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Abstract

Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin in muscle, and while all patients share the primary
gene and biochemical defect, there is considerable patient–patient variability in clinical symptoms. We sought to develop
multivariate models of serum protein biomarkers that explained observed variation, using functional outcome measures as
proxies for severity. Serum samples from 39 steroid-naïve DMD boys 4 to <7 years enrolled into a clinical trial of vamorolone
were studied (NCT02760264). Four assessments of gross motor function were carried out for each participant over a 6-week
interval, and their mean was used as response for biomarker models. Weighted correlation network analysis was used for

unsupervised clustering of 1305 proteins quantified using SOMAscan
®

aptamer profiling to define highly representative and
connected proteins. Multivariate models of biomarkers were obtained for time to stand performance (strength phenotype;
17 proteins) and 6 min walk performance (endurance phenotype; 17 proteins) including some shared proteins. Identified
proteins were tested with associations of mRNA expression with histological severity of muscle from dystrophinopathy
patients (n = 28) and normal controls (n = 6). Strong associations predictive of both clinical and histological severity were
found for ERBB4 (reductions in both blood and muscle with increasing severity), SOD1 (reductions in muscle and increases
in blood with increasing severity) and CNTF (decreased levels in blood and muscle with increasing severity). We show that
performance of DMD boys was effectively modeled with serum proteins, proximal strength associated with growth and
remodeling pathways and muscle endurance centered on TGFβ and fibrosis pathways in muscle.
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Introduction
Duchenne muscular dystrophy (DMD; OMIM #310200) is an X-
linked genetic disorder that affects approximately 1 in 5000
male births and manifests in early childhood (2 to 6 years of
age). The disorder is caused by loss-of-function mutations in
the DMD gene that encodes for the dystrophin protein, and this
loss of dystrophin in muscle tissues leads to progressive muscle
weakness and wasting and early death (1,2). Current standard of
care for DMD patients includes high-dose glucocorticoids (pred-
nisone, deflazacort) that reduce muscle inflammation and delay
loss of motor functions (3). There has been a recent acceleration
in clinical research of possible pharmacological therapies for
DMD, including studies aimed at restoring dystrophin in skeletal
muscle, and disease-modifying agents targeting inflammation
and other pathogenic aspects of the disease.

Patients with DMD all share loss of dystrophin protein in
muscle from fetal life onwards. Despite this common biochem-
ical event that initiates the disease process, there is marked
variability in patient presentation and progression, and this
complicates the interpretation of drug effectiveness in clinical
trials. One approach to understanding and potentially control-
ling for clinical heterogeneity is to define clinical outcomes at
a young age that are predictive of later losses of gross motor
skills and quality of life changes. Using an analysis of 6 min
walk data in 96 boys from a natural history study of Italian DMD
patients (96% steroid-treated), the authors grouped patients into
4 subgroups (Classes I–IV) based on their disease progression,
with loss of ambulation ranging from ∼10 years of age (Class I) to
∼20 years of age (Class IV) (4). A natural history study of 440 DMD
patients followed up to 10 years showed that assessment of time
to stand from supine (TTSTAND) at a young age was predictive
of later loss of ambulation (3). These studies demonstrate the
ability to use early outcomes as predictive of clinical variability,
but do not address the biological causes of this variability.

One approach to defining possible biological causes of
clinical variability is through definition of genetic modifiers
in DMD—common polymorphisms in human populations that
can be shown to modify DMD disease progression or response to
glucocorticoid therapy. To date, DNA polymorphisms encoding
two components of the TGFβ cell repair and fibrosis pathway
(osteopontin [SPP1 gene], latent TGFβ-binding protein 4 [LTBP4
gene]), an inflammatory protein (CD40) and a loss-of-function
polymorphism of α-actinin 3 (ACTN3 gene) have been found to
be associated with DMD severity and response to steroids (5–9).
As with most genetic modifiers, these polymorphisms seem to
explain a relatively small part of observed variability.

A second approach to define biological determinants
of variable clinical phenotypes are via serum biomarkers
(proteins, microRNAs). Serum biomarkers have been studied
throughout DMD disease progression, and specific biomarkers
associated with specific stages of the progressive disease (10,11).
Glucocorticoid-responsive serum biomarkers have been defined
in DMD and other disorders, and these same biomarkers have
shown to be responsive to an experimental drug in clinical
testing, vamorolone (9–11).

No studies to date have studied serum biomarkers associated
with variable clinical severity within a specific age range. Given
the progressive nature of DMD, we hypothesized that studies
of biomarkers associated with severe or mild disease at a spe-
cific age should focus on younger DMD boys in a narrow age
range and, further, that subjects studied were steroid-naïve—
thus avoiding confounding variables of both age and drug treat-
ment. We also hypothesized that such studies might be most

accurately done in the context of a formal clinical trial of a new
chemical entity, where standard operating procedures for both
sample collection and training of clinical evaluators might lead
to more robust findings.

Here, we report multivariate models of biomarker/phenotype
associations in steroid-naïve patients with DMD, 4 to <7 years
(n = 48). Studies were limited to baseline data of subjects enrolled
in a clinical trial of vamorolone, a first-in-class partial agonist of
the glucocorticoid receptor (12,13).

Results
Correlation of clinical outcomes at baseline

The VBP15–002 clinical trial (ClinicalTrials.gov NCT02760264)
enrolled steroid-naïve DMD participants, 4 to <7 years (n = 48),
at 11 expert sites in the Cooperative International Neuromus-
cular Research Group (CINRG; www.cinrgresearch.org) over a
14-month period (April 2016–June 2017). Clinical assessments
included five motor function tests. Time to stand from supine
(TTSTAND), time to run/walk 10 m (TTRW) and time to climb
4 stairs (TTCLIMB) were each expressed as a velocity. The
6 min walk test (6MWT) was expressed in meters walked, and
the North Star Ambulatory Assessment (NSAA) was scored for
17 standard tests of function. For each motor outcome, four
separate measures were done for each subject over a 6-week
time frame (screening, baseline, Week 2, Week 4). For the 2-week
period between baseline and Week 2, subjects were treated with
daily doses of vamorolone in four dose groups (0.25, 0.75, 2.0,
6.0 mg/kg/day) (n = 12 per group). For the 2-week period between
Week 2 and Week 4, subjects had no drug treatment (washout).
There were no significant effects of drug on outcomes in the
short 2-week treatment period. We thus considered the four
assessments in 6 weeks as ‘repeated measures’ for each subject,
and motor outcome values were expressed as the mean of the
four repeated measures. This mitigates intra-subject variation
and accuracy issues inherent with motor outcome testing. We
also provide summaries of coefficients of variation (%CV) for
each of the outcomes for 48 subjects (Table 1). The averaged
%CV for TTSTAND velocities and 6MWT are 16.17 and 7.17%,
respectively.

