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SUMMARY

Malignant tumors exhibit high degrees of genomic heterogeneity at the cellular
level, leading to the view that subpopulations of tumor cells drive growth and
treatment resistance. To examine the degree to which tumors also exhibit meta-
bolic heterogeneity at the level of individual cells, we employedmulti-isotope im-
aging mass spectrometry (MIMS) to quantify utilization of stable isotopes of
glucose and glutamine along with a label for cell division. Mouse models of mel-
anoma and malignant peripheral nerve sheath tumors (MPNSTs) exhibited strik-
ing heterogeneity of substrate utilization, evident in both proliferating and
non-proliferating cells. We identified a correlation between metabolic heteroge-
neity, proliferation, and therapeutic resistance. Heterogeneity in metabolic sub-
strate usage as revealed by incorporation of glucose and glutamine tracers is thus
a marker for tumor proliferation. Collectively, our data demonstrate that MIMS
provides a powerful tool with which to dissect metabolic functions of individual
cells within the native tumor environment.

INTRODUCTION

Cancer cells undergo metabolic changes that promote anabolic growth and proliferation (Vander Heiden

and DeBerardinis, 2017). Positron emission tomographic (PET) imaging of metabolic radiotracers, such as
18F-2-deoxyglucose (FDG), leverages the heightened metabolic activity of cancer cells to define local and

metastatic disease (Fletcher et al., 2008; Juweid and Cheson, 2006; Kelloff et al., 2005; Torizuka et al., 1995;

Weber et al., 1999). In addition, the relative intensity and/or heterogeneity of FDG-uptake within a tumor

may inform prognosis beyond characterization of disease burden (Eary et al., 2008; Juweid and Cheson,

2006; Kang et al., 2014; Kidd and Grigsby, 2008; Yoon et al., 2015). Such regions of intratumor variability

in FDG-PET avidity are also associated with differential metabolic flux of stable isotope metabolic tracers

and therefore indicate true functional heterogeneity (Faubert et al., 2017; Hensley et al., 2016). These data

suggest that the paradigm of tumor heterogeneity—well recognized at the molecular level (Anderson

et al., 2011; Azizi et al., 2018; Jackson et al., 2020; Patel et al., 2014; Tirosh et al., 2016)—also extends to

the metabolic function of tumor cells.

Various aspects of tumormetabolic function have been interrogated bymagnetic resonance (MR) spectros-

copy, mass spectrometry, or PET imaging, using a range of radiolabeled or stable isotope-labeled

substrates of metabolic pathways related to cellular proliferation, glucose metabolism, or amino acid

metabolism (Fan et al., 2009; Hensley et al., 2016; Maher et al., 2012; Sengupta and Pratx, 2016). However,

existing approaches to assess metabolic functions of tumors generally do so at tissue-scale resolution. As

such, the cellular basis for signals of metabolic heterogeneity in tumors has not been completely eluci-

dated. With FDG-PET imaging of tumor metabolic heterogeneity, for example, differential FDG uptake

could in theory arise from cell autonomous differences in tumor metabolic programming or simply from

regional differences in cell viability, tumor cell proliferation, or other effects related to averaging signal

within arbitrary voxels encompassing millimeter to centimeter swaths of tissue (Brooks, 2013).

Defining tumor metabolic functions at the resolution of individual cells, particularly within the native tumor

microenvironment, has lagged behind what is achievable with multidimensional biomarker analyses (e.g.,

mass cytometry) and with single cell genomics (Anderson et al., 2011; Keren et al., 2018; Patel et al., 2014).
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Historically, the highest resolution approach to studying metabolic functions of tissues involved autoradio-

graphic detection of radiolabeled tracers coupled with electron microscopy (Coimbra and Leblond, 1966).

Newer metabolic imaging approaches, such as the imaging of novel fluorescent metabolic tracers, imaging

of cellular redox states by their autofluorescence properties, or imaging of tracers with Raman scattering

microscopy, do not achieve the lateral resolution of electron microscopy but provide images of metabolic

activities with sufficient spatial resolution to capture individual cells (Hu et al., 2015; O’Neil et al., 2005;

Walsh et al., 2014; Wei et al., 2013). These methods, which are at various stages of development, are gener-

ally semi-quantitative.

A new form of imaging mass spectrometry, multi-isotope imaging mass spectrometry or MIMS, can be

used to quantify stable isotope incorporation at suborganelle resolution (Lechene et al., 2006; Steinhauser

et al., 2012). Central to MIMS is a nanoscale secondary ion mass spectrometry (NanoSIMS) instrument,

which probes a sample surface with an ion beam at a lateral resolution of down to 30 nm, resulting in ioni-

zation of the uppermost atoms and polyatomic fragments (Gyngard and Steinhauser, 2019). The yield of

negatively charged secondary ions are extracted and separated in a magnetic sector. Seven detectors

are aligned to quantify up to seven discrete ionic species in parallel. When two detectors are aligned to

capture isotopic variants of the same element, the incorporation of tracers tagged with rare stable isotopic

variants (e.g., 2H, 13C, 15N) can be quantified by the corresponding increase in the isotopic ratio. Advan-

tages of using stable isotope tracers for metabolic analyses include: (1) they seamlessly integrate into

biochemical pathways because introduction of an isotopic variant does not alter the molecular structure

of the parent compound, (2) they do not confer toxicity in the manner of fluorescent tags or radiolabels,

and (3) they are quantifiable with high accuracy by mass spectrometry methods, including NanoSIMS.

Therefore, MIMS merges imaging at high spatial resolution with the quantitative power of isotope ratio

mass spectrometry.

Prior applications of MIMS to non-cancerous tissues has provided a framework to quantify stable isotope-

tagged glucose, amino acids, and precursors of nucleic acid synthesis in a multiplexed fashion (Guillermier

et al., 2017b, 2019; Steinhauser et al., 2012; Zhang et al., 2012). We reasoned that MIMS could also enable

quantitative measurement of substrate utilization in individual cancer cells, thereby enabling us to test the

hypothesis that tumors exhibit metabolic heterogeneity at the level of individual cancer cells. Here, we pre-

sent the first application of MIMS to interrogate metabolic heterogeneity of tumors in vivo. In mouse

models of melanoma and malignant peripheral nerve sheath tumors (MPNSTs), we discovered striking het-

erogeneity of substrate utilization. Moreover, in an MPNST model, we identified a strong correlation be-

tween metabolic heterogeneity, proliferation, and therapeutic resistance.

RESULTS

Heterogeneity of Glucose and Glutamine Utilization by Proliferating Cancer Cells

The application of FDG-glucose—and more recently labeled glutamine (Salamanca-Cardona et al., 2017;

Venneti et al., 2015)—to tumor imaging is driven by the observation that proliferating cancer cells coopt

glucose and glutamine as substrates for anabolic growth. These observations provided a rationale for using

stable isotope-tagged glucose and glutamine as metabolic labels for MIMS, which we used together with

Bromodeoxyuridine (BrdU) as a nucleotide label for cell division (Figure S1, see also Transparent Methods

in Supplemental Information). We selected 2H- rather than 13C-glucose, because the signal to background

characteristics of 13C are less desirable owing to its relatively high background concentration in embedded

samples relative to 2H (Gyngard and Steinhauser, 2019). We first tested this approach in cancer cell lines

labeled for 12 h prior to MIMS analysis (Figure 1A). Images of CN� and P� intensity delineated cell and nu-

clear borders as we have previously shown (Kim et al., 2014; Steinhauser et al., 2012) and guided the extrac-

tion of quantitative labeling data. We measured 2H-glucose and 15N-glutamine labels by an increase in the

respective isotope ratios above natural background: specifically, 2H-labeling by an increase in the
12C2

2H�/12C2
1H� ratio and 15N-labeling by an increase in the 12C15N�/12C14N� ratio (Figures 1A and S1)

(Guillermier et al., 2017b; Steinhauser et al., 2012). Such increases in labeling are visually represented by

a hue saturation intensity (HSI) transformation, where the blue end of the scale is set at natural abundance

and the upper magenta bound of the scale is set to reveal labeling differences. Importantly, scaling

changes modify the visual representation; however, the underlying quantitative data that are extracted

for each region of interest (ROI) remain unmodified. An additional feature of HSI images is that the pixel

intensity reflects the number of ion counts and as such a pixel with low counts will appear dark. This is partic-

ularly relevant to the 2H measurements, because the electron affinity and hence yield of C2H
� ions is low
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relative to CN�, the ionic species used for 15N measurements. This difference in electron affinity accounts

for some of the 2H-glucose images appearing dark, particularly at the margins of the imaging field.

