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ABSTRACT

mRNA translation plays an evolutionarily conserved
role in homeostasis and when dysregulated con-
tributes to various disorders including metabolic and
neurological diseases and cancer. Notwithstanding
that optimal and universally applicable methods are
critical for understanding the complex role of trans-
lational control under physiological and pathologi-
cal conditions, approaches to analyze translatomes
are largely underdeveloped. To address this, we
developed the anota2seq algorithm which outper-
forms current methods for statistical identification of
changes in translation. Notably, in contrast to avail-
able analytical methods, anota2seq also allows spe-
cific identification of an underappreciated mode of
gene expression regulation whereby translation acts
as a buffering mechanism which maintains protein
levels despite fluctuations in corresponding mRNA
abundance (‘translational buffering’). Thus, the uni-
versal anota2seq algorithm allows efficient and hith-
erto unprecedented interrogation of translatomes
which is anticipated to advance knowledge regarding
the role of translation in homeostasis and disease.

INTRODUCTION

Regulation of gene expression is a multi-step process
including transcription, mRNA-processing, -transport, -
stability, -translation and protein stability (1). Although
the precise relative contribution of each of these processes
to corresponding protein levels remains controversial (2)
and context dependent (3,4), several studies have impli-

cated mRNA translation as a key mechanism which de-
termines the composition of the proteome (5,6). Notably,
rapid adaptation to changes in the cellular environment
requires precipitous adjustment of the proteome which is,
in addition to protein degradation, largely accommodated
by altering the efficiency of mRNA translation (7). Di-
rect transcriptome-wide quantification of translational ef-
ficiency is therefore required to enhance the understand-
ing of how protein levels are regulated in response to a va-
riety of stimuli and stressors, and in normal vs. diseased
cells. Under most conditions, the number of ribosomes
associated with an mRNA is proportional to its trans-
lational efficiency (8). Transcriptome-wide measurement
of translational efficiency is therefore commonly deter-
mined using polysome- or ribosome-profiling techniques.
For polysome-profiling (9), the pool of efficiently translated
mRNA (commonly mRNA with >3 bound ribosomes) is
isolated, whereas in ribosome profiling (10) ribosome pro-
tected fragments (RPFs) are generated. Both polysome- and
ribosome-profiling also involve isolation of total mRNA.
Expression levels of polysome-associated mRNA or RPFs
and total mRNA are then quantified using RNA sequenc-
ing (RNAseq) (10,11). Advantages and limitations of these
methods have been extensively reviewed elsewhere (12–16).

A paramount challenge during identification of changes
in translational efficiencies is that amounts of polysome-
associated mRNA and RPFs can also be influenced by
steps in the gene expression pathway which modulate to-
tal mRNA levels (e.g. transcription and/or mRNA stabil-
ity; Figure 1A). Analysis of bona fide changes in transla-
tional efficiency therefore requires identification of changes
in amounts of polysome-associated mRNA or RPFs that
are independent of changes in corresponding total mRNA
levels. To this end, the analysis of translational activity (an-
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Figure 1. Analysis of differential translation using Xtail or babel is associated with increased false positive findings. (A) Gene expression may be modulated
via changes in translational efficiency leading to altered protein levels (top panel); buffering wherein the ribosome occupancy of the mRNA remains
unaltered despite changes in corresponding mRNA level (middle panel); and congruent changes in mRNA abundance and its ribosome occupancy. (B)
Hierarchical clustering of a simulated dataset with a control and treatment condition including polysome-associated mRNA and total mRNA samples
where no mRNAs are regulated (i.e. a NULL model; data provided in Supplementary file 2). (C) P-value and FDR density plots for analysis of differential
translation comparing treatment to control for each method using the data from (B).

ota) algorithm (17) applies per-gene analysis of partial vari-
ance (APV) (18) coupled with variance shrinkage (19). This
approach is superior to methods comparing differences
in log-ratios (i.e. between polysome-associated mRNA or
RPFs and total mRNA, commonly referred to as trans-
lational efficiency [TE] scores) across experimental condi-
tions, inasmuch as log-ratio based approaches do not ef-
ficiently adjust changes in polysome-associated mRNA or
RPFs for changes in total mRNA levels due to spurious
correlations (20). Spurious correlations were initially de-
scribed by Pearson in 1896 (21) and imply that the log-ratio
of polysome-associated mRNA or RPFs to total mRNA
levels, can systematically correlate with total mRNA levels.
This can lead to false positive identification of alterations
in translational efficacy and consequent misinterpretations
of biological phenomena. Such spurious correlations are
abundant in both polysome- and ribosome-profiling stud-
ies suggesting that log-ratio based approaches should be
avoided (20).