Correlations of each clinical outcomes were done with each
other and with age for all 48 subjects (Fig. 1). In terms of cor-
relations of clinical outcomes, TTSTAND and TTCLIMB were
best correlated (r = 0.87); this likely reflects the shared proximal
muscle strength required for these outcomes. Correlations for all
other comparisons ranged from r = 0.58 to r = 0.83. There was no
substantial correlation of age with outcomes; this was expected
given that we studied a narrow age range (4 to <7 years) and
that in this age range, DMD patients are typically stable in terms
of disease progression (honeymoon period) (3). As DMD is a
progressive disease, the lack of correlation with age in our data
set suggests we are isolating intrinsic differences in inter-patient
disease severity.

Definition of clusters of serum protein biomarkers

Protein profiling of serum samples of DMD subjects enrolled

in VBP15–002 (n = 39) using SOMAscan
®

aptamer measures of
1305 serum proteins was previously described (12). Data were not

available for nine subjects. SOMAscan
®

analysis tested relative
levels of all serum proteins tested using three dilutions of sera
over a >10 000-fold dynamic range. In the previous report (12),

ClinicalTrials.gov
www.cinrgresearch.org


Human Molecular Genetics, 2020, Vol. 29, No. 15 2483

Table 1. Coefficient of variation was calculated for 48 DMD boys for the four repeated measurements of each motor outcome and velocity
transformation taken over 6 weeks

TTSTAND
velocity

TTSTAND
seconds

TTCLIMB
velocity

TTCLIMB
seconds

TTRW
velocity

TTRW
seconds

6MWT NSAA

Mean 16.17% 16.42% 13.61% 14.31% 7.61% 7.68% 7.17% 7.76%
SD 8.44% 9.06% 6.57% 7.57% 3.75% 3.97% 4.29% 5.86%

The mean (mean %CV) and standard deviation of these are reported.

Figure 1. Scatterplot matrix of timed function tests, 6MWT, NSAA and age. Shown is mean of four measures over ∼6-week time frame for 48 DMD subjects (4 to <7 years,

steroid-naïve). The first three motor outcomes, TTSTAND, TTCLIMB and TTRW, are quantified in velocity units, 6MWT in meters, NSAA out of a maximum of 34 and

age in months. Pearson correlations are also provided. The figure in the first column, second row, represents a scatterplot of time to stand (x-axis) versus time to climb

(y-axis).

analyses of SOMAscan
®

data were restricted to testing drug
responsiveness of 13 pre-specified pharmacodynamic biomark-
ers that had been identified as responsive to glucocorticoids (14).
This is the first report of analysis of the complete 1305 serum
protein data set, and here we restrict analyses to blood samples
taken at baseline visits.

To identify sets of serum biomarkers associated with DMD
subject clinical severity at baseline, we carried out a three-
step approach, separately for two outcome measures (TTSTAND
velocity reflective of proximal muscle strength; 6MWT meters
reflective of muscle endurance). The first step accomplished
data reduction using weighted gene correlation network anal-
ysis (WGCNA) (15) and summary measures of clusters (module
eigenproteins; MEs). The second step used elastic net models (16)
with repeated cross-validation to further reduce dimensionality
to a few dozen proteins. The final step was application of least
absolute shrinkage and selection operator (LASSO) (17) to arrive
at 17 proteins each that were associated with clinical severity for
TTSTAND and 17 associated with 6MWT (Fig. 2).

For the initial WGCNA/ME step, we analyzed relative trends
of correlated serum proteins using a protein relative expression
similarity network built with a weighted correlation network
approach (15,18). A hierarchical clustering of proteins based on
a transformation of pairwise correlations was used to identify
protein clusters that were associated with clinically phenotypes.
The initial clustering is conducted in a completely unsupervised
manner (not connected to any outcomes or traits) at this stage
of the analyses.

Weighted correlation network analysis of the 1305 serum
proteins in 39 subjects yielded 11 modules (clusters) of proteins,
with membership ranging from 17 to 287 proteins, with high
topological overlap (Fig. 3). Correlations of four timed function
tests and NSAA with the summary expression (MEs) of these
modules were computed. For example, in Figure 3, TTSTAND, the
first column, has a correlation of −0.5 with the ME for the brown
module (P = 0.001), −0.46 with yellow module (P = 0.002) and so
on. This shows that the brown and yellow protein modules are
negatively correlated with time to stand velocity at baseline,
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Figure 2. Overview of experimental design to define disease severity biomarkers in DMD. Sequential data reduction approaches were used for TTSTAND and 6MWT

motor outcomes (WGCNA). The resulting regression model included 17 serum proteins associated with TTSTAND severity (proximal strength) and 17 proteins associated

with 6MWT severity (endurance). The selected serum proteins were tested for gene expression associated with disease status and histopathological severity and were

also validated in additional outcomes (TTRW and TTCLIMB from TTSTAND model). Finally, the resulting data were used to build hypothetical biological models for

disease severity in DMD.

while the magenta module is positively correlated with time
to stand velocity at baseline. This analysis was used only for
filtering and dimension reduction; therefore, no correction for
multiple testing was done. Consistency of module–trait relation-
ships across different clinical endpoints was evident, consistent
with the correlation matrix between different motor outcomes
(see Fig. 1). Importantly, patient age was not highly statistically
significantly associated with any cluster, likely due to the narrow
age range studied (4 to <7 years). Note that the gray module
consists of proteins that could not be clustered well in other
modules.

We then moved to statistical model building focused on two
clinical outcome measures that are most divergent, as they are
thought to represent different phenotypic variables: TTSTAND
(primary outcome in the vamorolone clinical trials; proximal
muscle strength) and 6MWT (highly responsive to drug in the
vamorolone clinical trials; muscle endurance). We set an arbi-
trary cutoff of P < 0.15 (for higher power screening because of
low sample size) for retention of modules into statistical model
building. The correlations for clusters carried forward into the
analysis for TTSTAND and 6MTWT are enclosed in yellow in
Figure 3.

Feature selection and model building

TTSTAND was chosen for initial model building, as it was the pri-
mary outcome in the clinical trial; shorter TTSTAND in younger
patients with DMD has been linked to delayed disease progres-
sion (e.g. loss of ambulation) and improved survival (3,13). Using
proteins within the five selected modules for TTSTAND velocity
(Fig. 3), data reduction using multivariate linear models was
carried out. Elastic net methods were used to establish variable
importance measures by indicating how often a serum pro-
tein was picked in 100 cross-validations with TTSTAND velocity
measures. A threshold of >60/100 cross-validations led to the
candidate proteins being used as explanatory variables in a final
LASSO model; this selected 17 serum proteins in the multivariate
linear model. Note that of the final 17 proteins, BAD was selected

from all 100 cross-validations, with the others being EPHA3 (98),
IGF-I sR (90), semaphorin-6A (90), MK01 (84), eIF-5A-1 (73), ERBB4
(72), NSF1C (72), PAFAH beta subunit (72), SNAA (72), SOD (72),
DLRB1 (71), PLPP (71), RAN (71), PA2G4 (70), Rab GDP dissocia-
tion inhibitor beta (69) and IFN-g R1 (67). Estimated regularized
coefficients for the LASSO model are provided in Supplementary
Material, Table S1.

