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Abstract

Background: Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may
drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol,
are examined.

Main text: Key molecular players involved in the regulation of endothelial cell function are described, including
PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS,
nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in
the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive
oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial
cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and
increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion
homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is
considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences
of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased
transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by
considering the following potential generators of endothelial dysfunction and activation in major depressive
disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase;
xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction.
(Continued on next page)
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Conclusions: Finally, on the basis of the above molecular mechanisms, details are given of potential treatment
options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.

Background
Recent large meta-analyses of prospective studies have
shown that individuals diagnosed with major depressive
disorder (MDD) have a significantly increased risk for
the development of cardiovascular diseases (CVDs) even
when the data are adjusted for confounding variables
[1–3]. The evidence suggests that MDD patients experi-
ence a 30% increase in CVDs and an approximately 36%
increase in mortality due to CVDs compared to age- and
sex-matched population norms [2, 3]. The situation in
bipolar disorder (BPD) is similar with meta-analyses of
prospective studies revealing that the incidence of death
due to cardiovascular disease (CVD) is approximately
double when compared to the general population [3–5].
The risk of developing CHD may be even greater [5–7].
The importance of CVD as a source of morbidity and
mortality in BPD is thrown into stark relief by the pres-
ence of data suggesting that this condition may be re-
sponsible for up to 40% of deaths in this group of
patients [4]. Perhaps unsurprisingly, the weight of evi-
dence also suggests a significantly increased risk of de-
veloping CVD in patients afforded a diagnosis of
schizophrenia (SZ) [3, 8, 9].
However, authors investigating lipid profiles in pa-

tients with neuroprogressive disorders have reported
somewhat counterintuitive results with low total and
low-density lipoprotein (LDL) cholesterol being the pre-
dominant observations. For example, low total choles-
terol (TC) and LDL cholesterol (LDLC) have been
reported by several prospective studies and meta-
analyses investigating lipid profiles in patients afforded a
diagnosis of MDD [10–14]. Interestingly, TC and LDL
levels may be normalised in responders to electroconvul-
sive therapy (ECT) [10, 14], reviewed in [15]. Low high-
density lipoprotein (HDL) is another common finding in
these individuals, which is somewhat more in line with a
lipid profile expected in patients at increased risk of de-
veloping CVD [13, 14, 16, 17]. Total and LDL choles-
terol also appear to be lower in treatment-naïve patients
with BPD compared with age- and sex-matched controls
[18]. There is also an accumulating body of evidence to
suggest that TC levels are lower in patients enduring
acute mania compared with levels seen in patients in the
depressive phase of their illness [19–21]. In addition,
two large meta-analyses have shown decreased levels of
TC and LDL in patients with first-episode SZ [22, 23].
This pattern of reduced levels of total and LDL choles-

terol is often seen in other illnesses characterised by

increased cardiovascular risk and is often described as
the lipid paradox [24, 25]. The weight of evidence sug-
gests that the cause of this phenomenon is, at least in
part, elevated levels of systemic inflammation [26–30].
This may well be the case in patients with neuropro-

gressive disorders, as chronic peripheral inflammation,
as evidenced by elevated tumour necrosis factor-alpha
(TNF-α) and other pro-inflammatory cytokines (PICs),
plays a major role in the pathophysiology of SZ [31–33],
BPD [34–37] and MDD [38–41].
Importantly, peripheral inflammation also plays a

major role in the development of atherosclerosis and
CVD [42–44] independently of cholesterol or LDL levels
[45–47]. This point is further emphasised by data sug-
gesting that the reduction of systemic inflammation
leads to a reduction of cardiovascular events while con-
trolling for levels of total and LDL cholesterol [45–47].
Hence, the presence of systemic inflammation in pa-

tients with neuroprogressive disorders may explain in-
creased cardiovascular risk in these individuals even in
the context of low TC and HDL. It is also noteworthy
that systemic oxidative stress [48–50] and mitochondrial
dysfunction [51–53] are also acknowledged players in
the pathogenesis of atherosclerosis. This is of interest as
oxidative stress [54–58] and mitochondrial dysfunction
are involved in the pathophysiology of all the aforemen-
tioned neuroprogressive illnesses [58–61].
Mitochondrial dysfunction [62–64], oxidative stress

[65, 66] and inflammation [67, 68] are also causatively
associated with the development of endothelial dysfunc-
tion, activation and senescence. These are relevant ob-
servations as endothelial dysfunction [69, 70] and
endothelial senescence [71–73] are among the earliest
observed abnormalities in the development of athero-
sclerosis and play an indispensable role in the develop-
ment of fibrous lesions, consisting of a lipid-rich
necrotic core and a cap composed of migratory smooth
muscle cells, in large arteries characteristic of the dis-
ease. Unsurprisingly, endothelial dysfunction plays an
important role in the development of CVD associated
with increased risk in apparently disease-free patients
with normal Framingham scorers [74–77]. Furthermore,
several prospective studies and meta-analyses have dem-
onstrated the presence of endothelial dysfunction in all
phases of BPD [78], reviewed in [79]. Similar findings
have been reported by researchers investigating the pres-
ence of endothelial dysfunction in SZ [80, 81] and MDD
[6, 82].
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Given the above, it seems reasonable to suggest that
the endothelial dysfunction secondary to inflammation,
oxidative stress and mitochondrial dysfunction seen in
neuroprogressive disorders may be a major factor
explaining increased cardiovascular risk in these pa-
tients. We have recently proposed that high levels of in-
flammation, oxidative stress and mitochondrial
dysfunction involved in the pathophysiology of MDD,
BPD and SZ could potentially explain high levels of
obesity, insulin resistance, metabolic syndrome, type 2
diabetes mellitus (T2D) and hypertension seen in pa-
tients with these illnesses [56].
This paper examines potential routes whereby sys-

temic inflammation, oxidative stress and mitochondrial
dysfunction may drive the development of endothelial
dysfunction and atherosclerosis, even in an environment
of low cholesterol. In order to do so, we will examine
the processes involved in the development of endothelial
dysfunction and atherosclerosis in the absence of sys-
temically elevated levels of inflammation, oxidative stress
and mitochondrial dysfunction. We will then examine
how this triad of abnormalities may mimic such pro-
cesses. In particular, we will examine how circulating
levels of PICs and reactive oxygen species (ROS) may in-
duce inflammation, oxidative stress and mitochondrial
dysfunction within endothelial cells (ECs) either directly
or indirectly via inducing high levels of platelets, myelo-
peroxidase and xanthene oxidase activity, which are all
independently associated with increased cardiovascular
risk [45, 83–85]. We begin with the mechanisms which
maintain an anti-inflammatory environment in ECs in
physiological conditions and also drive the induction of
a pro-inflammatory environment as a prelude to the de-
velopment of EC dysfunction.

The development of atherosclerosis
The endothelium plays many vital physiological roles in
addition to the delivery of blood which are broadly con-
nected with the maintenance of homeostasis. Metabolic-
ally active ECs regulate vasomotor tone, leucocyte
trafficking and egress, platelet activity, angiogenesis and
multiple aspects of innate and humoral immunity—
reviewed in [86]. In physiological conditions of normal
blood flow, high shear stress maintains an anti-
inflammatory signalling cascade mediated by elevated
levels of Krüppel-like factor 2 (KLF2) and via a 5′ AMP-
activated protein kinase (AMPK)-dependent mechanism
[87–89]. This constitutive activation of KLF2 also plays a
major role in maintaining endothelial barrier integrity
and EC anti-oxidant systems via the upregulation of nu-
clear factor erythroid 2-related factor 2 (Nrf2) and endo-
thelial nitric oxide synthase (eNOS) activity, coupled
with an increase in occludin synthesis [89–91]. High
shear stress also exerts other important and beneficial

effects on EC function and metabolism via increased
production of nitric oxide, suppression of mitochondrial
ROS production and regulation of glycolysis [92].
However, in atheroprone areas of arterial branches

and bends, denuded levels of glycolax [93], decreased
activity of manganese superoxide dismutase (MnSOD)
[94] and low or oscillatory blood flow induce a
chronic inflammatory state in resident ECs via the
initial upregulation of JNK, p38 MAPK, RelA, IKK,
p65 and ultimately the persistent activation of NF-κB
[95–99], reviewed in [100].
Disturbed or oscillatory flow patterns can also result

in the development of inflammatory status within ECs
by inducing the development of endoplasmic reticulum
(ER) stress and activation of the unfolded protein re-
sponse (UPR) via the activation of the PI3k Akt signal-
ling pathway [101, 102]. Activation of the UPR can
exacerbate the inflammatory environment within ECs by
stimulating further increases in levels of NF-κB activa-
tion [103, 104]. Disturbed blood flow can also induce EC
senescence via the activation of the p53/p21 pathways
leading to a senescence-induced secretory phenotype
characterised by low levels of NO, increased activity of
the transcription factors pCREB and Elk and elevated
levels of p38 MAPK, PICs and ROS [105, 106]. Senes-
cence and UPR activation may increase EC activation
and dysfunction as a result of increased activity of NF-
κB, p38 MAPK, pCREB and Elk, which lead to increased
levels of PICs and ROS production coupled with reduced
levels of NO due to inhibition of eNOS [105, 106]. It is
important to stress that EC senescence and upregulation
of the UPR are considered to be major independent risk
factors for the development of atherosclerosis because of
their role in exacerbating EC activation and dysfunction,
as discussed above [71, 107, 108].
EC activation results in increased permeability to cir-

