
RESEARCH ARTICLE

High-quality nuclear genome for Sarcoptes

scabiei—A critical resource for a neglected

parasite

Pasi K. KorhonenID
1‡, Robin B. Gasser1‡, Guangxu Ma1, Tao Wang1, Andreas

J. Stroehlein1, Neil D. Young1, Ching-Seng AngID
2, Deepani D. Fernando3, Hieng C. LuID

3,

Sara Taylor3, Simone L. ReynoldsID
3, Ehtesham MofizID

4, Shivashankar H. Najaraj5,

Harsha GowdaID
3, Anil Madugundu6,7,8, Santosh Renuse6, Deborah HoltID

9,10,

Akhilesh Pandey7, Anthony T. PapenfussID
4, Katja Fischer3*

1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia,

2 Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Melbourne, Victoria,

Australia, 3 Cell and Molecular Biology Department, Infectious Diseases Program, QIMR Berghofer Medical

Research Institute, Brisbane, Queensland, Australia, 4 Bioinformatics Division, Walter and Eliza Hall Institute

of Medical Research, Melbourne, Victoria, Australia, 5 Faculty of Health, School—Biomedical Sciences,

Queensland University of Technology, Brisbane, Queensland, Australia, 6 Institute of Bioinformatics,

Bangalore, India, 7 Center for Individualized Medicine and Department of Laboratory Medicine and

Pathology, Mayo Clinic, Rochester, MN, United States of America, 8 Manipal Academy of Higher Education

(MAHE), Manipal, Karnataka, India, 9 Menzies School of Health Research, Charles Darwin University,

Darwin, Australia, 10 College of Health and Human Sciences, Charles Darwin University, Darwin, Australia

‡ joint first.

* Katja.Fischer@qimrberghofer.edu.au

Abstract

The parasitic mite Sarcoptes scabiei is an economically highly significant parasite of the

skin of humans and animals worldwide. In humans, this mite causes a neglected tropical dis-

ease (NTD), called scabies. This disease results in major morbidity, disability, stigma and

poverty globally and is often associated with secondary bacterial infections. Currently, anti-

scabies treatments are not sufficiently effective, resistance to them is emerging and no vac-

cine is available. Here, we report the first high-quality genome and transcriptomic data for S.

scabiei. The genome is 56.6 Mb in size, has a a repeat content of 10.6% and codes for

9,174 proteins. We explored key molecules involved in development, reproduction, host-

parasite interactions, immunity and disease. The enhanced ‘omic data sets for S. scabiei

represent comprehensive and critical resources for genetic, functional genomic, metabolo-

mic, phylogenetic, ecological and/or epidemiological investigations, and will underpin the

design and development of new treatments, vaccines and/or diagnostic tests.

Author summary

Scabies is a highly significant parasitic disease caused by the mite S. scabiei. This NTD has

a major adverse impact in disadvantaged communities around the world, particularly

when associated with secondary bacterial infections and clinical complications. Here we

report the first high-quality genome and transcriptomic data for S. scabiei and explore

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008720 October 1, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Korhonen PK, Gasser RB, Ma G, Wang T,

Stroehlein AJ, Young ND, et al. (2020) High-quality

nuclear genome for Sarcoptes scabiei—A critical

resource for a neglected parasite. PLoS Negl Trop

Dis 14(10): e0008720. https://doi.org/10.1371/

journal.pntd.0008720

Editor: Alberto Novaes Ramos, Jr., Federal
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molecular aspects of S. scabiei/scabies. This genome (56.6 Mb, encoding ~ 9,200 proteins)

provides a solid foundation for fundamental investigations of the molecular biology of the

mite, host-parasite interactions and disease processes as well as for translational research

to develop new treatments, vaccines and diagnostic tests.

Introduction

Sarcoptes scabiei is a parasitic mite of the skin that causes scabies, one of the commonest der-

matological diseases worldwide that results in major morbidity, disability, stigma and poverty

[1, 2]. Of the 15 most burdensome dermatologic conditions, assessed in disability-adjusted life

years (DALYs), scabies ranks higher than keratinocyte carcinoma and melanoma [3]. The

prevalence of scabies can be very high (35%) in disadvantaged communities, including those

in remote tropical regions in northern Australia [2, 4]. Scabies is often associated with second-

ary, opportunistic bacterial infections, a major concern in children in hyperendemic situations

[2, 5]. Here, scabies poses a high risk of potentially life-threatening Staphylococcus aureus bac-

teraemia and severe post-streptococcal sequelae [6, 7], including rheumatic fever, heart disease

and/or glomerulonephritis, representing a substantial mortality burden [8]. In spite of this

knowledge, current epidemiological data underrepresent the actual scabies burden [9] due to

an absence of accurate diagnostic tools and serious gaps in disease surveillance. In 2017,

WHO’s recommendation to include scabies in the highest NTD category came with an urgent

call for research and drug development [10].