6MWT meters walked was chosen as a second clinical out-
come for establishing a multivariate linear model. 6MWT is
considered a clinical outcome reflective of muscle endurance
(and not strength) and showed the most significant drug dose–
response in the vamorolone clinical trial (13). The 6MWT has
also been used as the primary outcome in multiple DMD clinical
trials (19,20). Four modules (Fig. 3) were selected for modeling
of 6MWT clinical associations, three of which overlapped with
the modules selected for TTSTAND. For 6MWT, the following 17
proteins were selected where elastic net cross-validation analy-
ses showed selection of each serum protein in >60/100 tests fol-
lowed by a final LASSO model for the candidates. Serum proteins
selected were angiopoietin-1 (98), CBG (98), CTAP-III (98), ERBB4
(98), TGF-b2 (98), 4EBP2 (97), AMNLS (97), EPHA3 (97), nidogen (97),
SOD (95), PDGF-AA (93), ON (74), BCL6 (71), CNTF (71), ubiquitin+1
(71), MAPK5 (66) and PLPP (61). Four serum proteins were shared
between the TTSTAND velocity model and the 6MWT model
(SOD, PLPP, EPHA3, ERBB4). Estimated regularized coefficients for
the LASSO model are provided in Supplementary Material, Table
S2.

For squared correlations between observed average (of four
measurements) outcome and multivariate model predicted val-
ues, we obtained 0.87 for TTSTAND and 0.89 for 6MWT. As a
sort of a sensitivity analysis, we correlated the predictions for
TTSTAND using the obtained final model (coefficients) with the
four sets of observed outcomes. Using the four sets of outcomes,
we obtained the following squared correlation values: 0.64, 0.65,
0.76 and 0.80. Similarly, doing this for 6MWT distances, we
obtained the following squared correlation values: 0.68, 0.74,
0.79 and 0.82. That these squared correlations are lower than
those obtained with the data the models were trained on is not

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
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Figure 3. Screening step showing module trait relationships between motor outcomes and modules of serum proteins. Correlations of 11 MEs for clusters of proteins

with clinical outcomes. Pearson correlations and associated P-values in parenthesis are provided. P-values were not adjusted for multiple testing in this screening step.

The yellow-highlighted cells were those carried forward for statistical model building for TTSTAND and 6MWT.

surprising, and the model overall shows good performance (also
reflecting reliability of the repeated measures).

Patient-level data visualization

To visualize the performance of the selected serum proteins
in differentiating between mildly and severely affected DMD

patients at baseline, we converted the SOMAscan
®

protein
designations to more standard HGNC Approved Gene Sym-
bols and generated heatmaps using unsupervised clustering
(Tables 2 and 3; Fig. 4). For TTSTAND, data visualization showed
that levels of most selected serum proteins were increased in
patients with longer TTSTAND (more affected patients). For
TTSTAND, three serum proteins showed clear reductions in
more affected patients (IGF1R, EPHA3, ERBB4; see Table 2). For
6MWT, the opposite was found, where levels of most selected
serum proteins showed decreased protein levels in patients with
shorter 6MWT distances (more affected patients) (see Table 3).
For 6MWT, three serum proteins showed increased levels in more
affected patients (SOD1, RPS27A). The four serum proteins that
were shared between the TTSTAND and 6MWT models behaved
similarly in patient-level data (SOD1 and PDXP showed increased

levels in severe patients; EPHA3 and ERBB4 showed decreased
levels in severe patients).

Validation using patient muscle biopsies

An independent sample set to validate the models was not
available. A surrogate for clinical severity in dystrophinopathy
(DMD/BMD) patients is muscle histological severity, where
clinical outcomes correlate closely with the degree of fibrofatty
replacement of muscle (fibrosis). Muscle histology as detected
by MRI has been found to be the best biomarker of clinical
findings in a series of Becker muscular dystrophy patients and
to show superior predictive power than patient age, specific
gene mutation or dystrophin protein levels in the muscle
(21–23). Thus, we considered skeletal muscle biopsies from
patients with defined histological severity as a surrogate
biomarker for clinical severity. We have previously reported a
patient muscle biopsy mRNA profiling data set with defined
histological severity of dystrophinopathy patients (normal n = 6;
dystrophinopathy n = 28) (NCBI GEO GSE109178) (2). Muscle
histology was centrally read by a single reader and scored as
normal, mild, moderate or severe histopathology. Unsupervised
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Table 2. Serum proteins selected for TTSTAND regression model and individual performance in clinical and histological data sets

Target UniProt Entrez gene
symbol

Elastic net
selections (of 100
cross-validations)

Correlation
serum protein
versus clinical
severity (P-value)

Biopsy mRNA
normal versus
DMD fold change
(P-value)

Correlation
mRNA versus
histopathology
severity score
(P-value)

BAD Q92934 BAD 100 −0.47 (0.013) −1.2 (ns) 0.069 (ns)
EPHA3∗ P29320 EPHA3 98 0.47 (0.014) −1.1 (ns) −0.033 (ns)
IGF-I sR P08069 IGF1R 90 0.43 (0.020) −1.1 (ns) −0.24 (ns)
Semaphorin-6A Q9H2E6 SEMA6A 90 −0.013 (ns) −2.9 (2.9e−07) −0.5 (0.023)
MK01 P28482 MAPK1 84 −0.53 (0.005) −1.3 (0.007) 0.16 (ns)
eIF-5A-1 P63241 EIF5A 73 −0.3 (ns) n/a n/a
ERBB4∗ Q15303 ERBB4 72 0.39 (0.034) 6.2 (9.5e−06) 0.66 (0.0037)
NSF1C Q9UNZ2 NSFL1C 72 −0.31 (ns) −1.4 (0.039) −0.47 (0.031)
PAFAH beta
subunit

P68402 PAFAH1B2 72 −0.33 (ns) 1.4 (0.039) 0.42 (ns)

SNAA P54920 NAPA 72 −0.36 (0.049) 1.3 (0.002) −0.57 (0.009)
OD∗ P00441 SOD1 72 −0.38 (0.038) 1.2 (0.039) 0.58 (0.008)
DLRB1 Q9NP97 DYNLRB1 71 −0.54 (0.005) 1.1 (ns) 0.49 (0.024)
PLPP∗ Q96GD0 PDXP 71 −0.26 (ns) 1.4 (0.039) −0.28 (ns)
RAN P62826 RAN 71 −0.36 (ns) −1 (ns) 0.19 (ns)
PA2G4 Q9UQ80 PA2G4 70 −0.42 (0.021) 1.1 (ns) 0.03 (ns)
Rab GDP
dissociation
inhibitor beta