culating lipoproteins coupled with a significant accumu-
lation of extracellular matrix proteins, which facilitates
the sequestration of the highly atherogenic oxidised apo-
lipoprotein B (apoB), the main constituent of LDL in the
intima region of the arterial wall [70, 109], reviewed in
[69]. The activation of the endothelium also promotes
the recruitment of circulating monocytes and their ul-
timate recruitment into the arterial intima via the upreg-
ulation of EC chemokines, most notably CCL5, CXCL1,
the cytokines MCP-1 and IL-8 and the surface adher-
ence proteins VCAM-1, ICAM-1 and P-selectin EC and
several glycosaminoglycans [110–112]. The internalisa-
tion of oxidised LDL (oxLDL) by macrophage scavenger
receptors and subsequent foam cell formation is a vital
step in the development of atherosclerosis, and this
process has been the subject of intense research and dis-
cussed in depth in several excellent reviews [113–115].
The argument examined here is that abnormally high
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levels of EC dysfunction, senescence and activation en-
able excessive levels of LDL and macrophage recruit-
ment into the intima, thereby fostering the development
of atherosclerosis in a low cholesterol environment. In
the case of neuroprogressive illnesses, the proposed
sources of such endothelial dysfunction and activation
are excessive levels of PICs, ROS, reactive nitrogen spe-
cies (RNS) and mitochondrial dysfunction, which is dis-
cussed and detailed below. However, while the
inflammatory consequences of low or oscillatory blood
flow patterns have been discussed above, no information
has been provided which explains the mechanisms in-
volved and how they might be compromised in an envir-
onment of chronic inflammation and oxidative stress.
Hence, this area will be addressed in the next section of
the paper with a focus on three main players, namely the
mechanosensitive proteins platelet endothelial cell adhe-
sion molecule-1 (PECAM-1) and VE-cadherin and a
family of flow-sensitive microRNAs (miRNAs).

Molecular players involved in regulating EC
function
Unsurprisingly, there has been extensive research aimed
at delineating the mechanisms which enable changes in
blood flow dynamics to produce beneficial or

pathological consequences within ECs, and several
mechanosensory sensors and transducers have been pro-
posed, reviewed in [116]. The weight of evidence thus
far suggests that the process is initiated and regulated by
a “mechanosensory” complex of proteins located at EC
junctions composed of PECAM-1 indirectly connected
to the cytoskeleton via vimentin, VE-cadherin and the
functionally pleiotropic vascular endothelial growth fac-
tor receptors VEGFRs 1 and 2 [117, 118]. Fluid stress
modulates tension between PECAM-1 and VE-cadherin,
which in physiological conditions results in increased
tension across PECAM-1 and reduced tension across
VE-cadherin [117, 119, 120]. A diagrammatic represen-
tation of this mechanosensory complex and its mode of
action is provided in Fig. 1.
Briefly, PECAM-1 transduced forces activate as yet un-

identified src family kinases (SFKs) leading to the trans-
activation of VEGFRs; VE-cadherin, on the other hand,
serves as an adaptor interacting with VEGFRs, inducing
their activation in flow [121]. The flow sensing capacity
of VE-cadherin is dependent on the SFK-mediated phos-
phorylation status of Tyr 658, which is at maximum dur-
ing shear stress [121, 122]. This is important as
phosphorylation-dependent VE-cadherin signalling via
the scaffolding protein Rho GEF TRIO and upregulation

Fig. 1 The antagonistic relationship between NF-κB and KLF in endothelial dysfunction. In physiological conditions, the vascular endothelial is
largely maintained in quiescent and impermeable state by the constitutive activity of KLFs and the mechanosensory proteins VE-cadherin and
PECAM-1. The upregulation of the former results in the upregulation of nrf-2 and eNOS together with concomitant inhibition of mtROS
production while inhibiting the transcriptional activity of NF-κB, while the activity of VE-cadherin and PECAM-1 physically increases the contact
between two adjacent ECs. In an environment of chronic inflammation, however, the activation of NF-κB, induced by inflammatory mediators
such as TNF-α or LPS, directly or indirectly inhibits the activity of KLF, PECAM-1 and VE-cadherin leading to a loss of tight junction integrity and
the development of EC activation. The latter is associated with upregulation of surface chemokine receptors and adhesion factors resulting in the
recruitment of LDL, activated monocytes and T cells into the vascular intima. The resultant oxidation of LDL and internalisation by monocyte-
derived macrophages leads to foam cell formation and the development of a plaque with a highly necrotic core. Oxidised LDL can provoke
increased activation and dysfunction of ECs via engagement with LOX-1 receptors allowing for the development of self-amplifying vascular and
systemic inflammation
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of RAC-1 enable and regulate the actin cytoskeleton
reorganisation which determines the EC responses to
different flows [123, 124]. The level of VE-cadherin
phosphorylation also plays a large role in maintaining
tight junction integrity [125] and forms part of the EC
defences against inflammatory agents and leucocyte
binding [124].
Levels of phosphorylation also determine the activity of

PECAM-1. In this instance, phosphorylation levels of the
so-called tyrosine-based inhibition sequence (ITAM)
largely determine its signalling capabilities, which regulate
actin cytoskeleton rearrangement, tight junction integrity
and intracellular signalling pathways, reviewed in [126].
Briefly, in physiological conditions, phosphorylation of
ITAM leads to the recruitment of SHP-2 and subsequent
phosphorylation and activation of MAPK/ERK pathways
and STAT-3, ultimately leading to the inhibition of NF-κB
activity [127–129]. Conversely, in conditions of low shear
stress, reduced levels of ITAM phosphorylation relieve the
inhibition of NF-κB nuclear translocation, leading to a
cascade of inflammatory signalling thought to be mediated
via the activation of the PI3K/AKT pathway [130–132].
It should also be noted that PECAM-1 is associated with

eNOS at the plasma membrane and this association allows
the regulation of this protein’s activity and that of VE-
cadherin by changes in levels of NO [130, 132, 133]. Unsur-
prisingly, dysfunction of PECAM-1 and/or VE-cadherin is
associated with the development of atherosclerosis and
CVDs [130, 132, 133]. Importantly, such dysfunction may
be induced by a range of atherogenic pro-inflammatory
miRNAs, reviewed in [134]. The role of miRNAs in the
regulation of EC function and their potential role in the
development of EC pathology are discussed below.
Flow-sensitive miRNAs, often described as “mechano-

miRs”, modulate the expression of EC genes and hence
play indispensable roles in the regulation of EC homeo-
stasis and the development of atherosclerosis, and can
regulate endothelial dysfunction and atherosclerosis
[135, 136]. miRNAs such as miR-200, 92a, 143/145, 134
and 155 have been identified as major players in the de-
velopment of EC dysfunction [135, 136], and their tran-
scription and translation are increased as a result of
disturbed flow [137–139]. Readers interested in a de-
tailed consideration of this topic are referred to excellent
treatments of the subject by [139, 140].
Upregulation of miR-92 activity would appear to play an

indispensable role in the development of EC dysfunction
as evidence from animal studies suggests that the develop-
ment of atherosclerosis may be arrested or even reversed
by inhibition of this molecule [141, 142]. Mechanistically,
this miR exerts pathology mainly by inducing decreases in
the activity of KLF-4 and KLF-2 leading to the upregula-
tion of NF-κB [143–146]. The antagonistic relationship
between these KLFs and NF-κB is due to the fact that they

compete for access to p300/CBP which acts as an essential
coactivator for both transcription factors; hence, a de-
crease in KLF-2 and KLF-4 leads to upregulated NF-κB
activity and vice versa [147, 148]. Elevated miR-92a activ-
ity also results in increased phosphorylation of the NF-κB
subunit p65 via a mechanism which remains to be delin-
eated [146]. The net effect of upregulated miR-92a activity
is increased expression of inflammatory and endothelial
adhesion markers such as PICs, E-selectin, CCL2 and
VCAM-1, and decreased activity of eNOS, which in their
entirety increase atherosusceptibility [143, 149]. The
weight of evidence also suggests that other miRNAs in-
volved in inducing EC dysfunction, such as miRs 155, 200,
34 and 146, also inhibit KLF-4 and KLF-2, leading to the
upregulation of NF-κB [137, 150–154]. The actions of
KLFs in regulating the development of EC activation are
diagrammatically represented in Fig. 2.
The paper now moves on to discuss how the various ele-

ments driving the pathophysiology of neuroprogressive ill-
nesses might conspire to produce very high levels of
endothelial dysfunction and increased levels of atheroscler-
osis. The discussion commences with a consideration of the

Fig. 2 The pathogenic effects of upregulated atherogenic
mechanosensory miRNAs. In conditions of high sheer stress,
mechanosensitive miRNAs play a major role in maintaining the
function and integrity of the vascular epithelium. However, in an
environment of chronic inflammation and oxidative stress, the
consequent upregulation of atherogenic miRNAs such as miRNA-92
induces EC dysfunction and activation by inhibiting the activity of
KLFs and, to a lesser extent, SOCS-1. The resultant upregulation of
NF-κB and SOCS-1 increases the internal production of PICs, MCP-1
and IL-6 and stimulates the increased expression of adhesion factors
and chemokines on the EC surface. The resultant release of
cytokines into the environment increases the inflammatory milieu
and may establish a self-amplifying environment of inflammation
and oxidative stress with the ECs and beyond
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effects of platelet activation (PA), increased xanthene oxidase
(XO) activity and elevated levels of myeloperoxidase (MPO),
which are all characteristic abnormalities found in an envir-
onment of chronic inflammation and oxidative stress.