Although low ion counts limit statistical conclusions from an individual pixel, in the current application

where the selected ROIs are relatively large structures (e.g., whole cells), any given data point is calculated

bymerging the ion counts from the numerous pixels contained within the ROI. As such, regions that appear

dark in the HSI image may still provide isotope ratio data (Figure S1B). In contrast to stable isotope tracers,

incorporation of BrdU in the nucleus of dividing cells is detectable by direct measurement of Br� intensity

(Steinhauser et al., 2012). We observed variability in 2H-glucose and 15N-glutamine labeling between and

within cell lines, spanning 1–2 orders of magnitude in intensity (Figure 1B). For most of the cell lines, we

Figure 1. Heterogeneity of Glucose and Glutamine Utilization by Proliferating Cancer Cells

(A) Cancer cell lines were labeled with a cocktail consisting of 2H-glucose, 15N-glutamine, and bromodeoxyuridine (BrdU) for 12 h. Two representative cell

lines are shown: MALME3M (melanoma) and C4-2B (prostate). 12C14N and 31P mass images reveal cellular borders and details such as nuclei. BrdU

incorporation by cells that divided during the labeling period is indicated by direct measurement of 81Br into nuclei that are also evident in the 12C14N and 31P

mass images (example: large arrow heads). An adjacent BrdU� cell is indicated by a small arrow head. Hue saturation intensity (HSI) images display the

isotope ratio measurements and therefore a map of the incorporation of 2H-glucose and 15N-glutamine. Arrows indicate metabolic labeling hotspots with

features consistent with nucleoli in the 12C14N and 31P mass images. The lower bound of the scale (blue) is set to the background ratio (0%) and the upper

bound (magenta) is set to reveal differences in labeling (150% and 300% above background, respectively). Scale bar, 10 mm.

(B) Dot plot of individual cancer cells, color coded according to cell line (legend). 15N-glutamine and 2H-glucose labeling expressed as percentage above

natural background.

(C) 15N-glutamine labeling of cancer cell lines as a function of BrdU labeling (divided cells are BrdU+).

(D) 2H-glucose labeling of cancer cell lines as a function of BrdU labeling. For (C) and (D): red line = mean; *p < 0.05, **p < 0.001, ***p < 0.0001, two-tailed

t test.

See also Figure S2 and S3.
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observed a significant increase in the distribution of glucose and/or glutamine labeling in the BrdU+ frac-

tion relative to cells that remained BrdU�, consistent with utilization of glucose and glutamine by cancer

cells as substrate for growth.

MIMS measures isotope ratios at the elemental level without molecular specificity, and therefore, an

increased signal may represent incorporation of the parent tracer molecule by different pathways, which

is of relevance to the current application given that both 2H-glucose and 15N-glutamine are metabolized

to diverse fates intracellularly (De Feyter et al., 2018; Xu et al., 2016). For 2H-glucose, it is also possible

that some signal is diluted by proton exchange. Moreover, MIMS sample preparation involves standard his-

tological procedures including fixation and dehydration prior to embedding, and therefore, freely diffus-

ible parent tracer molecules and/or downstream metabolites are lost prior to MIMS analysis. In order to

explore these modifying factors, we performed in vitro stable isotope labeling studies and performed

bulk isotope ratio mass spectrometry (IRMS) to assess how sample processing affects signal and how

the signal may reflect a variety of metabolic fates. We selected IRMS because it is higher throughput

than MIMS, particularly when testing a range of experimental conditions, while providing similarly precise

isotope ratio measurements. For these experiments, we utilized 13C as a glucose label rather than 2H

because our IRMS analysis enables concomitant measurement of carbon and nitrogen isotope ratios

from the same sample. We first tested the degree to which fixation, which disrupts membranes, and sub-

sequent washing diluted labeling. In the two cell lines examined (LOXIMV1 and MALME3M), processing

cells for MIMS resulted in loss of signal relative to unprocessed cells; however, approximately 75% of

the glucose signal and approximately 90% of the glutamine signal was retained during sample processing

(Figures S3A and S3B). Protein synthesis and nucleic acid synthesis are two key components of anabolic

growth, and their biosynthetic products subject to aldehyde fixation, and hence part of the fixable biomass

of the cell. Indeed, when we isolated the protein, DNA, and RNA from cells labeled with 13C-glucose and
15N-glutamine, we detected label incorporation into all three fractions (Figures S3C and S3D). Relative to

unprocessed whole cells, the nucleic acid signal was equal or higher than unprocessed whole cells for both

glucose and glutamine, consistent with contribution of these substrates to nucleic acid synthesis. Incorpo-

ration of both labels into the protein fraction was also detectable, although the contribution of 13C-glucose

to protein was smaller relative to the labeled amino acid 15N-glutamine. The contribution of 13C-glucose

to biosynthetic reactions and the cellular biomass was further demonstrated by comparing labeling by
13C-glucose to 13C-2-deoxy-d-glucose, which like FDG-glucose, is taken up by cells but cannot participate

in glycolysis (Figure S3E). Not surprisingly, 13C-glucose labeling was consistently higher than that achieved

with 13C-2-deoxy-d-glucose, consistent with both its cellular uptake and incorporation into cellular

biomass. Collectively, these data support the concept that MIMS measurement of glucose and glutamine

labeling indicates incorporation of the parent molecule or its metabolites into the fixable cellular biomass,

including pathways critical to growth such as protein and nucleic acid synthesis. Incorporation of label may

reflect direct utilization of the parent molecule by anabolic reactions, for example, the incorporation

of labeled amino acids into newly synthesized protein. Alternatively, the parent molecules may be first uti-

lized by various reactions, including catabolic reactions, with downstream labeled metabolites providing

substrate for an anabolic reaction. Therefore, for the purposes of this manuscript, we apply the term utili-

zation as a descriptor of tracer incorporation arising from anabolic reactions, catabolic reactions, or some

combination of the two.

In these analyses, each data point represented an isotopic measurement of the cellular material contained

within the circumference of the cell, which is a merger of the data of the pixels contained within the cell border.