P50395 GDI2 69 −0.34 (ns) −1.3 (0.003) 0.28 (ns)

IFN-g R1 P15260 IFNGR1 67 0.2 (ns) −1.9 (0.0012) −0.29 (ns)

List of proteins identified as explanatory variables from multivariate model for TTSTAND velocity along with repeatability of signal in multivariate model cross-
validations, Spearman correlation of log-transformed mRNA values with severity (severe, moderate or mild histological severity in that order from DMD and BMD
samples), fold change from mRNA (healthy controls, numerator versus DMD subjects, denominator) and Spearman correlation of log-transformed SOMAscan® values
with TTSTAND velocity. All P-values were adjusted using Benjamini–Hochberg (FDR) correction alongside the set of proteins for 6MWT distance with any P-value higher
than 0.05 noted as ns. No ‘_at’ probeset was found for eIF-5A-1. Starred rows are proteins that are shared between the TTSTAND and 6MWT models.

Table 3. Serum proteins selected for 6MWT regression model and performance in correlations

Target UniProt Entrez gene
symbol

Elastic net
selections (of 100
cross-validations)

Correlation
serum protein
versus clinical
severity (P-value)

Biopsy mRNA
normal versus
DMD fold change
(P-value)

Correlation
mRNA versus
histopathology
severity score
(P-value)

Angiopoietin-1 Q15389 ANGPT1 98 0.53 (0.005) −1.4 (ns) 0.15 (ns)
CBG P08185 SERPINA6 98 0.44 (0.018) 1.8 (0.017) 0.35 (ns)
CTAP-III P02775 PPBP 98 0.0044 (ns) n/a n/a
ERBB4∗ Q15303 ERBB4 98 0.52 (0.005) 6.2 (9.5e−06) 0.66 (0.004)
TGF-b2 P61812 TGFB2 98 0.44 (0.018) −1.7 (0.001) 0.018 (ns)
4EBP2 Q13542 EIF4EBP2 97 0.42 (0.021) −1.1 (ns) 0.54 (0.013)
AMNLS Q9BXJ7 AMN 97 0.22 (ns) −2.3 (ns) 0.35 (ns)
EPHA3∗ P29320 EPHA3 97 0.38 (0.04) −1.1 (ns) −0.033 (ns)
Nidogen P14543 NID1 97 0.16 (ns) −4.8 (5.2e−12) −0.52 (0.016)
SOD∗ P00441 SOD1 95 −0.32 (ns) 1.2 (0.039) 0.58 (0.008)
PDGF-AA P04085 PDGFA 93 0.23 (ns) 1.2 (ns) 0.43 (ns)
ON P09486 SPARC 74 0.28 (ns) −3.6 (5.4e−14) −0.54 (0.013)
BCL6 P41182 BCL6 71 0.31 (ns) 1 (ns) 0.39 (ns)
CNTF P26441 CNTF 71 0.48 (0.013) 1.2 (0.039) 0.64 (0.004)
Ubiquitin+1 P62979 RPS27A 71 −0.35 (0.051) −1.5 (9.3e−07) −0.6 (0.007)
MAPK5 Q8IW41 MAPKAPK5 66 0.32 (ns) 1.4 (2.3e−05) 0.12 (ns)
PLPP∗ Q96GD0 PDXP 61 −0.19 (ns) 1.4 (0.039) −0.28 (ns)

List of proteins identified as explanatory variables from multivariate model for 6MWT distance along with repeatability of signal in multivariate model cross-validations,
Spearman correlation of log-transformed mRNA values with severity (severe, moderate or mild histological severity in that order from DMD and BMD samples), fold
change from mRNA (healthy controls, numerator versus DMD subjects, denominator) and Spearman correlation of log-transformed SOMAscan® values with 6MWT
distance. All P-values were adjusted using Benjamini–Hochberg (FDR) correction alongside the set of proteins for TTSTAND velocity with any P-value higher than 0.05
noted as ns. No ‘_at’ probeset was found for CTAP-III. Starred rows are proteins that are shared between the TTSTAND and 6MWT models.
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Figure 4. Clustering of serum proteins identified as associated with more affected phenotypes as determined by the outcome measures TTSTAND (A) and 6MWT (B)

using unsupervised clustering. Patient-level clinical severity data is shown on the x-axis and serum protein levels on the y-axis. TTSTAND shows a clustering of clinically

milder patients (red) in the center of dendrogram, corresponding to lower levels of most serum proteins from the model. 6MWT shows a clustering of clinically milder

patients to the right of the dendrogram, corresponding to higher levels of most serum proteins in the model. Proteins marked with an asterisk are shared between the

two clinical outcome models and demonstrate similar behavior in both models.

clustering was done using the mRNAs corresponding to the
serum proteins selected by the baseline severity models for both
TTSTAND and 6MWT (Fig. 5).

The majority of normal skeletal muscle biopsies clustered
together to the left side of dendrograms, indicating differential

expression of most selected serum proteins in DMD/BMD patient
muscle. Also, for both TTSTAND and 6MWT, muscle samples
with the most severe histology samples clustered in the center of
the dendrogram, whereas most mild histology samples clustered
to the right. This data suggests that the serum proteins selected
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Figure 5. Unsupervised heatmap of muscle biopsies of defined histological severity clustered by mRNA expression levels of corresponding serum proteins from the

TTSTAND (A) and 6MWT (B) models. mRNA levels were scaled, log-transformed data from a muscle biopsy data set on BMD, DMD and healthy control samples (2).

The serum proteins selected by the TTSTAND and 6MWT models showed discriminatory power in differentiating muscle biopsies of variable histological severity, with

distinct dendrogram branches for normal (left), mild (right) and severe (center) pathologies.

by clinical outcome severity models were able to differentiate
muscle biopsies of variable severity.

Each of the proteins identified as explanatory variables
from multivariate model for TTSTAND and 6MWT clinical
outcomes was tested for significance in the different data
sets (Tables 1 and 2). Correlations of serum proteins with the

outcome severity were tested using Spearman correlations
(n = 39 patients), mRNA differential expression in normal (n = 6)
versus DMD (n = 17) biopsies by limma package (24) for R and
correlation of histological severity within dystrophinopathies
with mRNA expression (n = 28). All P-values were adjusted using
Benjamini–Hochberg false discovery rate (FDR) (25) correction
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(correction for TTSTAND velocity and 6MWT distance associated
proteins conducted together but presented in their respective
tables). No validated Affymetrix GeneChip probesets were found
for eIF-5A-1 (TTSTAND) or CTAP-III (6MWT). Directionality of
change was defined as ‘towards mild/normal’; if an increased
serum protein showed association with a milder disease state or
histology, this was indicated as a ‘+’ direction, and if increased
in normal muscle versus DMD, this was also ‘+’. Note that for
DMD versus normal muscle, this indication of directionality
is the opposite of much of the disease literature, where a
protein increased in DMD versus normal is indicated with
a + sign (here we show this as a negative sign, as decreased in
normal).