There is no vaccine, and only a small number of treatments are used to combat this highly

contagious disease. Topical permethrin and systemic/topical ivermectin are ‘broad-spectrum’

compounds of choice [11]. However, permethrin is not recommended for use in infants, and

ivermectin is contra-indicated in patients with severely impaired liver or kidney function and

the safety of its use in pregnant women and in children of< 15 kg body weight is only begin-

ning to be investigated [12, 13]. Some other agents, such as sulphur, crotamiton, malathion

and benzyl benzoate are presently available for topical application in children, but their clinical

efficacies and tolerability have not been adequately assessed. Moreover, currently available

drugs kill motile stages (larvae, nymphs and adults) of S. scabiei by interfering with the mite’s

muscle function and/or nervous system [14–17]. These drugs often fail because the eggs of the

mite are not susceptible to treatment, and drugs have short half-lives in the skin. Thus, eggs

can hatch and perpetuate infection. Resistances to drugs are emerging in S. scabiei [18], which

emphasises the urgency of finding novel scabicides to improve the treatment and management

of scabies at the individual-patient, household and community levels. The discovery of new

scabicides has been challenging, predominantly because of difficulties in producing adequate

amounts of the mite for experimentation and drug screening/testing, and also due to a limited

understanding of the mite’s biology and how it interacts with its host at the molecular level.

Given these abovementioned challenges, there is an urgent need to search for new drug tar-

gets encoded as proteins in the S. scabiei genome. Although three draft genomes have been

assembled and/or annotated for S. scabiei from different host animals including human, dog

and pig [19, 20], all of them are fragmented, limiting their utility for critical fundamental and

applied investigations. Here, we report the first high-quality draft genome for S. scabiei, com-

plemented by its transcriptome, to underpin fundamental and applied investigations of this

parasitic mite at the molecular level. This genome is expected to provide a substantially

enhanced resource to the research community for genetic, functional genomic, evolutionary,

biological, ecological and epidemiological investigations, and a basis for the discovery of new

drug and vaccine targets against scabies.
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Results and discussion

Genome assembly

We sequenced the genome of S. scabiei var. suis from Australia at 114-fold long read and

443-fold short read coverage (S1 Table), producing a final draft assembly of 56.6 Mb (scaffold

N50: 2.97 Mb; Table 1) with a mean GC-content of 33.3%. The present assembly was repre-

sented by a total of 66 contiguous sequences, compared with 4,268, 3,138 and 18,860 contigs

for previous assemblies for S. scabiei var. suis, var. hominis and var. canis, respectively [19, 20].

As S. scabiei var. suis cells appear to contain 17–18 chromosomes [21], this assembly of 21 con-

tigs (Table 1; L90 = 21 for S. scabiei var. suis) indicates that we have achieved a near chromo-

somal-level assembly. The estimated repeat content for this genome is 10.6%, equating to 6.0

Mb of DNA. The assembly contained 3.1% (1.8 Mb) interspersed and 7.9% (4.4 Mb) simple

and low complexity repeats (S1 Table), the latter of which is in accord with findings for the

house dust mite, Dermatophagoides pteronyssinus (9.2%; ~ 4.8 Mb) [22]. DNA transposons are

more abundant (0.89%; 506 kb) in identified retrotransposon sequences (S1 Table) than long

terminal repeats (LTRs) (0.38%; 215 kb), long interspersed elements (LINEs) (0.11%; 61 kb)

and short interspersed elements (SINEs) (0.04%; 22kb). We also identified 915 kb (1.7%) of

unclassified repeat elements (S1 Table).

Gene set

Given the fragmentation in published draft genome assemblies of S. scabiei variants [19, 20],

we elected to predict genes and annotate them independently. We used transcriptomic data

for egg, and adult stages of S. scabiei var. suis and protein sequences in UniProtKB/SwissProt

(14 May 2019) [23] to support gene predictions. In total, we annotated 9,174 protein-encoding

genes consisting of ~ 4.0 exons per gene (Table 1; S2 Table). In the predicted gene set, we

Table 1. Features of Sarcoptes scabiei draft genome.

Description Sarcoptes scabiei var.

suis
Dermatophagoides

pteronyssinus
Tetranychus urticae Psoroptes ovis Sarcoptes scabiei var.

canis
NCBI accession identifier WVUK01000000 GCF_001901225.1 GCF_000239435.1 GCA_002943765.1 GCA_000828355.1

Genome size (bp) 56,576,587 70,778,228 90,828,597 63,414,655 56,262,437

Number of scaffolds 66 1,373 641 134 18,860

N50 (bp); L50 2,965,819; 5 450,436; 33 2,993,488; 10 2,279,290; 8 11,557; 972

N90 (bp); L90 703,488; 21 51,383; 206 732,742; 34 560,979; 29 1,270; 7,002

Genome GC content (%) 33.3 30.9 32.3 28.3 33.3

Repetitive sequences (%) 10.6

Exonic proportion; incl. introns (%) 28.0; 44.4 26.0; 45.0 19.3; 47.5 23.5; 28.5 21.3; 27.1

