across countries is a measure of connectivity at less gran-
ular level, using the common statistical classification of territorial units (NUTS6). The NUTS3
level was selected in this framework, where the average population size of administrative
units in Member States lie between 150.000 and 800.000.
The connectivity matrix at time t is represented by the Origin Destination Matrix ODMi,j(t)
as extracted from normalised and aggregated data received from MNOs. With reference

5The Joint Research Centre is the European Commission’s science and knowledge service. The JRC employs
scientists to carry out research in order to provide independent scientific advice and support to EU policy.

6Regulation (EC) 1059/2003 of the European Parliament and of the Council of 26 May 2003 on the establishment
of a common classification of territorial units for statistics (NUTS)
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to Figure 1, considering the NUTS3 area A (rows and columns a1, a2 and a3) and the des-
tination area B (rows and columns b1, b2), then the relevant connectivity is calculated as
follows:

ODMA,B(t) =
∑

i∈{a1,a2,a3}

∑
j∈{b1,b2}

ODMi,j(t) (1)

Figure 1: Connectivity matrix construction starting from an ODM at higher level of granularity.

The resulting connectivity matrix is obtained by averaging over one week of data. The
present study only makes use of outward and internal movements along one row of the
matrix and later focuses only on movements internal to departments, i.e. making use only
of the diagonal of the connectivity matrix.

3 Human mobility explains the early spread of CODIV-19 in France

One of the initial clusters of the COVID-19 outbreak in France is believed to have originated
in Haut-Rhin . Since statistics on confirmed cases are by their nature heavily affected by
the type and volume of the testing procedures (Bartoszek et al., 2020), which generally
varies both across departments and in time as the contagion evolves, we instead have used
the total number of (officially confirmed) deaths by departments (see Figure 2 left) over
the period 1 March 2020 - 27 April 2020 (INSEE, 2020). France is a special case study
thanks to the availability of high resolution deaths counts and our results seem to confirm
and complement the analysis in (Salje et al., 2020). In our analysis, we consider the daily
cumulative number of excess deaths with respect to the same period of 2019, assuming that
most of these excess cases are due to COVID-19 (Wu and McCann, 2020,Giles, 2020,The
Economist, 2020). A visual inspection of the data shows that the cumulative sum of excess
deaths by department (Figure 2 middle) for the period 1-25 March 2020 is correlated with
the connectivity (Figure 2 right) from Haut-Rhin during the week of 23-29 February 2020
(which is supposed to be the start of the pandemic in France). To study the impact of
mobility on the spread of COVID-19 in France, we fit a simple statistical model that aims at
explaining the excess deaths of Haut-Rhin in terms of human mobilityas well as the distance
between the department of Haut-Rhin and all other departments. We aim to measure
the relative importance of connectivity (or human mobility) compared to the geographical
distance for the spread of the virus.
Although mobility can only explain part of the spread of COVID-19, in order to show the
relative importance of the mobility component, we run the simple quadratic regression
model of equation:

ydi = const+ α1 log(mobilityi) + α2 [log(mobilityi)]
2
+ α3distancei (2)

where ydi is the number of cumulative death excess for department i from 1 March 2020 till
date d (d=2020-03-01, …, 2020-04-27). The variable distancei is the geographical distance
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Figure 2: Top panel: The evolution of the excess deaths by department, 1 March - 27 April 2020.

Bottom left: Cumulative number of excess deaths 2020-2019, period 1-25 March. Bottom right:

connectivity levels from the department of Haut-Rhin (darkest area in the map) during the week of

23-29 February 2020. Grey colour indicates very low connectivity.

between the department Haut-Rhin and the department i and mobilityi is the normalised
Mobility Index from Haut-Rhin to the department i for the week of 23-29 February 2020. As
we consider log-scaled mobility, we drop the departments for which the outbound mobility
from Haut-Rhin is zero, i.e., we only fit this and the other models for which mobilityi > 0.
The idea behind this data driven approach is to let the data tell us under which conditions
and when the mobility data do matter in studying the contagion, and when they do not.
The choice of the very simple structure of model Eq. (2) is to capture clearly the impact
of mobility, and the scope of the model is not to forecast cases or fatalities but to inform
about the dynamics of the COVID-19 due to human mobility. The quadratic form of the
model is suggested by the data itself as seen in Figure 4. We also fit two reduced models
with mobility only Eq. (3) and distance only Eq. (4):

ydi = const+ β1 log(mobilityi) + β2 [log(mobilityi)]
2

(3)

and
ydi = const+ γ1distancei. (4)