For TTSTAND, the three proteins with the most repeated
signal in LASSO cross-validations showed moderate correlations
with TTSTAND clinical outcome, with decreasing BAD serum
levels (r = −0.47; P = 0.013) and increasing EPHA3 (r = +0.47;
P = 0.014) and IGF-1 soluble receptor (IGF1R) (r = +0.43; P = 0.02)
levels with milder clinical severity (Table 2). These same proteins
showed no mRNA changes in DMD versus normal skeletal
muscle, and mRNAs were not associated with histological
severity. In contrast, serum semaphorin-6A protein levels
showed no univariate correlation with TTSTAND clinical
outcome (despite strong multivariate LASSO signal) but showed
very strong upregulation of its mRNA in DMD muscle (−2.9-
fold in normal muscle) and correlation with histological
severity (r = −0.5; adjusted P = 0.023). ERBB4, a serum protein
shared between TTSTAND and 6MWT models, showed strong
and consistent associations across the three data sets, with
increased serum levels associated with mild disease (univariate
r = +0.39 and r = +0.52 for TTSTAND and 6MWT, respectively),
significant upregulation of mRNA in normal muscle compared
to DMD (+6.2-fold) and strong correlation with histological
severity (r = 0.66). SOD1, another serum protein shared between
TTSTAND and 6MWT models, showed significance in all three
data sets, but the direction of change was opposite between
serum protein (decreased expression in milder disease; r = −0.38)
and mRNA in biopsy histological severity (increased expression
in milder disease; r = +0.58). SNAA (NAPA) also performed well
in all three data sets, with decreased serum protein (r = −0.36)
and decreased muscle mRNA (r = −0.57) associated with milder
disease.

For 6MWT, ERBB4 again performed well in both serum protein
correlations (r = +0.52) and mRNAs in biopsies (same data as
with TTSTAND) as did SOD1. Two biomarkers of muscle fibrosis,
nidogen and ON/SPARC, showed moderate association with DMD
versus normal mRNA (−4.8-fold and − 3.6-fold change in normal,
respectively) and with histological severity (r = −0.52, r = −0.54),
as is expected given that fibrosis is a major determinant of
histological severity (indeed, these mRNAs serve as a positive
control for biopsies). Note that these same two proteins, while
selected by multivariate linear models, showed poor univariate
correlation with 6MWT clinical outcome. Ubiquitin+1 (RPS27A)
behaved similarly to nidogen and ON/SPARC mRNAs in the mus-
cle, and this is likely a novel biomarker of muscle fibrosis. CNTF
was also moderately associated with clinical and histological
outcomes, with increased serum protein associated with milder
disease (r = +0.48) and mRNA with milder histological severity
(r = +0.64).

Data for all data sets were summarized in terms of direction-
ality and significance in serum and muscle, with comments on
protein function in Supplementary Material, Table S3. Potential
or known biological significance of these findings is provided in
the Discussion.

Testing of models in additional clinical outcomes

An alternative approach to validation of the regression models
for serum biomarkers is to test these models in additional
clinical outcomes collected in the VBP15–002/VBP15–003 clinical
trial. Given the shared proximal strength latent factors behind
TTSTAND, TTCLIMB and TTRW velocities, the 17 TTSTAND
velocity-associated identified proteins were used to model
velocity measures for TTRW (time to run/walk 10 m) and
TTCLIMB (time to climb four stairs). A ridge regression using
all 17 proteins yielded a squared correlation of 0.76 between
observed and predicted TTCLIMB velocity. Similarly, a ridge
regression using all 17 proteins yielded a squared correlation
of 0.50 between observed and predicted outcomes for TTRW
velocity.

The coefficients obtained from these two models were con-
cordant (same directionality) for 15 out of 17 biomarkers for the
TTSTAND, TTCLIMB and TTRW models; the estimated coeffi-
cient for PAFAH1B2 is in the opposite direction for TTRW velocity
as compared to the TTSTAND and TTCLIMB velocity models.
Similarly, the coefficient for IFNGR1 is estimated in the opposite
direction for the TTCLIMB velocity model as compared to the
other two.

Mapping of selected proteins to biochemical networks

Ingenuity pathway analysis (IPA) was used to map the selected
proteins to biochemical/molecular networks supported by the
literature (Supplementary Material, Fig. S1 [TTSTAND]; Supple-
mentary Material, Fig. S2 [6MWT]). The correlation of mRNA
change with histological severity was used to indicate direc-
tion of change in (high in more severe = red color; low in more
severe = green); this is the opposite orientation as in Tables 1
and 2 but is more consistent with the literature for pathological
tissues.

For TTSTAND, the top-ranked protein network connecting
proteins in the model contained IGF1R, ERBB4, EPHA3, BAD,
SEMA6A and SOD1 and involved cell growth and signaling net-
works (Supplementary Material, Fig. S1). These pathways are
most closely related to muscle regeneration and consistent with
muscle strength phenotypes.

For 6MWT, the top-ranked networks contained extracellu-
lar matrix proteins (NID1, PDGFA, CNTF, SPARC and ANGPT1),
plasma membrane proteins (EPHA3, ERBB4) and cytosolic (MAP-
KAP5, EIF 4EPB2, BCL6, SOD1) (Supplementary Material, Fig. S2).
This is consistent with progressive fibrosis pathways that are
strongly correlated with muscle function.

Discussion
This study sought to identify a set of serum proteins that were
correlated with clinical severity of DMD within a narrow age
window (3 years), at an early stage of the disease (4 to <7 years),
and participants were treatment-naïve (steroid-naïve). The
study was carried out in a clinical trial setting, with robust
standard operating procedures for serum sample collection and

storage. We used the SOMAscan
®

proteomics platform to carry
out a broad assessment of serum proteins. The strengths and

weaknesses of the SOMAscan
®

platform have been reviewed
in detail (26), and this platform has been used for multiple
previous studies of serum from DMD (10–12,27). Briefly, the
strength of the aptamer-based platform is that it tests three
dilutions of sera over a 10 000-fold concentration range and
is highly parallel (1305 serum proteins tested). Weaknesses of

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
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the platform include influence of genetic polymorphisms on
aptamer binding to encoded proteins and concerns regarding
specificity of aptamers to some target proteins (28).

