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Abstract
Recently, an increasing number of novel drugs were 
approved in oncology and hematology. Nevertheless, 
pharmacology progress comes with a variety of side 
effects, of which cytokine release syndrome (CRS) is a 
potential complication of some immunotherapies that can 
lead to multiorgan failure if not diagnosed and treated 
accordingly. CRS generally occurs with therapies that lead 
to highly activated T cells, like chimeric antigen receptor T 
cells or in the case of bispecific T-cell engaging antibodies. 
This, in turn, leads to a proinflammatory state with 
subsequent organ damage. To better manage CRS there 
is a need for specific therapies or to repurpose strategies 
that are already known to be useful in similar situations. 
Current management strategies for CRS are represented 
by anticytokine directed therapies and corticosteroids. 
Based on its pathophysiology and the resemblance of 
CRS to sepsis and septic shock, as well as based on the 
principles of initiation of continuous renal replacement 
therapy (CRRT) in sepsis, we propose the rationale of using 
CRRT therapy as an adjunct treatment in CRS where all the 
other approaches have failed in controlling the clinically 
significant manifestations.

Rationale for the hypothesis
Current statistics report an increase in the 
incidence of hematological and oncological 
malignancies,1 but treatment with immune-
based therapies have also risen in both use 
and efficacy. These are nevertheless accom-
panied by a variety of side effects, one of 
which is tightly linked to the mechanism 
implicated in chimeric antigen receptor T 
cells (CAR-T) cell therapy2 and treatment 
with T cell engaging bispecific antibodies3: 
cytokine release syndrome (CRS). CRS, also 
known as cytokine-associated toxicity, is a 
systemic inflammatory response syndrome 
following massive cytokine release into the 
bloodstream.4 This can be triggered by the 
administration of immune-based therapies 
such as CAR-T cell-based therapy for B-cell 
malignancies, as well as other monoclonal 
antibody-based drugs.5 6 Fitzgerald et al have 

reported that 92% of acute lymphoblastic 
leukemia (ALL) patients treated with an 
anti-CD19 CAR T cell therapy revealed that 
18 (46%) developed acute kidney injury 
(AKI)-related with grade 3–4 CRS. Of those 
18 patients, 13 were noted to have a clinical 
improvement following tocilizumab adminis-
tration. Thus, five of them possibly having an 
option of subsequent therapies for CRS.7 This 
represents one of the most serious adverse 
events of these therapies and it can become 
a life-threatening complication, leading to 
multiorgan failure. A condition similar to 
CRS from a pathophysiological and clinical 
perspective is represented by sepsis. Because 
of this, we hypothesize that CRS might benefit 
from therapeutical strategies that are already 
in use in sepsis, like continuous renal replace-
ment therapy (CRRT) which, in the current 
review, might be a therapeutic option for 
refractory CRS.8

Pathophysiology of CRS
As an overview, CRS emerges when interferon 
gamma (IFN-γ) secreted by activated T cells 
polarize macrophages to an M1 phenotype, 
leading them to secrete several proinflamma-
tory cytokines, of which a significant portion 
of the literature implicates interleukin-6 
(IL-6) as a central mediator of toxicity. IL-6 is 
a cytokine, produced by a myriad of cells and 
tissues represented, but not limited by macro-
phages, T cells and hepatic tissue9 10

Two main inferences can be drawn from 
these affirmations. First, IFN-γ activation of 
macrophages is similar to the effect induced 
by lipopolysaccharide on macrophages in 
the case of sepsis, thus leading to a logical 
possible link between these two conditions. 
Second, the main events implicated in CRS 
are represented by the activation of T cells 
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Figure 1  IL-6 secretion in CRS and sepsis. CRS, cytokine 
release syndrome; IFN-γ, interferon-γ; IL-6, interleukin-6; LPS, 
lipopolysaccharide; sIL-6R, soluble IL-6 receptor.