A recent study evaluated anota for analysis of RNAseq
data and concluded its poor performance for identification
of differential translation (22). Anota, however, was devel-
oped for normalized data on a continuous logarithmic scale.
In the study in question, anota was inappropriately applied
on non-normalized and non-transformed count data orig-
inating from RNAseq studies. Several methods specifically
developed for analysis of RNAseq data are available within
the commonly used statistical programming language ‘R’,

including babel (23) and Xtail (22). Moreover, DESeq2 (24)
which was developed for analysis of differential gene expres-
sion using RNAseq data has also been employed for analy-
sis of differential translation (25). However, all these meth-
ods use log-ratios (or equivalent analysis) and therefore may
suffer from spurious correlations. This highlights a need to
develop an algorithm for analysis of changes in translation
efficiencies applicable to RNAseq data which, similarly to
anota, is not affected by spurious correlations.

Traditionally, changes in translational efficiencies are
thought to modulate levels of encoded proteins under con-
ditions wherein corresponding mRNA levels are not al-
tered in a similar fashion (Figure 1A). Emerging data, how-
ever, point to an additional mode for regulation of trans-
lation, whereby translational mechanisms are employed to
maintain protein levels via feedback loops compensating for
changes in corresponding mRNA levels. For example, levels
of polyamines are tightly regulated via a negative feedback
loop involving antizyme (OAZ) that induces degradation
of ornithine decarboxylase (ODC), a rate-limiting enzyme
for polyamine synthesis (26). An increase in polyamine lev-
els leads to a +1 ribosome frameshift during translation of
the OAZ mRNA which is required to synthesize the ac-
tive OAZ protein (26,27). Thus, it is expected that altered
levels of the OAZ mRNA will be compensated by transla-
tional mechanisms, which sense polyamine levels. Similarly,
the level of the AMD1 protein, whose synthesis is modu-
lated by polyamines via a mechanism involving an upstream
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open reading frame (28), is not expected to be affected by
the amount of mRNA but rather the level of polyamines.
These examples highlight that regulation of translation can
act as a buffering mechanism which gatekeeps the proteome
to maintain homeostasis. Larger scale studies also support
that mRNA translation can act as a buffering mechanism
to preserve protein levels despite fluctuations in mRNA
levels. In bacteria, translation equilibrates protein complex
stoichiometry (29) and protein levels of conserved path-
ways across species (30) despite differences in mRNA levels.
Similarly, in humans, co-expression of mRNAs transcribed
from spatially proximal genomic locations is lost via post-
transcriptional mechanisms such that protein co-expression
is instead observed for functionally related proteins whose
encoding mRNAs are transcribed from different genomic
regions (31). Furthermore, translational buffering was also
reported to compensate for inter-individual, inter-species
and inter-tissue differences in mRNA levels (32–35). Al-
though the scopes and the biological contexts of trans-
lational buffering mechanisms are still being established,
these examples indicate an urgent need for algorithms en-
abling efficient separation of changes in translation affect-
ing protein levels from those maintaining proteome home-
ostasis.

Herein, we describe the universal anota2seq algorithm
for analysis of changes in translational efficiencies using
either continuous (e.g. DNA-microarray) or count (i.e.
RNAseq) data as input. Furthermore, anota2seq is not af-
fected by spurious correlations, outperforms other methods
and is the only algorithm to date which allows statistics-
based separate identification of changes in translational ef-
ficiencies affecting protein levels and buffering.

MATERIALS AND METHODS

Retrieval and processing of polysome-profiling data

Already processed RNAseq count data were obtained from
published studies (11,36,37) available at the Gene Ex-
pression Omnibus (GEO) (38) with accession numbers
GSE99909, GSE90070 and GSE35469. From these data
sets, specific conditions were selected and used in our analy-
sis. From Liang et al. (11), we used all total mRNA and op-
timized sucrose gradient polysome-associated mRNA sam-
ples; from Guan et al. (36), we selected the control, thapsi-
gargin 1 h and thapsigargin 16 h samples; and from Hsieh
et al. (37), we selected data from the DMSO and rapamycin
conditions. Genes that could not be resolved (i.e. based
on sequence similarity), were duplicated in the count ta-
ble or had 0 counts in at least one sample were removed.
Data from all studies were normalized using the TMM-
log2 (39) approach [used in Figure 5C and D and Supple-
mentary Figure S4B top right, bottom right]). Additionally,
data from Guan et al. (36) were also processed and used to
simulate RNAseq data as described below. DNA- microar-
ray polysome-profiling data from Parent et al. (40) were
retrieved from ArrayExpress (41) with accession number
E-MEXP-958. The data were normalized using the rma()
function (default settings) of the oligo package (42) (data
were used in Supplementary Figure S4B).