Number of putative protein-coding

genes

9,174 11,159 11,428 12,037 10,460

Mean; median gene size (bp) 2,735; 1,601 2,852; 1,576 3,836; 1,656 1,501; 1,107 1,459; 1,025

Mean; median CDS length (bp) 1,729; 1,305 1,646; 1,251 1,547; 1,209 1,236; 915 1,146; 830

Mean exon number per protein-

coding gene

4.0 3.6 3.9 3.3 3.1

Mean; median exon length (bp) 431; 241 458; 253 396; 196 373; 186 372; 207

Mean; median intron length (bp) 334; 71 464; 71 788; 98 120; 70 147; 71

Coding GC content (%) 37.2 33.1 37.7 33.5 37.6

Number or transfer RNAs 294

BUSCO completeness: complete;

partial (%)

90.8; 92.6 92.3; 93.7 91.5; 92.8 84.5; 87.4 80.8; 87.5

https://doi.org/10.1371/journal.pntd.0008720.t001
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inferred 967 (90.8%) of 1,066 complete core essential genes using the program Benchmarking

Universal Single-Copy Orthologs (BUSCO) [24] for arthropods, which suggested that the

genome is near complete. These findings accord with the numbers of BUSCO orthologs for D.

pteronyssinus (984; 92.3%) [25] and Tetranychus urticae (975; 91.5%) [26] (Table 1). The statis-

tics for the gene models of S. scabiei were similar to those of the well-assembled and annotated

genome for D. pteronyssinus [25]: mean/median lengths of gene regions (2,735/1,601 bp), cod-

ing sequences (1,729/1,305 bp), exons (431/241 bp) and introns (334/71 bp)–excluding

untranslated regions (UTRs)–were comparable with those of D. pteronyssinus (i.e. 2,852/1,576

bp, 1,646/1,251 bp, 458/253 bp and 464/71 bp, respectively), but distinct from those of T. urti-
cae in which genes were larger (3,836/1,656 pb) due to longer intron sizes (788/98 bp) and cod-

ing sequences (1,547/1,209 bp), but exons (396/196 bp) were shorter (Table 1; Fig 1). Among

these three mite species, S. scabiei shared more orthologous genes (OrthoMCL; BLASTp E-

value of� 10−8) with the genome of D. pteronyssinus (n = 7,203; 75.3%) than with that of T.

urticae (n = 4,797; 52.0%) (Fig 2). Conspicuous are 822 protein-encoding genes (9.6%) that are

unique to S. scabiei (Fig 2) for the acarines compared; 47 of these genes encode excretory/

secretory (ES) proteins.

Genetic relationships

We studied the molecular phylogenetic relationships of select free-living and parasitic mite

species for which comparative genomic sequence data sets were available. Using data for pro-

tein-encoding single-copy orthologous genes (SCOs; n = 2,314), we showed that S. scabiei var.

suis is genetically similar to S. scabiei var. canis, phylogenetically related to the dust mite (Der-
matophagoides pteronyssinus) and the scab mite (Psoroptes ovis), and is distant from the spider

mite (Tetranychus urticae) and the predatory mite (Metaseiulus occidentalis) (Fig 3). These

relationships are in accord with the numbers of shared orthologous genes, with S. scabiei var.

suis sharing most (n = 7,685) with S. scabiei var. canis and least (n = 5,016) with T. urticae (Fig

2). Density diagrams for coding sequence-, exon- and intron- lengths of S. scabiei var. suis
were compared with those of S. scabiei var. canis, D. pteronyssinus and T. urticae. The distribu-

tions for S. scabiei were most similar to those for D. pteronyssinus; the distributions reflected

long introns in T. urticae and short coding regions in S. scabiei var. canis compared with the

other mite species studied (Fig 1). Previous results from a phylogenetic analysis of 350 astigma-

tid mite taxa using concatenated sequence data for five house-keeping genes (8942 nt) [27]

suggested that a single common ancestor of the pyroglyphid (dust) mites evolved from a per-

manent, parasitic life style to become secondarily free-living.

Intervention targets

The excessive and uncontrolled use of a small number of drug classes for the treatment of sca-

bies has led to drug resistances to some of these compounds [28]. Unfortunately, only a small

number of scabicides, permethrin and ivermectin in particular, have been available for treat-

ment [14, 29–31]. However, these drugs do not kill eggs and have short half-lives in skin. As a

foundation to explore novel intervention targets for S. scabiei, we identified and manually

curated some key groups of proteins inferred to be encoded in this mite, including peptidases,

peptidase inhibitors, kinases, G-protein coupled receptors (GPCRs) and ion channels.