Table 1  Cytokines elevated in CRS

Cytokine
Molecular 
weight (kDa)

Interleukin-6 (IL-6) 26 Proinflammatory

IL-10 18 Anti-inflammatory

Interferon-gamma 35 Proinflammatory

Tumor necrosis factor-α 
monomer

17 Proinflammatory

IL-1β 17 Proinflammatory

IL-2 17 Proinflammatory

IL-2 receptor Proinflammatory

IL-8, MCP-1, and MIP-1b IL-8–8 kDa Reported in patients 
treated with CART-19 
and blinatumomab

CART, chimeric antigen receptor T cells; CRS, cytokine release 
syndrome.

and M1 polarization of macrophages and thus cytokines 
upregulated or downregulated by these cells can repre-
sent important pathophysiologic events. For T cells, it 
is important to mention the central role of IL-2 auto-
crine signaling, which leads to a positive regulatory loop, 
leading to more subsequent T-cell activation. Moreover, 
an important cytokine secreted by activated T cells is 
IFN-γ, which acts on macrophages leading to an M1 polar-
ized phenotype, characterized by the upregulation of IL-6 
and tumor necrosis factor α (TNFα).11

IL-6 signaling occurs through two different mecha-
nisms. The first requires binding to cell-associated gp130 
(CD130), which is broadly expressed, and the membrane-
bound IL-6 receptor (IL-6R) (CD126).10 IL-6R is cell asso-
ciated on macrophages, neutrophils, hepatocytes and 
some T cells and mediates classic IL-6 signaling, which 
predominates when IL-6 levels are low. However, when 
IL-6 levels are elevated, soluble IL-6R (sIL-6R; trans-IL-6 
signaling) can also initiate trans-signaling, which occurs 
on a much wider array of cells, resulting in activation of 
the JAK/STAT pathway. Current models report that the 
anti-inflammatory properties of IL-6 are mediated via 
classic signaling, whereas proinflammatory responses 
occur as a result of trans-IL-6 signaling via the soluble 
receptor.12 High levels of IL-6, present in the context of 
CRS, most likely initiate a proinflammatory IL-6-mediated 
signaling cascade. IL-6 bound to the sIL-6R can associate 
with membrane-bound gp130, resulting in activation of 
the JAK/STAT pathway. Since gp130 is broadly expressed 
across many effector cells, high IL-6 levels result in a more 
robust immune activation13 (figure 1).

Furthermore, the cytokines which are elevated in the 
serum of patients experiencing CRS are listed in table 1.

Clinical presentation of CRS
In the clinical setting, CRS presents itself with a variety of 
symptoms ranging from mild, flu-like symptoms, to severe 
life-threatening complications with onset within minutes 

to hours, depending on the inducing agent and the 
immune system activation.14 Mild symptoms, non-specific 
of CRS, include fever, fatigue, headache, rash, arthralgia 
and myalgia. Severe symptoms are characterized by high 
fever exceeding 40°C with multiorgan system failure and 
disseminated intravascular coagulopathy.15 The main 
organ systems involved are respiratory (ranging from 
symptoms such as tachypnea, dyspnea, cough to acute 
respiratory distress syndrome with severe impairment of 
ventilation and oxygenation requiring sedation, intuba-
tion of the airway and mechanical ventilation); cardiac 
(cardiac failure with pulmonary edema); renal (AKI/
failure); hepatic failure and neurological (confusion, 
aphasia, hemiparesis, cranial nerve palsies, seizures and 
coma).16

Neurotoxicity is the second most common adverse 
event after CAR-T cell therapy being named ‘CAR T cell-
related encephalopathy syndrome’ (CRES). CRES does 
not seem to be directly related to CRS since is currently 
considered an independent event, as the two complica-
tions have been described as being separate time events 
in some studies.17 18 Common laboratory abnormalities in 
patients with CRS include cytopenias, elevated creatinine 
and liver enzymes, deranged coagulation parameters and 
a high CRP.6

In rare cases, CRS can overlap with clinical signs and 
laboratory abnormalities that resemble hemophago-
cytic lymphohistiocytosis (HLH)/macrophage activa-
tion syndrome (MAS). In these cases, the main cytokines 
observed to play an important role are represented 
by IL-6, IFN-γ and IL-10, which are in accordance with 
classic CRS. Patients with CRS-associated HLH display 
the typical clinical and laboratory findings of HLH/MAS 
such as high fevers, splenomegaly, highly elevated ferritin 
levels, coagulopathy and hypertriglyceridemia.19

After treatment with blinatumomab in B-cell ALL, 
almost 25% of CRS patients had a diagnosis of HLH.20 21
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Table 2  Differential diagnosis of CRS6

Familial HLH Secondary HLH/MAS
CRS related to HLH or 
MAS Sepsis

Genetics Homozygous mutation Heterozygous mutations in 
case-reports

Not reported Not reported

Biomarkers  �

IL-10 Very high Very high High High

IFN-alpha Very high Very high Very high Normal

IL-6 High High Very high Very high

Ferritin Very high Very high Very high High

CD 163 Very high Very high High Not reported

CRS, cytokine release syndrome; HLH, hemophagocytic lymphohistiocytosis; IFN, interferon; IL-6, interleukin-6; MAS, macrophage activation 
syndrome.

