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Abstract

Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communi-

ties, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven pri-

marily in these settings by Group A Streptococcus (GAS) contribute substantially to the

disease burden in these areas. Despite this, estimates for the force of infection, infectious

period and basic reproductive ratio—all necessary for the construction of dynamic transmis-

sion models—have not been obtained. By utilising three datasets each containing longitudi-

nal infection information on individuals, we estimate each of these epidemiologically

important parameters. With an eye to future study design, we also quantify the optimal sam-

pling intervals for obtaining information about these parameters. We verify the estimation

method through a simulation estimation study, and test each dataset to ensure suitability to

the estimation method. We find that the force of infection differs by population prevalence,

and the infectious period is estimated to be between 12 and 20 days. We also find that opti-

mal sampling interval depends on setting, with an optimal sampling interval between 9 and

11 days in a high prevalence setting, and 21 and 27 days for a lower prevalence setting.

These estimates unlock future model-based investigations on the transmission dynamics of

skin sores.
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Author summary

Impetigo (skin sores) is a condition that remains of public health interest. Late sequelae of

acute rheumatic fever and rheumatic heart disease, combined with a high prevalence in

remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disad-

vantage, mean that impetigo is a substantial contributor to the burden of disease in these

settings. Despite decades of study, key quantities of interest from a transmission dynamics

perspective—including the force of infection, infectious period and reproductive ratio—

have not yet been determined. Such measures are arguably crucial for making informed

decisions on future surveillance activities and intervention strategies. Using a series of

computational and statistical methods, we find that the infectious period in remote Aus-

tralian Aboriginal communities is between 12 and 20 days, and that the force of infection

varies by setting. Further, we show sampling every 10 days in future surveys is optimal for

further refining these estimates.

Introduction

Infections with impetigo (commonly known as skin sores) remain highly prevalent in remote

Australian Aboriginal communities, as well as Fiji and areas of socio-economic disadvantage

[1, 2]. Skin sore infections in these settings are primarily caused by Staphylococcus aureus, and

Group A Streptococcus (GAS). GAS is associated with post-infectious sequelae such as acute

rheumatic fever and rheumatic heart disease, of which Australia has one of the highest

recorded prevalences globally [1]. Despite a relatively high level of understanding about the

specifics of the GAS bacterium [3–7], comparatively little is known about the natural history of

skin sore infection. Furthermore, what is known is often based on historical studies from a

prior generation and from a different, non-endemic, geographical region [8–11]. We aim to

utilise a dynamic transmission model for skin sores to estimate two key quantities: the force of
infection, and the duration of infectiousness. In the absence of information relating to immu-

nity post-infection, we assume skin sore transmission follows the dynamics of the Susceptible-

Infectious-Susceptible (SIS) model. Calculation of these two key quantities will contribute to

the development and parameterisation of models which will in turn inform the design of inter-

vention strategies aimed at reducing prevalence.

We analyse three separate datasets, all from remote Australian communities, documenting

the infection dynamics of skin sores in individuals. The first dataset consists of public health

network presentation data for 404 children under five years of age [12–14], collected as part of

the East Arnhem Healthy Skin Project; the second contains longitudinal data for 844 individu-

als from three rural Australian communities, collected during household visits [15], and the

third is comprised of survey visits for 163 individuals who participated in a mass treatment

program [16], of which the primary endpoint was control of scabies infection. To analyse these

data, we linearise the SIS model about the endemic equilibrium, and derive an expression for

the likelihood of the two model parameters. By utilising Markov chain Monte Carlo (MCMC)

methods, we obtain estimates of each of the force of infection, the duration of infectiousness,

the basic reproductive ratio, R0, and the prevalence of infection. Finally, by utilising optimal

experimental design, the optimal sampling strategy to inform estimation of these parameters

for use in future studies is obtained.
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Materials and methods

Ethics statement

Ethics approval for reuse of existing data was obtained from The Human Research Ethics

Committee of the Northern Territory Department of Health and Community Services and

Menzies School of Health Research (Ethics approval number 2015-2516). Permission was also

obtained from the custodians of each dataset. This project has been conducted in association

with an Indigenous Reference Group, as well as an ongoing stakeholder group which contains

Aboriginal Australian community members.