The roles of platelet activation, xanthene oxidase
and myeloperoxidase in the genesis of EC
dysfunction and activation
Role of activated platelets
Platelets may be activated by high levels of circulating
PICs and ROS [155–157], reviewed in [158]. This is of
importance from a pathophysiological perspective as PA is
a major source of systemic inflammation and oxidative
stress [159, 160]. Activated platelets secrete high levels of
PICs and ROS and a plethora of chemokines, TNF super-
family members and adhesion factors which make an in-
dependent and collective contribution to initiating or
exacerbating levels of EC activation and dysfunction
[161–163], reviewed in [164]. For example, the TNF
superfamily member LIGHT enhances platelet EC adhe-
sion, EC dysfunction and EC activation by stimulating ele-
vated activity of NF-κB via a pathway dependent on
MAPK [165–167]. It should also be noted that platelet-
mediated release of LIGHT may also be a source of in-
creased systemic inflammation [165]. The weight of evi-
dence suggests that platelet-secreted CD40L, another TNF
superfamily member, also plays a major role in initiating
or exacerbating EC dysfunction and activation via several
routes [168]. Such routes include increased activity and
transcytosis of metalloproteins, reduction of NO produc-
tion and elevated transcription of NF-κB [168–170].
Platelet-derived CD40L also appears to make an inde-
pendent contribution to the initiation and/or exacerbation
of systemic inflammation and oxidative stress [169].
There are some 50 members of the chemokine family,

and many are secreted by activated platelets; clearly, a
detailed consideration of this area is beyond the scope of
this paper. Hence, readers interested in the area are en-
couraged to consult the work of [171]. However, two
platelet-derived chemokines, CCL5, also known as
RANTES, and CCL4, also known as platelet factor 4
(PF4), have been the subject of intense research,
reviewed in [172, 173], and as their activities are ger-
mane to the central theme of this paper, their modes of
action will be briefly discussed below.
RANTES promotes leucocyte recruitment to the endo-

thelium in much the same manner as other platelet-
derived cytokines. However, this chemokine also pro-
motes leucocyte survival and polarised activation to-
wards a PIC- and ROS-secreting phenotype coupled
with increasing adhesion of such leucocytes to ECs [174,
175]. PF4 possesses several unusual properties, in
addition to leucocyte recruitment, which encourage the
development of endothelial dysfunction and increased

systemic inflammation. Such properties include the pro-
motion of monocyte differentiation into macrophages,
suppression of macrophage apoptosis, anchoring macro-
phages to ECs and binding to LDL [176, 177]. The
weight of evidence suggests that engagement of PF4 and
LDL increases the binding affinity of the latter to LDL
receptors on platelets, macrophages and ECs while inhi-
biting endocytotic “machinery” retaining the lipoprotein
at the surface, allowing enhanced exposure to ROS and
inflammatory molecules resulting in its increased oxida-
tion [177–179]. Moreover, there is evidence to suggest
that the internalisation of PF4-oxLDL complexes by
macrophage scavenger receptors increases the efficiency
of foam cell formation over tenfold [180]. These data are
of interest as they offer another route by which levels of
oxLDL and the efficiency of the lipoprotein in inducing
foam cell formation may be increased and thereby po-
tentially compensate for relatively low levels of LDL in
the circulation. Finally, there are data to suggest that ini-
tial activated platelet-mediated oxidation of LDL further
enhances PA via a MAPK- and NADPH oxidase 2
(NOX2)-dependent signalling pathway, further increas-
ing systemic levels of ROS, RNS and PICs [177].

Role of xanthene oxidase
High levels and activity of XO constitute a characteristic
feature of many illnesses and conditions, such as T2D
and metabolic syndrome, whose pathophysiology is
driven at least in part by chronic systemic oxidative
stress and inflammation [181, 182]. The weight of evi-
dence also suggests that high levels of circulating XO act
as a major driver of endothelial dysfunction and athero-
sclerosis [183], reviewed in [184]. The pathogenic role of
XO is further emphasised by data produced by several
meta-analyses and prospective studies demonstrating a
significant and large improvement in endothelial func-
tion following XO inhibition in patients with CVD [84,
185–187]. A recent meta-analysis of large prospective
randomised controlled trials (RCTs) has also reported
large reductions in cardiovascular morbidity and mortal-
ity achieved by the inhibition of XO by allopurinol [188].
One mechanism which appears to be associated with

the positive effects of XO is a decrease in systemic and
vascular oxidative stress [84, 185–187]. This is unsurpris-
ing given the fact that circulating activated XO is a major,
if not the predominant, source of hydrogen peroxide and
superoxide in patients displaying high levels of systemic
inflammation and oxidative stress [183, 189, 190]. The
source of increased circulating XO in such conditions is
not fully delineated but appears to be associated with in-
creased transcription stimulated by the presence of high
levels of TNF-α and other PICs [191, 192]. In contrast, the
mechanism explaining ROS production by XO is well doc-
umented and occurs as a result of their role in catalysing
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the oxidation of hypoxanthine [193, 194]. The pathways
involved in purine catabolism are illustrated in Fig. 3. The
direct effect of XO in inducing EC dysfunction appears to
be induced by binding to the EC membranes before being
internalised via endocytosis [195–197]. Once internalised,
XO acts as a source of increased superoxide and hydrogen
peroxide levels contributing to increasing levels of oxida-
tive stress and inflammation [198]. Increased levels of XO
activity can also make an indirect contribution to increas-
ing levels of inflammation and oxidative stress by catalys-
ing the production of uric acid (UA).

Increased levels of uric acid
Impaired EC function is also associated with increased
UA levels in the plasma [195, 199]. Moreover, several

authors have reported an inverse association between
UA levels and EC function [200, 201]. There is also evi-
dence to suggest that increased levels of circulating UA
are associated with an increased risk of cardiovascular mor-
bidity and mortality [202–204]. There remains the question
as to whether such an association is a consequence of in-
creased XO activity, but nevertheless, the current weight of
evidence strongly suggests that elevated UA levels are an
independent predictor of CVD [203, 205].
The internalisation of UA into ECs appears to be facil-

itated by a range of different surface membrane urate
transporters such as Glut-9 and URAT-1 [206–208].
Readers interested in the classification and mechanisms
enabling the performance of these receptors are invited to
consult an elegant and comprehensive review on the

Fig. 3 The damaging effects of activated platelets on endothelial cell function and activation. Activated platelets release large quantities of PICs,
ROS and chemokines such as CD40, RANTES and PF4. PICS and CD40 can engage their cognate receptors on the surface of ECs activating
downstream signalling pathways culminating in the activation of NF-κB. PF4 and RANTES may also engage with the surface of ECs, thereby
summoning leucocytes and stimulating their differentiation and activation via a range of mechanisms ultimately also resulting in EC NF-κB
activation. In addition, high levels of circulating hydrogen peroxide, produced by the activity of platelets, neutrophils and allopurinol, may directly
enter ECs via aquaporin receptors. Such influx results in the activation of hydrogen peroxide production by NOX enzymes and mitochondria
ultimately acting as another vehicle driving NF-κB upregulation. The subsequent upregulation of NO, PICs and ROS also compromises
mitochondrial ATP production while the NF-κB-mediated downregulation of SIRT-1, PGC-1α and PPAR-γ inhibit mitochondrial biogenesis and
disrupt many mechanisms regulating mitochondrial dynamics. The result is self-amplifying inflammation oxidative stress and mitochondrial
dysfunction within the EC and potentially an increase in systemic inflammation
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subject by [209]. The consequences of UA internalisation
include increased levels of PICs, chemokines, EC adhesion
molecules and ROS, coupled with elevated activity of NF-
κB and reduced production of NO which all contribute to
the development of EC dysfunction [208, 210–212].
The mechanisms underpinning this pattern of path-

ology and the subsequent development of endothelial
dysfunction appear to be numerous. For example, UA
internalisation may induce ROS-, PIC- and NF-κB-
mediated EC dysfunction by the stimulation of HGMB1/
Rage signalling [211, 213]. Readers interested in a de-
tailed consideration of the mechanism involved are re-
ferred to the work of [214]. There may also be other
mechanisms involved as UA may act as an alarmin, and
in some circumstances, high levels of this purine lead to
activation of the NLRP3 inflammasome [215, 216]. Inter-
nalised UA may also increase activity of NF-κB levels, and
inflammatory and oxidative and nitrosative stress
(I&ONS) within ECs, by inhibiting eNOS via disruption of
the association of the enzyme with its primary activator
calmodulin [217] and inducing the activation of NOX
[218–220]. There is also evidence to suggest that circulat-
ing UA can activate PPRs on ECs, which would be another
route resulting in the activation of NF-κB [221]. Other
mechanisms whereby high levels of circulating UA may
induce elevated levels of I&ONS in ECs involve the activa-
tion of the (pro)rennin receptor found on the surface of
ECs [212, 222] and activation of the vascular renin angio-
tensin system and/or ERK signalling [223–225].