Moreover, because of the overlap in clinical symptoms 
between CRS and sepsis and because the population of 
patients receiving CAR-T cell therapy or T-cell engaging 
bispecific antibodies is at higher risk of both CRS and 
sepsis, a thorough differential diagnosis has to be made, 
with active sepsis screening (table 2).

Current management of CRS
It is currently indicated that patients that develop CRS 
should be monitored in the intensive care unit (ICU) 
or high-dependency unit, especially those with grade 3 
or 4. The therapeutical agents used in this situation are 
represented by tocilizumab, either as monotherapy or in 
combination with corticosteroids. These approaches can 
be extended to using multiple tocilizumab doses or high-
dose corticosteroids. Additionally, although more rarely 
used, siltuximab, an anti-IL-6 antibody, is part of CRS 
management protocols in some hospitals.16 22

The most commonly used anti-IL-6 antibody is tocili-
zumab, a humanized antibody that blocks IL-6 signaling 
by acting on both IL-6R and sIL-6R, thus having an effect 
especially in the case of high IL-6 levels.23 Clinically, 
it was shown to be efficacious as its administration was 
associated with reversal of CRS in patients treated with 
either anti-CD19 CAR-T cells or with blinatumomab.3 
Currently, tocilizumab represents the standard of care 
in managing CRS both in clinical practice and clinical 
trials. This can be administered as a single dose of 8 mg/
kg with a maximum of 800 mg infused over an hour. If 
the symptoms do not ameliorate over the next 24 hours, 
another dose of tocilizumab, the use of corticosteroids or 
a combination of those is used.16 Additionally, another 
anti-IL-6 antibody that can be used in CRS management 
is siltuximab, which acts directly on IL-6.24 Tocilizumab 
might increase the risk of infection, thus the subsequent 
need for differential diagnosis between refractory CRS 
and sepsis being necessary.25

As mentioned before, corticosteroids can be used if 
tocilizumab use did not result in any amelioration, either 
as monotherapy or in combination with tocilizumab. 

These therapeutic approaches have been studied both in 
CRS as well as in other inflammatory conditions in which 
T-cells and/or macrophages are known to be activated. 
The treatment has good efficacy and is included both in 
standard-of-care clinical practice as well as clinical trial 
protocols. Because of the T-cell inhibitory effects of this 
class of drugs, it is generally considered that corticoste-
roids would diminish the efficacy of CAR-T cell therapy 
and, although this has now been shown to be the case some 
physicians would use corticosteroids only if necessary in 
this situation. Furthermore, various clinical indications 
for corticosteroids should be reserved for neurological 
toxicities and CRS refractory to tocilizumab.26

Aside from the above-mentioned approaches, clin-
ical use includes targeting IL-2R, IL-1R and TNFα for 
managing CRS. Moreover, inhibitors of MCP-1 and MIP1B 
are being developed even if not yet used in clinical trials 
for CRS. As presented, the strategies used for managing 
CRS generally target either T-cells, macrophages or their 
communication. Of the mentioned molecules, most 
target macrophage polarization, except for IL-2R inhib-
itors, which inhibit T-cell autocrine signaling and their 
subsequent activation with IFNγ secretion and further M1 
polarization of macrophages and secretion of proinflam-
matory molecules.27

The corresponding clinical picture is graded according 
to CRS consensus grading (table 3),28 with its associated 
treatments.9 Still, CRRT is not mentioned as a treatment 
method in the grading classification, even if according to 
our hypothesis, patients presenting grades 3 and 4 may 
benefit from CRRT.

Extracorporeal blood purification therapies
The scope of extracorporeal blood purification thera-
pies has expanded from simple RRT to the treatment of 
multiple organ dysfunction syndrome management with 
the intent of utilization over 24 hours.28

Extracorporeal blood purification therapies, may it 
be filtration, dialysis (diffusion) and adsorption, have 
been used as a strategy to remove medium molecular 
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Table 3  2018 CRS consensus grading by Lee et al69

Grade 1 Fever* ≥38°C—symptomatic management—
intravenous fluids, analgesics, antiemetics, 
antipyretics possibly antibiotics and a lot 
of careful watching from the nurses and 
caregivers and the team.