For each model we evaluate the R2 index as well as the significance of each coefficient. To
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further stress the relative importance of the variables in the full model Eq. (2) we consider
the evolution of the standardised coefficients in time. Figure 3 shows the goodness of fit
of the three competing models in terms of R2 and the p-value of the estimated coefficients.
The vertical lines set on 9 and 13 March represent two large gatherings in the Haut-Rhin
region and that on 16 March the first lockdown measure (schools closure). The next three
lines are translated by 14 days, which corresponds to the median number of days from the
occurrence of the first symptom to death (Lauer et al., 2020). From Figure 3 it is clear that

0.0

0.1

0.2

0.3

0.4

0.5

20
20

−0
3−

05

20
20

−0
3−

12

20
20

−0
3−

19

20
20

−0
3−

26

20
20

−0
4−

02

20
20

−0
4−

09

20
20

−0
4−

16

20
20

−0
4−

23

R
2

Model

Full

DistanceOnly

MobilityOnly

Goodness of fit of cumulative excess deaths modelsA

0.00

0.25

0.50

0.75

1.00

20
20

−0
3−

05

20
20

−0
3−

12

20
20

−0
3−

19

20
20

−0
3−

26

20
20

−0
4−

02

20
20

−0
4−

09

20
20

−0
4−

16

20
20

−0
4−

23

p−
va

lu
e

Coefficient

const

distance

mobility

mobility2

P−values of the coeffientsB

−25

0

25

50

75

20
20

−0
3−

05

20
20

−0
3−

12

20
20

−0
3−

19

20
20

−0
3−

26

20
20

−0
4−

02

20
20

−0
4−

09

20
20

−0
4−

16

20
20

−0
4−

23

co
ef

fic
ie

nt

Coefficient

const

distance

mobility

mobility2

Standardized coefficientC

Figure 3: (A) The R2 is explained mostly by the mobility indicator, and reaches its maximum on 16

March 2020. When the lockdown measures are in force, then the spread is explained by the distance

from the Haut-Rhin department, where the spreading of the virus has believed to have started, but

also other factors captured by the constant effect. (B) The p-values of the coefficients are presented.
The horizontal line represents the 0.05 significance level and (C) the standardised values of the same

coefficients to appreciate the relative impact of each on explaining the outcome variable.

the model Eq. (2) dominates the other two but also that, up to the maximum value of the
R2 = 0.52 (around 18 March), the model Eq. (3) is almost equally good (R2 = 0.51). Then,
on the long run, the distance becomes slightly more important but clearly the rest of the
variability is explained by the mix of the three. This figure also supports an argument that
the department of Haut-Rhin could have been the initial source of the outbreak of COVID-
19 in France. It also demonstrates the positive impact of the lockdown measures on the
reduction of excess deaths. Figure 3 also shows the standardised coefficients of the full
model Eq. (2) as a function of time. Standardised coefficients are all on the same scale
and thus their values can be compared in terms of their impact on the outcome variable.
Looking at the plot, then becomes clear that the mobility coefficient is the largest effect up
to 27 March, then the excess deaths number is explained by the constant in the model, i.e.,
by other factors not included in the simple regression analysis.
The explanatory impact of mobility can be improved further if we select those cases for
which the mobility index and the cumulative excess deaths are both positive. This selection
is natural both because what is interesting is the positive excess of deaths and because,
due to the process of non-identification and anonymisation of the data, some entries of the
original OD matrix are cut to zero by construction. Figure 4 shows the scatterplot of the two
dimensions for all the departments and the further selection of data (cut). The reference
data chosen is 16 March as it is the date for which the R2 = 0.92 of the full model, under
the selected sample, is maximal. For the selected data the significance of the coefficients
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for the constant and the mobility variable are even improved while for the variable distance
is worsened and the standardised coefficients show a similar path to those of Figure 3.
Figure 5 also shows that this evidence does not change substantially if we choose a different
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Figure 4: The data for log-mobility and cumulative excess deaths on 16 March 2020. In red the

selected subset of positive excess deaths and mobility. The other points are the residual data. Red

and light blue together represent the whole data. The two curves correspond to the fitted model Eq.

