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ABSTRACT

The wake flow in a wind turbine array boundary layer is described using the Koopman operator. Dynamics of the flow are decomposed into
the linear and forcing terms, and the low-energy delay coordinates are revealed. The rare events show the non-Gaussian long tails that cap-
ture the switching and bursting phenomena. The near-wake region shows the incoherent phase space region, where the dynamics are
strongly nonlinear. The far-wake region is marked with the small non-Gaussian forcing term, and the dynamics are largely governed by lin-
ear dynamics. The data-driven predictive model is built based on the Hankel-based dynamic mode decomposition and treats the nonlinear
state of forcing term as external actuation. The model forecasts the evolution of the flow field for short-term timescales. The mean relative
errors between the predictive and test fluctuating velocities are approximately 15%.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004393

I. INTRODUCTION

Modeling the turbine response to non-Gaussian conditions can
help explain the signature in the aerodynamic forces, fatigue loads,
and development of alternative control schemes.1,2,32 The variations in
the mean statistics of the wind turbine wake flow highlight the nature
of the flow response to the external forcing of the wind turbine.2–5,33–35

Because turbulence exists on different temporal and spatial scales in a
wind farm, the behavior of the non-Gaussian conditions is dependent
on the physical location downstream the rotor.2,6

Systems like wind plants have a large number of degrees of free-
dom that cause a considerable amount of uncertainty in parameters
when modeling. For wind farm controller analysis, high fidelity mod-
els are required for exploring the optimal possibilities of wind farm
control. Due to the computational cost of these models, they are not
convenient for pursuing a dynamical system and control model.
Therefore, new generations of models are required to solve this defi-
ciency. Reduced-order models can provide coherent features of wake
dynamics and solve part of the computational complexity although
these models are only suitable for specific conditions and are not
proven for real cases. Linking between reduced-order model and
parameter-varying control can provide a new generation of the opti-
mized wind farm control.

Developing a flow model from statistics based on the ensemble of
observations, which can represent a solution to the dynamical system
itself, is of central importance. The data-driven model includes

reducing the degrees of freedom and presenting a dynamical model
that links the evolution of the most dominant features and the trajecto-
ries in the high-fidelity phase space. The wake of the turbine is a non-
linear system with intermittent energy that transfers between flow
scales in the energy cascade.7,8 Therefore, predicting and identifying
the coordinate transformations that highlight the time response to the
strongly nonlinear forces are potentially important for the wind farm
design. Time evolution of interacting quantities in engineering applica-
tions such as wind energy can be described using a dynamical system
approach.

Data-driven techniques have recently received more attention as
alternative approaches for directing wind farm analysis or control.
These approaches rely on specific operating conditions; hence, they
provide linear models for a specific operating point.9 Because the oper-
ation of the wind turbines is time dependent, data-driven approaches
can describe the wake in more detail regarding the flow conditions,
such as thermal stability and turbulent intensity, as well as provide sys-
tems the ability to automatically learn and improve performance and
stability. Following the Takens embedding theorem, which translates
high-dimensional datasets into a relatively low-dimensional space,
applied to a sequence of observations of the state, data-driven dynami-
cal systems can detect the full dynamics by reconstructing a set of
states and preserve the structural aspect of the states.10 The intermit-
tent forces are strange phase spaces of a dynamical system character-
ized by chaotic trajectories, and are responsible for divergent behavior
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with time and cause uncertainty to the prediction. Consequently, iso-
lating the deterministic structure from the randomness of the chaotic
dynamics is potentially useful for control strategies. Koopman opera-
tor theory is an efficient approach to decompose the chaotic system
into the linear evolution and nonlinear forcing, where the time history
of the measurements can estimate the full-state of the system and pro-
vide a foundation for its linear dynamics.