Myeloperoxidase
Elevated levels and activity of MPO in the circulation
are an accepted marker of systemic oxidative stress and
inflammation [226, 227]. This is unsurprising given that
elevated MPO levels in the circulation are the result of
ROS- and PIC-mediated degranulation of neutrophils,
which act as the main reservoir of this enzyme in
humans [226–228]. From a pathological perspective, it is
important to note that active MPO is a major source of
ROS, RNS and reactive radicals responsible for causing
severe cellular damage, most pertinently to the protect-
ive endothelial glycocalyx layer, tight junction integrity
and individual ECs [227, 229].
There is also evidence to suggest that MPO binding to

APOB-100 is one of the molecular players responsible
for the oxidation of LDL [230]. Furthermore, the MPO-
oxLDL complex (MOX-LDL) also has a potent effect on
EC and macrophage activation, with the resultant secret-
ing of PICs and ROS which appears to be greater than
that achieved by oxLDL alone, thereby making a signifi-
cant contribution to increasing levels of intracellular and
extracellular inflammation and oxidative stress [230–
232]. In addition, it would appear that the internalisation
of MOX-LDL by macrophage scavenger receptors

greatly increases the efficiency of foam cell formation
[230, 233]. This is of interest given the relatively low
levels of LDL generally present in patients with neuro-
progressive disorders as it offers a plausible mechanism
which might increase the atherogenicity of the LDL
present.
Several research teams have reported an association

between, on the one hand, chronically elevated MPO ac-
tivity and increased EC dysfunction and, on the other
hand, increased cardiovascular morbidity and mortality
[234, 235]. There is some suggestion that increased
levels and activity of MPO may also be a consequence of
elevated XO activity [236, 237]. This would be consistent
with increased levels of oxidative stress driven by the
superoxide, hydrogen peroxide and UA produced by cir-
culating XO, which can induce neutrophil degranulation
and MPO release into the circulation [227, 238]. The re-
duction in MPO levels achieved by XO inhibition in pro-
spective RCTs also hints at the dependence of elevated
levels of MPO on increased XO activity [236, 237]. How-
ever, it would appear that the adverse effects of MPO
are independent of those exerted by XO and UA.
The internalisation of MPO by ECs is achieved via a dif-

ferent mechanism from that of the internalisation of XO
and UA. In this instance, the transfer of MPO into ECs is
achieved either by the contact of neutrophils and ECs via
beta integrins [235] or via the engagement of free MPO
with EC surface cytokeratin-1 receptors [238]. This intern-
alisation is thought to contribute to the development and/
or exacerbation of EC dysfunction by increasing the catab-
olism of NO and via the chlorination of arginine thereby
inhibiting the activity of eNOS [239–241].
Having reviewed the roles of PA, XO, UA and MPO in

the development of EC dysfunction and activation, the
next section considers the role of circulating ROS, RNS
and PICs in the development of such pathology.

Roles of circulating ROS, RNS and PICs in the
development of EC dysfunction
Paracrine signalling by circulating hydrogen peroxide
In a state of systemic ONS, circulating ROS directly
interact with ECs resulting in increased ROS production
within these cells. Mechanistically, this is achieved via
the diffusion of hydrogen peroxide into ECs, which is fa-
cilitated by the presence of plasma membrane water
channels or aquaporins (AQPs), most notably AQP1 and
3, leading to the activation of several NOXs [242–244].
Evidence suggests that in this scenario, activated NOX2
and NOX4 are the most important players being, in the
main, generators of superoxide radicals and hydrogen
peroxide, respectively [245, 246]. Readers interested in
the role of NOXs in the regulation of cellular redox
homeostasis and their responses to various stimuli are
referred to elegant reviews by [247, 248], and these
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matters will not be considered further here. From a
pathological perspective, however, the activation of NOX
2 and NOX 4 increases ROS production by mitochon-
dria and XO, which act to increase ROS production fur-
ther by NOXs, forming a self-amplifying positive
feedback loop [249, 250]. This level of ROS production
could of course be further amplified by internalised
MPO, XO or UA originating in the cytoplasm via the
mechanisms discussed above. In any event, spirally in-
creasing levels of ROS can induce several dimensions of
pathology including inhibited eNOS activity, loss of cel-
lular redox homeostasis and increasing mitochondrial
damage contributing to the development of endothelial
dysfunction, activation and senescence via several routes
which are discussed below.

Inhibition of eNOS
Increasing levels of hydrogen peroxide may stimulate in-
creased activation of eNOS via a pathway involving the
phosphorylation of Akt and AMPK [251, 252]. This is im-
portant from a pathological perspective as the increased
level of NO produced by the stimulation of this enzyme
within the EC may react with superoxide produced by
NOXs and XO to form peroxynitrite with devastating
consequences as far as the production of NO by eNOS is
concerned for reasons explained below [253–255].
In physiological conditions, eNOS exists as a dimer

with a reductase domain composed of flavins, a cal-
modulin binding site and NADPH, together with an
oxidase domain composed of a haem active site
bound to arginine, oxygen and tetrahydrobiopterin
(BH4) [256, 257]. This structure allows the transfer of
electrons from NADPH to the haem site where the
bound oxygen is reduced before being incorporated
into arginine to form NO and citrulline [256, 257].
Crucially, BH4 is an indispensable cofactor in this re-
action [258], reviewed in [259].
Increased levels of peroxynitrite readily disrupt the di-

meric eNOS complex, via oxidation and glutathionyla-
tion of the zinc-sulphur complex, of cysteine residues in
the reductase domain, which leads to utilisation of oxy-
gen as the terminal electron donor rather than arginine.
In addition, peroxynitrite induces the oxidation of BH4,
leading to its dissociation from the enzyme’s active site
[260, 261]. The net effect is the formation of BH4-de-
pleted eNOS monomers which produce high levels of
superoxide rather than NO, which is described as un-
coupling [254, 262]. The structure of eNOS is depicted
in Fig. 2. For the sake of completeness, it should be
noted that increased ROS can also adversely affect the
activity of eNOS via the MAPK-induced phosphorylation
of Thr495/Tyr657 and by stimulating increased produc-
tion of asymmetric dimethylarginine (ADMA) which
acts as an endogenous inhibitor of the enzyme, reviewed

in [263]. Unsurprisingly, eNOS uncoupling and the gen-
eration of superoxide play a major role in the develop-
ment of atherosclerotic plaques and the onset of CVD
[255, 264]. Mechanistically, this is partly due to in-
creased levels of hydrogen peroxide and superoxide pro-
duction by NOX, XO, eNOS uncoupling and
mitochondria, which may induce damage to DNA, lipids
and proteins within the organelle leading to a cycle of
ever-increasing levels of superoxide production by elec-
tron transport chain (ETC) enzymes coupled with ever-
increasing bioenergetic decline and increasing hydrogen
peroxide levels in the cytosol [249, 250, 255, 263].
We now move to discuss the pathological conse-

quences of excessive mitochondrial ROS (mtROS) pro-
duction in ECs and elsewhere.

Increasing levels of mtROS
Overview
Excessive levels of mtROS production are causatively as-
sociated with the pathogenesis of EC senescence [72,
265, 266], the development of EC dysfunction [267, 268]
and in the development of atherosclerosis [269, 270].
The importance of mitochondrial dysfunction in the
genesis of atherosclerosis is emphasised by data sug-
gesting that the severity of atherosclerosis in humans
correlates with the level of mtROS production in ECs
[271]. Clearly, induced EC cell senescence is one fac-
tor explaining the relationship between excessive
mtROS and increased development of EC dysfunction
and accelerated atherosclerosis [72, 272], reviewed in
[107]. However, other factors are also involved which
we discuss below.

Compromised mitochondrial dynamics
mtROS is a major cause of compromised mitochondrial
dynamics, typified by an imbalance between mitogenesis
and mitophagy, accompanied by increased levels of fis-
sion and decreased levels of fusion, leading to a disrup-
tion of networks and fragmentation of individual
mitochondria [273–276]. This is of major pathophysio-
logical importance as mitochondria perform essential
roles in EC signalling affected by changes in mitochon-
drial dynamics in response to environmental cues [277,
278]. Unsurprisingly, defects in mitochondrial dynamics
are causatively associated with increased EC activation
and dysfunction [279, 280].

Loss of calcium homeostasis
Excessive levels of mtROS production may be a source
of dysregulated calcium homeostasis resulting in a dis-
tinctive pattern of increased intramitochondrial Ca2+ in
mitochondria and a loss of Ca2+ from the ER [266, 281,
282]. This is of importance as this pattern of Ca2+ distri-
bution within EC mitochondria also plays a major role
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in the development of EC senescence [266, 281, 282].
The increase in intramitochondrial calcium ions may
also exert detrimental effects on ATP production and
lead to further increases in mtROS production, creating
a spiral of ever-increasing mitochondrial dysfunction,
reviewed in [58]. Given the importance of disturbed
mitochondrial dynamics in the genesis of EC dysfunc-
tion, it should be noted that elevated mitochondrial cal-
cium ion levels regulate many aspects of mitochondrial
dynamics, such as organelle biogenesis and motility, via
several mechanisms which include elevating the expres-
sion of PGC-1α and increasing mitochondrial fission
[283–285].