Retrieval and processing of ribosome-profiling data

Raw sequencing files from a recent study (43) were obtained
from GEO (GSE89183). Only samples of the shLuc (con-
trol), shRPL5 and shRPS19 conditions were used. Reads
from RPFs were trimmed for adapter sequence ‘AGATCG-
GAAGAGCACACGTCTG’ and reads shorter than 26 or
longer than 32 bases were discarded. RNAseq reads orig-
inating from total mRNA and RPF sequencing libraries
were then aligned to hg38 (gencode release 29 GRCh38.p12)
using bowtie (settings –best –strata –m 1 –l 25 –a). Uniquely
aligned and unmapped reads were then aligned to the full
transcript or the protein coding region (the latter only for
RPF reads) of protein coding mRNAs defined by RefSeq
(44) using bowtie (settings –best –strata –m 1 –norc –l 25 –
a). When there were multiple RefSeq mRNAs for the same
gene, the one with the largest number of mapped reads
across all samples was used for downstream analysis.

RNAseq data simulation

Method performance comparisons were done using simu-
lated data. In order to obtain simulated data with realis-
tic characteristics of polysome profiling data quantified by
RNAseq, we first estimated means and dispersions from an
empirical data set and sampled from negative binomial dis-
tributions (NB) using these parameters. We used the em-
pirical RNAseq data produced in Guan et al. (using the
thapsigargin 16 h treatment condition) (36) and the sim-
ulation methods described in (45) with several modifica-
tions as described below. We simulated 4 replicates of 2
conditions referred to as ‘control’ and ‘treatment’. In ad-
dition to a set of unchanged mRNAs between the two con-
ditions, three sets of regulated mRNAs were simulated to
reflect: changes in translational efficiency affecting protein
levels (i.e. a change in polysome-associated mRNA inde-
pendent of a change in total mRNA; Figure 1A; referred to
as ‘translation set’ below); translational buffering (a change
in total mRNA that is not reflected by a similar change
in polysome-associated mRNA; Figure 1A; referred to as
‘buffering set’ below); and mRNA abundance (i.e. a congru-
ent change in polysome-associated and total mRNA; Fig-
ure 1A; referred to as ‘mRNA abundance set’ below). Each
set is represented by 5% of all mRNAs (total number of sim-
ulated mRNAs was 9856).

In detail, four replicates of control and treatment condi-
tions were simulated using the following parameterization
for the NB distribution:

Ygi ∼ NB
(
mean = μgi , var = μgi φ̂gi

)

where Ygi is the simulated RNAseq count for gene g and
RNA source i (i.e. polysome-associated or total mRNA).
The mean μgi and dispersion φgi were estimated from the
empirical data using maximum likelihood estimates μ̂gi and
φ̂gi with

μ̂gi = 1
R

∑

r

Kgir

where R is the number of replicates and Kgir the RNAseq
read count for the empirical gene g, RNA source i and repli-
cate r. The φ̂gi parameter was obtained by maximizing the
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log-likelihood function described (45,46) using a custom R
script (kindly provided by Charlotte Soneson, University of
Zürich). In the script, the nlm() function was used with pa-
rameter settings (P = 10; gradtol = 1e–6; iterlim = 25) to
achieve convergence for all genes. The μ̂gi and φ̂gi param-
eters were then applied to generate an NB distribution for
simulation of 9856 transcripts in 4 control-condition repli-
cates. We used the rnbinom() function of the stats R pack-
age with parameter size of 1

φ̂gi
.

For unchanged mRNAs (i.e. not belonging to any of the
regulated sets), the treatment condition was sampled from
a distribution with μ̂gi and φ̂gi identical to the control con-
dition for that gene. For sets of regulated mRNAs, these es-
timates were used as base parameters and then modified as
follows:

For transcripts belonging to the translation set (Fig-
ure 1A; 493 mRNAs, similar number of up- and down-
regulation), the base parameters were used to simulate to-
tal mRNA for both conditions and polysome-associated
mRNA for the control condition. The mean and dispersion
parameters used to simulate polysome-associated mRNA
under the treatment condition were modified as follows: an
effect parameter αg for upregulation was sampled from a
vector containing values from 1.5 to 3 with steps of 0.2. For
down regulation the effect parameter was modified to 1/αg.
The modified mean parameter was then αgμ̂gi (or 1/αgμ̂gi
for down regulation). In order to keep the mean-variance
relationship as similar as possible to the empirical data,
the modified dispersion was taken as the dispersion of the
transcript from the empirical data having the closest mean
estimate to αgμ̂gi (or 1/αgμ̂gi for down regulation). Simi-
larly, for transcripts belonging to the buffering set (Figure
1A; 493 mRNAs), base parameters were used for polysome-
associated mRNA (both conditions) and total mRNA (con-
trol condition). The effect parameter was introduced dur-
ing simulation of total mRNA under the treatment condi-
tion and applied as described above for the translation set.
For transcripts in the mRNA abundance set, base param-
eters were used for total and polysome-associated mRNA
under the control condition. The same effect parameter was
then introduced to modify the base parameters of the distri-
bution from which total and polysome-associated mRNA
were sampled under the treatment condition; and applied
as described above for translation. Transcripts with a simu-
lated count of zero in any sample were removed before anal-
ysis. To assess the reproducibility of the simulation, five such
data sets were simulated. Means as well as standard devia-
tions over the five data sets are provided for different metrics
(e.g. number of identified mRNAs and area under the curve
(AUC) for receiver operating characteristics (ROC) curves,
see figure legends for more details). An example sampled
data set is supplied as Supplementary File S1.

To assess the ability of methods to control for type I
error/false discovery rate in the absence of any true regu-
lation between control and treatment, we also simulated a
NULL data set using base parameters for all mRNAs in
both conditions (i.e. all mRNAs are unchanged; the NULL
data set is supplied as Supplementary File S2). Moreover,
we simulated data sets without mRNAs in the buffered set
(i.e. only containing simulated mRNAs of the unchanged,

mRNA abundance and translation sets); data sets with in-
creased variance (where a percentage of each count [5%,
10%, 15%] is added or subtracted [same probability to add
or subtract]); and data sets with increasing total number of
RNAseq reads (2.5, 5, 10 and 15 million RNAseq reads per
sample). The latter was achieved by obtaining μ̂gi and φ̂gi
parameters using empirical data on which the total num-
ber of counts has been reduced (e.g. for 2.5 million reads
for each RNA source, condition and replicate, we sampled
2.5 million reads from the total available amount of reads
mapped to mRNAs). The μ̂gi and φ̂gi parameters of the
empirical data with reduced total counts were then used
as input for the NB distribution to simulate data sets with
reduced sequencing depths using the approach described
above. To assess the impact of varying sequencing depths
across samples, μ̂gi and φ̂gi parameters obtained from em-
pirical data with 15 or 5 million reads were used and 25%,
50% or 75% of the samples were substituted with samples
generated with μ̂gi and φ̂gi parameters estimated from em-
pirical data with a sequencing depth of 2.5 million reads.

Comparison of methods for analysis of differential transla-
tion using simulated data

We compared anota2seq (version 1.2.0 deposited at Bio-
conductor) to tools available in the statistical programming
language ‘R’ for analysis of the translatome: babel (23) (ver-
sion 0.3.0), DESeq2 (24) (version 1.20.0), Xtail (22) (version
1.1.5) and translational efficiency score (TE-score, calcu-
lated using a custom function). All analyses were performed
using R (version 3.5.0). Identical simulated count data were
used as input for babel, DESeq2 and Xtail. For TE-score
analysis, counts were normalized using DESeq2 (normal-
ization for library size using the median ratio method) and
log2 transformed. In anota2seq, counts are either rlog (24)
or TMM-log2 (39) normalized/transformed. Similar to an-
ota (17), anota2seq combines APV (18) and the Random
Variance Model (RVM) (19) and uses a two-step process
that firstly assesses the model assumptions for (i) absence
of highly influential data points, (ii) common slopes of sam-
ple classes, (iii) homoscedasticity of residuals and (iv) nor-
mal distribution of per gene residuals. Anota2seq then per-
forms analysis of changes in translational efficiency affect-
ing protein levels or buffering using APV and RVM. Babel
and Xtail were applied using default parameters. DESeq2
(24) was applied as previously described (25). TE-scores
were calculated as the difference between conditions in log2-
ratios (between polysome-associated and total mRNA).
Statistics for changes in TE were calculated using Stu-
dent’s t-test (P-values were adjusted using the Benjamin–
Hochberg approach) (47). When applying default settings,
RiboDiff (48) essentially provides a python implementation
of the DESeq2 approach applied herein. For all methods,
ROC and AUC analyses were performed on reported P-
values prior to any filtering (for anota2seq, this is the output
called ‘full’ from the anota2seqGetOutput function). When
reporting numbers of identified mRNAs at false discovery
rate (FDR) thresholds, default filtering was applied (after
fitting all gene-level APV models, anota2seq allows the user
to filter the results to exclude unrealistic APV models to re-
duce the number of false positives; this is the default output
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called ‘selected’ from the anota2seqGetOutput function).
The outputs from all methods for the NULL data set and
the data set containing translation, buffering and mRNA
abundance sets of mRNAs are provided as Supplementary
Files S1–2.