Grade 2 Fever* ≥38°C, grade 2 creatinine elevation, 
grade 3 transaminitis, neutropenic fevers 
and other indications for hospitalization, with 
hypotension not requiring vasopressors and/
or hypoxia requiring low-flow nasal cannula or 
blow-by oxygen.

Grade 3 Fever* ≥38°C, grade 3 creatinine elevation, 
grade 4 transaminitis, with hypotension 
requiring one vasopressor with or without 
vasopressin and/or hypoxia requiring high-flow 
nasal cannula, facemask, non-rebreather mask, 
or Venturi mask not attributable to any other 
cause.

Grade 4 Fever* ≥38°C, as life-threatening symptoms 
requiring ventilator support or grade 4 organ 
toxicity, with hypotension requiring multiple 
vasopressors (excluding vasopressin) and/or 
hypoxia requiring positive pressure (eg, CPAP, 
BiPAP, intubation and mechanical ventilation) 
not attributable to any other cause.

Grade 5 Death

*Fever is defined as temperature ≥38°C. In patients who have CRS 
then receive tocilizumab or steroids, fever is no longer required to 
grade subsequent CRS severity. In this case, CRS grading is driven 
by hypotension and/or hypoxia.
CRS, cytokine release syndrome; CPAP, continuous positive airway 
pressure; BiPAP, bilevel positive airway pressure.

weight circulating inflammatory mediators like cytokines 
(<40 kDa), chemokines and complement during sepsis 
with AKI and septic shock with multiple organ failure, 
leading to an improvement of overall morbidity and 
mortality in this condition.8 By eliminating inflammatory 
mediators, such as IL-1, IL-6, TNFα from the bloodstream 
it may limit their cytotoxic activity, improving the migra-
tion of leukocytes and possibly modifying the immune 
cell phenotype, as such playing an immunomodulatory 
role.29 This hypothesis is supported by the fact that a low 
level of proinflammatory cytokines has been shown to be 
associated with low CRS mortality.30

As CRRT leads to the elimination of proinflammatory 
cytokines from the blood like IL-6, it thus might be used 
in CRS cases refractory to tocilizumab and corticosteroids.

Working as an artificial kidney, CRRT is a process of 
slow, isotonic removal of water and solute, providing 
continuous fluid removal and blood purification by using 
a semipermeable membrane (filter) with counter-current 
dialysate fluid to remove fluid and particles via diffu-
sion, convection, as well as adsorption.31 The efficiency 
of diffusive removal decreases with increasing molecular 
weight of the solute. Convective clearance is proportional 
to the ultrafiltration rate and independent of molecular 

weight up to the cut-off point of the membrane, which 
is 30–40 kDa for the currently used open hemofiltra-
tion membranes.32 In addition to being used as a cyto-
kine removal tool, RRT was used for the correction of 
electrolyte (hyperkalemia), acid-base status correction 
(severe metabolic acidosis), promoting recovery of renal 
function (correction of uremia) and to help correct the 
overload syndrome from fluid administration. By favoring 
the clearance of inflammatory mediators and myocardial 
depression factors, it demonstrates circulatory stability, 
reduction of the dosage of vasoactive drugs, modulating 
immune function and overall temperature control.33

The patient’s blood is being continuously recirculated 
through the extracorporeal circuit at blood flow rates of 
150–300 mL/min and, as such, it requires systemic anti-
coagulation to prevent clotting in the membrane filter. 
The available options include regional citrate anticoagu-
lation and unfractionated heparin (UFH).34 The regional 
citrate anticoagulation chelates calcium in the extra-
corporeal circuit, but it cannot be used in patients with 
hepatic dysfunction/failure because of impaired meta-
bolic clearance of citrate.35 For UFH, activated partial 
thromboplastin time 1.5–2 times its normal values or acti-
vated clotting time over 220–250 can be used to achieve 
the target anticoagulation.36 The problem that might be 
encountered is the thrombocytopenia usually seen in 
hematological patients, and because of this, the dose of 
heparin should be reduced.