The Susceptible-Infected-Susceptible model

We consider a stochastic representation of the Susceptible-Infectious-Susceptible (SIS) model

[17]. In this model, individuals are either susceptible (S) or infectious (I). The transition rate

from susceptible to infectious, known as the force of infection, and denoted λ = βI/N, where β is

the transmissibility parameter, is non-linear. This non-linearity is one of the key features of

dynamic infectious disease models. However, this means that to model a population of indi-

viduals, the state of each individual is required (to know the prevalence, i = I/N). For the SIS

model with individuals explicitally stated, the size of the required state space is 2N [18]. When

constructing the Markov chain representation of the SIS model then, the generator matrix, Q,

is 2N × 2N, meaning that for large numbers of individuals, computing the matrix exponential

exp(Qt), is computationally intractable. The result of this, then, is that performing inference

with infectious disease models is challenging [19–24].

When the dynamics of the SIS model are at (or close to) equilibrium, then the force of infec-

tion, λ, is approximately constant. As such, we approximate the SIS model by a two-state pro-

cess with a constant force of infection. By making this approximation, and assuming

individuals are otherwise identical, it follows that a Markov chain consisting of only two states

is required, independent of the underlying population size. This approximation has a straight-

forward likelihood calculation, which allows estimation of parameters in a Bayesian frame-

work and also calculation of the optimal sampling interval for future study designs through the

use of optimal experimental design.

Linearisation of the SIS model. The standard SIS model can be described using two tran-

sitions, infection and recovery, and two parameters, the transmissibility, β, and the rate of

recovery, γ (Table 1). Ignoring demographic processes, the total number of individuals in the

population is fixed.

One of the most important quantities in infectious disease modelling is the basic reproduc-
tive ratio, R0, defined as the mean number of secondary infection events caused by a single

infectious host, in an otherwise susceptible population. The basic reproductive ratio functions

as a threshold parameter, where if R0� 1, an outbreak of disease will not occur, while if R0 >

1, then there is a non-zero probability of a disease outbreak occurring. For the SIS model, the

Table 1. Transitions of the SIS model. The force of infection is given by λ, the transmisibility parameter β and the rate

of recovery by γ.

Transition Rate

(S, I)! (S − 1, I + 1) λ≔ βI/N
(S, I)! (S + 1, I − 1) γ

https://doi.org/10.1371/journal.pcbi.1007838.t001
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basic reproductive ratio is

R0 ¼
b

g
:

The quasi-equilibrium solution of the SIS model is well known [18], and the endemic prev-

alence of disease is

i� ¼ 1 �
1

R0

:

Let t be time of interest of the process. The force of infection, λ(t) is defined as,

lðtÞ≔ biðtÞ:

At equilibrium, the prevalence is approximately constant, and so the force of infection can

be approximated by

lðtÞ ¼ bi� � l:

By performing this linearisation, it is assumed that the dynamics of disease are and remain

at equilibrium. It follows that we may consider a single individual. The generator matrix for

the Markov chain for the life-course of that individual is

Q ¼
� l l

g � g

" #

;

and the matrix exponential of Q is

PðtÞ ¼ eQt ¼
1

gþ l

gþ le� tðgþlÞ l � le� tðgþlÞ

g � ge� tðgþlÞ lþ ge� tðgþlÞ

" #

: ð1Þ

The matrix in Eq (1), combined with an initial state and time t, gives the probability distri-

bution for the Markov chain. It is possible to calculate expressions for the equilibrium preva-

lence, I�, and the basic reproductive ratio, R0, in terms of λ and γ. Solving for the equilibrium

distribution of the linearised SIS model

pQ ¼ 0;

gives the equilibrium prevalence

i� ¼
l

lþ g
: ð2Þ

From the standard SIS model, it is also known that the basic reproductive ratio, R0 = β/γ,

and λ = βI�. It follows that the basic reproductive ratio, R0, is given by

R0 ¼
b

g
¼

l

gi�
;

and substituting Eq (2) gives

R0 ¼
lþ g

g
: ð3Þ
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Given these simple closed form expressions for the key quantities of interest, it is possible to

perform estimation in a Bayesian setting, using interval-censored data.

Data

Three separate datasets collected in Australian Aboriginal communities are considered in this

study: data from public health network presentation (PHN) data on 404 children from birth to

five years of age, collected as part of the East Arnhem Healthy Skin Project; data for 844 indi-

viduals from three communities, collected during household visits (referred to as the HH data-

set); and data from 163 individuals who were observed for over 25 months as part of a mass

treatment program in a single rural community (RC). Each dataset consists of longitudinal

observations of each individual, where their infection status is recorded at each observation.