The measurement still represents a sampling of the cell, however, because only the uppermost atomic layers

are sputtered and ionized (<1 nm). Therefore, we examined the degree to which an assessment of heteroge-

neity would be modified by increasing our resolution to focus on a discrete population of organelles. We used

the BrdU labeling images to precisely define a population of BrdU+ nuclei and then compared the glucose and

glutamine labeling distributions with those obtained from the corresponding whole-cell analyses inclusive of

the nuclei and other intracellular structures (Figure S2). In order to assess relative degrees of heterogeneity be-

tween the twodistributions, we employed themedian absolute deviation (MAD), which we selected as a robust

indicator of dispersion that incorporates all data points, which can be applied to normal and non-normal dis-

tributions and which remains resilient to outliers because all data points are weighted equally (Hampel, 1974;

Martin and Zamar, 1989). For most of the cell lines, the metric of heterogeneity increased as we focused the

analysis on the nucleus rather than the entire cell (Figure S2). These data are consistent with the concept

that, as resolution increases, there tends to be a corresponding increase in observed heterogeneity.
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Figure 2. Heterogeneity of Glucose and Glutamine Utilization in Murine Tumors

(A) Schematic depicting labeling protocol.

(B) Tumor bearing Nf1+/�;Tp53+/� mouse with palpable subcutaneous MPNST was labeled (top). A second tumor

(histiosarcoma, bottom) was identified incidentally in the abdomen. In these representative HSI images, adjacent

imaging fields (50 mm3 50 mm) are tiled together as a mosaic image to cover a larger swath of tissue. The heterogeneity

of glucose and glutamine avidity is shown quantitatively in the respective dot plots on the right, where BrdU+ cells

are red. Arrows identify cells that are intensely 2H-glucose labeled in the histiosarcoma and that correspond to the
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Heterogeneity of Glucose and Glutamine Utilization in Murine Tumors

In order to assess the degree of tumor metabolic heterogeneity in vivo, we utilized MIMS to track labeled

metabolic substrates, using a cocktail consisting of 2H-glucose, 15N-glutamine, and BrdU administered

over 24 h to murine tumor models (Figure 2A). Our choice of label dose reflected our goal to achieve suf-

ficiently high labeling in order to facilitate label detection within a reasonable amount of time and prior

experience with amino acid and glucose metabolic labeling in other physiological or pathophysiological

contexts (Guillermier et al., 2017b, 2019; Zhang et al., 2012). We first labeled an Nf1+/�;Tp53+/� mouse

model of malignant peripheral nerve sheath tumor (MPNST), incidentally finding a second intra-abdominal

histiosarcoma, which in both tumor types is caused by a stochastic loss of wild-type Nf1 and Tp53 alleles.

These tumors revealed intra- and inter-tumor heterogeneity in both glucose and glutamine labeling,

evident in the MIMS images and when the underlying quantitative data was plotted (Figure 2B). Similar

to cultured cancer cells (Figures 1C and 1D), there was a significant upward shift in label incorporation

by the population of divided (BrdU+) cells in both tumors, although the distributions overlapped (Fig-

ure 2B). Importantly, the MPNST and histiosarcoma tumors arose in a genetically engineered mouse model

and therefore may share similar driver mutations; however, the labeling patterns were distinct. The glucose

and glutamine signals were generally correlated in the MPNST (R2 = 0.33, p < 0.0001), whereas such a rela-

tionship was not evident in the histiosarcoma, in part due to a subset of cells with high glucose labeling and

markedly less glutamine labeling (Figure 2C). In a melanoma xenograft model (Figure 2D), we also

observed heterogeneity in label uptake, again finding an increase in the labeling distribution of the

BrdU+ population and a correlation between glucose and glutamine labeling (R2 = 0.45, p < 0.0001), similar

to the MPNST model. When we compared the heterogeneity of the tumors relative to the cell lines using

the metric of dispersion (MAD), we found a generally higher degree of heterogeneity in the tumors relative

to the cultured cancer cell lines, although this was primarily driven by heterogeneity of glucose labeling

(Figure S4).

We next considered the degree to which characterization of heterogeneity was dependent on a method

with single cell resolution. We quantified the isotope ratio and therefore the degree of labeling revealed

by MIMS analyses at different degrees of resolution. In order to accomplish this, we compared data for sin-

gle cell regions of interest (ROIs), relative to data from ROIs that contained progressively larger analytical

territories, thereby simulating lower spatial resolution (Figures 2E and 2F). This analysis demonstrated that

increasing spatial resolution to capture individual cells with MIMS results in a broader distribution and an

increase in the metric of dispersion (MAD). It also underscores what is visually evident in the MIMS images

(e.g., Figure 2D), that variability in glucose and glutamine utilization was evident even in immediately adja-

cent cells occupying a similar tumor environment. Collectively, these initial MIMS data in three different tu-

mor types demonstrate (1) augmentation of glucose and glutamine utilization by proliferating tumor cells

in vivo and (2) a degree of heterogeneity that would not have been revealed with tissue-scale methods.

MIMS Signature of Metabolic Heterogeneity Is Associated with Tumor Cell Proliferation

Having demonstrated heterogeneity of intratumor substrate utilization, we considered its functional

relevance. We turned our attention to a validated therapeutic model: theNf1+/�/Tp53+/�/Suz12+/� model

Figure 2. Continued

glucose-high/glutamine-low cells in the graph on the right (box). Univariate comparisons between BrdU� (blue) and

BrdU+ (red) cells are shown by the box and whisker plots embedded in the graphs: *p < 0.0005, **p < 0.0001, Mann-

Whitney test. Scale bar, 20 mm.

(C) Higher-resolution imaging of a single representative glucose-high, glutamine-low cell surrounded by two glucose-

low, glutamine-high cells, which are also BrdU+ (arrows). Note: 15N-glutamine hotspots in the nucleus co-localizing with

regions of BrdU incorporation. Scale bar, 5 mm.

(D) HSI images of melanoma xenograft. Right: heterogeneity of 2H-glucose and 15N-glutamine labeling is shown

quantitatively in the dot plot, where BrdU+ cells are red. Univariate comparisons between BrdU� (blue) and BrdU+ (red)

cells are shown by the box and whisker plots embedded in the graphs: **p < 0.0001, Mann-Whitney test. Note: y axis log2-

scale. Representative of two tumors similarly labeled. Scale bar, 20 mm.

(E) Dot plots demonstrating the dispersion of MIMS 2H-glucose measurements for different degrees of resolution.

(F) Dot plots demonstrating the dispersion of MIMS 15N-glutamine measurements for different degrees of resolution. For

(E) and (F): each ‘‘Tissue’’ data point is from a region of interest (ROI) encompassing an entire mosaic image and

representing analyses of different tumor regions; ‘‘50 mm’’ indicates data points for 50 mm 3 50 mm imaging fields and

therefore each data point is inclusive of a cluster of cells; ‘‘Single cell’’ indicates the distributions where each data point is

a single cell. Lines super-imposed on dot plots = median.

See also Figure S4.
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of MPNST, which responds to a molecularly targeted combination of an MEK inhibitor (PD901) and a bro-

modomain inhibitor (JQ1) (De Raedt et al., 2014). We administered JQ1/PD901 for 4 days and labeled the

mice in the final day prior to sacrifice in order to test the hypothesis that therapy would select for metabol-

ically distinct subpopulations of tumor cells, thereby compressing heterogeneity (Figure 3A). We also

reasoned that this larger cohort of tumors in a different genetic model would enable assessment of the con-

sistency of our initial observations of metabolic heterogeneity. The tumors in these mice displayed a het-

erogeneous labeling pattern that was similar to data shown in Figure 2 and that was particularly striking

when contrasted to the low level of labeling in peripheral nerves, which contain the cell of origin (Figures

S5 and S6). All of the analyzed tumors, both treated and untreated, displayed a significant correlation be-

tween 2H-glucose and 15N-glutamine labeling (Table S1), similar to what was observed in previously

imaged tumors (Figure 2). All of the tumors also displayed a significant upward shift in the 15N-glutamine

labeling distributions in the subpopulation of BrdU+ cells (Figure 3B), and most of the tumors displayed a

significant upward shift in the 2H-glucose labeling distribution in the BrdU+ cells (Figure 3C). The general

increase in labeling in the fraction of BrdU+ cells suggested that a component of the observed heteroge-

neity was due to tumor cell proliferation. In order to assess this, we compared the metric of dispersion