Peptidases (n = 217) represented five key classes (aspartic, cysteine, metallo-, serine and

threonine), with the metallo- (n = 68; 31.3%) and serine peptidases (n = 74; 34.1%) predomi-

nating (S3 Table). Notable were excreted peptidases, such as cathepsins (C01A; n = 3), serine

peptidases (S09; n = 2), threonine peptidases (T01A; n = 7) and aminopeptidases (M17; n = 2),

which are likely to be involved in cutaneous establishment, protein degradation, immune

PLOS NEGLECTED TROPICAL DISEASES High-quality nuclear genome for Sarcoptes scabiei

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008720 October 1, 2020 4 / 20

https://doi.org/10.1371/journal.pntd.0008720


Fig 1. Characteristics of coding sequences, exons and introns. Density diagrams–showing the distribution of data–were used to compare coding sequences, exons and

introns for the gene models of the mite species Sarcoptes scabiei var. suis (black), Dermatophagoides pteronyssinus (blue), Psoroptes ovis (red), Tetranychus urticae
(green) and Sarcoptes scabiei var. canis (yellow). The NCBI accession identifiers for the genomes of the taxa included here are: WVUK01000000, GCF_001901225.1,

GCA_002943765.1, GCF_000239435.1 and GCA_000828355.1, respectively.

https://doi.org/10.1371/journal.pntd.0008720.g001
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evasion and/or activation of inflammation, based on knowledge of the biology of S. scabiei
[18]. Identified protease inhibitors (n = 30) included immunosuppressive factors, such as cyto-

toxic T-lymphocyte antigen-2 alpha (I29; n = 7), alpha-2-macroglobulin (I39; n = 3), subtilisin

(I08; n = 7) and aprotinin (I02; n = 2), as well as genes homologous to those encoding serpins

Fig 2. Comparison of orthologous proteins among selected mite species. VENN diagram showing numbers of homologous groups of proteins among Sarcoptes
scabiei var. suis, Sarcoptes scabiei var. canis, Psoroptes ovis, Dermatophagoides pteronyssinus and Tetranychus urticae. Protein-coding genes of S. scabiei var. suis are

indicated in parentheses. NCBI accession identifiers for the genomes of the taxa included here are: WVUK01000000, GCA_000828355.1, GCA_002943765.1, GCF_

001901225.1 and GCF_000239435.1, respectively.

https://doi.org/10.1371/journal.pntd.0008720.g002
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(I04; n = 2; SAR_2327s and SAR_4743s), which are known to inhibit activation pathways of

the human complement system [32] (S4 Table).

Kinases (n = 251) represented mainly the groups CAMK (n = 53), CMGC (n = 26), tyrosine

(TK; n = 21), AGC (n = 19), STE (n = 17), TKL (n = 16) and atypical (n = 8) kinases (S5

Table), which have significant potential as drug targets in parasites due to their role in pivotal

cellular processes [33, 34]. GPCRs (n = 106) representing the rhodopsin classes A (n = 73), B1

(n = 9), class B2 (n = 7), class C (n = 8), class F (n = 4) (S6 Table) are intensively studied drug

targets [35], and are known to bind molecules critically involved in key biological processes

including signalling proteins (e.g., chemokines), neuropeptides (e.g., bombesin, galanin, neu-

romedin U, neuropeptide Y, neurotensin and tachykinin), lipids (e.g., lysophosphatidylinositol

and cannabinoid), hormones (e.g., adrenaline, calcitonin, cholecystokinin, corticotropin-

releasing, glucagon, oxytocin, gonadotropins, somatostatin, thyrotropin-releasing and vaso-

pressin), amino acids (gamma-aminobutyric acid and metabotropic glutamate) and/or com-

pounds such as acetylcholine, dopamine, histamine and 5-hydroxytryptamine. Since 2012,>

69 drugs that target GPCRs have been approved by the U.S. Food and Drug Administration

(FDA) [36]. Ion channel proteins (n = 126), including voltage-gated ion channels (VGICs;

n = 27) and ligand-gated ion channels (LGICs; n = 48), were also identified (S7 Table). Such

channels are known targets for endo- and ecto-cidal compounds, including permethrin which

targets voltage-gated sodium channels (VGSC) [15, 37], and macrocyclic lactones (e.g., iver-

mectin and moxidectin) which target glutamate-gated chloride channels (GluCls) [16, 30, 31].

We expect some of these peptidases, peptidase inhibitors, kinases, GPCRs and ion channels to

be intervention target candidates that warrant detailed evaluation in S. scabiei in the future.

Fig 3. Genetic relationships of selected species of mites. The phylogenetic tree was constructed using data for shared single-copy orthologous protein sequences

(n = 2,314) representing Sarcoptes scabiei var. suis, Sarcoptes scabiei var. canis, Dermatophagoides pteronyssinus (dust mite), Psoroptes ovis (sheep mite), Tetranychus
urticae (spider mite) andMetaseiulus occidentalis (predatory mite). All nodes had absolute support values (posterior probability = 1 and bootstrap support = 100%) for

both the Bayesian and maximum likelihood inference methods.

https://doi.org/10.1371/journal.pntd.0008720.g003
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The host-pathogen interplay and immunogens/allergens

Excretory/secretory proteins are central to the host-mite relationship [28, 38]. A proteomic

analysis of faecal matter from S. scabiei var. suis revealed totals of 236 excretory proteins (rep-

resenting the ‘excretome’) (S8 Table) and 373 secretory proteins (‘secretome’) (S9 Table), with