Inactivation of SIRT-1-mediated signalling pathways
Excessive levels of mtROS production and elevated cyto-
solic ROS also decrease the activity of sirtuins (SIRTs),
most notably SIRT-1 [286, 287]. This is pertinent as
these deacetylases normally play an important role in
inhibiting the development of senescence in vascular
ECs, reviewed in [288]. The inactivation of SIRTs may
also be another factor in the development of compro-
mised mitochondrial dynamics, mitophagy and mitogen-
esis via reduced activity of PGC-1α and PPAR-γ [289,
290]. Impaired activity of this coactivator and transcrip-
tion factor can also promote disturbances in mitochon-
drial dynamics by preventing the upregulation of UCP-2
[291, 292]. The activity of this protein is important in
maintaining mitochondrial networks and preventing
mitochondrial dysfunction via the activation of p53
[293]. Unsurprisingly, UCP-2 also plays an important
role in maintaining EC function and the prevention of
senescence in an environment of oxidative stress [294,
295]. Readers interested in a more comprehensive ex-
planation of the factors involved in preventing and indu-
cing the development of EC senescence are invited to
consult the following reviews [107, 265].
Clearly, excessive levels of mtROS production exert

several pathological consequences as outlined above. We
now consider the pathological consequences of increased
mtROS and NOX in the cytosol, which may result in
dysfunctional cellular signalling normally regulated by
physiological levels of hydrogen peroxide and NO, lead-
ing to a loss of redox homeostasis.

Loss of cellular redox homeostasis
Physiological and pathological roles of hydrogen
peroxide signalling
In the absence of ONS, cytosolic hydrogen peroxide, ul-
timately derived from the activity of the ETC and NOX
enzymes, plays an indispensable role in the regulation of
cellular signalling pathways and redox homeostasis
[296], reviewed in [244]. Crucially, this radical species
also plays an essential role in the maintenance of EC

quiescence function [297–299]. Hydrogen peroxide sig-
nalling also plays a vital role in fostering cell survival in
an environment of increasing ONS via the activation of
several kinases including PI3/Akt [300].
These roles are mainly affected by the two-electron

oxidation of cysteine thiolate anions to sulfenic acid
which may then form intramolecular or extramolecular
disulphide bonds or undergo further oxidation to sulfe-
nic acid. Readers interested in a detailed consideration
of the biochemistry and thermodynamic parameters in-
volved are invited to consult the work of [244, 301].
However, there are two key points to make from the
perspective of this paper. First, these oxidative modifica-
tions act as redox switches changing the activity, func-
tion and location of proteins and enzymes in a hydrogen
peroxide concentration-dependent manner, which in
turn affect the performance of signalling systems as the
cellular redox environment changes [244]. Second,
within physiological limits, these modifications are re-
versible and are recovered by anti-oxidant enzymes and
systems such as the thioredoxin glutathione systems,
with peroxiredoxins and glutaredoxins playing promin-
ent roles [297, 302].
However, in an environment of chronic ONS, increas-

ing hydrogen peroxide levels have pathogenic conse-
quences, not least by inducing over-oxidation of crucial
functional cysteine groups in the thioredoxin [58, 303]
and glutathione systems, potentially rendering both sys-
tems inactive [304]. It should be noted that such inacti-
vation may be reversible if caused by oxidation of
thiolate anions to sulfenic acid but the weight of evi-
dence suggests that the oxidation of the latter to sulfonic
acid is not [305]. This essentially permanent disruption
of redox-based cellular signalling may be one factor
explaining the relatively disappointing responses
achieved by anti-oxidant therapy in neurodegenerative
and neuroprogressive illnesses. The loss of redox
homeostasis and increasing levels of hydrogen peroxide
may also be accompanied by increased activity of NF-κB.

Pathological consequences of elevated NF-κB
Over time, excessive levels of hydrogen peroxide induce
the activation of NF-κB in ECs and other tissues [246,
306]. This is a major driver of EC senescence and activa-
tion [307, 308], reviewed in [309]. As previously dis-
cussed, one major cause of endothelial activation is
inhibition of KLF-2 and KLF-4 and readers interested in
a detailed consideration of the various streams of path-
ology flowing from this scenario and the complicated
interplay between these transcription factors are invited
to consult the work of [310, 311]. However, it should be
noted that NF-κB can induce EC dysfunction via a num-
ber of other routes including the disruption of EC fatty
acid metabolism and by stimulating the switch in energy
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production from oxidative phosphorylation to energy
production via glycolysis [312–314], reviewed in [315].
There is also a wealth of evidence from in vivo and

in vitro studies reporting a causative association between
elevated levels of NF-κB activity and increased transcrip-
tion of inducible nitric oxide synthase (iNOS) leading to
excessive production of NO in the intracellular and
extracellular environments [316, 317]. This association is
unsurprising given that the promoter region of the iNOS
gene possesses several NF-κB binding sites and given the
promiscuous nature of NF-κB as a transcription factor
[318]. The pathological consequences of increased levels
of NO are well documented, not least by acting as a
source of increased peroxynitrite production, as
highlighted above. Increased levels of this radical also lead
to compromised cellular redox signalling by dysregulating
the S-nitrosylation of proteins, which is an abnormality
playing a causative role in the development of CVDs and
also appears to play a role in the pathogenesis of neurode-
generative and neuroprogressive illnesses [319–321].
In addition, NF-κB plays a major role in the activation

of atherogenic and inflammatory miRNAs which are
known to play an important role in the development of
EC dysfunction and atherosclerosis in an environment of
ONS [322], reviewed in [323]. This is achieved by stimu-
lating the transcription of these miRNAs and via a more
general role in initiating, maintaining and amplifying the
production of PICs, RNS and ROS [290, 324]. Hence,
the activation of NF-κB would appear to be a pivotal
event leading to the disruption of NO-mediated redox
signalling and a significant increase in the EC population
of atherogenic miRNAs which have a range of patho-
logical consequences relevant to the central theme of
this paper. Therefore, we will consider each in turn, be-
ginning with the effects of disrupted S-nitrosylation.

Compromised S-nitrosylation and the development of
hypernitrosylation
In physiological conditions, reversible S-nitrosylation is
the other major player regulating the activity of redox-
sensitive proteins, enzymes and signalling pathways. The
basic mechanisms involved are reviewed in [325, 326].
Increased protein nitrosylation is initially a defensive re-
sponse to increased levels of oxidative stress and plays a
vital role in maintaining conformation and function in
such an environment [319].
However, in the face of pathological increases in RNS

and ROS levels, the mechanisms responsible for main-
taining the reversibility of S-nitrosylation break down
leading to a state described as protein hypernitrosylation
[327]. This is important from a pathological perspective
as levels of protein S-nitrosylation regulate many specific
EC functions including tight junction permeability, in-
flammatory status and survival, reviewed in [328]. More

specifically, excessive and irreversible S-nitrosylation in
ECs is associated with disturbed fatty acid metabolism
and compromised ETC function as evidenced by re-
duced activity of complexes I, III and IV [329, 330]. Evi-
dence suggests that a state of hypernitrosylation is also a
major cause of EC dysfunction and activation [319, 331].
One cause of such EC activation, driven by high levels of
protein S-nitrosylation, appears to be loss of the normal
level of association between VE-cadherin and beta-
catenin and compromised small GTPase activity [332,
333]. Excessive and irreversible S-nitrosylation also dis-
rupts mRNA splicing and translation in ECs, resulting in
a dysfunctional proteome [331].

Increased transcription of atherogenic miRNAs
The transcription and activity of miRNAs are influenced
by changes in the methylation and histone acetylation sta-
tus of DNA within the promoter regions of genes encod-
ing their production. Thus, data confirming that many
atherogenic mechanosensitive miRs are upregulated in a
cellular environment dominated by excessive levels of
ROS, RNS and PICs is unsurprising. Crucially, this sce-
nario applies to miR-92a, which is activated by elevated
levels of hydrogen peroxide [334, 335] and is widely
regarded as an indispensable player in the development of
atherosclerosis mediated either by disturbed flow or by in-
creased oxidative stress. There is also accumulating evi-
dence to suggest that other members of the miR-92
cluster, such as miR-92b, are upregulated in an environ-
ment of upregulated ROS production [336–338]. This is
of interest as several transcripts of the miR-17-92 cluster
appear to reduce the activity of KLFs and may well play an
under-discussed role in the development of endothelial
dysfunction in inflammatory conditions [152]. miR-34 is
another KLF inhibitor upregulated by high levels of hydro-
gen peroxide [154, 339, 340]. This is also true of miR-200
[151, 341, 342], and it also plays a role in inhibiting KLFs
[151]. Additionally, this miR may also encourage the de-
velopment of atherosclerosis via a mechanism involving
the disruption of the SIRT-1-FOXO3a signalling pathway
which normally operates to limit ROS production in ECs
likely by inhibiting the assembly and activation of NOX
[342–344]. It should be emphasised that disrupted SIRT-1
signalling is an important element in the development of
CVD [345]. miR-155 is another KLF inhibitor playing an
important role in EC cell dysfunction induced in an envir-
onment of chronic inflammation, although its activation
in these conditions appears to be secondary to elevated
NF-κB rather than upregulated ROS [152, 346, 347].
miR-146 is yet another miRNA which plays a role in

inhibiting KLFs and is also upregulated as a result of in-
creased NF-κB activity [347, 348]. There is also evidence
to suggest that this miR may be directly upregulated by
ROS-mediated demethylation of DNA within the
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promoter region of the encoding gene [349]. miR-146 also
belongs to a class of miRs described as “mitomiRs” whose
upregulation can disturb the expression of mitochondrial
genes governing the performance of the ETC leading to
upregulated ROS production, compromised energy pro-
duction and damage to functional and/or structural pro-
teins within the organelle [350, 351]. This is of particular
importance from the perspective of this paper as the acti-
vation of this group of miRs is considered to be a major
element in the genesis and maintenance of EC senescence,
reviewed in [351].
Thus far, we have suggested several abnormalities

which could account for high rates of endothelial dys-
function and atherosclerosis in patients with neuropro-
gressive disorders in an environment of relatively
reduced cholesterol. However, we have not considered
evidence which demonstrates whether these abnormal-
ities have actually been reported in patients with these
illnesses. Hence, this omission will be addressed in the
next section before considering treatment approaches.