(2) for both data sets. The straight line represent simple linear regression of the two variables in the

plot.

mobility week. Indeed, the Figure shows that the R2 evolution for each mobility week using
the model Eq. (3) on the selected data set (cut) of positive excess deaths and mobility index
present a common pattern, i.e., mobility has no effect before the COVID-19 outbreaks and
has a fast decay after the lockdown measures are in place (left and right tails of Figure 5).
On the contrary, during the initial emergency phase, mobility is a key element of the spread
of the virus and therefore on its outcome (the fatalities). Although, we are not trying to
forecast the number of deaths with mobility due to the extreme simplicity of the models
considered, we notice that the R2 path shows an observed time lag between mobility and
excess of deaths which we impute to COVID-19: according to (Li et al., 2020) the mean
incubation period was 5.2 days (95% confidence interval 4.1 to 7.0) while according to
(Wang et al., 2020) the median number of days from the occurrence of the first symptom
to death is 14 (range 6 to 41) days. See also (Lauer et al., 2020). We now try to estimate
this lag looking at internal mobility.

3.1 Internal mobility matters the most

Most of the correlation captured by the R2 in the previous analysis is due to the internal
mobility within the department and by the connectivity between the Haut-Rhin department
and few others (Bas-Rhin, Vosges, Aisne but not, for example, Moselle, see also Figure 4).
In fact, the distance alone cannot explain the excess deaths in the chosen simplified Eq.
(2) model. Starting from this evidence, which is common to most of the departments
considered in the analysis, we now study the impact, if any, of internal mobility alone on
the excess deaths of the same department through a time series approach. A similar study
using domestic air traffic data at country level can be found in (Zhao et al., 2020). In this
work we consider the time series of excess deaths and the one of the reduction of mobility
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Figure 5: R2 evolution for each mobility week using the model based on mobility alone on the selected

data set of positive excess deaths and mobility index. The peak of correlation is on 16 March 2020

and the mobility week is the one between 15 and 21 March 2020. A similar pattern is shown for all

weeks, explaining that mobility has no effect before the COVID-19 outbreaks and has a fast decay

after the lockdown measures are in place (left and right tails of the figure). On the contrary, during

the initial emergency phase mobility is a key element of the spread of the virus and therefore on

fatalities.

(100% = total lockdown, 0% no restriction to mobility) for each department through time.
We normalise the reduction of mobility index (namely nmob), to the local maximum within
the department to have a [0,1] measure

nmobi,j = 1−
mobilityi,j −min

j
(mobilityi,j)

max
j

(mobilityi,j)−min
j

(mobilityi,j)
,

for each origin department i and all outbound departments j. We also normalise the cumu-
lative sums of excess deaths in the same way

cumdeathsi =

cumdeathsi −min
j

(cumdeathsi)

max
j

(cumdeathsi)−min
j

(cumdeathsi)
,

for each department i.
Figure 6 shows a plot of the two indicators for the Haut-Rhin department. The graphs
suggest an evident lag could exist between the two curves. We can estimate the statistical
lag in the following way. Let θ ∈ (−δ, δ) be the time lag between the two nonlinear time series
X and Y . Roughly speaking, the idea is to construct a contrast function Un(θ) = Cov(Xt, Yt+θ)
which evaluates the Hayashi-Yoshida covariance estimator (Hayashi and Yoshida, 2008,
Hayashi and Yoshida, 2005) for the times series Xt and Yt+θ and then to maximise it as a
function of θ. The lead-lag estimator θ̂n of θ is defined as (Hoffmann et al., 2013)

θ̂n = arg max
−δ<θ<+δ

|Un(θ)|.

When the value of θ̂n is positive it means that Xt and Yt+θ̂n
(or Xt−θ̂n

and Yt) are strongly

correlated, so we say “X leads Y by an amount of time θ̂n”, so X is the leader and Y is the
lagger. Viceversa for negative θ̂n. The lead-lag estimator is provided by the yuima R package
(Iacus and Yoshida, 2018). Applying the lead-lag analysis to our data, we estimate a lag
of 14 days which is in line with the median lag time from the onset of symptoms to death
(Wang et al., 2020, Lauer et al., 2020). After shifting the normalised mobility curve by
14 days (lagnmob) the cross-correlation between the curve lagnmob and the curve cumdeaths
raises from 0.69 to 0.98. A simple linear regression among these two series gives a value
of R2 of 0.96 (from 0.48 before shifting).
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Figure 6: Left panel: the correlation between cumdeaths and nmob at different lags. Right panel:
cumdeaths, nmob with the additional lagged normalised mobility curve lagnmob. The estimated optimal
Lag is 14 days.