14 proteins being common to both protein sets. The excretome includes 20 proteases, includ-

ing 7 threonine-, 4 metallo-, 4 cysteine-, 4 serine- and 1 aspartic peptidases (S3 Table; S8

Table), and 5 peptidase inhibitors (including 2 immunosuppressive factors representing cyto-

toxic T-lymphocyte antigen-2 alpha), 2 subtilisin inhibitors and 1 trypsin inhibitor (aprotinin)

(S4 Table; S8 Table). Many of these peptidases and inhibitors are likely involved in the degra-

dation/digestion of skin, tissue barriers and nutrients, and also proposed to play critical roles

in the growth, development, moulting and survival of S. scabiei on the host animal and immu-

nomodulation by this mite [28, 38].

We inferred 85 putative allergens (S10 Table) to be encoded in the genome of S. scabiei var.

suis, many of which are homologs of known allergens in D. farinae (22 of 48; 45.8%; S11

Table) and D. pteronyssinus (20 of 37; 54.0%; S12 Table) [25, 39]. The inferred excretome con-

tained 28 of these homologs, whereas the secretome contained four. Interestingly, the inferred

allergens are amongst the most highly-transcribed genes in the genome, and 22 of them appear

to be unique to S. scabiei (S10 Table).

Apolipoprotein, glutathione S-transferases, cysteine- and serine proteases and serine prote-

ase inhibitors have been hypothesised as vaccine candidates against scabies [40]. Here, we

identified apolipoproteins Ssag1 and Ssag2 [41], the first of which (SAR_333s) is inferred to be

an excreted allergen, but the second (SAR_1661s) is not (S10 Table). We inferred a previously-

discovered glutathione S-transferase [42] to be an allergen (SAR_5548); of 11 other glutathione

S-transferases identified here, 8 are likely allergens, 3 of which are predicted to be excreted (S8

Table; S10 Table). We also identified a serine protease (cf. accession no. AY333071), an inac-

tive cysteine protease (AY525155) and an active cysteine protease (AY525149) [43, 44], all of

which are inferred to be allergens (SAR_9234s, SAR_6923s and SAR_5356s, respectively) (S3

Table). We also identified two serine protein inhibitors (serpins; accession nos. JF317220.1

and JF317222.1) [32], one of which is inferred to be an allergen (SAR_4743s; S4 Table) and the

other (SAR_1449s) not.

Functional genomics and double-stranded RNA interference (RNAi)

machinery

Prioritised target candidates (S10 Table) could first be tested for essentiality in S. scabiei using

RNAi, which might support the development of a scabicide. Moreover, functional analysis of

the ~ 22% of S. scabiei protein-encoding genes proposed to be parasite-specific, some of which

might be involved in host-parasite interactions, could be facilitated by gene knockdown exper-

iments. The recent establishment of an RNAi assay for S. scabiei [45] should underpin integra-

tive functional genomic, transcriptomic and proteomic analyses [46] of distinct stages of S.

scabiei in the future. To provide a foundation for such studies, we explored RNAi pathways in

this mite.

Typically, the RNAi machinery of eukaryotic organisms comprises the canonical micro-

RNA (miRNA), small-interfering RNA (siRNA) and/or piwi-interacting RNA (piRNA) path-

ways [47, 48]. These RNAi pathways regulate a range of biological processes at post-

transcriptional level via essential cofactors, the Dicer- and Argonaute-family proteins [49, 50].

Although RNAi pathways have been defined in the model arthropod Drosophila melanogaster
[51], very little is known about them in S. scabiei. Here, we identified gene homologues

(n = 29) encoding core components of RNAi pathways in S. scabiei (S13 Table). The results
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revealed relatively conserved miRNA, dsRNA, viRNA and/or piRNA pathways (Fig 4).

Although components [i.e., systemic RNAi defective gene (sid), synthetic secondary siRNA-

deficient argonaut mutant (sago) and RNAi spreading defective gene (rsd)] that are known to

function in dsRNA/siRNA uptake and secondary siRNA dissemination in nematodes [52]

were not detected in S. scabiei, the presence of the RNA-dependent RNA polymerase coding

gene (rdrp) suggested an endogenous synthetic machinery for secondary siRNAs, which might

link to a novel spreading mechanism. In addition, although homologous piRNA-binding pro-

teins aubergine (AUB) and PIWI were not detected (Fig 4), the genes ago-1, -2 and/or -3

Fig 4. Proposed RNA interference machinery of Sarcoptes scabiei. Proteins PASHA and DROSHA are involved in the endogenous synthesis of miRNA. Endogenous

or exogenous miRNA, dsRNA and viral siRNA are recognised and diced by endoribonucleases DCR1 or DCR2, mediated by proteins LOQS or R2D2, and transferred to

argonaut protein (AGO1 or AGO2), forming the RNA-induced silencing complex (RISC). The RISC facilitates targeting specific transcripts, leading to mRNA cleavage

and antiviral defence via ATP-dependent RNA helicase (RM62). The silencing effect can be disseminated to other cells via a key component RNA-dependent RNA

polymerase (RdRp); miRNA, dsRNA and virus-derived siRNA pathways are indicated in orange, blue and green, respectively. Silencing and dissemination modules are

indicated in yellow.

https://doi.org/10.1371/journal.pntd.0008720.g004
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encoding similar protein domains to those of AUB and PIWI may play complementary roles

in a piRNA-like pathway in S. scabiei. The lack of a canonical piRNA pathway in S. scabiei is

consistent with findings for dust mites [53].