Other recent reports have studied serum proteins diagnostic
of DMD versus controls, and proteins correlated with age and
disease progression (10,11,27,29). Additional reports have looked
at muscle biopsies from DMD patients and defined proteins
and mRNAs associated with disease progression (30,31). We
checked for overlap with protein lists in recent reports (29,31)
and found overlap regarding SOD and NSFL1C in a report pro-
viding muscle biopsy changes in DMD versus normal versus
Becker muscular dystrophy (31). SOD1 was downregulated in
DMD muscle, while NSFL1C was upregulated in the biopsies,
consistent with our findings. Our approach differed substantially
from previous reports in that instead of studying age-related
and drug-related responses of biomarkers, we removed these
variables and focused only on disease severity in young, drug-
free patients. To the authors’ knowledge, this is the first effort
at defining biological correlates of early-age severity using a
multivariate biomarker-based model in DMD, unencumbered by
confounding due to wide age ranges and previous corticosteroid
exposure. Interestingly, creatine kinase (CK) was tested on the

SOMAscan
®

panel, but not selected as associated with clinical
severity in our study (univariate Spearman correlation of CKM,
UniProt = P06732, with TTSTAND velocity = −0.12 and 6MWT dis-
tance = −0.1). Serum CK is known to be highly variable even with
repeated measures within a DMD subject and also known to
decrease markedly with age.

Rather than identify single serum proteins correlated with
clinical severity, the goal of this study was to identify biomarkers
that, in combination, could model early-age severity and so, all
proteins that may be associated with varying levels of severity
should be considered. Accordingly, all 1305 quantified proteins
were used, and no pre-filtering by differential expression of DMD
subjects versus healthy controls was done. Instead, we relied
on weighted correlation network analysis to cluster the proteins
into homogenous groups and only considered the groups that
were associated with specific outcomes. This technique has
previously been demonstrated to be more often more powerful
than using an approach based on standard marginal correlation-
based screening which may ignore correlations between pro-
tein profiles. The network approach does better by using ‘con-
nectivity’ or ‘adjacency’ which lead to more biological signifi-
cance, i.e. signal rather than noise. This also helps with power
concerns. Clusters of proteins that are significantly associated
with DMD-relevant outcomes were identified. Highly connected
proteins from modules significantly correlated with clinical out-
come measures were considered as potentials for modeling DMD
severity. The use of such an approach ensures that the subset of
biomarkers identified as candidate biomarkers are less likely to
have spurious correlations to outcomes.

We report analysis of highly standardized clinical phenotyp-
ing data from 39 DMD steroid-naïve boys in a narrow age range
(4 to <7 years) to generate models of sets of serum proteins
associated with phenotypic differences. While all patients with
DMD share the same molecular and biochemical feature of loss
of the dystrophin protein in muscle (1,32), the onset and pro-
gression of the disease varies from patient to patient. Our goal
was to gain insights into the molecular mechanisms of variable
disease severity in this monogenic disorder by correlating serum

proteomic profiles (1305 proteins assessed using SOMAscan
®

)
with specific clinical outcomes. We report the reliability of the
five clinical outcomes studied in this current report (time to

stand from the floor [TTSTAND], time to run/walk 10 m [TTRUN],
time to climb 4 stairs [TTCLIMB], 6-minute walk test meters
walked [6MWT], and 17-test NSAA) in Table 1. Each of these
clinical outcomes is routinely utilized in clinical trials, and in
this data showed %CV of repeated measures ranging from 7.17%
(6MWT) to 16.17% (TTSTAND velocity).

Two clinical outcomes were studied for biomarker asso-
ciations: TTSTAND velocity (muscle strength) and 6MWT
(endurance). Each outcome was measured on four separate
occasions in each patient over a 6-week time frame, with means
of each measure then used to build models. Models were built
using a multistage data reduction approach (WGCNA), followed
by multivariate linear modeling and validations (Elastic Net
and LASSO) (Fig. 1). Separate models were built for TTSTAND
and 6MWT, and the selected proteins (17 serum proteins
in each model) then tested in patient muscle biopsies of
different histological severity, as well as testing in the additional
outcomes (TTRW and TTCLIMB velocities).

Of the muscle function tests typically performed by patients
with DMD in clinical research, TTSTAND is the most physically
demanding because it requires proximal, lower extremity mus-
cle strength that is lost relatively early in the disease process.
TTSTAND values at a young age have been found to be highly
predictive of functional loss at later ages (3). It is the primary
outcome in the vamorolone clinical trials for measuring drug
efficacy (13). Seventeen proteins were selected in the final LASSO
model, with elastic net initially selecting these model compo-
nents in 67–100 cross-validations (Table 2). We tested the 17 pro-
teins in mRNA profiling data sets we have previously reported
from normal skeletal muscle biopsies (n = 6) and dystrophinopa-
thy patient biopsies of variable histological severity (n = 28) (NCBI
GEO GSE109178) (2). Key findings of these modeling studies were
as follows. (1) About half of proteins were individually correlated
with TTSTAND clinical outcomes, whereas the other half only
performed well within the multivariate linear model. (2) The
proteins in the model generally were involved in cell growth and
tissue repair (Supplementary Material, Fig. S1). A subset showed
strong correlation with both clinical severity and histological
severity (ERBB4, SNAA, SOD1, DLRB1). Two serum biomarkers
showed change in opposite directions in serum and skeletal
muscle (SOD1, DLRB1). SOD1 (superoxide dismutase) is a well-
characterized protein involved in protection against oxidative
stress. In skeletal muscle, SOD1 mRNA showed increased expres-
sion in histologically less affected muscle (R + 0.58; adjusted
P = 0.008) but decreased as a serum protein in milder clinical
disease (R − 0.38; adjusted P = 0.038). DLRB1 (DYNLRB1) behaved
very similarly to SOD1 (Table 2). DLRB1 has been found to be
important in TGF-β signaling (33), and TGF-β is central in the pro-
gressive pathophysiology of DMD (2,30). Both SOD1 and DLRB1
show relatively high level of expression in most tissues and cells.
Thus, the serum origin of these two proteins may not be from
skeletal muscle, and this may explain the discordant findings
between DMD blood and muscle.

Meters walked in the 6MWT has been used as the primary
outcome measure in a number of DMD drug development
programs. As a secondary outcome measure in the vamorolone
clinical trials, 6MWT showed a broad dynamic range and strong
dose-dependent improvements in response to vamorolone
treatment (13). 6MWT is thought to be more reflective of
muscle endurance, whereas TTSTAND is more reflective of
proximal muscle strength. Systematic dimension reduction and
regression modeling selected 17 serum proteins associated with
clinical severity measured by 6MWT distance (Table 3). These

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
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proteins clearly centered on muscle fibrosis pathways (Sup-
plementary Material, Fig. S2), with osteonectin/SPARC, TGFB2,
ubiquitin (RPS27A) and PDGR associated with development of
fibrosis in DMD (34–37).