The times between presentations are heavily right skewed in each dataset, with a median time

to next presentation of 9 days for the PHN data, 61 days for the HH data and 119 days for the

RC data. The number of observations in total is also highly variable with 13,439 observations

in the PHN data, 4,507 in the HH data and 626 in the RC data. Kernel density estimates of the

distribution of time until the next presentation, with the observed data overlayed, are shown in

Fig 1. The suitability of each of these datasets for inferring the force of infection, λ, rate of

recovery, γ, and the basic reproductive ratio, R0 is investigated in Section Verification of presen-
tation distributions. It is worth noting specifically that the PHN data contains information

only on children from birth to five years of age, while the other two datasets contain informa-

tion on individuals of all ages. Prevalence of skin sores is known to be age-dependent [25] and

so by not modelling any age-structure, we are ignoring these differences.

Data structure. Recall that the datasets which are considered consist of longitudinal

observations for each individual, with an individual’s infection status being noted as either sus-

ceptible or infected at each point. The observation is not continuous in nature, with the indi-

vidual’s infection status only being known at each sampling point. Data of this form are

known as interval-censored, or panel data. Interval-censored data are common in epidemiol-

ogy, and inference in a frequentist setting is well established [26]. Let the state of individual i at

observation j be Xi,j, and the time at which the jth observation is made be ti,j. The likelihood

for a single individual, i, can be evaluated as

Liðl; gÞ ¼
Y

j

PXi;j ;Xi;jþ1
ðti;jþ1 � ti;jÞ;

which is the relevant entry of matrix P in Eq (1), evaluated at the time difference between

Fig 1. Distribution of (A) time between presentations and (B) age of patients at presentation for each of the three datasets—PHN, HH and RC—

with the empirical data overlayed.

https://doi.org/10.1371/journal.pcbi.1007838.g001
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observations, ti,j+1 − ti,j. It follows that the likelihood for the entire population is

Lðl; gÞ ¼
Y

i

Liðl; gÞ: ð4Þ

It is important to note that the likelihood in Eq (4) has assumed what is known as ignorable
sampling times. That is, the sampling times are chosen independently of the outcome of the

process. When sampling times are chosen in advance, as they were in the HH and RC datasets,

then the sampling times have been proven to be ignorable [26]. For the PHN data, observa-

tions were made under what is termed a doctor’s care scheme, whereby the next observation

time is chosen at the current observation time, and based on an individual’s disease state at

that time. The sampling times are proven to be ignorable if the following two conditions are

true [27]:

• The probability of individual i being in a given disease state ui,j at time ti,j, given all infection

history until this point,Hi,j−1, is independent of whether an examination is carried out at this

time and past examination times, and

• The conditional distribution of the jth observation time, ti,j = P(Ti,j = ti,j|Hi,j−1), where Ti,j is
the random variable representing the time of the jth infection for individual i, is functionally

independent of the transmission parameters.

The first of these conditions effectively means that the infection status at time ti,j only

depends on the status at time ti,j−1 and on ti,j−1 and ti,j, but not on whether the individual’s

infection status is sampled at time ti,j or on previous sampling times. As treatment is prescribed

by a doctor’s visit, it is possible that this condition is violated. However, the dataset does not

contain information on the form of treatment administered meaning that it cannot be

assumed that the administered treatment is for skin sores, and almost 60% of presentations to

the clinic contain no information on skin sores (and so one could assume that the primary rea-

son for the visit is not skin sores). Further, it is noted that the estimate of infectious period in

any modern setting will be reduced by the presence of treatment. As such, it is assumed that

the first condition is true. The second condition means that the next observation time is condi-

tionally independent of the transmission process. This condition is assumed to be true here

due to the high frequency of presentation in this dataset, even when an individual does not

have skin sores. A large number of doctors visits do not contain information about an individ-

ual’s status with skin sores, including instances where an individual had been marked as

infected one day prior. If we ignore these ‘missing’ entries, the mean time to next positive pre-

sentation following a negative presentation is 27.2 days, while the mean time to next negative

presentation following a negative presentation is 23.2 days. If skin sores caused more frequent

doctors presentations, then we would expect these numbers to be reversed. However, the

empirical mean time to next presentation is sensitive to the frequency of missing data, and so

it is unclear whether this difference can be attributed to a change in patient behaviour based

on infection status, or limitations in data collection. The analysis proceeds on the basis that all

sampling schemes in the given data are ignorable, but it is noted that this may not be the case.