(MAD) for each tumor, with and without inclusion of the BrdU+ subpopulations (Table 1). When the

BrdU+ subpopulations were excluded, the resultant metabolic labeling dispersions ranged from 78% to

100% of the MAD for the total population. One caveat to consider with analyses restricted to the BrdU-

negative population is the degree to which BrdU labeling captures cycling cells. The BrdU analysis captures

cells that have replicated their genome during S-phase in the 24 h preceding sacrifice of the mouse. We

cannot exclude the possibility that a fraction of highly metabolically labeled, yet BrdU� cells, have been

captured in the process of entering S-phase, in essence an anticipatory augmentation of anabolic pro-

cesses. Nonetheless, these collective data suggest that, although the population of cells that have repli-

cated their genome and other components of biomass as part of cell division do tend to increase statistical

dispersion of metabolic labeling, tumor metabolic heterogeneity is present independent of cell division.

We next assessed for a treatment effect. Consistent with previous observations, themajority of these tumors

began to shrink and the proliferative index of remaining cells—as indicated by the frequency of BrdU+

cells—was reduced (Figure 3D). There was a nonsignificant reduction in heterogeneity as indicated by

the median absolute deviation in both glucose and glutamine labeling (Figure 3E). Notably, the treated tu-

mor with the greatest heterogeneity was the tumor with the highest proliferative index after drug treatment,

thus representing a putative resistant tumor (Figure 3F and indicated by red dot in Figures 3D and 3E). When

we examined the labeling distributions, we discovered a positive correlation between heterogeneity and the

proliferative index (Figure 3G). This relationship was also evident if we restricted the analysis to the subpop-

ulation of BrdU+ cells (Figure S7), suggesting that the augmented heterogeneity in the highly proliferative

tumors was not simply a manifestation of the upward shift and expansion of the labeling distribution due to

the proliferative BrdU+ cells. Contrary to our initial hypothesis, these data suggest that the fastest growing

and/or resistant tumors are not characterized by selection for a dominant metabolically distinct tumor cell

population; instead, the degree of metabolic heterogeneity is predictive of tumor cell proliferation.

MIMS Signature of Metabolic Heterogeneity Is Not Generalizable to Non-malignant Cells

In order to investigate whether heterogeneity in glucose and glutamine labeling is a more generalizable

feature of proliferating cells, we examined the small intestine (Figure 4A), which physiologically replaces

its epithelial cell layer every 3–5 days (Steinhauser et al., 2012). Paneth cells, which are terminally differen-

tiated secretory cells in the crypt, demonstrated intense labeling in their stereotypical granules. The termi-

nally differentiated villus epithelial cells demonstrated a homogeneously intense labeling pattern at the

metabolically active brush border. Given that neither of these terminally differentiated cell populations

divide, it is perhaps not surprising that they would exhibit a more organized labeling pattern. However,

we also examined the stem and transit amplifying cells at the base of the small intestinal crypt, which pro-

liferate under homeostatic conditions and therefore become uniformly BrdU labeled. In contrast to the het-

erogeneity observed in proliferating tumor cells, the proliferating cells in the crypt segregated into a

discrete population based on glucose and glutamine labeling (Figure 4B). As expected, these data confirm

that physiological cell populations also utilize metabolic substrate for anabolism; however, the process is

uniform relative to the pathological cancer state.

Since glucose and glutamine may serve as substrate for both protein and nucleic acid synthesis, we

reasoned that analysis of newly synthesized chromosomes in MPNST mitotic figures would provide insight
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Figure 3. MIMS Signature of Metabolic Heterogeneity Is Associated with Tumor Growth

(A) Experimental schematic. Tumor bearing Nf1+/�; Tp53+/�; Suz12+/� mice were treated with a molecularly targeted

therapy consisting of a bromodomain inhibitor (JQ1: 45 mg/kg/day) and an MEK inhibitor (PD901: 1.5 mg/kg/day).

Therapy consisted of four daily doses. 2H-glucose, 15N-glutamine, and bromodeoxyuridine (BrdU) were administered in

the 24 h prior to sacrifice as in Figure 2.

(B) 15N-glutamine labeling of the BrdU� (gray) and BrdU+ (blue) populations is shown by the violin plots for each tumor

analyzed in the untreated and JQ1/PD901-treated groups.

(C) 2H-glucose labeling of the BrdU� (gray) and BrdU+ (blue) populations are shown by the violin plots for each tumor

analyzed in the untreated and JQ1/PD901 treated groups. For (B) and (C), violin plot line = median *p < 0.05, **p < 0.001,

Mann-Whitney tests.

(D) Frequency of BrdU-labeled cells (proliferative index) in treated versus untreated tumors. Significance assessed by two-

tailed t test.

(E) Median absolute deviation (MAD) as a metric of dispersion/heterogeneity for 2H-glucose (left), 15N-glutamine

(middle), and the product of the two labels (right). The tumor with the highest metric of dispersion (red dot) was also the

tumor with the highest proliferative index in (D).

(F) Images of representative region of treated tumor with the highest proliferative index and highest metric of dispersion

(red dot) reveals bands of rounded cells either lacking the typical phosphorus signal emanating from chromatin or with a

condensed signal consistent with a pyknotic nucleus. Between these dead cells are bands of heterogeneously labeled

cells, many of which were BrdU+, consistent with proliferation through therapy. Scale bar, 5 mm.

(G) Correlations between the degree of heterogeneity (MAD) and the proliferative index for the respective tumor. Similar

findings were noted when the analyses were restricted to the proliferating (BrdU+) subpopulation (Figure S6).

See also Figures S5–S7, Table S1.
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into these biosynthetic pathways (Figure 4C). The proliferative activity in the small intestinal crypt also re-

sults in histologically visible mitotic figures, thereby providing a physiological control relative to pathologic

cancer proliferation (Steinhauser et al., 2012). Although labeling was detectable in the segregating chro-

mosomes in both contexts, the glucose and glutamine signal was more heterogeneous in the mitotic can-

cer cells as indicated by an increased metric of dispersion (median absolute deviation, MAD, Figure 4D),

suggesting that the signal of tumor metabolic heterogeneity extends to the replication of chromosomes.

Mosaic Yap Transgenesis in the Liver Reveals Cell Autonomous and Non-cell Autonomous

Metabolic Reprogramming

One question raised by these data is the degree to which heterogeneity of glucose and glutamine utiliza-

tion by tumors reflects individual cell autonomous genetic programs. In a melanoma xenograft, for

example, we observed rare clusters of similarly glucose-avid cells suggestive of possible metabolically

distinct clones (Figure S8). In the same tumor, we also observed augmentation of substrate utilization in

the core of the tumor relative to the margin. Although we did not observe such visually dramatic clustering

beyond this melanoma, we also considered the possibility that the MPNST tumor cohort might exhibit

more subtle clustering. To test this, we selected highly labeled outlier cells and examined the labeling dis-

tributions of adjacent cells relative to randomly selected cell clusters distant to the outliers. Although lower

than the outliers themselves, cells adjacent to highly labeled outliers demonstrated a modest, yet signifi-

cant, augmentation in glucose and glutamine labeling relative to more distant control populations (Gluta-

mine labeling median = 39.9% versus control = 33.1% above background, p < 0.05; Glucose labeling

median = 79.9% versus control 50.1% above background, p < 0.0001). This observation suggests metabolic

clustering, albeit to a more subtle degree than observed in the melanoma. Such clustering could implicate

a metabolic effect related to the microenvironment, such as differences in oxygen tension or pH, or alter-

natively could arise as a consequence of a genetic subclone (Figure S8). Therefore, as proof of concept, we

tested whether targeted activation of a relevant oncogenic pathway, first in normal tissue, would modulate

glucose or glutamine avidity in a cell autonomous manner. We selected the Yap pathway for overexpres-

sion because it is frequently activated in diverse cancers and it is also known to promote utilization of

glucose and glutamine for anabolic growth (Cox et al., 2016, 2018; Zanconato et al., 2016). We delivered

a hepatocyte-specific Cre-recombinase to activate expression of a doxycycline-inducible Yap transgene