The use of ultrafiltration greater than that used in 
supporting renal function, that is, > (35 mL/kg/hour 
standard-volume hemofiltration (SVHF)) is called high-
volume hemofiltration (HVHF). Large and very large 
ultrafiltration flows (>45 mL/kg/hour) were used to 
increase the elimination of medium-molecular-mass 
molecules, for example, cytokines.37 38 In the IVOIRE 
trial, Joannes-Boyau et al reported no evidence that HVHF 
at 70 mL/kg/hour when compared with contemporary 
SVHF at 35 mL/kg/hour, leads to a reduction of 28-day 
mortality or contributes to early improvements in hemo-
dynamic profile or organ function.39 Thus, this trial does 
not support the use of HVHF in septic patients compli-
cated by AKI. Furthermore, concerns about the removal 
of beneficial molecules such as nutrients, proteins, and 
antimicrobial peptides were associated with HVHF.40 The 
big question that arises is if the SVHF is enough for the 
management of CRS?

A case report by Liu et al presented a 10-year-old boy 
with relapsed/refractory (R/R) B-ALL who received 
CD19 CAR-T-cell therapy and who developed severe CRS, 
in whom the treatment with tocilizumab and glucocorti-
coids were ineffective, hemofiltration was initiated, with 
IL-6 levels rapidly decreasing and with successfully treating 
CRS. It must be mentioned that the case report presented 
no discernable kidney injury, the authors arguing that 
hemofiltration was used in the context of severe CRS and 
bearing in mind that tocilizumab might increase the risk 
of exacerbating infection if a repeated dose was to be 
administered. With no AKI present, but persistent high 
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fever (hyperpyrexia >40°C), liver dysfunction, beginning 
of sepsis and clinical and laboratory abnormalities of the 
MAS all of which resolved after CRRT initiation. In this 
case, veno-venous hemofiltration was used over 24 hours 
with the patient maintaining normal systolic and diastolic 
blood pressures. After the mentioned process, 1000 mL 
of plasma were administered to maintain the colloid 
osmotic pressure.41

Plasma exchange involves the removal of the patient’s 
plasma, which is replaced by infusion fluids such as plasma 
or albumin. Cytokine removal through plasma exchange 
may reduce the level of inflammatory markers in sepsis 
and organ failure.42 Xiao et al reported a case involving 
a patient with R/R ALL who developed life-threatening 
CRS after receiving an infusion of anti-CD19 CAR-T cells. 
In combination with glucocorticoid therapy, therapeutic 
plasma exchange was performed daily for three consecu-
tive days. Throughout the treatment, the patient’s inflam-
matory factors nearly returned to baseline levels, and 
his CRS-related symptoms were relieved with the patient 
eventually being discharged in good health.43

Further research focused on using biocompatible 
adsorption hemofilter, also known as hemadsorption/
hemoperfusion, involving materials with high adsorptive 
properties and which remove cytokines based on their 
physical properties. Blood circulates in direct contact 
with the adsorptive surface, which attracts the mole-
cules through hydrophobic, ionic and van der Waals 
interactions.44

Currently, available adsorption hemofilter are: poly-
myxin B endotoxin-adsorbing column (PMX-DHP), 
marketed as Toraymyxin (Toray Industries, Tokyo, Japan), 
a polycationic antibiotic column containing multiple 
polymyxin B-immobilized fibers, which has been shown to 
neutralize bacterial endotoxins; polymethyl-methacrylate 
membranes, AN69 surface-treated (AN69ST) membranes, 
and modified AN69ST membranes coated with immobi-
lized heparin in order to reduce the risk of thrombogenic 
events (oXiris)and Cytosorb .45

Cytosorb (CytoSorbents Corporation, Monmouth Junc-
tion, New Jersey, USA) is a biocompatible absorber that 
is integrated into the extracorporeal blood pump circuit. 
The therapeutic goal is the reduction of cytokines and 
other inflammatory mediators from overwhelming levels 
to a physiological range. It is a porous polymer sorbent 
technology with extensive elimination capacity due to a 
total surface of 40 000–45 000 m2. It adsorbs hydrophobic 
low and middle molecular substances between 5 and 
60 kDa in size referred to as the ‘cytokine sweet spot’, in a 
concentration-dependent manner. It targets many of the 
key inflammatory mediators such as IL-1β, IL-6, TNF-α 
and IL-10.46 When in high concentration substances are 
removed quickly. A single cartridge can be used for up to 
24 hours at a time, after which it needs replacement with 
a new cartridge as long as the therapy continues.47 Reduc-
tion of IL-6 levels has been reported, consistent with the 
findings of Kellum et al examining the effect of CS on 
IL-6/other cytokines in brain-dead potential donors.48 