It is important to note that in the settings studied here, treatment is routinely offered and

applied to skin sores. This will augment the estimate of the recovery rate, γ, to be the average

duration of infection in the presence of treatment. However, as treatment is routinely applied

in many settings where skin sores are endemic, this estimate is still relevant when considering

control schemes and survey designs.

Both the force of infection, λ, and the infectious period, γ are estimated in a Bayesian con-

text using Markov chain Monte Carlo estimation (MCMC). The MCMC is performed using
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the No-U-Turn sampler implemented in Stan [28], using 10,000 iterations for 4 chains, for a

total of 40, 000 iterations. The code used to perform this estimation is available at http://

github.com/MikeLydeamore/TMI/. We use truncated normal distributions, T N ð0:5; 0:5Þ,
truncated at 0, as priors for both the force of infection, λ, and the infectious period, γ. To calcu-

late the basic reproductive number, R0, we apply the formula in Eq (3) for each sample from

the posterior distribution.

Results

We start by verifying the methodology through the use of a simulation estimation study,

whereby individuals are simulated from the linearised SIS model, and we attempt to recover

parameters through the estimation routine detailed in the previous section. To explore the

suitability of the methods and available datasets, we choose reasonable values for the force of

infection, λ, and the rate of recovery, γ. In the main text, we use λ = 1/60 and γ = 1/20, while S4

Text presents results for different chosen values. After these verifications, the estimation

method is applied to the observational data.

Verification of methodology

There are multiple sources of stochastic variability in this setting, including the underlying

population which is observed, the realisation from the observation distribution and the

MCMC method itself. The first two of these potential causes for variation are investigated in

detail here.

To investigate the variability in the underlying population, the estimation procedure is per-

formed on 64 randomly generated populations from the linearised SIS model, and each of the

400 members of each simulated population are observed once daily for one year. This high fre-

quency of observation means that the only source of meaningful variability is that which

comes from the linearised SIS model. The top row of Fig 2 shows the marginal posterior esti-

mates for the force of infection, λ, the rate of recovery, γ, and the basic reproductive ratio, R0,

for populations simulated using λ = 1/60 and γ = 1/20. Each violin plot shows an individual

(marginal) posterior distribution for the parameter of interest from a randomly selected popu-

lation, while the boxplot shows the variability of the posterior mean for each parameter over

all 64 realised populations. The within-simulation variability is relatively high, even in this case

with daily observation. However, the method estimates each parameter well and in an unbi-

ased manner.

Next, potential variability in the observation distribution is considered. Again, a population

of 400 individuals is simulated, and each simulated individual observed at times drawn from

the observation distribution obtained from the PHN dataset (shown in Fig 1) over a time hori-

zon of 1 year (Fig 2(B)). It is satisfying that although the sampling interval in the PHN dataset

is notably longer than the daily case shown in Fig 2(A), the estimation method is still able to

recover the simulated parameters. This suggests that oversampling the population (Fig 2(A))

gives little benefit to estimates of the parameters. Comparatively, it makes sense that if the sam-

pling interval is too large, then no information will be gained. An example of this phenomenon

is shown in Fig 3, where 20 samples are made of the population, separated by some sampling

interval. The figure shows that a short sampling interval and a relatively short time horizon

means that information about the parameters is difficult to recover. Similarly, a long sampling

interval increases the variance in the parameter estimates. This suggests that there exists some

optimal sampling interval. This concept will be returned to in Section Prospective sampling
strategies.
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Verification of linearisation procedure

Having established that parameters can be re-estimated from the linearised model, we now

look to verify whether the linearisation of the SIS model is valid. To do this, an individual-

based implementation of the full (non-linearised) SIS model is used. The chosen parameters

are β = 0.067 and γ = 1/20 (giving λ = 1/60 and an endemic prevalence of 25%), and 300 indi-

viduals. The Markov chain is seeded with 125 infected individuals, which is close to the equi-

librium of this system. The system is run for 10 years before observation begins. The

population is simulated from the full SIS model, and the estimation is performed using the lin-
earisedmodel. No stochastic extinction occurred in any of the simulations throughout this

work. Fig 4 shows results from 64 realised populations, under the observation distribution

from the PHN dataset. The recovery rate, γ, is estimated accurately and with relatively small

variance. The force of infection, λ, is somewhat underestimated on average with a relative

error in the mean of 15%, although the variability is large. This underestimate carries over to

the estimate of the basic reproductive ratio, R0. However, the true parameters are within

the 95% confidence interval when averaged over the 64 simulations, similar to that seen in