Glutamine Glucose Glutamine X Glucose

Tumor MAD MAD (BrdU�) % Total MAD MAD (BrdU�) % Total MAD MAD (BrdU�) % Total

Untreated tumors

1 11.1 9.5 85.7 12.5 12.6 101.0 1,003.8 893.9 89.1

2 16.7 16.6 99.0 28.0 26.7 95.3 2,353.9 2,194.8 93.2

3 7.2 5.9 81.2 10.9 10.0 92.0 459.6 384.1 83.6

4 19.5 17.5 89.4 30.6 26.1 85.4 3,232.0 2,621.3 81.1

5 7.7 7.7 100.2 15.9 16.0 100.6 698.7 692.1 99.1

JQ1/PD901 treated

1 24.3 22.6 92.9 24.1 22.8 94.9 3,300.3 2,819.0 85.4

2 13.4 12.2 91.1 22.3 20.2 90.5 607.1 476.1 78.4*

3 2.6 2.6 98.1 8.1 8.0 98.9 174.7 171.8 98.3

4 4.5 4.3 94.4 10.1 9.9 98.5 152.0 147.9 97.3

5 9.8 7.9 80.6 9.0 8.4 92.5 516.5 446.4 86.4

6 1.9 1.8 95.7 5.1 5.1 100.0 102.4 100.0 97.7

7 9.6 7.9 82.1 14.9 14.1 94.6 1002.9 872.8 87.0

Table 1. Contribution of the Proliferated Population to MIMS Assessment of Heterogeneity in Malignant Peripheral Nerve Sheath Tumors

Removal of the proliferated (BrdU+) cells from the analyses resulted in a reduction in the metric of dispersion (MAD) that was modest (*max = 21.6% absolute

reduction).
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as previously reported (Yimlamai et al., 2014). This resulted in mosaic Yap activation in the liver as marked

by a tdTomato reporter (Figure 5A). Yap overexpressing hepatocytes augmented 15N-glutamine labeling

relative to control non-transfected cells that was subtle but visually appreciable (Figure 5A) and quantita-

tively evident as an increase in the corresponding 15N-labeling distribution (Figure 5B). We also observed a

subtle negative gradient of 15N-glutamine labeling from extending from the portal triad toward the more

hypoxic environment of the central vein (Figure S9). In contrast to glutamine, the distribution of 2H-glucose

labeling in both Yap+ and Yap� hepatocytes was more heterogeneous; even when we performed a pooled

comparison, we detected no significant difference between the two cell populations (Figure 5C). In regions

of lowest effective Yap transgenesis where there were sufficiently broad swathes of untransfected control

hepatocytes, however, we observed untransfected glucose avid cells clustering with Yap+ cells (Figure 5D).

Specifically, the frequency of glucose-avid outliers—defined as 2H-glucose signal 2s from the mean—

increased as a function of proximity to a Yap+ cell (Figure 5E). Therefore, these data are consistent with

the concept that overexpression of an oncogenic pathway can modulate metabolism both by cell autono-

mous mechanisms and also through effects on neighboring cells, perhaps via paracrine signals.

DISCUSSION

In summary, we have quantified 2H-glucose and 15N-glutamine labeling, together with a label for cell divi-

sion, at subcellular resolution in cancer cell lines and murine tumors with MIMS. In cancer cell lines and

murine tumor models, proliferating cells demonstrated augmented glucose and glutamine utilization,

consistent with the concept that cancer cells avidly utilize both substrates to support biomass (DeBerardinis

et al., 2007; Vander Heiden and DeBerardinis, 2017). Importantly, we also observed intense metabolic la-

beling in non-cancerous, proliferating stem and transit amplifying cells of the small intestinal crypt in mice.

Indeed, it was not the absolute degree of metabolic labeling but its heterogeneity that was most evident in

tumors.

That cancer cells augment utilization of anabolic substrates such as glucose and glutamine to support pro-

liferation and growth is not new, nor is the concept that tumors exhibit metabolic heterogeneity. Metabolic

imaging studies at tissue-scale resolution and metabolic flux analyses of tumor samples have revealed het-

erogeneity of a variety of metabolic parameters (Hensley et al., 2016; Salamanca-Cardona et al., 2017;

Figure 4. MIMS Signature of Metabolic Heterogeneity Is Not Generalizable to Non-malignant Cells

(A) Representative images of small intestine. Top: villus lined by terminally differentiated, non-dividing (BrdU�) epithelial
cells and demonstrating a uniform stripe of labeling corresponding to the brush border (arrows). Bottom: Paneth cells

identifiable by their stereotypical sulfur-rich granules (arrows) are surrounded by proliferating cells (BrdU+) that are stem/

transit amplifying cells. Scale bar, 10 mm.

(B) Dot plot of cells from (E). Individual cell types (color coded) segregate by labeling intensity. Note: only the stem/TA

cells are proliferative (BrdU+). TA, transit amplifying cell.

(C) Mitotic figure from MPNST. Segregating chromosomes (arrows), evident in the 31P images, are also BrdU labeled.

Scale bar, 5 mm.

(D) Dot plot demonstrating heterogeneity of glutamine and glucose labeling of MPNST mitotic figures relative to mitotic

figures from the small intestinal crypt as also indicated by the median absolute deviation: MPNST glucose (MAD = 54.8)

and glutamine (MAD = 35.5) versus crypt glucose (MAD = 36.3) and glutamine (MAD = 1.6).
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Sengupta and Pratx, 2016). However, this study affirms and/or extends prior findings in at least three impor-

tant ways, in demonstrating (1) increased substrate utilization by individual proliferating cancer cells in vivo;

(2) metabolic heterogeneity of individual cancer cells, independent of factors that may confound tissue-

scale analyses such as regional variability in viability (e.g., necrosis) or proliferation; and (3) that

Figure 5. Mosaic Yap Transgenesis in the Liver Reveals Cell Autonomous and Non-cell Autonomous Metabolic

Reprogramming

Mosaic Yap overexpression achieved by administering a hepatocyte-specific AAV-Cre to facilitate doxycycline-inducible

YAP expression. Mice were labeled with 2H-glucose and 15N-glutamine 10 days later.

(A) Left: Immunofluorescence staining of the AAV-reporter (tdTomato). Right: adjacent mosaic HSI image of 15N-

glutamine (12C15N/12C14N) labeling. Arrows: select Yap+ cells reveal visibly higher glutamine labeling. Scale bar, 10 mm.

(B) Left: distribution of 15N-glutamine labeling in wild-type and Yap+ cells. Pooled analysis of all analyzed cells with

significance assessed by Mann-Whitney test. Right: mean 15N-glutamine signal in Yap+ versus wild-type hepatocytes

within each mouse (n = 6, two-tailed, paired t test).

(C) Distribution of 2H-glucose labeling in wild-type and Yap+ cells. Pooled analysis of all analyzed cells.