Concluding remarks

The present genomic and molecular exploration of S. scabiei provides improved insights into

the molecular landscape of one of the most important mite pathogens of animals worldwide.

This study has inferred molecules involved in host-parasite interactions and immune

responses/allergy. The improved genome assembly and associated data sets for S. scabiei
should accelerate post-genomic explorations of molecules involved in mite reproduction and

development, metabolism, parasite-host interactions, disease pathogenesis, and the genetics

and mechanisms of drug resistance.

Inferring the RNAi machinery in S. scabiei could assist functional genomic work on

selected stages (e.g., eggs) of the parasite. Given that gene-specific knockdown by double-

stranded RNA interference (RNAi) has been demonstrated [45], we believe that genome-assis-

ted drug target or drug discovery could provide a complementary approach to the screening of

whole mites for new scabicides, similar to approaches proposed for parasitic helminths [54].

The aim is to identify genes or molecules whose inactivation by one or more drugs would

selectively kill S. scabiei but not harm the host animal. Combined with the bioinformatic pre-

diction and prioritisation of essential genes from functional information (e.g., lethality) avail-

able for other metazoan organisms, particularly D.melanogaster, using machine learning

approaches [55], RNAi-based screening of S. scabiei stages provides a powerful functional

genomics tool to validate prioritised targets. Focusing on groups of molecules, such as the

complex array of peptidases, GPCRs, kinases and ion channels, and understanding their

involvement in the host-mite interplay would likely assist in the design of new drugs or a vac-

cine against scabies. Moreover, future studies should focus on defining a spectrum of key mol-

ecules involved in pathways associated with the development of the nervous system in

different life-stages of the mite, and on evaluating their potential as drug targets. The availabil-

ity of a gene knockdown system [45], a drug screening platform [56, 57] and an in vivo pig-sca-

bies model [58] provide a particularly useful context to assess prioritised intervention targets

and then to evaluate drug candidates both in vitro and in vivo. Although the present study

focused on S. scabiei, the results and methods employed here should be readily applicable to

other ectoparasites of major animal and human health importance. We believe that the sub-

stantially improved genome of S. scabiei should accelerate both fundamental and applied

investigations of scabies, enabling the development of new interventions for this important

neglected tropical disease.

Materials and methods

Ethics approval

Animal ethics approval was granted by the QIMR Berghofer Medical Research Institute (per-

mit nos. P630 and P2159) and the Ethics Committee of the Queensland Animal Science Pre-

cinct (permit SA 2015/03/504).

Production and procurement of S. scabiei
Sarcoptes scabiei was produced on pigs (3 months of age), isolated and stored using a well-

established protocol [21]. Mites (n = 1000; approximately equal proportion of larvae, nymphs

and adults) were isolated from skin crusts from S. scabiei-infected pigs, washed extensively,
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and directly snap frozen and stored at -70˚C. In addition, faecal samples (n = 5) were collected

from five different batches of mites (same number and stages) isolated from skin crusts taken

from pigs on different days; from these faecal samples, crude protein extracts were prepared,

freeze-dried and resuspended in 200 μl 8M urea in 100 mM triethylammonium bicarbonate

(pH 8.5) with protease inhibitor cocktail set I (Merck, Denmark) [59].

Genomic DNA library construction and sequencing

High molecular weight genomic DNA was isolated from six samples each containing 1,000

motile adults, nymphs, larvae and eggs, collected on different days, using the Gentra Puregene

Tissue Kit (Qiagen) according to manufacturer’s instructions. Total DNA amount was deter-

mined using a Qubit fluorometer dsDNA HS Kit (Invitrogen), according to the manufacturer’s
instructions. GenomicDNA integrity was verified by agarose gel electrophoresis and using a

Bioanalyzer 2100 (Agilent). Long-read sequencing of libraries constructed using the 20 kb

Template Preparation employing BluePippin Size-Selection System was conducted using an

established Pacific Biosciences (PacBio) protocol [60]. Short-read paired-end (PE) libraries

(100 bp-inserts) were constructed, checked for size distribution and quality using Bioanalyzer

2100 and sequenced with Illumina HiSeq 2500 using an established method [20]. Jumping

libraries (with 3-, 5-, and 7-kb inserts; see S1 Table) were constructed and sequenced using an

established method [61]. Library preparation and long-read sequencing was conducted at the

Centre for Clinical Genomics at the Translational Research Institute, Diamantina Institute in

Wooloongabba, Queensland, Australia. Library preparation and long-read sequencing was

conducted using a 20Kb PacBio RSII, Bluepipin size-selected SMRT bell library preparation

and sequencing on 10 SMRT cells. The average number of reads per SMRT cell was 51,128 bp;

the mean read length was 12,663 bp, and the N50 read length was 18,857 bp.