Re-analysis of the simulated data set from Xiao et al.

The simulated data set from Xiao et al. (22) was retrieved
from the published supplementary files. Simulated true pos-
itive events by the authors (Supplementary Figure S4B; top
left) were reclassified into translation, mRNA abundance
and buffering sets based on fold change thresholds (Sup-
plementary Figure S4C). We then applied anota2seq, babel,
DESeq2, TE-score and Xtail on the simulated data set and
evaluated algorithm performance using the reclassified un-
changed, mRNA abundance, buffering and translation sets
(Supplementary Figure S4C).

Analysis of the empirical data sets using anota2seq

RNAseq data from Liang et al. (11) and Guan et al. (36)
were analyzed for changes translational efficiencies affect-
ing protein levels using the anota2seq algorithm. To assess
the impact of batch effect adjustment, the analysis of data
from Liang et al. was performed with and without includ-
ing the replicate as a covariate in the models (using the
‘batchVec’ parameter in anota2seq). No batch effect adjust-
ment was performed on data from Guan et al. (36). To assess
the need for replication, subsets of two or three replicates
were re-analyzed (all possible combinations of two or three
samples were used and averages of mRNAs passing thresh-
olds were calculated). Of note, anota2seq analysis can be
performed on two replicates per condition if at least three
conditions are included in the models. Thus, models from
Guan et al. data were fitted on data from three conditions
(control, Thapsigargin 1 h, Thapsigargin 16 h) and only the
‘Thapsigargin 16 h versus control’ contrast was considered.
A similar approach was used for ribosome profiling data
from Khajuria et al. (43) where three conditions (shRPS19,
shRPL5 and shLUC) with two replicates each were used
as input for anota2seq analysis with adjustment for repli-
cate number (i.e. via the ‘batchVec’ parameter). Raw read
counts were normalized using the ‘normalize’ parameter in
the anota2seqDatasetFromMatrix() function set to ‘TMM-
log2’. We focused on the contrast comparing shRPS19 to
shLuc. Transcripts were considered significantly changing
their translational efficiency leading to altered protein lev-
els or translational buffering when passing default filtering
criteria in anota2seq (except for the FDR which was set to
<0.10 using the ‘maxPAdj’ parameter of the anota2seqRun
function).

R-packages and settings

Hierarchical clustering and principal components analysis
(PCA) plots were generated using the hclust() and prcomp()
R-functions, respectively (all using default settings). Re-
ceiver operating characteristics (ROC) curves, area under
the curve (AUC), partial AUC (pAUC) and precision recall
curves were generated using the ROCR R-package (version

1.0-7) (49). P-values from each method were used for ROC
analysis. pAUC were obtained at 5% and 15% false positive
rate (fpr) by using the ‘fpr.stop’ parameter in the ROCR
package; the acquired AUC was divided by the correspond-
ing fpr cut-off rate. The precision is the positive predictive
value and the recall is the true positive rate or sensitivity.

Statistics

All statistical tests within the anota2seq package are two-
tailed.

RESULTS

Babel and Xtail algorithms underperform under a NULL
model

By monitoring quality control steps (see materi-
als and methods), we first identified suitable data
normalization/transformation for application of an-
ota2seq to RNAseq data (rlog (24) and TMM-log2 (39)).
We then compared the performance of anota2seq, using
rlog or TMM-log2 transformed data, to babel (23), DESeq2
(24), TE-score and Xtail (22). An essential aspect during
identification of differences in gene expression is control of
type I error/FDR under a NULL model (i.e. when there
are no true differences in gene expression). Importantly, the
performance of the method on a data set without true gene
expression changes is unrelated to its sensitivity; and the
distribution of obtained P-values is expected to be uniform
resulting in FDRs equal to 1 (50). We assessed this using
simulated data sets with control and treatment conditions
sampled from the same distribution (i.e. where there were
no differences in expression between conditions). The
simulated data set closely mirrored characteristics of the
empirical data set from which simulation parameters were
obtained (Supplementary Figure S1A). Consistent with
observations from empirical data sets (36), simulated data
for total mRNA or polysome-associated mRNA were dif-
ferent when assessed using hierarchical clustering (Figure
1B). As expected, for a data set under a NULL model,
there was no further separation between the treatment and
control groups (Figure 1B). The resulting density plots of
p-values for changes in translational efficiency (Figure 1C)
revealed uniform distributions for all methods except Xtail,
which exhibited an overrepresentation of low p-values,
and babel, which showed an overrepresentation of high
p-values and a local enrichment of low p-values (Figure
1C). Accordingly, Xtail and babel identified mRNAs as
differentially translated even when applied to a NULL data
set, which was a priori simulated not to exhibit any changes
in translation (Figure 1C; at an FDR <0.05 Xtail and babel
reported 276 and 66 transcripts, respectively, as changing
their translation). Moreover, although the distribution of
P-values appears approximately uniform, DESeq2 also
identified mRNAs as differentially translated when applied
to the NULL data set (Figure 1C; at an FDR < 0.05
DEseq2 reported 15 such transcripts). None of the other
methods reported any transcripts from the NULL data set
as differentially translated (FDR < 0.05). Furthermore,
Xtail can analyze data sets with only one replicate per
condition and we therefore assessed whether the number of
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replicates affected the amount of false positives reported
by Xtail. Importantly, there was a strong increase in
false positives reported by Xtail when applied to NULL
data sets with only one replicate (Supplementary Figure
S1B). Xtail and babel therefore have limited usability for
statistical FDR-based analysis as they indicate changes in
translational efficiency even when such changes are absent.