Two randomized controlled trials (RCTs) have also shown 
a reduction of IL-6 levels.49 50

In a rat sepsis model, Maeda et al have used continuous 
hemofiltration with polyester polymer alloy as a cyto-
kine adsorber to remove IL-6 from the bloodstream effi-
ciently.51 Furthermore, a recently published in vitro study 
compared the adsorptive capacities of Toraymyxin, oXiris 
and CytoSorb. The comparison focused on the removal 
of sepsis-associated mediators and endotoxins. Removal 
rates of 27 proinflammatory and anti-inflammatory medi-
ators (including IL-6, TNF-α, IL-1β, IL-4 and IL-10) were 
similar between oXiris and CytoSorb and were higher 
with CytoSorb and oXiris versus Toraymyxin and similar 
endotoxin removal to Toraymyxin.52

Coupled plasma filtration adsorption (CPFA) is a new 
method of combining extracorporeal blood purification 
methods. Separation of plasma from the cellular compo-
nents of blood with a highly permeable filter is followed 
by slowly going through the adsorptive material to remove 
several different cytokines. Then, the reinfusion of the 
purified plasma returns before the hemofilter to provide 
CRRT for renal/fluid support. The advantage of CPFA 
is that it has improved biocompatibility because there 
is no contact between blood cells and the sorbent mate-
rial. Still, evidence supporting its effectiveness is scarce. 
Because it is expensive, it requires well-trained staff, labor 
intensive and associated with multiple technical issues 
that often lead to undertreatment.53 54

Two recent studies reported the incidence of AKI after 
CAR-T cell therapies. The first one identified the inci-
dence of AKI post-CAR-T cell therapy in 46 adult patients 
with non-Hodgkin’s lymphoma, of whom 14 developed 
AKI (30%). The cumulative incidence of any grade AKI 
by day 100 was 30% (95% CI 16.9% to 43.9%) with grade 
1 AKI incidence at 21.7% (95% CI 9.7% to 33.8%) and 
grade 2–3 AKI incidence at 8.7% (95% CI 0.4% to 17%). 
The overall incidence of CRS was 78.3% (95% CI 66% 
to 90.5%) out of which 13% (95% CI 3.3% to 22.8%) 
developed grade 3–4 CRS with a higher incidence of AKI. 
From the 14 patients with AKI, 3 died within 3 weeks of 
AKI onset due to progression of the underlying disease, 
10 had the return of their kidney function to baseline and 
1 had a serum creatinine 1.5 times higher than baseline 
by the end of follow-up. In this study, CRS was managed 
with tocilizumab and corticosteroids, with none of the 
patients who developed severe AKI requiring RRT.55

The second study consisted of 78 patients receiving 
CAR-T therapy for the treatment of diffuse large B-cell 
lymphoma, in which AKI occurred in 15 patients (19%) 
and CRS in 85%, treated with tocilizumab and dexa-
methasone. Of those with AKI, eight had decreased 
kidney perfusion, six developed acute tubular necrosis 
and 1 patient had urinary obstruction related to disease 
progression. Those with acute tubular necrosis and 
obstruction had the longest lengths of stay and highest 
60-day mortality. Three of six with stage 3 AKI required 
RRT, but all three ultimately died in the hospital within 30 
days (2 within 24 hours of initiating RRT).56
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Figure 2  Different methods for extracorporeal blood 
purification therapies, each having a similar core and a 
variation to the technique with its physicochemical principles 
mentioned. The small arrows represented near the tubular 
structures show the flow of the blood, while the big arrow 
depicted from each method to the ‘?’ represents the different 
variations of these methods.

The multitude of CAR-T constructs that are available 
has different rates of CRS because of their distinct costim-
ulatory domains which lead to differential rates of cell 
expansion and activation. As such, it is mandatory to 
know that AKI is likely to differ based on both patient 
characteristics and differences in CAR-T products. Also, 
chemotherapy, lymphodepletion regimen used, the need 
for intravenous contrast, concomitant nephrotoxic drugs, 
tumor lysis syndrome, urinary obstruction, sepsis, poor 
case management could lead to AKI and other organ fail-
ures requiring RRT as salvage therapy.