In nonlinear dynamics, the dynamical system can be represented
in the linear representations through the Koopman analysis. A
Koopman operator has the ability to analyze and tackle the nonlinear
system in an infinite-dimensional linear approach.11 In data-driven
models, for example, Giannakis and Majda12 and Giannakis13 pro-
jected the delay-embedded data onto the basis function of
Laplace–Beltrami and Koopman operator respectively, to present a
model reduction with the aim of forecasting the time series for ergodic
dynamical systems. Arbabi and Mezic14 linked the Hankel based
dynamic mode decomposition (DMD) to the Koopman operator,
demonstrating that applying DMD to Hankel observation matrices
yields the true Koopman eigenvalues and eigenfunctions. Korda and
Mezić15 identified linear predictors for nonlinear controlled dynamical
systems using the Koopman operator framework. The nonlinear
dynamics are projected to a higher dimensional space that displays the
evolution is approximately linear. Giannakis et al.16 employed a
Koopman eigenfunction analysis to study the long-time evolution of
the three-dimensional flow. Their findings showed that the behavior
of the large-scale circulation is recovered from the eigenfunctions of a
data-driven Koopman operator. Brunton et al.10 provided a Hankel
alternative view of Koopman to understand the disorder in chaos
quantitatively by treating examples such as measles outbreaks and
magnetic fields. Recently, Khodkar et al.17 introduced the Koopman-
based framework for forecasting the spatiotemporal evolution of high-
dimensional chaotic dynamics and turbulence.

Data-driven approaches have been used to study wind turbine
wakes. For example, Gebraad et al.18 presented a novel data-driven
model to optimize the yaw settings of wind turbines in a wind plant
for improved energy production of the wind plant. Iungo et al.19 pro-
posed a data-driven RANS approach to optimize power plant control
and prevent detrimental wake interactions. Iungo et al.20 proposed a
new data-driven reduced order model for prediction of wind turbine
wakes. The model captured the main physical processes and dynamics
of wind turbine wakes. Park et al.21 used a data-driven optimization
method to find the optimum control actions. G€oçmen and Giebel22

presented a data-driven wake model for short-term power estimation.
Ti and Yang23 used the machine learning and computational fluid
dynamics simulation to develop new wake velocity and turbulence
models to improve the turbine wake predictions.

Data-driven analysis based on the Koopman operator is used here
to build a linear model in the leading delay coordinates to forecast the
future state of stochastic fluctuating velocity. The model will be built
after isolating the linear modes from a low energy delay coordinate that
triggers intermittent bursting and switching events. The nonlinear term
is used as an input parameter to train the model. The aim is also to
connect the nonlinear mode distribution, which causes the linear
model to diverge, with intermittency, and quantify the activity of the
intermittent force with respect to time. The manuscript is organized as
follows: Sec. II outlines the Koopman theory; Sec. III presents in detail
experimental setup; Sec. IV provides a discussion of the finding and the

relevance in the field; Sec. V presents the forecasting for the spatial and
temporal evolution. Conclusions are presented in Sec. VI.

II. THEORY

The perspective of the Koopman operator relies on mapping the
measurement dataset to different coordinates that make the dynamics
appear linear. Here, the Koopman operator is built based on the
Hankel matrix,H, as10

H ¼

uðt1Þ uðt2Þ � � � uðtpÞ
uðt2Þ uðt3Þ � � � uðtpþ1Þ

..

. ..
. . .

. ..
.

uðtqÞ uðtqþ1Þ � � � uðtmÞ

2
66664

3
77775

¼

uðt1Þ Kuðt1Þ � � � Kp�1uðt1Þ
Kuðt1Þ K2uðt1Þ � � � Kpuðt1Þ

..

. ..
. . .

. ..
.

Kq�1uðt1Þ Kquðt1Þ � � � Km�1uðt1Þ

2
66664

3
77775
; (1)

where K is the Koopman operator, u is a vector-valued observation of
fluctuating velocity, and t is the time. Singular value decomposition
(SVD) of the Hankel matrix can estimate the embedding dimension
for time-delay coordinates that provide the conditions under which a
chaotic dynamical system is reconstructed from a set of observations
of the state of a dynamical system as