(D) Top: Representative region with scant Yap+ cells (arrows). Bottom: mosaic HSI image demonstrates clusters of intense
2H-glucose labeled cells in the vicinity of Yap+ cells (asterisks). Scale bar, 20 mm.

(E) Top: Plot of 2H-glucose labeling as a function of linear proximity to the nearest identifiable Yap+ cell. Glucose-avid

cells, defined as those exceeding 2 SD (blue shade) from the mean (dotted line) are shown in red; their frequency as a

function of distance from Yap+ cell is shown in the histogram on the bottom.

See also Figures S8 and S9.
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heterogeneity plays out within small clusters of adjacent cells exposed to similar tumor environments.

Collectively, the degree of heterogeneity demonstrated by MIMS would not have been appreciated

with lower resolution methods operating at tissue scale.

What is the significance of the heterogeneity of MIMS metabolic labeling measurements? Our a priori

hypothesis was that metabolic heterogeneity would be analogous to genetic heterogeneity: that subpop-

ulations of metabolically distinct tumor cells would be programmed for survival and proliferation and there-

fore the emergence of resistant cells would manifest as relatively homogeneous metabolic clones. Instead,

we observed in an MPNST model that heterogeneity of substrate utilization persisted in proliferating cells

that escaped targeted therapy. In addition, the degree of heterogeneity correlated with tumor cell prolif-

eration. We speculate that theMIMS signal of heterogeneity reflects an underlyingmetabolic flexibility that

promotes survival, proliferation, and/or treatment resistance.

Diverse cellular mechanisms may account for the heterogeneity observed in this study. We first considered

the degree to which heterogeneity was driven by increased metabolic labeling due to subpopulations of

dividing cells. Although the metric of heterogeneity used in this study (MAD) generally decreased when we

excluded the population of divided cells from the analysis, the reduction was generally modest, reflecting

substantial overlap in the labeling distributions of the divided (BrdU+) and undivided cell populations. We

also considered the plausibility that heterogeneity of MIMS signal could arise due to underlying genetic

heterogeneity. In the majority of MIMS images, we observed a pattern of chaotic cell-to-cell variability in

labeling, with limited examples of anatomically localized and metabolically distinct clusters, which could

be indicative of a clonal population. In addition, when we directly examined the effect of manipulating a

single oncogenic gene by transgenic activation of the Yap pathway in otherwise normal liver, we found a

pattern of heterogeneity consistent with both cell autonomous and non-autonomous effects. This result

in normal liver provides context to the cancer setting where molecular derangements are compounded

and superimposed on variable cell cycle states, suggesting that the MIMS signal likely reflects a complex

interplay between each cell’s own molecular program, its cell cycle state, and microenvironmental

pressures.

An important question raised by our study is the degree to which metabolic heterogeneity extends to

other tumor types and to human cancer. A potential criticism of mouse tumor models—both those driven

by genetically engineered driver mutations and by human xenografts where the transplantation of cancer

cells may select for proliferative fitness—is that they may be more homogeneous than spontaneous hu-

man cancers (Alizadeh et al., 2015). The extensive precedent of human stable isotope studies and prior

successful translation of MIMS to studies of human cell turnover suggests that this translational question

will likely be addressable, particularly if technical challenges including efficiency of sample analysis and

automation of image analysis and data processing are resolved (Guillermier et al., 2017a; Steinhauser

et al., 2012; Steinhauser and Lechene, 2013). In the current study, we mitigated the throughput limita-

tions of MIMS in part by imaging at less than the maximal lateral imaging resolution (approximately

30 nm). As such, we did not perform analyses at the degree of resolution necessary to resolve organelles

beyond the largest structures, such as nuclei. In light of recent work demonstrating heterogeneity of pro-

tein turnover in individual lysosomes, averaging the MIMS signal over the entire cross-section of each cell

did not directly account for variability in substrate utilization by individual organelles or other intracellular

structures (Narendra et al., 2020). In addition, although the precise measurement of stable isotope

tracers at high spatial resolution is unparalleled, MIMS does not provide molecular specificity beyond

what is conferred by the parent tracer molecule. Therefore, our study may still underestimate the degree

of metabolic heterogeneity exhibited by spontaneously arising human tumors, which may be revealed in

greater mechanistic detail by future integration of MIMS measurements with complementary flux ana-

lyses of pooled cells as achievable with other mass spectrometry methods (Hensley et al., 2016), genetic

or antibody-based reporters of protein markers (Keren et al., 2018), and low-input genomics analyses

(Janiszewska et al., 2015; Patel et al., 2014). In establishing tumor metabolic heterogeneity and its func-

tional significance for individual tumor cells, MIMS holds promise to inform the development of therapies

that target tumor metabolism.

Limitations of the Study

This study reflects limitations inherent to the multi-isotope imaging mass spectrometry platform

(NanoSIMS) used to perform metabolic tracer measurements. Analytical throughput remains a limitation,
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as indicated by the modest number of tumors analyzed in this study. Optimization of analytical strategies

will be required in order to render larger studies and human translational studies more practical. A second

issue relates to the lack of molecular specificity, since isotope ratio measurements track heavy atoms, not

specific metabolites. Given diverse potential metabolic fates of 2H-glucose and 15N-glutamine labels,

intracellular signals indicate substrate utilization via different metabolic pathways.
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Supplemental Figures: 

 
Figure S1. Application of multi-isotope imaging mass spectrometry (MIMS) to cancer, related to 
Figures 1-5. (A) Schematic depicting measurement of glucose and glutamine utilization. Stable isotope 
metabolic tracers and the cell cycle label, bromodeoxyuridine (BrdU), were administered to cultured cells or 
to tumor bearing mice. Histological sections (0.5 µm) are mounted on silicon wafers and analyzed with a 
NanoSIMS instrument, which rasters the sample with a primary Cs ion beam, sputtering the surface atomic 
layers. The ionized fraction is shaped by ion optics and transmitted to the mass spectrometer, where up to 
seven discrete ions are counted in parallel (7 detectors). Mass images of CN, P, and S reveal histological 
details. Direct measurement of Br reveals incorporation of BrdU. The parallel acquisition of rare and common 
isotopic variants enables quantification of isotope ratios and the generation of Hue Saturation Intensity (HSI) 
ratio images. Polyatomic clusters are often used for isotope ratio measurements. For example, due to the 
negligible electron affinity of N, the 15N/14N ratio is instead measured using 12C15N/12C14N. (B) Each pixel 
represents a discrete measurement from a volume with lateral dimensions as low as 30nm and a depth of a 
few atomic layers. In an HSI image, pixels with low ion counts appear dark. In order to achieve sufficiently 
high statistical confidence for each pixel measurement, dwell time at each pixel can be increased and/or 
multiple planes acquired sequentially and summed. If successive planes of increasing depth are summed as 
shown from left to right, each pixel becomes more intense indicative of an improved counting statistic. This 
occurs more rapidly for 12C15N/12C14N due to the higher ion yield. In this study, however, data points were 
derived from regions of interest (ROIs, traced in white) corresponding to individual cells, merging ion counts 
for all of the pixels within an ROI. As a consequence, elevations in the isotope ratio are evident prior to the 
label being visually obvious in the HSI image (right) because the collective ion counts within an ROI provide 
a stronger statistical measure than individual pixels. The graphed data on the right correspond to the ROIs 
outlined in the images on the left demonstrate a reasonably accurate representation of the distribution of 
isotope ratio measurements for the selected ROIs after just one analytical plane. 
  