Potential generators of EC dysfunction and
activation in MDD, BPD and SZ
NF-κB
Elevated activity of NF-κB has been reported in the plasma
and peripheral blood mononuclear cells (PBMCs) of pa-
tients with first-episode SZ before the onset of any treat-
ment [352, 353]. Increased levels of NF-κB expression and
activity have also been repeatedly reported in these com-
partments in patients subject to a diagnosis of MDD and
BPD whether in the symptomatic phases of their illness or
during remission [354, 355].

Platelet activation
Increased inflammation-mediated PA, as measured by
increased platelet volume, has also been repeatedly re-
ported in patients with MDD [356–358]. There is also
extensive evidence of PA in patients with BPD compared
with healthy controls [359–361]. There are also data to
suggest that the level of PA may be greater in patients
with acute mania compared with patients in the depres-
sive or euthymic phases of the illness [362]. The picture
appears to be less clear in patients with SZ, however,
likely due to the effects of anti-psychotic medication
which may suppress at least some signalling pathways
involved in stimulating PA [363]. That being said, there
is accumulating evidence to suggest that PA may be
increased in at least some treatment-naïve first-episode
patients [360, 364, 365].

Atherogenic miRs
Many of the miRs known to play a causative role in
the development of EC dysfunction and atheroscler-
osis are also upregulated in many patients with

neuroprogressive illnesses. For example, upregulation
of miR-34 has been reported in drug-free MDD, BPD
and SZ patients [366]. There is also evidence of up-
regulated miR-146 and miR-200 activity in patients
with MDD and BPD, reviewed in [367]. There would
appear to be no evidence that this is the case in SZ,
however, although a recent review suggested that the
expression of miR-92 was upregulated, or at least dys-
regulated, in some first-episode patients [368].

Myeloperoxidase
Increased plasma MPO activity is another common find-
ing in patients with MDD [369, 370], BPD [227, 371]
and SZ [372]. In addition, there is some evidence to sug-
gest that increased levels of this enzyme may be involved
in the pathophysiology of neuroprogressive illnesses and
may be a state marker in MDD [370] and BPD [371].
However, this apparent association may be because an
elevated level of MPO is an accepted marker of systemic
inflammation and oxidative stress, as noted above.

Xanthine oxidase and uric acid
Many studies have produced copious evidence of in-
creased XO activity and high levels of UA in the circula-
tion in all phases of BPD [373–375], although serum UA
levels appear to be at their highest in mania [58]. This
may be a consequence of increased levels of inflamma-
tion in this phase of the illness compared with euthymia
and depression, reviewed in [58]. Several prospective
studies and meta-analyses have also confirmed an im-
provement in the symptoms of mania following XO in-
hibition via allopurinol [375, 376]. There have also been
reports of increased XO activity in the brain of at least
some SZ patients [377, 378], and there have been several
reports of increased XO activity in patients in the per-
iphery [379–381]. However, levels of XO activity and
UA in the serum appear to be low in first-episode drug-
naïve SZ patients [382, 383]. The situation in MDD is
also mixed in that there is some evidence of increased
XO activity in the brain and periphery of some MDD
patients [384, 385] and there has been a report that high
UA levels in MDD patients are predictive of a transition
to bipolarity [386]. However, once again, the weight of
evidence suggests that serum UA is low in the majority
of MDD patients [387, 388].
The findings in patients presenting with first-episode

SZ cited above are somewhat surprising as evidence sug-
gests that the high levels of inflammation and oxidative
stress reported in such individuals should promote the
conversion of xanthine dehydrogenase to XO and in-
crease levels of the latter [192, 389]. However, this ap-
parent paradox might be explained by the high levels of
allantoin reported in first-episode treatment-naïve SZ
patients, which suggests increased UA oxidation [390].
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Briefly, unlike other mammals, humans do not possess
urate oxidase, and hence, allantoin production can only
result from the action of oxidants. In this case, it should
be noted that UA is very vulnerable to oxidation by per-
oxynitrite with the resultant production of a range of
highly cytotoxic radicals whose role in pathology appears
to be under-discussed [391, 392]. Hence, low UA levels
may be detected in first-episode patients even with rea-
sonable levels of XO activity. This proposal seems ac-
ceptable given evidence of high peroxynitrite activity in
the plasma of such individuals [393]. There is also evi-
dence to suggest that disturbed purine catabolism evi-
dent in first-episode treatment-naïve patient’s results in
reduced levels of xanthene, which would also explain
low UA levels even with relatively high levels of active
XO [382, 383]. It should also be noted that UA is re-
sponsible for some 60% of radical scavenging capacity in
blood, and thus, it is not difficult to conceive of a sce-
nario in which high levels of ROS seen in many patients
with MDD would lead to depleted UA levels in an envir-
onment of activated XO [382, 394]. A literature search
fails to reveal any evidence of published research investi-
gating circulating allantoin levels in MDD patients which
could add support or otherwise for this proposition.

Inflammation, oxidative stress, nitrosative stress and
mitochondrial dysfunction
There is extensive evidence of increased inflammatory
markers such as TNF-α and C-reactive protein (CRP) in
the tissues of patients with SZ [31–33], BPD [34–37] and
MDD [38–41]. The existence of elevated ROS and RNS,
and a compromised anti-oxidant response network in the
blood and tissues of these patients, has also been demon-
strated beyond reasonable doubt [54–58]. The presence of
gross mitochondrial dysfunction in the peripheral tissues,
platelets and PBMCs of patients with MDD, BPD and SZ
has also been repeatedly demonstrated [58–61].

Interdependency of endothelial dysfunction and
inflammation
There is extensive evidence of impaired vascular dys-
function, inflammation and senescence in MDD patients.
This includes high levels of sICAM-1 and VCAM-1
[395, 396] von Willebrand factor (vWF) [397–399] and
elevated levels of TNF-α, IL-6 and C-reactive protein,
reviewed in [400]. In addition, vWF may be considered
as a trait marker for MDD as this molecule is consist-
ently higher in patients with depression irrespective of
anti-depressant (AD) status [397, 399]. Furthermore, a
strong positive correlation between sICAM and
sVCAM-1 levels and the extent of white matter hyperin-
tensities in MDD patients has been reported suggesting
a causative role of endothelial dysfunction in the devel-
opment of the illness [395]. This proposition is

supported by a study reporting a positive and robust
correlation between the extent of vascular inflammation
and arterial stiffness and the severity of depressive symp-
toms and dysfunction [401], reviewed in [402]. Under-
standably, there has been a great deal of research into
the causes of endothelial dysfunction in MDD and most
evidence suggests that it may be due at least in part to
increased NADPH oxidase-mediated superoxide levels in
ECs and a subsequent reduction in NO-mediated vaso-
dilation [403, 404], reviewed in [405].
Numerous research teams have provided evidence of

endothelial activation inflammation and dysfunction in
BPD irrespective of the phase of the illness. Levels of
dysfunction may however vary between patients in the
depressive euthymic and depressive states of this psychi-
atric illness and during the course of the illness [78, 396,
406]. For example, BPD patients in a later, progressive
stage of disease display significantly higher levels of
sICAM-1 levels compared to individuals in an earlier
stage of their illness [407]. High sICAM levels are found
in the manic and depressive phases of BPD suggesting
that sICAM-1 may be a trait marker [396]. However,
there is evidence to suggest that sICAM levels are higher
in mania than the depressive phase of the illness, indi-
cating that sICAM could also be a useful state marker in
the illness [408]. Furthermore, levels of endocan and
urotensin-II, which are markers of EC senescence and
activation, respectively [409, 410], are higher in patients
with acute mania than those in the euthymic state which
in turn were higher than healthy controls [78]. Increased
endothelial cell activation in mania is suggestive of ele-
vated levels of NF-κB which is consistent with data dem-
onstrating higher levels of inflammation and oxidative
stress in mania compared to other phases of the ill-
ness—reviewed in [58]. Hence, the level of endothelial
dysfunction seen in BPD may be related to high levels of
systemic PICs, ROS and RNS.
There is extensive evidence of endothelial dysfunction

and inflammation in many patients with SZ which in-
cludes high levels of sICAM-1, sVCAM1 and vWF in
the periphery and high levels of VCAM-1, VE-cadherin
and a range of tight junction proteins in the brain [411–
415]. However, there is increasing evidence that endo-
thelial activation and dysfunction may be confined to or
at least be greatly enhanced in an inflammatory subtype
of schizophrenia [411, 415]. However, in these latter pa-
tients, levels of vWF display a robust and positive correl-
ation with disease severity [412, 416] and increase
during psychotic episodes [413]. Finally, it is noteworthy
that there is an inverse linear relationship between vWF
levels and basal ganglia volume that strongly suggests
the involvement of inflammation-mediated endothelial
damage in the pathophysiology of the syndrome in at
least some patients [79, 412].
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Effects of anti-depressants and anti-psychotic therapy on
endothelial function
Several authors of large prospective studies have re-
ported significantly reduced cardiovascular events in
MDD patients who responded to antidepressant therapy
(AD) compared to those who did not [417, 418]. De-
creased platelet activity is another replicated finding in
MDD patients in remission following prolonged AD
consumption [419, 420]. Responders to AD display sig-
nificant improvements in markers of endothelial dys-
function and inflammation as measured by increased
flow-dependent endothelial-mediated dilation and de-
creased levels of IL-6 [397, 419, 421, 422]. For example
Lopez-Vilchez and fellow workers’ reported endothelial
inflammation and significant endothelial damage and in-
flammation in their trial participants at diagnosis which
normalised following treatment with escitalopram for 24
weeks which suggests that endothelial dysfunction in
MDD patients is reversible [397]. It is also noteworthy
that the weight of evidence suggests that vascular and
hemodynamic parameters improve in responders to AD
therapy irrespective of cardiovascular risk or the con-
sumption of medicines aimed at treating blood pressure
known to impact vascular function [423]. ADs may not
be equally effective in improving endothelial dysfunction
however, and there is some evidence to suggest that im-
proved endothelial function may be greater in males
than females [424].
There is also some evidence to suggest that the bene-