Anota2seq outperforms current methods by allowing distinc-
tion between changes in translational efficiency affecting pro-
tein levels and translational buffering

Algorithms for analysis of changes in translational effi-
ciency necessitate adjustment for concomitant changes in
mRNA levels and separation between changes in transla-
tional efficiency leading to altered protein levels and buffer-
ing (Figure 1A). We therefore simulated data sets with
two conditions including sets of transcripts regulated by
changes in mRNA abundance, translation or buffering
(8377 unchanged mRNAs and 493 mRNAs per regulated
set; Figures 1A and 2A). The resulting data sets closely mir-
rored characteristics of the empirical data set used to obtain
simulation parameters (Supplementary Figure S1A). Fur-
thermore, as expected, hierarchical clustering showed sep-
aration of conditions both for total mRNA and polysome-
associated mRNA samples; and therefore captures the com-
plex structure of polysome-profiling data, which is simi-
lar to ribosome-profiling data ((43); Figure 2B). We next
determined the performance of each method for detec-
tion of changes in translational efficiency leading to al-
tered protein levels. Accordingly, identification of mRNAs
from the translation set were considered as true positive
events whereas identification of mRNAs from unchanged,
buffered and mRNA abundance sets were considered false
positives (Figure 2A). The algorithms were applied using
default settings on 5 data sets simulated as in Figure 2A.
The resulting outputs prior to any filtering (see material
and methods) were then evaluated. ROCs showed that an-
ota2seq analysis using rlog or TMM-log2 data performs
similarly and outperforms all other methods as judged by
AUC and pAUCs (Figure 2C, Table 1). In addition, preci-
sion recall curves reveal higher initial precision values for
anota2seq compared to other methods (Figure 2C). This
can be explained by the analysis principle of the other
methods. TE-score, babel, DESeq2 or Xtail cannot separate
changes in translational efficiency which affect protein lev-
els from buffering. The latter is consistent with the reported
superior performance of anota as compared to TE-score in
reflecting changes in the proteome (51).

To further characterize the performance of the methods
at commonly employed FDR thresholds, we determined the
number of identified mRNAs from translation, buffering,
mRNA abundance and unchanged sets at a 5%, 10% or
15% FDR threshold (Figure 2D; using the default settings
of each method). Babel and TE-score identified fewer true
positive events (i.e. transcripts from the translation set) than
the other methods. Anota2seq identified approximately the
same number of true positives at the 15% FDR threshold
as DESeq2 while Xtail identified slightly more true posi-
tives. The number of mRNAs identified from the buffered
set (here considered false positives as they do not lead to

changes in protein levels) by each method reveals that only
anota2seq can efficiently distinguish these from transcripts
whose change in translational efficiency leads to altered pro-
tein levels (Figure 2D). Notwithstanding that all methods
perform similarly in terms of rejecting mRNAs changing
their abundance, there were dramatic differences in terms of
identification of unchanged mRNAs. Anota2seq, babel and
TE-score identified few unchanged mRNAs as being per-
turbed, while Xtail and DEseq2 identified a sizeable number
of unchanged mRNAs as being altered (Figure 2D). Strik-
ingly, Xtail identified >800 such mRNAs at FDR <15%,
which is consistent with the poor performance of Xtail un-
der the NULL model (Figure 1C). To contrast 5% and 15%
FDR thresholds, we calculated the difference in number
of identified mRNAs from each set of transcripts (Figure
2E). For anota2seq, there was a gain in true positives at
the cost of an approximately equal increase in false posi-
tives, whereas for other methods, especially Xtail, increas-
ing the FDR threshold introduced dramatically more false
positives. Notably, the output from RiboDiff under default
settings (48) is essentially a python implementation of the
DESeq2 approach and, as expected, the performance was
almost identical to that of DESeq2 (Supplementary Fig-
ure S2). Below, we therefore only report results of DE-
Seq2 as representative for both methods. In conclusion, an-
ota2seq outperforms current methods by discriminating be-
tween changes in translational efficiency altering protein
levels versus buffering; and by identifying fewer false pos-
itives at commonly employed FDR-based thresholds.