H ¼ WRVT ; (2)

where the columns of W andV present the right- and left-singular vec-
tors, respectively; they are a set of orthonormal eigenvectors. The cha-
otic dynamics is decomposed using the Hankel alternative view of
Koopman into a linear model and the forcing term. The eigentime-
delay vector, V ¼ ½v1; v2; … ; vR�1�T , is used to define the forced
term vR from the nonlinear dynamics. Following the Hankel alterna-
tive view of Koopman approach introduced in the work of Brunton
et al.10 and Khodkar et al.,17 adding a forcing term to the linear model
is considered to approximate the nonlinear dynamics more accurately.
A future vector-valued observable that is not a part of the training data
can be predicted as

utþ1 ¼ Aut þ BF; (3)

where F is the form of external forcing, where it takes the quadratic
form based on the Reynolds stress terms. The B is the control matrix
related to the forcing term. The A and B are the input parameters to
create state-space model and simulate the time response of dynamic
system, respectively. The Hankel based dynamic mode decomposition
with control (H-DMDc) is used to estimate the A and Bmatrices using
the minimization approach introduced in the work of Proctor et al.,24

A ¼ WTPVR�1WT
1 W; (4)

B ¼ WTPVR�1WT
2 ; (5)

where these matrices are calculated in a reduced-dimension subspace.
Here, W1 and W2 are constructed from the first qm and the remaining
rows of W. Figure 1 summarizes the main steps of the current
approach. The training data that are obtained from any velocity or
power sensor can be fed into DMDc algorithm to estimate the model
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operators. The forecasting step starts after as shown in Eq. (3). The
advantage of forecasting step can be fed into a controller to change the
turbine condition.

III. EXPERIMENTAL SETUP

An experiment with an array of horizontal axis wind turbines
was conducted at the closed-loop Corrsin wind tunnel at Johns
Hopkins University. The entrance of the tunnel was furnished with an
active grid to generate turbulence. The inlet mean velocity shear profile
was generated using nine strakes. A 24-grit aluminum oxide sand
paper was provided along the test section in the ground to roughen
the boundary shape, see Fig. 2. A three-bladed rotor of 12 cm diameter,
D, was used as a wind turbine model. Nine wind turbines models were
distributed as a 3� 3 array with space of 7D in the streamwise and 3D
in the spanwise directions. The measurements considered here were
taken behind the center of the third row of the wind farm. The data
were gathered at a frequency of 40 kHz to sample 4� 106 data points.
The measurements were conducted at the streamwise-wall-normal
plane (x – y) and the spanwise-wall-normal plane (z – y). For the x – y
plane, the measurements were collected at nine locations in the
streamwise direction starting from x ¼ 0:5D to x ¼ 8D. For the z – y
plane, the measurements were taken at nine locations in the spanwise
direction starting from z ¼ �4D=6 to z ¼ 4D=6 with an increment of
D=6. For each plane, the measurements are taken for 21 locations in
the wall-normal direction starting at 0.5 cm above the ground and
move vertically with an increment of 1 cm. More details about the

experimental setup and measurements can be found in the work of
Cal et al.25

IV. RESULTS

Statistical quantities are shown here to provide an important dis-
tinction between the flow regions downstream the rotor. Figure 3
presents the normalized streamwise mean velocity (U=U1), and the
ratio between the integral length scale (Lin), and Taylor microscale (k).
The integral length scale is calculated based on auto-correlation
between two different times. The impact of the rotor is substantial on
the near-wake region, specifically behind the nacelle and tower, where
the minimum values of the streamwise mean velocity, integral length
scales, and Taylor microscale are observed. These parameters mono-
tonically increase toward the outside of the rotor. The same trend is
shown in the comparison between the near- and far-wake regions.
The tower adds more perturbations to the flow and translates to the
wake region. In the spanwise direction, the wake expansion is shown
below the top tip (TT), where velocities are low. The reduced size of
the Lin is due to the amplification of enstrophy and flow separation.
The flow outside the swept area is marked with relatively constant Lin
and k, specifically above the top tip.

Figure 4 presents the principal components of the SVD with the
linear model that is built based on the regression model for the hub
height (HH) and top tip locations at the center of the rotor. The figure
shows the main principle of the Koopman analysis using a SVD in a
finite-dimensional nonlinear system by testing the quality of the
reconstruction of the eigentime series. These locations are shown for
generality as they present the most sensitive locations that carry cha-
otic changes in the wake. The regression model is presented for the lin-
ear variables in right-singular vectors V. Then, the regression
coefficients for linear and forcing terms are used to train and simulate
the time response of the dynamical system. The Hankel decomposition
can analyze complex time series and reveal the characteristic features
of strongly nonlinear dynamics (rare events). For both cases, the linear
model fits and captures the main features in the transition coordinate.
The simulated trajectory using the fit model matches that of the origi-
nal system, indicating the well conditioning. The variance of the distri-
butions at the peaks indicates the small errors in the estimation of the
eigenvectors. The dynamics of the linear model can predict the spatial-
temporal evolution after training the model. The model use the forcing
term as an input to run the on-line model and provide an accurate
reconstruction of the new attractor corresponding to the test data.