fits of low-dose lithium in BPD and stroke may arise in
part from improved endothelial function and decreased
levels of EC inflammation and death [425–427]. There is
also some suggestion that this may be true of valproate
and lamotrigine [428]. However, the data regarding val-
proate is mixed and there is evidence that this drug
compromises endothelial function in many patients—
reviewed in [429]. The data regarding the use of atypical
psychotics in SZ looks equally bleak with accumulating
evidence suggesting that atypical anti-psychotics have a
detrimental effect on endothelial function [430, 431],
reviewed in [432]. However, some authors have reported
decreased levels of iCAM-1 in SZ patients following ad-
ministration of atypical anti-psychotics suggesting that
the effects of these drugs on the vascular endothelium
are more complex than is generally appreciated [433],
reviewed in [396].

Socioeconomic behavioural and psychosocial factors in
the development of CVD
Several behavioural psychosocial and socioeconomic fac-
tors are associated with increased risk of CVD [434–436].
Socioeconomic disadvantage (SED) is associated in longi-
tudinal studies with significantly increased levels of T2D,
obesity, MDD, anxiety, BPD, SZ and hypertension in

adolescence and later adulthood [437–441]. These ill-
nesses are all associated with high levels of vascular senes-
cence [107, 442–444] and high levels of systemic
inflammation reviewed in [56]. This is of relevance as
endothelial cell senescence [73] and low-grade systemic
inflammation [445, 446] play important causative roles in
the development and acceleration of CVD. Hence, in-
creased systemic low-grade inflammation and endothelial
senescence in childhood and adolescence go some way to
explaining the association between SED in children and
increased risk of CVD in adulthood.
Several studies have reported a significant causative asso-

ciation between increased low-grade systemic inflammation
and high-fat, high-carbohydrate diets [447, 448], sedentary
behaviour or suboptimal physical activity [449, 450], lack of
sleep [451, 452], smoking [453, 454] and alcohol consump-
tion [455]. This contributes to an understanding of the vari-
ous lifestyle risk factors operative during childhood and
adolescence and the development of CVD.
Bipolar mania or depression and MDD are independ-

ently associated with increased endothelial dysfunction
as assessed by the reactive hyperaemia index and flow-
mediated dilation (FMD) [456, 457]. In addition, behav-
iours such as smoking, diet, physical activity and social
interactions all influence the risk of developing MDD,
BPD and SZ [458, 459]. Furthermore, these behaviours
appear to be more common in socioeconomically disad-
vantaged children and adolescents [436]. These findings
illustrate the complexity and interdependence of the fac-
tors underpinning experiences during childhood and be-
haviours during childhood and adolescence and future
CVD risk and the need for holistic remedial measures.
In addition, there is evidence to suggest that the behav-
iours and psychological distress associated with socio-
economic deprivation may result from limited life
choices and are in many cases not related to personality
or any underlying psychological abnormalities [460]. It is
however interesting to note that the association between
socioeconomic deprivation and CVD may stem from
perceived rather than objective socioeconomic status
[461]. In fact, there is data suggesting that lower subject-
ive social status is associated with impaired EC function
and vasodilation rather than objective measures of in-
come and education [462, 463].
Finally, several authors have reported significant associa-

tions between type D personality (negative affectivity and
social inhibition) [464, 465] and depressive or irritable
temperament [466, 467]. The causes of these associations
are not fully understood, but in the case of type D person-
ality, adverse lifestyle choices predictive of CVD develop-
ment appear to be an important factor while irritable
temperament is predictive of increased vascular stiffness
and hypertension [465, 468, 469]. There is also an argu-
ment that a type D personality and/or an irritable
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temperament make an individual more susceptible to the
effects of environmental stressors and experience the
physiological effects of chronic stress such as increased
glucocorticoid receptor resistance [470]. This is relevant
from the perspective of increased CVD risk as this state is
an acknowledged cause of endothelial dysfunction and ac-
tivation [471, 472]. Prolonged elevation of glucocorticos-
teroids also compromises endothelial function via several
other routes such as increasing production of EC, hydro-
gen peroxide and superoxide levels and reducing the pro-
duction of endothelial nitric oxide synthase [473, 474].

The origin of endothelial dysfunction in mental
illnesses—a working hypothesis
High levels of IL-6, IL-1 and TNF-α are commonly re-
ported in patients with MDD and BPD both in the per-
iphery and in the brain [475–478]. This is also true of
many patients with SZ [60, 411]. In addition, there is a
consensus that oxidative and nitrosative stress is in-
volved in the pathophysiology of all three illnesses as
previously discussed [58, 60]. This is relevant as numer-
ous research teams have described that increased endo-
thelial cell activation is stimulated by increased levels of
ROS and RNS [479, 480]. Increased levels of TNF-α, IL-
6 and IL-1 are also well-documented causes of increased
activation, senescence and dysfunction of the vascular
endothelium [481, 482]. In addition, ADs reduce levels
of TNF-α, IL-6 and other PICs [483, 484]. They also re-
duce levels of ROS while stimulating enzymatic and
non-enzymatic anti-oxidant systems [485, 486]. Hence,
the improvements in vascular function following AD
therapy may be related to reduced levels of inflammation
and oxidative stress. In addition, lithium reduces oxida-
tive stress and inflammation [487], suggesting that the
proposed benefits of the drug on endothelial function
may also be due to reduced levels of PICs, ROS and
RNS. Thus, it seems reasonable to propose that the
endothelial dysfunction seen in MDD, BPD and SZ is a
consequence of the oxidative stress and inflammation at-
tribute of the illnesses.
We tentatively suggest that the initial stages of endo-

thelial dysfunction and activation are instigated by TNF-
α and ROS which are secreted by activated macrophages.
These appear to be involved in the pathophysiology of
mental illnesses at a very early stage in their develop-
ment [488, 489]. High levels of TNF-α and the ROS
superoxide and hydroxyl radicals are vital elements in
the development of ECs as they play a dominant role in
degrading the protective glycolax layer lining the luminal
side of the vascular endothelial layer which otherwise
protects these cells against the effects of inflammatory
mediators [490–492].
Once exposed, ECs are vulnerable to activation and/or

damage resulting from engagement of TNF-α, IL-1β and

IL-6 with their cognate receptors [490, 493]—reviewed
in [494]. The resultant activation of NF-κB produces the
same range of pathological consequences as seen in the
process of atherosclerosis instigated by adverse changes
in arterial blood flow described above. There is much
evidence to support this process as an initial cause of
endothelial dysfunction in mental illnesses and cytokine-
and ROS-mediated atherosclerosis is now recognised as
a separate endophenotype distinct from atherosclerotic
processes exacerbated by dyslipidaemia [495].
However, despite our current working hypothesis, we

would caution against the view of endothelial dysfunc-
tion as an epiphenomenon in MDD, BPD and SZ. In
fact, there is extensive evidence that endothelial activa-
tion and dysfunction may play a major role in the devel-
opment and exacerbation of systemic inflammation and
increased activation of the coagulation cascade in a
process described as immunothrombosis, and hence, an
activated endothelium is likely to play a pathophysio-
logical role in each of these illnesses [490, 496].

Treatment suggestions
Statins
There is extensive evidence of improved eNOS function
following statin administration [497, 498]. However, the
bulk of such evidence originates from in vitro studies in-
volving levels far exceeding doses used in clinical studies
[499]. In addition, there appears to be little or no benefit
on eNOS function when a statin is administered in vivo
[500]. Reports of decreased eNOS activity and NO levels,
either during therapy or following discontinuation, are
also a concern [501, 502]. However, there is extensive
evidence of improved endothelial function in individuals
prescribed statins for hyperlipidaemia and peripheral
vascular disease and in patients at high risk due to
cigarette consumption [500–504]. Unfortunately, this ef-
fect does not appear to extend to individuals with nor-
mal levels of cholesterol [500, 502, 503]. Similarly,
evidence provided by research teams investigating the
in vivo effect of statin administration on platelet func-
tion suggests that any measurable benefit is limited to
ADP-stimulated PA in patients with hyperlipidaemia
[505, 506]. Despite such ambiguity, evidence that in vivo
administration of statins produces a significant reduction
in MPO levels in conditions such as T2D and acute cor-
onary syndrome is encouraging, although there does not
seem to be any published evidence regarding statin-
mediated effects on MPO levels in patients with normal
levels of cholesterol [507, 508]. In addition, there are data,
albeit from animal and in vitro studies, to suggest that sta-
tin therapy might upregulate levels of KLF-4 and/or KLF-
2, which is clearly a desirable therapeutic attribute [509–
511]. However, there are also reports of decreased KLF-2
and KLF-4 following statin administration [509–511].
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There is also some suggestion that statin-induced muscle
damage may be mediated, at least in part, by increasing
the activity of XO [512].
More positively, several research teams have reported