3.2 Correlation network analysis

After analysing the internal mobility of the Haut-Rhin department, we consider the internal
mobility of each department and estimate a lead-lag parameter against the cumdeaths curves
of all departments. This way of proceedings takes into account possible spin-offs from one
department to another but it is not a causal inference analysis. After running the extensive
9216 (96x96) lead-lag analyses, we summarise the results through a network analysis.
Therefore, we build a directed graph representing the lead-lag relationships between the
lagger cumulative deaths curves and the leader internal mobility. The nodes in the graph
from Ai to Bj are such that Bj is the cumdeaths curve for a target department j and Ai

is the internal mobility of a department i. Cutting those edges that form loops (internal
mobility on the same department) and further selecting the edges i → j which presents
the maximal lagged-correlation for a given destination j, we obtain a simplified graph. The
edges on the graph are weighted according to the R2 statistics. On this graph, a standard
community detection algorithm for directed graphs is run in order to discover similar paths
between mobility within a department and impact on other departments. Keeping in mind

Figure 7: A zoomed section of the graph of lead-lag relationships between internal mobility (origin)

and cumulative excess deaths (destination). Full network is shown in Figure 8. The graph is zoomed

on Haut-Rhin. This cluster shows that the internal mobility of Haut-Rhin correlates maximally with

the cumulative excess deaths of several other departments at different lags. The width of the edges

is inversely proportional to the estimated lag: the smaller the lag, the thicker the edge. Red edges

connect two different clusters. No causality effect should be read from this graph.

that lead-lag analysis does not involve any causal effect, the clusters that are obtained can
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be seen only as similar patterns of lagged cross-correlation between internal mobility and
excess deaths in outbound departments. Most of the lag discovered are around 14-20 days.
Shorter lag estimates usually correspond to very flat excess cumulative deaths curves. Too
large lags (i.e. 30 days) are mostly spurious correlation due to few observations. Figure 7
are a graphical representation of the network graph (the full network is shown in Figure 8.).
It is important to stress that no causality effect should be interpreted from this correlation
network graph. In fact, notice that the reason why the department of Hautes-Alpes is the
origin of the edges of the graph towards many other departments is because the mobility
there was reduced much earlier than in other departments and therefore the correlation
with the cumulative excess deaths is much anticipated by simple correlative effects. So
what can be retained from this analysis? This network says that dynamics of both mobility
reduction and cumulative excess deaths have similar patterns regardless of the region.
Therefore this result, coupled with previous analysis on internal mobility, can inform policy
makers on the expected spread containment in terms of human mobility reduction and the
corresponding lag needed to achieve the flattening of the excess deaths curve.
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4 Human mobility and CODIV-19 spread in Italy

In this section we have replicated the study of Section 3 for Italy. Data on excess-deaths
are publicly available7 at (Istat, 2020) at municipality level for 7,270 municipalities (over
a total of 7,904, about 92%) for the period 1 January 2020 - 15 May 2020 (see Figure
9). Mobility data for Italy are coming from two different MNOs at different resolution in
space (census areas and NUTS3) and time (hourly and daily). The use of both dataset
allows to capture short movements (less than the hour, mainly internal mobility or across
neighbor provinces) and longer ones (more than one hour) through connectivity matrices
even when aggregated at NUTS3 level as considered in our analysis. One of the provinces
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Figure 9: Top panel: The evolution of the excess deaths by province, 1 January - 15 May 2020.

Bottom left: Cumulative number of excess deaths 2020-2019, period 1 January-25 March. Bottom

right: connectivity levels from the province of Bergamo (darkest area in the map) during the week

of 2 March 2020. Grey colour indicates very low connectivity.

strongly hitted by the virus initial spread in Italy is Bergamo. We will use this case to show
a parallel analysis to that of Section 3. Figure 10 shows the scatterplot for the mobility
week of 2 March 2020 against the excess deaths on 1 April 2020. Under the mode model
Eq. (3), the R2 = 0.91 for these two set of data. Italy has put in place lock downs for the red
zones (very small municipalities) on 21 and 27 February 2020 and the country-wise lock
down was enforced on 9 March 2020, so it is interesting to see the pattern of correlation

7Data released by Istat on 18 June 2020.
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14-20 days after 9 March 2020 as marked with vertical lines in Figure 11. Figure 11 shows
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Figure 10: The data for log-mobility on 2 March 2020 and cumulative excess deaths on 1 April 2020.