RNA isolation and RNA-seq

Total RNA was isolated separately from eggs (n = 16,000) and mixed larvae, nymphs and

adults (n = 16,000) of S. scabiei var. suis employing the ToTally RNA Kit (Ambion). RNA

yields were estimated spectrophotometrically (NanoDrop 1000), and the integrity of RNA was

verified using a BioAnalyzer 2100 (Agilent). Following mRNA isolation using the MicroPolyA-

Purist kit (Ambion), RNA-seq was carried out as described previously [20]. Sequence data

were assessed for quality and adaptors removed.

Liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis

The proteome of faecal matter (“excretome”) from S. scabiei eggs, nymphs and adults was

investigated using an established in-solution digestion protocol [62]. In brief, the five samples

(i.e. biological replicates; 50 μg of protein each) were reduced, alkylated and double-digested

with Lys-C/trypsin mix (Promega, USA) at 37˚C for 16 h. The tryptic samples were then acidi-

fied with 1.0% (v/v) formic acid and purified using Oasis HLB cartridges (Waters, USA).

Using an established technique [63], tryptic peptides were analysed using a Q Exactive Plus

Orbitrap mass spectrometer (Thermo Fisher, USA). Protein- and peptide- level fractionation

and LC-MS/MS analysis of whole mite preparations was undertaken at the Institute of Bioin-

formatcs ain Bangalore, India, and egg preparations underwent on-tip strong-cation exchange

chromatography-based fractionation and were analyzed on Orbitrap Fusion Lumos mass spec-

trometer interfaced with Easy nLC 1200 UPLC system (Thermo Scientific, Bremen, Germany)

at Johns Hopkins University.
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Excretory/Secretory proteins and allergens

Excretory/secretory proteins were inferred from LC-MS/MS (faecal matter) data against the

proteome inferred from the genome of S. scabiei. First, raw LC-MS/MS data were processed

with the program MaxQuant using the Andromeda search engine [64]. Fixed modifications of

carbamidomethylation of cysteine (+57 Da) and variable modifications of methionine oxida-

tion (+16 Da) were used. Results were compiled at targeted false discovery rate (FDR)

of< 0.01 on both the peptide spectrum match (PSM) and the protein level. Proteins identified

with� 2 peptides were accepted. Secreted proteins were predicted using the programs SignalP

4.0 [65] and MultiLoc2 [66]. To classify a secreted protein, a predicted signal peptide and pre-

dicted extracellular location were required. Allergens were identified using BLASTp v2.2.30

+ searches (E-value� 10−8) against the NCBI protein nr database, the allergens identified for

S. scabiei var. canis [19], and known allergens of Dermatophagoides farinae and D. pteronyssi-
nus [67]; gene models of identified allergens were manually curated using available transcrip-

tomic data.

Genomic assembly

An established pipeline [68] was used to create an assembly from PacBio sequence read data.

In brief, these data were assembled using the program Canu v1.6 [69], polished using both Pac-

Bio raw reads and Illumina PE reads employing the programs SmrtLink v5.0.1 [70] and Pilon

v1.22 [71], and sequences representing redundant haplotypes were removed using the pro-

gram HaploMerger2 (build_20160512) [72]. The assembly was then scaffolded using Illumina

mate-pair reads (3-, 5- and 7-kb inserts), and gaps were closed with Illumina PE reads in two

iterations employing the programs SSPACE v3.0 [73] and GapCloser v1.12 [74].

Gene prediction

The S. scabiei protein-coding gene set was inferred utilizing available evidence data, including

the transcriptomic data for egg and mixed-sex, motile stages, and protein sequence data were

deposited in the UniProtKB/SwissProt database (May 14, 2019) [23]. First, known interspersed

repeats in Repbase v.17.02 [75] and simple repeats were masked using the program Repeat-

Masker [76]. Transcriptomic evidence data were collected from both cDNA [77, 78] and RNA-

seq experiments; cDNA sequences were assembled using the program CAP3 (version 10/15/

07) [79] and RNAseq data using the program Trinity v2.4.0 [80]. CAP3-assembled transcripts

were concatenated with de novo and genome-guided transcript assemblies acquired using the

Trinity pipeline. Transcripts with unknown nucleotide positions (“Ns”) were removed, and

cd-hit-est [81] was used to reduce transcript redundancy by 1%. Open reading frames (ORFs)

were inferred from the remaining 99% of transcripts employing the program TransDecoder