significant decreases in CRP levels following prolonged
statin therapy, which is significant as CRP levels are a
powerful predictor of myocardial infarction [513–515].
There is also some evidence to suggest that statin usage
reduces circulating levels of TNF-α in patients with
hyperlipidaemia and may also reduce activity of NF-κB
in established CVD [516–518]. The situation as far as
the management of oxidative stress is concerned appears
to be more uncertain, however, with a suggestion that
lipid peroxidation may be alleviated in the circulation
following statin therapy, but levels of ROS may well be
increased. For example, a recent meta-analysis con-
cluded that malondialdehyde (MDA) levels in the blood-
stream were reduced in patients with hyperlipidaemia
compared with pre-treatment levels [519]. However, this
does not appear to be the case in people with normal
cholesterol levels [520]. Furthermore, there is accumu-
lating evidence to suggest that statin usage increases
mtROS production leading to elevated levels of circulat-
ing and intracellular hydrogen peroxide [521, 522],
reviewed in [523].
There is also accumulating evidence suggesting that

statin usage inhibits the enzymes of the ETC in muscle
cells and elsewhere leading to significant levels of mito-
chondrial dysfunction and increasing levels of hydrogen
peroxide [521, 524]. There is also increasing concern
about statin toxicity [525] and increased risk of develop-
ing T2D [526, 527]. The data associating statin usage
with increased oxidative stress and mitochondrial dys-
function clearly give pause for thought as oxidative
stress and mitochondrial dysfunction are thought to play
a pivotal role in the pathophysiology of neuroprogressive
illnesses, as discussed above.
The mechanisms explaining statin-induced mitochon-

drial dysfunction are not fully understood but would ap-
pear to involve other factors in addition to inhibition of
the ETC, such as compromised AMPK- and mTOR-
regulated signalling pathways [521, 524]. Perhaps most
importantly, this phenomenon also appears to be due to
impaired synthesis of coenzyme Q10 (CoQ) [528, 529].
The potentially paramount importance of this latter
mechanism is emphasised by evidence that statin-
induced myopathy, resulting from induced mitochon-
drial dysfunction, may be greatly ameliorated or even
extinguished following supplementation with CoQ [530,
531]. Hence, combining the use of statins and CoQ
would appear to be advisable if the former is adminis-
tered to the patients described in this paper. There is
also the potential for therapeutic synergy between the
two preparations as far as relieving endothelial

dysfunction and inhibiting the development or progres-
sion of atherosclerosis is concerned, reviewed in [532].
Hence, we consider this proposal below.

Coenzyme Q10

There is a substantial and accumulating body of evi-
dence suggesting significant and relatively large improve-
ments in endothelial function following CoQ
administration in individuals with established CVD and
those who are CVD-free [533], reviewed in [534]. More-
over, these positive effects appear to be mediated by im-
proved mitochondrial function and the reduction in
mtROS-mediated EC dysfunction and reduced EC senes-
cence [535–538]. There are also reports of improvement
in endothelial function in T2D and CVD following CoQ
supplementation in patients optimally treated with sta-
tins [539, 540]. These data would appear to strengthen
further the argument for combining these two prepara-
tions in an attempt to mitigate CVD risk in patients with
neuroprogressive illnesses [539, 540]. Given the above
information, it probably comes as no surprise to learn
that there are several studies suggesting that CoQ arrests
the development of atherosclerosis (reviewed in [541]),
CVD morbidity and CVD mortality [542], although it
should be noted that the results reported by such studies
are somewhat inconsistent [543].
Several research teams have also reported reduced PA

following CoQ supplementation, which is consistent
with a potential role in mitigating the risk of developing
CVD [544–546]. However, there do not appear to be any
published studies investigating the effect of CoQ on XO
in humans and the evidence regarding any effect on UA is
mixed, with decreases and increases in circulating levels
being reported [547, 548]. In addition, data supporting the
use of CoQ supplementation as a means of reducing
MPO levels in the circulation are currently limited to the
results of a solitary study confirming a significant benefit
when co-administered with n-3 polyunsaturated fatty
acids (PUFAs) [549]. Furthermore, a literature search has
failed to locate any published study examining the effects
of CoQ on KLFs, whether in vivo or in vitro.
The anti-inflammatory effect of CoQ supplementation

is well established as several recent meta-analyses and
prospective studies have reported a significant decrease
in PICs and surrogate markers of elevated ROS and RNS
in the peripheral circulation following CoQ administra-
tion in several illnesses, most notably metabolic syn-
drome and multiple sclerosis [550–553]. There is also
some evidence to suggest that these effects are mediated
by reduced activity of NF-κB [535, 554]. Several authors
have also reported significantly improved mitochondrial
function following the administration of standard formu-
lations of CoQ and a formulation modified specifically
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to target mitochondria and often described as mitoQ
[535, 537, 538].
In addition, there is evidence to suggest that CoQ sup-

plementation may reduce the severity of symptoms ex-
perienced by patients with BPD in the depressive phase
of their illness [555, 556]. There is also a solitary study
reporting a significant reduction in the negative symp-
toms suffered by many patients with SZ following pro-
longed supplementation with this quinone [557].
Furthermore, CoQ supplementation has the potential to
alleviate the shortfall in the production of this molecule
seen in many patients with MDD [558]. The cause of
this observed phenomenon is not fully understood,
but it should be noted that chronic oxidative stress is
a major cause of CoQ depletion [559–561]. It should
also be noted that depleted CoQ levels are an inde-
pendent cause of mitochondrial dysfunction [562,
563]. This coenzyme also has an excellent record of
tolerability and safety established in a plethora of
long-term studies, even at levels up to 2400 mg per
day [564, 565].
CoQ depletion in a cellular environment of chronic

oxidative stress may also be potentially addressed with
the addition of n-3 PUFAs which improves the synthesis
of the former molecule [566]. There is also evidence to
suggest that a combination of CoQ and n-3 PUFAs,
most notably docosahexaenoic acid (DHA), or eicosa-
pentaenoic acid (EPA), may result in synergistic benefits
in the treatment of atherosclerosis [567]. This would
also seem to be true of a combination of n-3 PUFAs and
statins [568], reviewed in [569]. Moreover, recent data
suggest that the benefits may be even greater with “triple
therapy” without any significant decrease in tolerability
or overall increase in side effects [570]. Hence, the
examination of potential benefits of n-3 PUFA supple-
mentation and its ability to target identified contributors
to the development of endothelial dysfunction and ath-
erosclerosis will form the final section of this paper.

n-3 PUFAs
Several reviews and meta-analyses have highlighted sig-
nificant and relatively large improvements in endothelial
function following supplementation with EPA or DHA
as measured by flow-mediated dilation [571–573]. The
fact that this benefit would appear to apply to individ-
uals with a high risk of developing CVD and individuals
whose risk of developing such a disease appears to be
normal or low is encouraging [571–573]. Data suggest-
ing that dietary supplementation with EPA and/or DHA
improves platelet function and decreases PA in low- and
high-risk individuals also suggests that PUFA supple-
mentation may be of value in addressing high CVD risk
in patients with neuroprogressive illnesses [574, 575],
reviewed in [576]. A solitary report of improved KLF-4

activity following DHA or EPA is also noteworthy [577].
However, there would appear to be no effect on MPO
levels following supplementation with DHA, at least in
healthy volunteers, although the doses of PUFAs in-
volved were low and MPO levels were normal in the
participants involved [578].
RCTs and meta-analyses involving human participants

without and with evidence of underlying pathology have
reported significant reductions in levels of PICs in the
circulation following prolonged dietary supplementation
with n-3 PUFAs [579–581]. There is extensive evi-
dence of a significant and large reduction in levels of
circulating oxidative stress markers such as MDA and
isoprostanes following n-3 PUFA supplementation
[582–584]. There is also evidence to suggest that EPA
or DHA improves mitochondrial function and may
protect mitochondrial membranes from radical-
mediated damage [585, 586].
A recent large study reported a negative correlation

between plasma EPA concentration and levels of IL-6
and TNF-α in patients with BPD [587]. Reduced circu-
lating PUFA levels would also appear to be associated
with increased circulating markers of inflammation and
oxidative stress in patients with SZ, at least in the acute
phase of their illness [588]. These results are echoed
by meta-analyses reporting low circulating PUFA
levels in the blood of patients with MDD, which also
appears to be associated with increased production of
PICs and ROS [589]. Finally, there is also accumulat-
ing evidence suggesting that DHA and/or EPA sup-
plementation may make a significant contribution to
alleviating symptoms in patients with neuroprogres-
sive illnesses, reviewed in [590, 591].

Conclusions
In this paper, it has been shown how systemic inflam-
mation, oxidative stress and mitochondrial dysfunc-
tion may drive the development of endothelial
dysfunction and atherosclerosis. In particular, circulat-
ing PICs and ROS may induce inflammation, oxida-
tive stress and mitochondrial dysfunction within ECs,
either directly or indirectly via inducing high levels of
platelets and PA, and increased MPO and XO activ-
ity, which are independently associated with increased
cardiovascular risk. The applications of these and re-
lated molecular mechanisms to MDD, BPD and SZ
have been described in detail, including evidence for
the role of potential generators of EC dysfunction and
activation in such neuroprogressive disorders. It is
recommended that the treatment suggestions based
on these molecular mechanisms which are mentioned
in this paper should be the subject of further, well-
powered RCTs.
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