Fig 2. Marginal posterior distributions for the force of infection, λ, the rate of recovery γ, and the basic reproductive ratio, R0, from 8 randomly

generated populations from the linearised SIS model under two different observation distributions. The mean of each distribution is given by the

white circle. The boxplot at the bottom of each panel represents the means of 64 marginal posteriors. The true value which was used to generate each

population is represented by the blue line (λ = 1/60, γ = 1/20). The two different observation distributions are (A): Observed daily over 1 year and (B)

observed according to the empirical presentation distribution from the PHN data over 1 year. Both observation distributions yield good estimates of the

simulated parameters. The observation distribution from the RC dataset was tested, but has not been visualised as the estimates were far from the true

values (See Fig 3).

https://doi.org/10.1371/journal.pcbi.1007838.g002
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Fig 2 under the same observation distribution. Thus, it is concluded linearisation of the SIS

model is valid when the dynamics are near equilibrium.

Verification of presentation distributions

Before estimating the force of infection, λ, and the rate of recovery, γ, for the three datasets dis-

cussed, the frequency of presentations must be checked to determine if they are sufficient for

use with the method. Fig 5 shows a simulation estimation study using the presentation distri-

butions from the PHN and HH datasets. Both datasets give good estimates. When considering

the RC dataset, recall the presentation distributions shown in Fig 1. The RC dataset has a

much wider sampling interval compared to the PHN and HH datasets. We suspect that this

presentation distribution may not hold sufficient information to recover the parameters of

interest. However, as the prevalence is observed at each survey visit, estimating the basic repro-

ductive ratio, R0, may still be possible. Fig 6 shows the prior distributions, with samples from

Fig 3. Variance in the estimates of the force of infection, λ, and the rate of recovery, γ, for a range of sampling intervals. Estimates were performed

on 64 realisations of the simulated populations, each with parameters λ = 1/60 and γ = 1/20. Each realisation contains 20 observations from the

simulated population, leading to the time horizon for each realisation being 20 × sampling interval.

https://doi.org/10.1371/journal.pcbi.1007838.g003

Fig 4. Marginal posterior distributions for the force of infection, λ, the rate of recovery γ, and the basic reproductive ratio, R0, from 8 randomly

generated populations from the full (non-linearised) SIS model under the empirical observation distribution from the PHN data, over 1 year. The

mean of each distribution is given by the white circle. The boxplot at the bottom of each panel represents the means of 64 marginal posteriors. The true

value which was used to generate each population is represented by the blue line (λ = 1/60, γ = 1/20). The simulated parameters are recovered

successfully.

https://doi.org/10.1371/journal.pcbi.1007838.g004
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the posterior distribution overlayed, under the observation distribution from the PHN dataset

(panel A) and the RC dataset (panel B). Under the observation distribution from the PHN

data, the posterior distribution samples are tightly clustered, with variance much smaller than

in the prior distributions. Indeed, estimates are so localised relative to the prior that the sam-

ples appear to be overlayed in the figure. Comparatively, when the observation distribution is

that seen in the RC dataset, the posterior samples are strongly correlated with a wide variance,

indicating that this dataset does not have sufficient sampling frequency to separately estimate

both the force of infection, λ, and the rate of recovery, γ. However, the posterior distribution

samples align with the simulated prevalence (and thus the basic reproductive ratio, R0). The

RC dataset can still be used to estimate these quantities.

Having verified the suitability of each of the datasets to this estimation method, the next

step is to estimate each of the force of infection, λ, the rate of recovery, γ, the prevalence of dis-

ease and the basic reproductive ratio, R0.

Estimation from data

For the PHN and HH datasets, relatively similar estimates for the infectious period, 1/γ (12

days for the PHN dataset, and 20 days for the HH dataset) are obtained. However, notably dif-

ferent estimates for the force of infection, λ, were obtained. In the PHN dataset, the mean

Fig 5. Marginal posteriors for the force of infection, λ, the rate of recovery γ, and the basic reproductive ratio, R0, from 8 randomly generated

populations from the linearised SIS model under two different observation distributions. The mean of each distribution is given by the white circle.