Anota2seq outperforms current methods for statistical anal-
ysis of translational efficiency even in the absence of transla-
tional buffering

We next compared algorithms using a simulated data set
including the translation and mRNA abundance sets (493
mRNAs each; Figure 1A) together with a set of unchanged
transcripts (8870 mRNAs), but without the buffered set of
mRNAs (Supplementary Figure S3A and B). As expected
from their inability to separate transcripts from transla-
tion and buffering sets (Figure 2D), under these condi-
tions babel, DESeq2, TE-score and Xtail showed improved
performance as judged by pAUC and AUC, which was
comparable to anota2seq (Supplementary Table S1). More-
over, excluding the set of buffered transcripts resulted in an
increase in the precision (compare Supplementary Figure
S3C to Figure 2C). Accordingly, the performance of sta-
tistical analysis under different FDR thresholds paralleled
the analysis which included the buffering set of transcripts
(compare Supplementary Figure S3D and E to Figure 2D
and E). This comprised comparable performance of an-
ota2seq and DEseq2 (24) for identification transcripts from
the translation set (Figure 1A); and increased identification
of mRNAs from the unchanged set for DESeq2 and Xtail
(i.e. false positives) as compared to anota2seq. Analogous
to the simulation including the buffered set, TE-score iden-
tified fewer changes in translational efficiency but did not
assign unchanged mRNAs low FDRs. These results demon-
strate that anota2seq outperforms other methods for FDR-
based analysis of changes in translational efficiency even
in the absence of buffering (Supplementary Figure S3D).
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Figure 2. Anota2seq outperforms other methods for analysis of changes in translational efficiency affecting protein levels. (A) Scatterplot of polysome-
associated and total mRNA log2 fold changes between treatment and control groups for a simulated dataset (provided in Supplementary file 1). Transcripts
simulated as unchanged or belonging to mRNA abundance, translation or buffering sets are indicated. (B) Hierarchical clustering of gene expression data
from (A). (C) Receiver operating characteristics curves for analysis of differential translation in a simulated dataset (i.e. from A-B; top). Precision recall
curves for analysis of differential translation in the simulated dataset (bottom). For both analyses, identification of a transcript from the translation set
was considered a true positive event. Vertical lines indicate 5% and 15% false positive rates. (D) Numbers of mRNAs identified as differentially translated
belonging to translation (true positives [TP]), buffering (false positives [FP]), mRNA abundance (FP) or unchanged (FP) sets are indicated for each method
at several FDR thresholds (mean and standard deviations from 5 simulated data sets are indicated). Red lines indicate the total amount of mRNAs simulated
from each set of regulated transcripts. (E) Shown are differences in the number of mRNAs showing differential translation belonging to the four sets in
(D) when changing the FDR threshold from 5% to 15% (mean from 5 simulated data sets).

Therefore, anota2seq can be applied to efficiently identify
changes in translational efficiency, independent of underly-
ing modes of regulation.

These results appear to contradict a recent report which
suggested good ROC and precision/recall performance for
babel, TE-score and Xtail and poor performance for anota
(22). While the reported poor performance of anota (17)
was caused by inappropriate application of anota on non-
normalized and non-transformed counts, the difference in
precision recall performance for babel, TE-score and Xtail
was unclear. We therefore examined the simulated data set
used during development of Xtail (Supplementary Figure
S4A). This revealed that mRNAs selected as true positives
for changing their translational efficiency appeared not to
distinguish between levels of regulation (translation, buffer-

ing or mRNA abundance [Figure 1A]) and also included
mRNAs with seemingly unchanged expression (Supple-
mentary Figure S4B top left). Moreover, there were mRNAs
which showed increased polysome-association but strongly
decreased mRNA levels, which represent unlikely biologi-
cal events that were not observed in any of the empirical
data sets examined (11,36,37,40,43) (Supplementary Figure
S4B top right and lower panels). However, if such regulation
would exist we speculate it to result in altered protein levels.
We reclassified mRNAs in this simulated data set (Supple-
mentary Figure S4C) and examined the population of mR-
NAs that were identified at different FDR thresholds. These
findings closely mirrored results from herein simulated data
sets, except for babel, which identified very few regulated
events (Supplementary Figure S4D and E).
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Table 1. Mean and standard deviation (sd) of pAUCs and AUCs for an ROC analysis assessing performance for identification of changes in translational
efficiency affecting protein levels in simulated data sets (n = 5) including translation, buffering, mRNA abundance and unchanged sets of transcripts
(Figure 2A)