FIG. 1. Schematic of data-driven method.

FIG. 2. Experimental setup. Reproduced with permission from Cal et al., J. Renewable Sustainable Energy 2(1), 013106 (2010).25 Copyright 2010 AIP Publishing.

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 12, 033304 (2020); doi: 10.1063/5.0004393 12, 033304-3

Published under license by AIP Publishing

https://scitation.org/journal/rse


The statistics of the forcing term vR are a non-Gaussian distribution
with long tails as shown in Fig. 5. The most active place regarding the
forcing term is noticed at the hub height. In contrast, the far-wake region
shows a small departure fromGaussianity. Thus, the vR carries the signa-
ture of high-frequency bursts and it is important to find the timing of
this forcing to characterize the switching dynamics. Characterizing the
times of the nonlinear force is required to uniquely determine the future
system states and isolate the impact of the external forces with respect to

a background flow. Linear system identification is applied in the litera-
ture in many applications such as in climate time series analysis.26,27 The
instability and intermittent phenomena generate a variable dynamic
loading and fatigue as well as have a major impact on the stability of the
grid. In physical space, the intermittent events correspond to the rotor
swept region that introduces most perturbations to the energy cascade.
The transition of these events through the velocity signal and the advec-
tion on the nonlinear force downstream the rotor are still unknown.

FIG. 3. Flow characteristics: (a) normalized mean velocity (U=U1), (b) the ratio between the integral length scale (Lin) and Taylor microscale (k). The black circle indicates the
rotor area.

FIG. 4. The eigentime-delay series (gray) with the linear model of the flow at the hub height (HH) and top tip (TT) locations of z¼ 0.
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Figure 6 presents the principal components of the SVD for the
hub height location including the linear term, v1, and the nonlinear
forcing term, vR. To uncover the locations at which the nonlinear forc-
ing term is active, the vR is isolated above a certain threshold. The loca-
tions that show inactive force are marked with black color. The
eigentime-delay vectors gradually develop structures and spectral con-
tent. Forcing term vR is the nonlinear geometrical structure of time
series data and presents the existence of intermittent patterns in the
considered locations. During the intermittent bursts, the nonlinear
modes display the activated fine spatial structure and show the depar-
ture from Gaussianity. Note that the dynamics of the trajectories are
governed by the linear term when the forcing term is small. The hub
height location at the rotor center shows relatively large fluctuations in
the nonlinear term in comparison with that at z=D ¼ 4=6. The center
of the rotor presents the nonlinearity as an on–off intermittent force.
Switching between chaotic bursts static behavior can describe the non-
linearity of the system. Platt et al.28 highlighted that on–off chaos can
be detected at the suitably chosen coordinates. Using the Hankel
matrix analysis provides the opportunity to classify the flow signal and
highlights these coordinates that show the alternating in the chaosity.
The locations downstream the rotor have unstable invariant manifolds
and attractors that produce on–off intermittency. Outside the swept
area, the nonlinearity displays less switching with the time and the
activity of the force is balanced by inactivity periods, indicating that
linearity suppresses the forcing terms and the flow becomes less cha-
otic. The statistics of the forcing term activity at the hub height show
that at the center of the rotor the activity presents about 68% of the
total time duration, whereas outside the swept region the activity
presents about 78%. Although the ratio activity of the forcing term
outside the swept area is larger than inside, the strength of the nonline-
arity is much small outside the rotor area, indicating that the large
forcing term induces the flow to react against the nonlinear forces and
makes a balance to null the nonlinearity.

Figure 7 presents the principal components of the SVD for the
top tip location including the linear and the nonlinear forcing terms.