In red the selected subset of positive excess deaths and mobility. The other points are the residual

data. Red and light blue together represent the whole data. The two curves correspond to the fitted

model Eq. (2) for both data sets. The R2 for this fitted model is 0.91. The straight line represent
simple linear regression of the two variables in the plot. The black vertical lines are on the dates of

local lock downs on 21 and 27 February 2020 and country-wise lock down on 9 March 2020. The

green lines are the same as the black lines but shifted by 14 days.

that this evidence does not change substantially if we choose a different mobility week.
Indeed, the Figure shows that the R2 evolution for each mobility week using the model Eq.
(3) on the selected data set (cut) of positive excess deaths and mobility index present a
common pattern. In this particualr case the R2 reaches its maximum on 23 March 2020
with the value of 0.95. Now focusing on local mobility via lead-lag analysis, we discover
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Figure 11: R2 evolution for each mobility week using the model based on mobility alone on the

selected data set of positive excess deaths and mobility index. The peak of correlation is on 23 March

2020 similarly to Figure 5 with R2 = 0.95.

a 18 days lag between mobility reduction and the cumulative curve of excess deaths (see
Figure 12). After shifting the normalised mobility curve by 18 days (lagnmob) the cross-
correlation between the curve lagnmob and the curve cumdeaths raises from 0.76 to 0.99.
A simple linear regression among these two series gives a value of R2 of 0.99 (from 0.58
before shifting). The lead-lag analysis shows that, over the 110 Italian provinces, the lagged
effect has a mean and median of 20 days, with the first quantile being 16 and third quantile
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Figure 12: Left panel: the correlation between cumdeaths and nmob at different lags. Right panel:
cumdeaths, nmob with the additional lagged normalised mobility curve lagnmob. The estimated optimal
Lag is 18 days.

25 days. Figure 13 presents the correlation network graph for the Italian provinces. As in
Section 3 correlation is not causation.
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5 Human mobility and IgG antibody testing in Spain

Another interesting case to test the impact of human mobility on the virus spread is Spain.
Indeed, despite the fact that the number of cases is know only at region (NUTS2) or country
level, this country has conducted a large scale IgG Sars-Cov2 antibody screening on the
population at province level in two waves on 27 April 2020 and 11 May 2020. The study,
conducted by (ENE, 2020), has recruited 60,983 inland and an additional 3,234 participants
in the islands. As running examples, we consider the provinces of Madrid and Barcelona, the
two provinces with highest number of cases in Spain, and Badajoz (in Extremadura region)
which is an average case. In our study we combine the results of the two weeks of testing

Figure 14: Left and middle panel the mobility from Madrid and Barcelona for the week of 2 March

2020. Right panel the total number of IgG positive cases.

and we compare these data with the mobility data using the same models of the previous
sections. Figure 14 shows the mobility from Madrid and Barcelona toward other provinces
of Spain in comparison with the number of positive IgG positive cases by province. The
combination of the left and middle maps suggests the existence of a relationship between
mobility and positive cases that we will now try to quantify through correlation analysis.
Figure 15 shows the log-log plot of mobility versus IgG positive cases. The pattern of the
relationship between the two variables is similar to what we observed for the excess deaths
of France (Figure 4) and Italy (Figure 10).
For Spain though, we don’t have time series for the IgG tests, so we cannot run a leag-lad
or correlation-network analysis like in Sections 3 and 4, but we can only perform a simple
correlation analysis, letting the time of mobility to vary and keeping the IgG data fixed.
Figure 16 show the behaviour of the Spearman (traditional) and Pearson (rank) correlation
coefficients between the IgG positive tests and both the mobility and distance between
provinces on the linear scale. The evidence here is that mobility is more important, in
terms of simple correlation, than the proximity between the provinces up to lock down
which was enforced on Saturday 14 March 2020. The maximal value of the correlation
coefficients for Madrid, Barcelona and Badajoz are, respectively, 0.67, 0.56 and 0.56. On the
other side, Figure 17 show the goodness of fit measure R2 for the Eq. (2) model on the
log-log scale. For Madrid and Barcelona R2 = 0.57 while for Badajoz R2 = 0.62. Clearly, the
correlations are less strong than those of the excess deaths data because IgG data measure
a different aspect of the COVID-19 spread and, begin essentially one point in space, is hard
to estimate any variation. Still, the results confirm that human mobility have an impact on
the virus spread.