Four serum proteins were selected in both TTSTAND and
6MWT models: EPHA3, ERBB4, SOD1 and PLPP/PDXP (Tables 1
and 2). It is not surprising that proteins were shared as over-
lapping modules were fed into model building (Fig. 1). SOD1
was discussed above and behaved similarly for both clinical
outcomes. ERBB4 showed disease relationships for all data sets,
with high serum levels associated with milder disease for both
TTSTAND (r = +0.39), 6MWT (r = +0.52) and muscle histology
(r = +0.66). Further, ERBB4 mRNA was strongly downregulated in
DMD muscle (−6.2-fold; adjusted P = 9.5 × 10−6). ERBB4 is a cell-
surface receptor neuregulin, and the NRG1/ERBB4 pathway has
been extensively studied in hypoxia, TGF-β and fibrosis in the
heart, kidney and neuronal cells where it plays a protective role
and can be downregulated in disease states (38,39). In skeletal
muscle, it appears important for mitochondrial function, and
deficiency can lead to defects in oxidative phosphorylation (40).
Mitochondrial dysfunction and insufficient oxidative metabolic
capacity is increasingly recognized as a key part of DMD patho-
physiology (41,42). It is tempting to speculate that serum ERBB4
levels could be a biomarker for mitochondrial dysfunction in
skeletal muscle in DMD. This is further supported by a recent
study showing that decreased levels of circulating of ERBB4
ectodomain is strongly associated with impaired ERBB4 pathway
in cerebrospinal fluid and plasma of ALS patients (43). ERBB4 is
also highly expressed in smooth muscle as is dystrophin, while
smooth muscle lacks dystrophin in DMD. Thus, ERBB4 in DMD
sera may reflect release of this protein from smooth muscle
into the bloodstream and a vascular effect on the dystrophic
phenotype.

Note that some proteins are only selected as important in
the multivariate models (e.g. semaphorin-6A [TTSTAND] and
CTAP-III [6MWT]) which are not individually correlated to clinical
outcomes but was correlated to an eigenprotein. In a multivari-
ate model, such proteins are being selected because of corre-
lation with outcome after adjusting for other proteins already
in the model. While this is a relatively large sample size for
a DMD study, typically such biomarker-related model investi-
gations have been conducted with larger number of subjects
stratified into test and validation groups (44). While we uti-
lized 10-fold (and repeated) cross-validation in model building,
our protein clusters as a first stage of dimension reduction
were formed based on all 39 samples. Hence, overfitting is a
possibility, and validation on an external protein data set is
required. We relied on biological validation and visually test
if these biomarkers are differentially expressed in DMD mus-
cle, associated with patient diagnosis and with the extent of
pathology.

Bioinformatic approaches have previously been used to
define phenotype-associated signatures. For example, his-
tological data and omics on human muscle biopsies from
molecularly defined disorders were integrated to better under-
stand pathophysiological processes in muscle disease (45,46).
Clusters of transcripts with a 56-member TGFβ-centered
network consistent with tissue fibrosis were identified (2). X-
ROS was identified as amplifying Ca2+ influx in adult mdx mice
with transcriptome analysis identifying increased expression
of X-ROS-related genes in human DMD skeletal muscle (47).
Statistical models have being increasingly used with biomarkers
to predict onset (48), model risk prediction (44), identify highly
associated biomarkers from cancer exosomes (49) and identify

co-regulated groups of circulating proteins demonstrating close
relationships to disease states (50).

Here, we constructed robust biomarker-based multivariate
models for early-age severity using TTSTAND and 6MWT data
as proxies for severity/muscle function. This age range is espe-
cially of interest because of the potential for therapeutic inter-
ventions. These models may help towards monitoring clinical
response using biomarkers and allow for personalized predic-
tions of response in trials and in clinical practice.

Considering these biomarkers as prognostic or predictive will
require a specific context of use and clinical validation. A limita-
tion of our study is that we have not demonstrated longitudinal
sensitivity to age or drug–response; it needs further study. Other
limitations are the lack of an independent clinical validation set

(independent cohort) and the need to validate the SOMAscan
®

assay findings by another method of detection.
The results reported here suggest that muscle remodeling,

and growth pathways may be more correlated with TTSTAND (a
measure of proximal strength), whereas fibrosis pathways are
more correlated with 6MWT (a measure of endurance). These
signatures can be detected in blood and should be further stud-
ied as possible biomarkers of disease progression and/or drug
response.

Materials and Methods
Patients, phenotyping and serum proteins

The vamorolone VBP15–002 study enrolled 48 steroid-naïve DMD
boys between 4 and 7 years of age in a multicenter CINRG clinical
trial (12). The design and results of the trial, including inclusion
and exclusion criteria, ethics review and data collection, have
been published. The program carried out broad serum biomarker

studies, with 1305 proteins tested (SOMAscan
®

aptamer arrays)
on each patient. In this current study, data from serum samples
taken at baseline (prior to any drug treatment) were studied for
associations with clinical outcome measures at baseline.

Prior to conducting the VBP15–002 clinical trial, a set of serum

biomarkers, assayed by SOMAscan
®

aptamer arrays, had been
defined as responsive to corticosteroid treatment in four disease
states (DMD, inflammatory bowel disease, ANKA-associated vas-
culitis [AAV], juvenile dermatomyositis) (14,51). Based on this
data, in the initial analyses of the DMD patients enrolled in
VBP15-002, 13 proteins were pre-specified as either exploratory
biomarkers for either safety (n = 6 proteins) or efficacy (n = 7
proteins) from the 1305 assayed (12). A data mask was applied to

the SOMAscan
®

aptamer profiles to study only these 13 proteins
in the previous report. Here, we removed the data mask and
considered all 1305 proteins in the current analysis.

The data set studied in this current analysis was the de-
identified data on all 1305 serum biomarkers in blood samples
taken at baseline and 5 clinical outcome measures (6 min walk
distance [6MWT; in meters], time to rise from supine [TTSTAND;
in velocity rise/s], time to climb 4 stairs [TTCLIMB; in velocity
rise/s], time to run/walk 10 m (TTRW; in velocity m/s] and NSAA
(score). The NSAA is a composite score of 17 clinical tests and
abilities, where each test is scored as 0 (unable to do test), 1
(ability to do test but not normal) to 2 (normal ability to do test),
with the maximum possible score of 17 × 2 or 34 points.