The physical location shows less impact on the flow at the top tip and
above, where the inside and outside the swept area show the same
trend in the nonlinearity distribution through the forcing term. As
pointed in Ali and Cal,29 the top tip location is less intermittent and
independent of the physical location. Here, the same trend is shown
regarding location independence. However, the flow at these locations
carries a nonlinear force as shown in Fig. 7. The justification for this
observation is that the nonlinearity of the forcing term can take differ-
ent shapes; one of them is the intermittency. Thus, the nonlinearity
can be imposed by a different mechanism that is active at these loca-
tions, for example, the tip vortices, momentum entrainment, and the
interaction between the wake and the flow above. This is the extension
for all approaches that are used to detect the intermittency in the
energy cascade of turbulence. The statistics of the forcing term activity
at the top tip display that at the center of the rotor the activity presents
about 75% of the total time duration, whereas the activity at the out-
side of the swept region is about 79%, indicating that the chaos
induced by the wind turbines is dependent on the parameter variations
and the external disturbances change percentage of nonlinearity to a
certain degree. A small variation in the activity is presented in the top
tip and above regions. Also, in comparison with the hub height, the
activity is substantial at the top tip but the amplitude of the force is
low.

Figure 8 presents the principal components of the SVD for the
hub height position at two locations downstream the rotor, including
x=D ¼ 1 and 8. This figure is introduced to check the transition and
the activity of the nonlinear forcing term downstream the rotor. The
shape of the nonlinear term reveals the signature of the burst events.
The on–off forcing is dominant in the near-wake region and distrib-
uted at a certain frequency with a high level of nonlinearity. Moreover,
the activity of the forcing term is pronounced when the linear term is
negative, indicating that the intermittent events are starker at low-
speed flow. Also, the trajectories of the nonlinear forcing term reveal
that the flow dynamic at the near-wake region follows different trajec-
tories, where they never exactly are repeated. Moving from 1D to 8D

FIG. 5. Probability density function (PDF) of the rare forcing events at the bottom tip (BT), hub height (HH), and top tip (TT) of z=D ¼ 0 location.
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reduces the frequency of the burst events and also shrinks the ampli-
tude of the nonlinearity. Thereafter, the flow at the far-wake region
x ¼ 8D shows a major reduction in the burst event and the nonlinear-
ity is uniformly distributed along with the linear term. The statistics of
the forcing term activity reveal that at the near-wake region the activity
presents about 75% of the total time duration, whereas outside the
swept region the activity presents about 78%. It is interesting to
observe that the ratio at the far-wake region is the same ratio of the
forcing terms outside the swept area at the z – y plane.

The statistics of the principal components describe the velocity
fluctuation distribution based on the physical location within the tur-
bine canopy and show the greatest amounts of variability. In general,
the near-wake region displays more nonlinear behavior due to the tip
vortex shedding associated with that location. The swept area of the
rotor is imprinted with different sizes of coherent structures caused by
the nacelle, tower, and rotor tips that consequently alter the inertial
subrange of the energy cascade via the shedding frequency. Vortex

shedding changes the flow structure and imposes highly anisotropy
near the rotor. The anisotropy is also influenced by the turbulence
kinetic energy production and the entrainment from above the can-
opy, thus increasing the interaction between the scales and introducing
the on–off intermittent events.30,31 On the other hand, the far-wake
region is marked with small amplitude intermittent forces.

V. FORECASTING SPATIAL-TEMPORAL EVOLUTION

The main goal of approximating the Koopman operator is to
delineate all of the behavior of the nonlinear system in the stability
region of the dynamical systems and linearize the nonlinear dynamics.
The required training and testing sets are reconstructed from the time
signal of the measurement points described in Sec. III. The prediction
is achieved for thousands of time steps. Each time step presents an
average of 0.03 s (1200 time increments), which is approximately the
order of the integral length scale. Treating the flow as a linear model
with the explicit interpretation of the nonlinearity as an external force

FIG. 6. The eigentime-delay series and forcing term of the velocity signal at the hub height location of z – y plane.
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helps in presenting a promising model for prediction of the underlying
nonlinear processes. Figures 9 and 10 show the prediction of the fluc-
tuating velocity signals of 21 wall-normal locations at different places
downstream the rotor. The prediction matches the test data in a short
time and starts diverging from the testing data relatively short times,
meaning the underlying dynamics for detecting the nonlinearities are
discovered through the data-driven approach. However, the diver-
gence shown after a short time is due to that the delay-embedding of
the measurements are not provided any information about the order
of nonlinearity. The mean relative error is defined as
EðtÞ ¼ jjuPrf � utestf jj2=jjutestf jj2;, where uPrf is the fluctuating velocity
that is predicted from the model, and utestf is the actual fluctuating
velocity measured via the hot-wire anemometer. The mean relative
errors are approximately 15%, where less accurate prediction is shown
with increasing advective timescales, where the growth becomes expo-
nentially unbound.