The pitfalls of CRRT are its adverse events, such as the 
need for properly prepared personnel, increased cost, 
catheter complications, risks of bleeding/clotting, hemo-
dynamic instability, a drop in platelet count (thrombocy-
topenias), antibiotics removal with the need for dosing 
adjustments, loss of microelements and vitamins, electro-
lyte imbalances- hypophosphatemia, hypokalemia; hypo-
thermia and the need for well design local protocols.57 58

Further studies should address the implementation of 
CRRT in patients with CRS. The questions that should be 
answered are deciding the optimal timing to start the RRT 
in CRS, how often would the filter need to be changed, 
what’s the duration of therapy, should there be a need 
for measuring the cytokine concentrations using the peak 
elevation as a starting point, are there any genetic predis-
position to developing CRS and many more.

Still, this is far too little information and more research 
must be carried out, both in the preclinical setting, as 
well as in large clinical trials. Figure 2 depicts the types of 
continuous RRTs.

Proof-of-concept for the hypothesis
To demonstrate the efficacy of the presented approach, 
we present our clinical experience of an 8-year-old male 
patient with very severe aplastic anemia unresponsive to 
antithymocyte globulin which underwent haploidentical 
hematopoietic stem cell transplant from his father.59–63 
The conditioning was performed using thiotepa, 
melphalan and fludarabine, followed by the infusion 
of 8.58×106 CD34/kg peripheral blood stem cells. Graft 
versus host disease prophylaxis was performed with cyclo-
phosphamide in days 3 and 4 posttransplant and with 
Prograf and mycophenolate mofetil on day 5.64–68 Neutro-
phil engraftment day was 24, while platelet engraftment 
was observed on day 25. Chimerism was assessed on day 
27 and revealed a 100% donor chimerism. On day 29 
both neutrophils and platelets started decreasing and it 
was revealed to be caused by an infection with BK virus 
(BKV). As of day 27, BKV was negative in plasma and urine 
but became positive in both when assessed on day 34, with 
a subsequent increase in the number of viral copies in 
day 41. Associated with this, it was observed that day 36 
chimerism assessment dropped to 15% donor chime-
rism. Because of the viral infection, there was a donor 
lymphocyte infusion performed on day 42. In day 44, we 
assessed IL-6 levels, which were shown to be over the limit 
of 1000 pg/mL (normal <3.8 pg/mL). Corticosteroids 
were used only because tocilizumab was not available. On 
day 52, the patient presented the following toxicities by 
grade: grade 2: cardiac, renal, gastrointestinal, skin and 
coagulation; grade 3: respiratory and hepatic and grade 
4: neurotoxicity. On day 53, it has been decided to initiate 
a CRRT with Cytosorb filter which was followed by the IL-6 
level dropping to 8.4 pg/mL at day 60 and with regaining 
control and amelioration of the clinical symptoms, but 
with severe pancytopenia due to graft failure. The CRRT 
mode ordered was continuous veno-venous hemodiafil-
tration with Cytosorb adsorber with an effluent rate of 
25–30 mL/kg/hour and blood flow range of 5–10 mL/
kg/min. Because of severe thrombocytopenia, systemic 
anticoagulation was only used in bolus dose at the begin-
ning of the procedure and not followed by continuous 
infusion of the anticoagulant. There was no dialysis 
needed, only hemofiltration, and the procedure lasted 
24 hours, without any incidents. Afterwise, on day 69, the 
patient developed bacterial septic shock and died. Thus, 
although this case ended with exitus, CRRT with Cytosorb 
helped reverse some of the toxicities caused by IL-6.

Conclusions
Managing CRS remains a therapeutic challenge and close 
communication of hematology physicians with the ICU 
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and nephrology teams will be essential in approaching 
future challenges.

CRS represents a severe adverse event following immu-
notherapy or cellular therapies, with strategies insuffi-
ciently developed to manage this condition. Nonetheless, 
there are still patients with CRS that are refractory to 
tocilizumab and corticosteroids which succumb to this 
complication, leading to the need for the next line of 
management strategy. In the current manuscript, we 
propose that this next line be represented by CRRT as 
it has been demonstrated to be efficacious in sepsis, a 
condition with a similar pathophysiological mechanism. 
The questions that remain unanswered are deciding 
the optimal timing to start the CRRT in CRS, how often 
would the filter need to be changed, what’s the duration 
of therapy, should there be a need for measuring the cyto-
kine concentrations using the peak elevation as a starting 
point, and can we predict the development of severe CRS?
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