The boxplot at the bottom of each panel represents the means of 64 marginal posteriors. The true value which was used to generate each population is

represented by the blue line (λ = 1/60, γ = 1/20). The two different observation distributions are taken from the (A): PHN dataset (1 year) and (B) HH

dataset (1 year).

https://doi.org/10.1371/journal.pcbi.1007838.g005

PLOS COMPUTATIONAL BIOLOGY Estimation of the force of infection and infectious period for skin sores

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007838 October 5, 2020 10 / 18

https://doi.org/10.1371/journal.pcbi.1007838.g005
https://doi.org/10.1371/journal.pcbi.1007838


force of infection is estimated at 1/20.21, while in the HH dataset, the estimate is 1/202.07—an

order of magnitude different. This difference follows through to estimates of the basic repro-

ductive ratio, R0 (1.60 vs 1.10), and the prevalence, estimated to be 37.5% in the PHN dataset

and only 9% in the HH dataset. For the RC dataset, R0 is estimated to be 1.42, and the preva-

lence to be 26.9%. Point estimates of prevalence in all three study locations have been reported

previously (Table 2) [15, 16, 29], at 35.6% in the region in which the PHN dataset was col-

lected, 13.1% in the region where the HH dataset was collected and 35% in the region where

the RC dataset was collected. These prevalence estimates align well with the estimates obtained

using our method.

Prospective sampling strategies

Thus far, the focus has been on previously collected datasets from which to estimate parame-

ters. If the sole aim of a study was to collect data to best estimate these parameters, then the nat-

ural question to ask is when should individuals be sampled? Aided by the simple structure of

the linearised SIS model, this question may be answered through optimal experimental design

[30]. We take the approach of robust optimal experimental design, under the ED-optimality

criterion [31, 32]. Let δ = (δ1, . . ., δn−1) define an n-sampling design with spacing δi, i = 1, . . .,

Fig 6. Prior distribution (concentric rings) with 20,000 samples from the posterior distribution (black points)

overlayed from a randomly generated population under the observation distribution from (A) the PHN dataset,

(B) the HH dataset, and (C) the RC dataset. The red line is the set of parameter values which give the true prevalence

in the simulated population. In panels (A) and (B), the samples are tightly clustered with variance far smaller than the

prior distribution. In panel (C), the samples are highly correlated, and with high variance, indicating the two

parameters of interest cannot be uniquely determined, but their ratio (and so R0) can.

https://doi.org/10.1371/journal.pcbi.1007838.g006
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n − 1 between subsequent observations. Then, the optimal sampling design, δ�, is given by

δ� ¼ argmax
d

Z

det ðIðδ; θÞÞpðθÞdθ; ð5Þ

where θ = {λ, γ}, I(δ, θ) is the Fisher Information matrix, det is the determinant operator, and

p(θ) is the prior distribution. Note that the optimal sampling interval, δ�, is dependent on the

prior distribution, p(θ). Two designs are considered for each dataset. The first is termed the

variable sampling interval, where the ith sampling interval, δi, is unrestricted, and n = 11

design spacings are chosen. Although this design strategy is optimal over a 12 visit design,

adhering to the varying intervals may be difficult from an implementation perspective. A more

practical strategy, and the second considered here, is termed the fixed sampling interval, where

δi = δ, 8i. This is equivalent to considering n = 1 design spacing, as the population dynamics

are assumed to be at equilibrium throughout the study.

The integral in Eq (5) is approximated using a Monte Carlo estimate with 5,000 samples.

Each individual is observed 12 times. We use the induced natural selection heuristic for find-

ing optimal strategies [33]. For detail on the algorithm inputs and evidence of convergence,

see S3 Text.

Recommended sampling strategies. We calculate the optimal strategy using the posterior

distributions obtained from the PHN dataset, HH dataset and the union of the these two poste-

rior distributions as the prior distribution in Eq (5). The results for both the variable interval

strategy and the fixed interval strategy are shown in Table 3.