 
 

 

Figure S2. Heterogeneity of MIMS metabolic labeling increases with improved intracellular resolution 
in cultured cancer cells, related to Figure 1. Cultured cancer cell lines were labeled with BrdU, 2H-
glucose, and 15N-glutamine for 12 h prior to MIMS analysis. Regions of interest (ROI) were selected for the 
BrdU-labeled cells. For each cell, the entire circumference was used to generate an ROI and the 81Br image 
was used to select ROI corresponding to the BrdU-labeled nucleus. The median absolute deviation (M.A.D.) 
metric of dispersion was calculated for the population of BrdU-labeled cells and the corresponding population 
of BrdU-labeled nuclei. (A) M.A.D. for 2H-glucose labeling. * denotes those cell lines (9/12) in which the 
M.A.D. increased in the nuclei relative to corresponding whole cells. B) M.A.D. for 15N-glutamine labeling. * 
denotes those cell lines (10/12) in which the M.A.D. increased in the nuclei relative to corresponding whole 
cells.  

 
 
  



 
 

 

Figure S3. Incorporation of glutamine and glucose label into multiple anabolic pathways of fixable 
biomass by cancer cell lines, related to Figure 1. For each experiment, 13C-glucose, 15N-glutamine, 
and/or 13C-2-deoxy-d-glucose were administered to cultured cancer cell lines for 12 hours. Label 
incorporation was measured with isotope ratio mass spectrometry (IRMS). (A) The effect of sequential 
trypsinization (blue) then fixation and alcohol washing (red) on 13C-glucose labeling was quantified and 
compared to scraped LOXIMV1 and MALME3M cells as a reference. Note y-axis intersect starts at 0.7 (70% 
of scraped cell mean). (B) The effect of sequential trypsinization (blue) then fixation and alcohol washing 
(red) on 15N-glutamine labeling was quantified and compared to scraped LOXIMV1 and MALME3M cells as a 
reference. Note y-axis intersect starts at 0.7 (70% of scraped cell mean). (C) Protein (gray), DNA (blue), and 
RNA (red) was extracted from 13C-glucose labeled cells and the signal in the respective fractions compared 
to whole cells (dashed line). (D) Protein (gray), DNA (blue), and RNA (red) was extracted from 15N-glutamine 
labeled cells and the signal in the respective fractions compared to whole cells (dashed line). (E) For each 
cell line, the 13C-2-deoxy-d-glucose signal was quantified relative to the 13C-glucose signal (dashed line) after 
cultured cells were labeled in parallel. The 13C-2-deoxy-d-glucose signal, which represents glucose uptake 
only, was consistently lower than 13C-glucose, which is both taken up and metabolized via catabolic and 
anabolic pathways. Box plots (A-D) show mean line, max/min, 3 technical replicates. Dot plot in E shows 
mean line, 3 technical replicates. 
 

 
 



 
 
 

 

Figure S4. Heterogeneity of murine tumors relative to cultured cancer cell lines, related to Figures 1-
2. The median absolute deviation (M.A.D.) is a robust, non-parametric representation of dispersion that is 
resilient to outliers yet inclusive of all data points. We utilized the M.A.D. metric of dispersion to describe and 
compare MIMS labeling distributions within and between cell types and tumors. This graph compares the 
M.A.D. for the analyzed cell lines (Figure 1, blue circles) and our initial round of tumors (Figure 2, red 
squares). The tumors generally displayed greater heterogeneity than the cultured cells lines, particularly with 
respect to 2H-glucose utilization. 
 
  



 
 

 

Figure S5. Heterogeneous substrate labeling in MPNST relative to normal peripheral nerve sheath 
cells, related to Figures 3. (A) Peripheral nerve shown in cross section. The myelin sheaths containing 
cells of origin for MPNST are evident in the 31P image. HSI images demonstrate scattered puncta of low-level 
labeling. (B) Dot plot of the quantitative data for A (red circles) and shown relative to a representative 
MPNST. The MPNST demonstrates both increased absolute labeling and increased heterogeneity of 
labeling. 

  
  



 
 

 

Figure S6. Metabolic heterogeneity of murine malignant peripheral nerve sheath tumors in Nf1+/-
/Tp53+/-/Suz12+/- mice, related to Figure 3. (A) Representative examples of highly labeled, BrdU+ cells 
(small arrows) near less intensely labeled BrdU- cells (hatched arrow heads), examples where the putative 
divided cells demonstrated augmentation of labeling. (B) Representative examples of highly labeled, but 
BrdU- cells (hatched arrow head), comparable to BrdU+ cells (small arrows). (C) Representative example of 
discordant 2H-glucose (low) and 15N-glutamine (high) labeling in BrdU+ cells (small arrow).  
  



 
 

 

Figure S7. Metabolic heterogeneity of murine malignant peripheral nerve sheath tumors in Nf1+/-
/Tp53+/-/Suz12+/- mice as a function of proliferative index, related to Figure 3. Correlations between the 
degree of heterogeneity (M.A.D.) in the BrdU+ tumor cell populations and the overall proliferative index for 
the respective tumor. (A) 2H-glucose dispersion versus proliferative index. (B) 15N-glutamine dispersion 
versus proliferative index. (C) Dispersion of the glucose-glutamine product versus proliferative index. Similar 
findings as shown here in A-C were noted when the analysis included all cells (BrdU+ and BrdU-) as shown 
in Figure 3.  

 
  



 
 

 
Figure S8.  Metabolic clustering in melanoma xenograft and MPNST, related to Figure 5. (A) Xenograft 
model administered 2H-glucose and 15N-glutamine for 5 days, twice daily I.P. dosing. Left: region from tumor 
margin. Right: region from tumor core. Scale=20µm. (B) Dot plot of 2H-glucose and 15N-glutamine labeling, 
color-coded according to margin (red) versus core (blue). Note: Y-axis is log2 scale. (C) In the core, there 
were scattered clusters of glucose avid cells. Higher resolution images of the region highlighted by the white 
box in (A) are shown. Scale=20µm. (D) MPNST tumors (pooled analysis of 5 untreated tumors) analyzed for 
evidence of more subtle metabolic clustering. Labeling outliers (n=159 15N-glutamine Tukey outliers; n=145 
2H-glucose Tukey outliers) were identified and compared to adjacent cells (“Outlier neighbors”). Subsets of 
tumor cells distant to the outliers were selected as controls (generated randomly by JMP 14.0) and 
compared to their adjacent cells. The “Distant” subset (n=159) demonstrated similar labeling as the 
population of adjacent cells (“Distant neighbors”). In contrast, cells adjacent to the highly labeled outliers 
were less labeled than the outlier population, but slightly higher than the more distant populations. This 
suggests that the outlier cells were anchoring clusters of cells that tended to be more highly labeled, either 
due to genetic effects or to non-cell autonomous effects of a shared microenvironment. Violin plots with 
median line: *p<0.05; **p<0.0001; n.s.=not significant. A Kruskal Wallis Test (nonparametric) was applied 
followed by Dunn’s correction for the multiple comparisons indicated in the graph. 



 
 

 

Figure S9.  Liver zonation effect on 15N-glutamine labeling (related to Figure 5). (A) Representative 15N-
glutamine MIMS image, demonstrating increased 15N-labeling near the portal zone of the liver. Scale=20µm. 
(B) Representative dot plot of 15N-glutamine labeling of hepatocytes as a function of distance from portal 
triad.  

 
  



 
 
Supplemental Table: 
 
 
Table S1. Correlation between glucose and glutamine utilization by malignant peripheral nerve 
sheath tumors (MPNST, related to Figure 3). MIMS revealed a statistically consistent, but variable degree, 
of correlation between glucose (2H-labeling) and glutamine (15N-labeling) utilization. 
 