[80], and cd-hit-est was used to reduce redundancy by 1%. This final set of ORFs (� 500 bp in

length) was used as transcriptomic evidence data for gene predictions and mapped to the

genome using BLAT [82]. The validity of splice sites was verified, and ORF-sequences were

then used to train the de novo-gene prediction program AUGUSTUS [83] that produces a Hid-

den Markov Model (HMM) for gene prediction. The non-redundant ORFs and the proteome

of T. urticae were also given to MAKER3 [84] to provide evidence for predicted genes. The

resultant HMM, the ORFs and the proteome were subjected to analysis using MAKER3 to pro-

vide a consensus set of genes for S. scabiei. Genes inferred to encode peptides of� 30 amino

acids in length were preserved. Next, the PASA pipeline [85] employed non-redundant ORFs

to improve predicted gene models in three iterations. The gene set was compared against origi-

nal MAKER3 gene models, and those that did not overlap with the PASA-improved gene

models were added to the gene set. Isoforms were removed from this gene set by preserving
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the longest isoform to represent each gene. For NCBI submission, UTR-regions were removed,

and the gene set was verified using the programs GAG v2.0.1 [86] and tbl2asn [87].

Functional annotation

First, following the prediction of the protein-coding gene set for S. scabiei, each inferred

amino acid sequence was assessed for conserved protein domains using InterPro (release 75.0)

[88] employing default settings. Then, amino acid sequences were subjected to BLASTp (E-

value� 10−8) against the following protein databases: Swiss-Prot within UniProtKB [23];

Kyoto Encyclopedia of Genes and Genomes (KEGG) [89, 90]; and NCBI protein nr [91].

Genes encoding proteases, protease inhibitors, G-protein-coupled receptors (GPCR), kinases

and ion channels were manually curated.

Curation of gene annotations for key protein groups

Gene models were curated employing protein domain architecture information from the

InterPro database (release 75.0) and from transcriptomic data. Kinase gene models were

curated using an established approach [92]–i.e. kinases were first inferred and classified into

groups, families and subfamilies using Kinannote [93], and the PANTHER [94] and InterPro

databases were then employed for unclassified kinases. GPCR gene models were identified and

manually curated using an established approach [95] and assigned to class, family and/or sub-

family based on information from GPCRdb (March 2019 release) [96]. Peptidase gene models

were inferred by searching MEROPS peptidase and peptidase inhibitor databases (release

12.1) (BLASTp; E-value� 10−8) [97] and manually curated. Ion channel gene models were

manually curated and classified based on information from the PANTHER (release 14.1),

Pfam (release 32.0) [98] and InterPro (release 76.0) databases.

Prediction of repeat regions

Genomic repeats specific to S. scabiei were inferred using the program RepeatModeler [99]

that merges repeat predictions from the programs RECON [100] and RepeatScout [101]. Cus-

tom repeats and known repeats in Repbase v.17.02 [75] were then masked in the S. scabiei
genome assembly using the program RepeatMasker [76].

Inferred protein sequence homology

Homologs among S. scabiei, T. urticae and D. pteronyssinus were inferred by comparison

among all proteins using the program OrthoMCL v2.0.4 (BLASTp; E-value� 10−8). The

counts for shared homologous genes among these species were displayed in a Venn diagram.

Phylogenetic analysis

Single-copy orthologous (SCO) genes were inferred from homologous genes shared by S. sca-
biei var. suis, S. scabiei var. canis [19], D. pteronyssinus [25], Metaseiulus occidentalis [102],

Psoroptes ovis [103] and Tetranychus urticae [26], and conceptually translated into amino acid

sequences. The 1,859 clusters of SCO sequences representing all six species were individually

aligned using the program AQUA [104], employing the programs MUSCLE v3.8.31 [105] and

MAFFT v.7.271 [106] for the alignment and RASCAL v1.34 [107] for the refinement of align-

ments. Each gene cluster of SCO sequences with an alignment score of� 0.8 obtained from

the program NorMD [108] were merged using the program PartitionFinder v2.1.1 [109] to

assign each merged partition to a replacement matrix. Partitions that did not contain all 20

amino acids, or represented mitochondrial or viral sequences, were removed. Remaining
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partitions were then subjected to separate phylogenetic analyses using the Bayesian inference

(BI) and maximum likelihood (ML) tree-building methods. BI analysis was conducted using

the program MrBayes v3.2.6 [110] from four independent Markov chains, run for 1,000,000

metropolis-coupled MCMC iterations, for which trees were sampled every 1000 iterations.

The resultant tree was inferred by, first, discarding 250,000 sampled trees (25%) as burn-in,

and using the remaining sampled trees to infer tree topology, branch lengths and to calculate

Bayesian posterior probabilities (BPP). ML analysis was conducted using the program RAxML

v8.2.6 [111] and the same replacement matrices were used as for BI analysis. The phylogram

was prepared using FigTree v.1.31 (http://tree.bio.ed.ac.uk/software/figtree).

Density diagrams of gene features

Density diagrams were created using standard commands in the R language [112]. Gene-,

exon- and intron- lengths were inferred from the gene models of D. pteronyssinus [25], S. sca-
biei var. canis [19], S. scabiei var. suis and T. urticae [26].
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