Under the constraint of equal observation intervals, and restricted to whole days any sam-

pling interval between 9 days and 11 days gives a Fisher Information within 97% of the maxi-

mum for the PHN dataset. Comparatively, for the HH dataset, any sampling interval between

21 days and 28 days gives a Fisher Information within 97% of the maximum. Combining the

two posterior distributions, any sampling interval between 21 and 28 days is within 97% of the

maximum. However, it should be noted that a sampling interval of 23.4 days achieves only

30% of the maximum Fisher information possible in the PHN dataset, but 99% of the

Table 2. Parameter estimates for the force of infection, λ, and the infectious period, 1/γ from the three different

datasets. Note this method estimates the rate of recovery, γ, but the infectious period is reported here for clarity.

Dataset Parameter [units] Mean 95% CI

PHN Force of infection (λ) [1/days] 0.049 (0.042, 0.059)

Infectious period (γ−1) [days] 12.19 (10.23, 14.55)

R0 1.60 (1.56, 1.65)

Prevalence 37.5% (31.0, 39.4)

Literature [29] Prevalence 35.6% (32.9, 38.3)

HH Force of infection (λ) [1/days] 0.0049 (0.0040, 0.0062)

Infectious period (γ−1) [days] 19.97 (16.19, 24.56)

R0 1.10 (1.09, 1.11)

Prevalence 9.1% (8.3, 10.0)

Literature [15] Prevalence 13.1% Not provided

RC R0 1.42 (1.34, 1.51)

Force of infection (λ) — Not identifiable

Infectious period (γ−1) — Not identifiable

Prevalence 29.6% (25.4, 33.8)

Literature [16] Prevalence 35% Not provided

https://doi.org/10.1371/journal.pcbi.1007838.t002
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maximum in the HH dataset. This highlights the importance of specifying the optimal sam-

pling strategy according to the specific scenario.

Interestingly, the optimal design spacing for the fixed strategy is not the minimum of the

optimal design spacing for the variable strategy. We propose the following hypothesis for this

phenomenon: when the observation interval is allowed to vary, we can effectively ‘spend’ a sin-

gle observation close to the previous in order to potentially gain a lot of information. However,

in the fixed interval strategy, this option is not available, and so to avoid ‘wasting’ observations,

a more conservative strategy becomes the optimal.

To understand the difference in the optimal sampling times, recall that the expression in Eq

(5) maximises the Fisher Information, which through the Cramer–Rao lower bound, can be

thought of as minimising the variance of the parameter estimates [34]. This estimate inherently

depends on the underlying parameters of the system: when events (i.e., infection and recovery)

are happening slowly (i.e., low prevalence) then sampling should happen less often, while

when events are happening frequently (i.e., high prevalence), then sampling should happen

more often. In the case where little prior information about the system is available, then it may

be more appropriate to adopt a ‘conservative’ sampling strategy, which here is the faster of the

two presented strategies. Doing this yields a Fisher Information of 53% of the maximum for

the HH dataset. The conservative strategy is presented in S4 Text. Overall, the conservative

strategy generally gives good estimation accuracy (up to 10% error in a simulation-estimation

study), and so is a viable ‘catch-all’ strategy in the absence of prior information such as the

prevalence.

Discussion

We have provided the first model-based estimates for the duration of a skin sore infection

(between 12 and 20 days), the force of infection and basic reproductive ratio (1.1 to 1.6) in

three different settings. Furthermore, the optimal sampling interval for future strategies has

been determined, assuming that a study’s primary goal is to estimate the force of infection and

duration of infectiousness. By performing the estimation in a modelling framework, the inter-

val-censored nature of the data has been incorporated. Although the frequentist version of this

estimation technique has been utilised in other disease settings [35, 36], to our knowledge this

is the first time these quantities have been computed for skin sores.

Previous work on the duration of skin sore infection has estimated that under treatment,

skin sore infections clear in approximately 50% of individuals in 2 days, and 85% of individuals

in 7 days [37]. In this study, we do not have information on whether an individual was pre-

scribed treatment, but it is expected that a proportion of the population were prescribed and

used antibiotics. For the remainder of the population who were not treated with antibiotics, it

is expected that their clearance time would be longer. As our data are a combination of treated

Table 3. Optimal sampling strategies (in days) using the posterior distributions obtained from the PHN and HH

datasets, as well as the union of these two posterior distributions. Two sampling strategies are considered: variable,

where the time between each observation is allowed to vary, and fixed.