Tumor Spearman Rho p-value 
Untreated tumors   

1 0.6980 <0.0001 
2 0.6497 <0.0001 
3 0.5582 <0.0001 
4 0.8042 <0.0001 
5 0.5492 <0.0001 

   
JQ1/PD901 
treated 

  
1 0.7432 <0.0001 
2 0.8646 <0.0001 
3 0.5410 <0.0001 
4 0.2562 <0.0001 
5 0.6757 <0.0001 
6 0.4857 <0.0001 
7 0.5929 <0.0001 

   

 
  



 
 
Transparent Methods: 
 
Cell Lines 
 Human cancer cell lines utilized in this study, included: breast cancer lines BT474 (purchased from 
ATCC), T47D (ATCC), ZR751 (ATCC); prostate cancer lines C42B (ATCC), PC3 (ATCC); lung cancer lines 
H1573 (ATCC), H1944 (ATCC), H2030 (ATCC); melanoma lines Hs695T (ATCC), LOXIMVI (NCI/DCTD), 
MALME3M (ATCC); and pancreatic cancer line PANC10.05 (ATCC).  
 
Mice  
 Studies were approved by the Brigham and Women’s Hospital Institutional Animal Care and Use 
Committee. We utilized two genetically engineered mouse models of malignant peripheral nerve sheath 
tumors (MPNST), both of which have previously been described(Cichowski et al., 1999; De Raedt et al., 
2014): the Nf1+/-/P53+/- and the Nf1+/-/P53+/-/Suz12+/- mouse models, inclusive of males and females. MPNSTs 
were identified in adult mice within the first year of life by their appearance as palpable tumors in the 
subcutaneous tissues and then verified histologically by their stereotypical appearance consisting of fascicles 
of spindle cells with elongated and wavy nuclei. For the treatment study of tumors arising in the Nf1+/-/P53+/-

/Suz12+/- model, we utilized a previously validated and molecularly targeted therapeutic combination of JQ1 
and PD-0325901(De Raedt et al., 2014). JQ1 (45 mg/kg) was administered by daily intraperitoneal injection 
in a 10% (2-hydroxypropyl)-β-cyclodextrin solution (C0926, Sigma). PD-0325901 was administered by daily 
oral gavage at 1.5 mg/kg (vehicle (0.5% (w/v) methylcellulose solution with 0.2% (v/v) polysorbate 80 (Tween 
80)).  
 For melanoma xenografting, nude mice were inoculated subcutaneously with 3 × 106 human 
melanoma cells (A375) as previously described(Maertens et al., 2013). Tumor volumes were calculated by 
measuring length and width of the lesions and with the formula [(length) × (width)2 × 0.52]. When tumors 
were growing in log phase, mice were labeled with the stable isotope tracer cocktail.  
 Mosaic Yap activation in the liver was achieved using a previously described mouse model(Yimlamai 
et al., 2014). A hepatocyte-specific Cre-expressing adeno-associated virus (AAV-Cre) was intravenously 
delivered to mice containing inducible alleles for tetracycline-inducible expression of YAP S127A (a 
constitutive-active form of YAP) and a reverse tetracycline-controlled transactivator (TetOYap). Subsequent 
doxycycline administration leads to mosaic activation of transgenic YAP. Genetically recombined 
hepatocytes express tdTomato, which was detected with an anti-RFP antibody (Rockland Antibodies).   
 For acquisition of tissues, mice were administered a lethal dose of ketamine/xylazine, the chest was 
opened and the mice were perfused with PBS followed by 4% paraformaldehyde via cannulation of the left 
ventricle. Tissues were excised and placed in 4% paraformaldehyde at 4°C for additional fixation overnight. 
The tumors were excised including the surrounding tissue and cut into smaller slices extending from the 
tumor margin into the tumor core to facilitate penetration of fixative. Regions from the tumor margin and 
tumor core were used for embedding and subsequently processing for MIMS analysis. Regions of grossly 
evident necrosis were avoided. 
 
Multi-isotope imaging mass spectrometry (MIMS) 

Stable isotope tracers were purchased from Cambridge Isotope Laboratories. Bromodeoxyuridine 
(BrdU) was purchased from Sigma. For cell culture experiments, the culture medium (RPMI-1640, Corning) 
was supplemented with BrdU (10 µM), 15N-glutamine (30 mg/L), and 2H-glucose (200 mg/L). For mouse 
studies, a labeling cocktail consisting of BrdU (500µg/dose), 2H-glucose (50mg/dose), and 15N-glutamine 
(5mg/dose) was administered by intraperitoneal injection every 12 hours. Fixed (4% paraformaldehyde) cell 
pellets or mouse tissues were embedded in EPON, sectioned to 0.5 microns, and mounted on silicon wafers. 
Samples were gold-coated and analyzed with the NanoSIMS 50L (CAMECA) at the Brigham and Women’s 
Hospital Center for NanoImaging. 15N-glutamine labeling was quantified by measuring the 12C15N–/12C14N–

ratio as previously described(Kim et al., 2014; Steinhauser et al., 2012). 2H-glucose labeling was quantified 
by measuring the 12C22H–/12C22H– as previously described(Guillermier et al., 2017a; Guillermier et al., 2017b). 
Sections of cell pellets and tumors were analyzed in automated chain analysis mode, with each tile acquired 
at 256 x 256 pixels, 50 µm x 50 µm field size. This automated approach augmented throughput by facilitating 
data collection during off hours and also allowed for visualization of larger swaths of a given section. Images 
were viewed and processed, using a custom plugin to ImageJ (OpenMIMS 3.0: 
https://github.com/BWHCNI/OpenMIMS). Regions of interest (ROI) were selected for nucleated tumor cells 
utilizing12C14N-, 31P-, and 32S- mass images. When automated analyses are viewed as a mosaic image of 
sequential tiles, some edge artifacts become evident at the margins between adjacent tiles. Cells that were 



 
 
not well visualized due to insufficient ion counts or due to imprecise alignment of adjacent tiles were 
excluded from the analysis. Because the images are derived from measurements from the uppermost atomic 
layers of the section, however, the chain analyses leave abundant tissue in the z-axis to reanalyze specific 
areas of interest when additional imaging resolution is desired or when crucial features are captured at the 
juncture between two adjacent fields.   
 
Isotope ratio mass spectrometry (IRMS)  

For the analyses detailed in Figure S3, pooled cells or cellular fractions were analyzed by IRMS, as 
previously described(Hosios et al., 2016; Kim et al., 2014; Zhang et al., 2018). Briefly, samples were pipetted 
into tin cups (Elementar) and dried at 60C. Prior to analysis, each tin cup was crushed and sequentially 
introduced to an elemental analyzer (Vario PYRO Cube, Elementar) coupled to an IRMS (Isoprime 100, 
Elementar). Tuning was confirmed with urea standards, and samples obtained from unlabeled cells were 
used as an additional control for the natural background ratio. 15N-labeling was detected as signal above the 
natural 15N/14N ratio (15N/14N = 0.37%). 13C-labeling was detected as signal above the natural 13C/12C ratio 
(13C/12C = 1.11%). 
 
Statistics 

Descriptive statistics, such as the median absolute deviation (M.A.D. = median (|x-median(x)|).), 
were generated by JMP Pro 13.0 or 14.0 (SAS). Data were graphed and statistical analyses performed with 
JMP or Prism 7/8 (Graphpad). Normality was assessed using a Shapiro-Wilk test. For comparisons of two 
normally distributed data sets, we performed a two-sided t test. For non-parametric data consisting of two 
groups, we performed a Mann-Whitney test.  
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