The proposed tool for the prediction can be part of the wind
farm control system to predict the wind and control the turbines such
as changing the yaw angle of the wind turbine or the blade pitch to
keep optimal operating conditions for all turbines in the array, and
that will ensure the increase in the power output. The predicted model
is a critical key for model predictive control, where the switching con-
trol between a number of actuation (for example, yawed and non-
yawed) can be achieved to track a reference operation in an unsteady
flow within wind farm.18 The turbine sensors used in the field such as
sensors that measure power or LIDAR signals can be used as an input
to achieve the wind farm control.9 The Koopman operator can be
used as a systems model to process noise and measurement noise via
two steps: first, the prediction step that utilizes a previously estimated
state of the linear model to predict the value of the next state and
estimate the state covariance. The second step is the updated step,
where the state estimation will be corrected based on the current

FIG. 7. The eigentime-delay series and forcing term of the velocity signal at the top tip location of z – y plane.
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measurements and the statistical properties of the model. The evolu-
tion of the error covariance can be predicted with the full state forward
model, where the actual observations will be used as an input into
mathematical and computational models to create a unified, complete
description. Also, this method can be used to model the dynamic sta-
bility of the grid in response to disturbances.

VI. CONCLUSION

The chaos of the wake flow behind a wind turbine is presented
using the Koopman operator. The goals of the current work are to
connect the chaos force, which causes the linear model to diverge,
with intermittency, demonstrate, and quantify the activity of the inter-
mittent force with respect to time; and more importantly, evaluate the
proficiency of the data-driven model to predict the future state of the
system, where the stochastic fluctuating velocity is based on trained
data.

Linear representations show the potential ability to distinguish
flow events downstream the rotor. The major variations in the nonlin-
ear forcing term are found at the center of the rotor, where the hub
height shows the large transients and intermittent events. Less nonlin-
earity is shown at the top tip location. Outside the swept area, the loca-
tions share the same nonlinearity events. Also, the signature of the
nonlinear forces sustains outside the rotor area. The robustness of the
nonlinear forcing term is shown outside the swept area and at the far-
wake regions. This model physically describes the chaotic transitions
between the center of the rotor and the atmospheric stream flow,
caused by wake advection and vortex shedding in the spanwise direc-
tion. The current approach also successfully predicts the flow field for
short term timescales. The mean errors between the predictive and test
fluctuating velocities are approximately 15%. The proposed method
needs further investigations to obtain a full description of the nonlin-
ear term. Achieving this goal will help in forecasting the variability of

FIG. 8. The eigentime-delay series and forcing term of the velocity signal at the hub height location of x – y plane.
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the wind to protect the system in high winds, capture more energy in
low winds, and reduce the uncertainty of the output by supporting
real-time operations. Forecasting the variability of the wind will allow
anticipating wind generation levels to adjust the power system
accordingly.

The current model is a part of system identification and uses the
measurements from the wind plant to estimate the relevant properties
of the system. The simple structure and fast computation of the data-
driven model are well-suited for real-time control. The measurements
of the real-world wind plant can be fed into the model structure to
identify the model parameters and then adjust the internal model

based on the predicted future state and test a few sets such as yawed
angles to reach the optimized control points. Based on the evaluation
of predicted turbine power outputs, the updated yaw settings are
stored as a baseline if improvement is shown. Another advantage of
the current model is that it can display the effect of inflow conditions
and tested parameters on the relevant structural loads on the turbine
by analyzing the nonlinear forces.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

FIG. 9. Predication fluctuating velocities at
x=D ¼ 1 at (a) 75, (b) 150, (c) 450, and
(d) 800 time units. The blue and orange
lines present the measured and predicted
velocities, respectively.

FIG. 10. Predication fluctuating velocities
at x=D ¼ 6.
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