Data Source Interval Optimal Design (days)

PHN Variable (12.9, 12.3, 10.4, 12.0, 10.3, 12.5, 12.5, 9.1, 11.3, 10.6, 11.6, 13.2)

Fixed 9.9

HH Variable (18.1, 23.0, 30.5, 31.1, 31.6, 27.8, 30.0, 31.7, 30.0, 30.6, 32.6, 29.4)

Fixed 24.2

Combined Variable (16.2, 23.5, 24.3, 32.0, 28.2, 26.6, 31.6, 29.2, 28.2, 28.1, 30.8, 33.9)

Fixed 23.4

https://doi.org/10.1371/journal.pcbi.1007838.t003
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and untreated individuals, we propose that an exponential distribution for the duration of

infectiousness is reasonable. Further, without more frequent observations, we are unlikely to

be able to distinguish between other proposed distributions with confidence (S5 Text). Should

accurately characterising the distribution of the duration of infectiousness be of interest, a sim-

ilar approach to that in Section Prospective sampling strategies can be used to design a study to

best discriminate between different models [38].

These results have been calculated using a linearised SIS model, in which the transmission

rate has been assumed to be constant, and disease dynamics are at equilibrium. This assump-

tion has allowed some simple analytic results which are often not able to be determined for tra-

ditional infectious disease dynamic models. However, it is important to note that the

assumption of equilibrium dynamics is likely to be violated in real-world settings, particularly

in the event of mass drug administration. Mass drug administration has been implemented in

these communities in the past [29, 39], and was ongoing during the period of data collection in

the RC dataset, although skin sores was not the primary outcome of the program in the RC set-

ting [16]. It is also important to note that the SIS model structure, by construction, does not

incorporate any period of immunity, or other potential disease states. Carriage (i.e. infected

but not showing symptoms), in particular has been demonstrated for skin sore infections in

the past [11, 15] and inclusion of carriage in models has been shown to substantially change

predicted intervention outcomes [40]. Given the hyperendemic prevalence of skin sores in this

setting, the observed high infectiousness of skin to skin transmission, and in the absence of

longitudinal data related to carriage available in this study, we have ignored the carrier state in

this model. Extension in this area represents an important path for future work.

It must also be noted that the condition of skin sores can be caused by a number of patho-

gens. The microbiology of skin sores in the Northern Territory, Australia, has been studied

previously [41]. Streptococcus pyogenes remained the dominant pathogen, but co-infection

with Staphylococcus aureus was present. Without microbiologic information present in our

data sets, we are unable to determine which pathogen is causing infection. Accordingly, we see

these results as a quantification of skin sores as a general condition.

In the populations in which these data were collected, treatment is routinely administered

for skin sores. Thus, these estimates of the infectious period are inclusive of the effect of treat-

ment, and so are likely to be lower than the natural infectious period (that is, in the absence of

treatment being available). Although this interpretation of the infectious period is different to

the natural infectious period, it is arguably more useful in an epidemiological context, as treat-

ment will be given in any modern setting for a skin sores infection.

There are a number of key differences between the three datasets considered. The PHN

dataset only has observations of children under five years of age. Extrapolation from this data-

set to the entire population should be performed with caution as the prevalence of skin sores

appears to be age-specific [25], and the average age of participants in the PHN data was youn-

ger than in the other two datasets. Despite this demographic difference, the relative similarity

of the estimates of the infectious period from the HH data (in which the general population

was studied) does provide some reassurance of the estimated numbers. Further, sampling

times in the PHN dataset were not fixed in advance, but were rather driven by patients or

health professionals. It has been assumed these sampling times are ignorable, but further inves-

tigation into this assumption may be warranted.

As well as estimation of key parameters for models of skin sores transmission, information

about future experimental designs has also been provided. Although the optimal sampling

interval is a function of both the force of infection and the infectious period, being able to cal-

culate this interval provides helpful information to improve the efficiency of future study

designs, or evaluation of disease control programs.
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These parameter estimates unlock future model-based investigations for skin sores. By pro-

viding estimates for both the force of infection and the duration of infectiousness, more com-

plex models which include covariates such as scabies, non-homogenous contact patterns, and

population mobility can be considered, and the impact of treatment strategies in these settings

can be evaluated. It is our hope that these models will lead to the development of innovative

disease control measures, the application of which will reduce the burden of skin disease and

health inequalities.
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