6 Caveats of the study

It is important to remind that the choice to use a simple model of equation Eq. (2) aims
at showing the rough effect of mobility on the initial spread of the virus. Clearly, such a
model is not intended to and should not be used to produce any other type of result, like,
for instance, to forecast the number of deaths. In this work, the excess deaths in France
and Italy are treated only as a proxy for the virus spread, as well as IgG testing for Spain is
a proxy for the number of people that have been in contact with the virus at a given time.
It is also well known that the excess deaths actually due to coronavirus are influenced by a
long series of factors such ase the age structure of the population and its health condition,
the availability of ICU units, the preparedness of the health care system, etc, and that
these generally vary across regions. Moreover, part of the excess deaths after lockdown
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Figure 15: The data for log-mobility and total number of log IgG positive tests for the provinces of

Madrid (Top), Barcelona (bottom left) and Badajoz (bottom right). The shape of the relationship is

similar to the cases of France (Figure 4) and Italy (Figure 10).

events, may also be deflated by the lower number of deaths due to e.g. road accidents or
work-related (many activities have been shut down during national lockdowns). There is
also a technical issue due to the construction of the ODMs where all movements below a
given threshold are discarded in order to maintain data anonymity.
For obvious reasons (in primis for the lack of reliable information) all these aspects have
not been accounted for by this study. In other words, despite some of the confounding
effects are captured by the constant coefficient of the basic models adopted, clearly there
are many other confounders that are not.
Yet, the fact that the results are quite stable and consistent across countries (also adopting
different spatial granularities), together with very similar findings published from different
research teams relatively to China (Jia et al., 2020), are absolutely encouraging for the
evolution of this research.
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Figure 16: The values of the correlation coefficients for the provinces of Madrid (Top, maximum

|ρ(Mob)| = 0.67), Barcelona (bottom left, maximum |ρ(Mob)| = 0.56) and Badajoz (bottom right,

maximum |ρ(Mob)| = 0.41), between IgG positive tests and both mobility and distance. The black
vertical line correspond to the lock down of 14 March 2020, the read line is just 14 days later.

7 Discussion

This report demonstrates that human mobility, derived by mobile data, is highly correlated
with the spread of COVID-19 in the initial phase of the outbrake. In the case study of
France, we have found that mobility can explain from 52% up to 92% of the excess deaths
reasonably linked to the COVID-19 outbreak. In the case study of Italy, we have found
similar results (R2 up to 0.91 and lagged effect of 14-20 days, depending on the provinces),
confirming that human mobility has a high impact on the virus spread, at least before other
physical distancing measures are in place. In the case of Spain, we have found that the
number of people resulting positive to IgG tests is highly correlated (r up to 75%) with the
human mobility.
The above case studies can provide solid evidence to forecasting scenarios for future

waves of the virus, in cases where only limited additional protective measures are in place
(e.g. wearing masks, physical distancing etc.). This is achieved by exploring the linkage
between the geographic distribution of the excess of mortality with respect to 2019 and
fully anonymised and aggregated mobile positioning data from European MNOs. Besides
predicting dynamics of future COVID-19 outbreaks, connectivity information can be used
as basis to plan targeted control measures to curb the spread of the virus. Future data
gathered in the context of this European Commission initiative with MNO could enable an
analysis at EU regional scale, providing a framework for sharing best practices and data-
driven input to inform coherent strategy among EU Member States for de-escalation and
recovery.
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Figure 17: The R2 values for the provinces of Madrid (Top, maximum R2 = 0.57), Barcelona (bottom
left, maximum R2 = 0.57) and Badajoz (bottom right, maximum R2 = 0.62), for the fitted model Eq.
(2) between IgG positive tests and both mobility and distance. The black vertical line correspond to

the lock down of 14 March 2020, the read line is just 14 days later. The blue lines represent the

interval of dates of the IgG screening.

Data and materials availability

Any request of MNO data and derived products should be agreed with each operator, owner
of the data.
Data on excess-deaths are publicly available from (INSEE, 2020). Data on excess-deaths
are publicly available from (Istat, 2020). Data on the IgG Sars-Cov2 antibody screening in
Spain available from (ENE, 2020).
The analysis was entirely conducted with base R with the additional package yuima. R code
is available upon request to the authors.
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