Children that are only 4 to <7 years of age can show variable
reliability in outcomes, due to challenges in following com-
mands, variability in mood and other confounding variables
beyond motor function capability. The reliability (quantified as

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa132#supplementary-data
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percent coefficient of variance; %CV) for each of the five outcome
measures was studied by testing each child in the clinical trial
four times over a period of about 6 weeks. For the purposes of this
current study, the average of the four repeated clinical outcome
measurements (screening, baseline, 2-week treatment, 2 weeks
off treatment) over the 6 weeks was utilized as outcomes for our
models. Note that while two of those outcome measurements
were taken after the starting and stopping of vamorolone ther-
apy, vamorolone does not have any significant effect on clinical
outcomes in 2 weeks (12). Some subjects had less than four
measurements; all available measurements were used, except
for two subjects where rescreening measurements were used
in lieu of the screening measurement after re-vaccination for
varicella. For the timed function tests, we use the reciprocal of
the times to convert to velocity units (for TTRW, 10 m is divided
by the observed times), as is standard practice; longitudinally,
this has the advantage of resulting in a linear pattern of decline
(52).

The biomarker measurements are high-quality proteomic

profiling data (SOMAscan
®

Assay; 1305 biomarkers) at baseline

for 39 subjects. The raw data generated from the SOMAscan
®

assay was hybridization control normalized and median signal
normalized.

We checked for clear outliers in biomarker values and out-
come measurements based on distance from the mean. An
unsupervised hierarchical clustering based on protein values
also did not show any outliers. Principal component analysis
of outcome variables and multidimensional scaling analysis of
proteins were conducted as part of exploratory analysis.

Weighted correlation network approach

For all data analysis, the R statistical computing software (53)
was used. As we had 1305 biomarkers but only 39 subjects,
dimension reduction that preserved relationships between the
proteins was important. Because correlated proteins are likely to
be functionally associated and involved in functional pathways,
we define modules (aka clusters) of correlated proteins. A pro-
tein similarity network was constructed using a weighted corre-
lation network approach (15,18). A hierarchical clustering of pro-
teins based on a transformation of pairwise correlations is used
to identify clusters. This is conducted in a completely unsuper-
vised manner (not connected to any outcomes or traits) at this
stage. The first step of filtering 1305 biomarkers involves unsu-
pervised clustering of the 1305 biomarker expression values.

Because of the way SOMAscan
®

data is generated using three
different dilutions of input sera over a >10 000-fold dynamic
range, we are only using correlations, i.e. we rely on relative
trends here, not the obtained relative frequency units.

A correlation-based network was built in two parts. First, a
co-expression network was built based on correlations between
pairwise biomarkers raised to a power chosen based on a scale-
free topology criterion (using this, the differences between a
high and low correlation are accentuated). We used biweight
midcorrelations, which are a robust alternative to Pearson cor-
relations for dealing with any possible extreme values. Then,
a topological overlap matrix was constructed, which builds an
adjacency measure based on topological similarity, i.e. it con-
siders two proteins as proximal by inspecting shared neighbors
and using connection strength to other proteins. This makes the
network less sensitive to spurious connections or to connections
missing due to random noise (54). Clusters were obtained using
this topological overlap measure as a distance measure in an

unsupervised (proteins only, no traits) hierarchical cluster anal-
ysis. All of the statistical procedures carried out are purely part
of screening and completely unsupervised.

Constructing models. We computed a summary measure of each
module, a ME of a given cluster (module). This is basically the
first principal component for this module and is a weighted
sum of the expression values of the proteins assigned to this
cluster. This captured the highest amount of variation that a
principal component can model for this cluster. Capturing the
variation is important. We obtained correlations of clinical out-
comes with the MEs to define important correlated MEs, and
all proteins correlated with these important MEs (corresponding
P value less than 0.15; chosen for screening for higher power
because of small sample size) are carried forward. This means
that we are carrying forward only proteins that are associated
with DMD-relevant clinical outcomes.

The above list of candidate proteins was further refined by
two measures, the first is how similar individual proteins are
to the MEs and the second is how connected they are to other
proteins within their modules, using biweight midcorrelations.
These were selected based on specific cutoffs (discussed below).

We focused discovery on two clinical outcomes: TTSTAND
(strength) and 6MWT (endurance). We chose a subset of between
10 and 20 proteins that were associated with these two clinical
outcomes. To drop the proteins that are not helpful for explain-
ing observed variation, we used regularization techniques from
the glmnet package (55) for R to construct linear models. LASSO
and elastic net are variable selection techniques that allow for
fitting linear models with more covariates than samples. An
elastic net can better deal with correlations in explanatory vari-
ables while LASSO is better for variable selection. Here, we used
elastic net (mixing parameter α = 0.95 to make it behave more
like a LASSO) to get the best of both worlds (55), choosing the
penalty parameter as the one that results in minimum mean
cross-validated error.

Model development can be dependent on the training/vali-
dation data split, and some proteins may be picked out more
often than others based on the split; therefore, we did 100 10-
fold cross-validations (repeated random-split cross-validation)
(44) to identify the set of biomarkers that elastic net selects
at least 60 times out of the 100 cross-validations. We did this
for a range of cutoffs (correlations between 0.5 and 0.75 for
similarity to ME and standardized connectivity within cluster)
and chose a large cutoff (yielding highly connected candidate
proteins that drive the variation in the cluster) that resulted in
a relatively large set (10 to 20) of proteins. For time to stand
velocity, we used 0.70 for the cutoffs, while for 6-min walk-test,
we used 0.63. This was followed up with one final LASSO model
to confirm whether these proteins would be retained in the
presence of the other identified proteins. This process enabled
us to identify two sets of biomarkers, one for early-age severity
as quantified through time to stand velocity (proximal strength)
and another for 6-min walk test (endurance). There were some
possible outliers in the identified proteins and during model
development; we did not use any transformation on them or
remove the outliers; further, we calculated correlation between
predicted and observed outcomes after removing these possible
outliers, and there was very little difference compared to using
all the observations.

Measures of mRNA in patient biopsies corresponding to selected
serum proteins. To determine if serum proteins correlated with
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clinical severity showed gene expression in patient muscle and
if expression changed as a function of disease state of muscle,
we accessed publicly available mRNA profiles we had previously
generated from 49 human patient mRNA profiles generated
using HG-U133 Plus 2.0 microarrays (2). We limited queries to 34
profiles (controls and dystrophinopathies) (n = 6 normal controls,
n = 17 DMD and n = 11 Becker muscular dystrophy). Note that as
compared to our model-building data set, subjects had a wide
range of ages, severity of their condition and histopathological
findings. Affymetrix IDs were converted to UniProt accessions
using bioDBnet (56). Only probes designed to detect the anti-
sense strand of the gene of interest (annotated with ‘_at’) were
used here. However, some UniProt accessions still had multiple
probe sets (which may detect alternative isoforms of the mRNA).
We used those probes that had maximum variance (to capture
intergroup variation as well) compared to the other probes for
a specific UniProt accession. We did an unsupervised clustering
(agnostic to diagnosis) of the candidate efficacy biomarkers to
visually test if these biomarkers are differentially expressed in
DMD muscle, associated with patient diagnosis, and if they are
associated with the extent of pathology.

Supplementary Material
Supplementary Material is available at HMG online.
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