AUC pAUC 5% pAUC 15%

Method Mean sd Mean sd Mean sd

anota2seq (rlog transf.) 0.969 0.005 0.719 0.023 0.858 0.017
anota2seq (TMM-log2 transf.) 0.966 0.009 0.702 0.043 0.847 0.031
babel 0.936 0.002 0.376 0.017 0.671 0.009
DESeq2 0.939 0.002 0.431 0.013 0.715 0.008
TE score 0.923 0.004 0.385 0.016 0.655 0.009
Xtail 0.937 0.002 0.414 0.015 0.704 0.009

Analysis of translational buffering using anota2seq

As discussed above, translational buffering holds poten-
tially important biological information but algorithms us-
ing statistics to selectively capture buffering have not yet
been developed. We therefore implemented analysis of
translational buffering in the anota2seq software. This im-
plementation is based on the same principle as anota2seq
analysis that captures changes in translational efficiency
affecting protein levels (i.e. APV coupled with variance
shrinkage) except that it captures changes in total mRNA
levels that are buffered by translation (i.e. alterations in to-
tal mRNA that are not paralleled by changes in levels of
polysome-associated mRNA or RPFs). To assess the per-
formance of anota2seq for analysis of buffering, we used
the same data set as in Figure 2A and B (i.e. with tran-
scripts from translation, buffering, mRNA abundance and
unchanged sets; Figure 1A). In contrast to the analysis in
Figure 2A and B, identification of translationally buffered
mRNAs was considered as true positive events, whereas
identification of unchanged mRNAs or mRNAs belonging
to translation and mRNA abundance groups were consid-
ered false positive events. Importantly, pAUC and AUC for
translational buffering analysis were comparable to the per-
formance of anota2seq for analysis of changes in transla-
tional efficiency (Figure 3A and Table 2), while very few
mRNAs from the translation set were identified during
analysis of translational buffering (Figure 3B). Moreover,
a relaxed FDR threshold primarily led to additional identi-
fication of mRNAs from the buffered set (Figure 3C). Thus,
anota2seq can be efficiently applied for FDR-based identi-
fication of translationally buffered mRNAs.

Assessing robustness of algorithms for translatome analyses

Experimental and technical challenges and/or study de-
signs may give rise to data sets exhibiting dramatically dif-
ferent characteristics (52,53). This includes different levels
of variance and sequencing depth and we therefore assessed
the influence of such factors on the performance of the al-
gorithms. Increased variance (Figure 4A) led to a moder-
ate decrease in the number of true positives identified at an
FDR threshold of 15% for all methods except TE-score-
based analysis, which was particularly affected (Figure 4B
and C). This was associated with a decrease in performance
as assessed by ROC and precision recall curves (Supplemen-
tary Figure S5A–F). As evidenced by pAUC and AUC, an-
ota2seq outperforms other methods at all variance levels
in analysis of changes in translational efficiency affecting

protein levels using simulated data sets including all sets of
regulated transcripts (i.e. translation, buffering and mRNA
abundance [Figure 1A]; Supplementary Figure S5; Supple-
mentary Table S2). Reduced sequencing depth had no clear
effect on ROC analysis within algorithms until 5 million
reads (Supplementary Figure S6; Supplementary Table S3)
but at 2.5 million reads all algorithms underperformed (Fig-
ure 5A and B). Therefore, while all algorithms except TE-
based analysis perform well under increased variance, they
all require ∼5 million reads mapped to protein coding mR-
NAs for efficient analysis. Next, we assessed the impact of
varying sequencing depth across samples by analyzing data
sets with increasing proportions of samples with a low se-
quencing depth (2.5M reads) (Supplementary Figure S7A)
and monitoring the performance of included algorithms for
statistical identification of changes in translational efficien-
cies affecting protein levels (Supplementary Figure S7B).
Although TE-score based analysis was most affected, the
performance of all methods decreased as the proportion of
samples with low sequencing depth increased (Supplemen-
tary Figure S7B; Supplementary Figure S8). Notably, for all
methods except TE-score based analysis, the performance
with a moderate proportion of samples with low sequencing
depth (25%) is comparable to the data set with uniformly
high sequencing depth (15M reads in Supplementary Fig-
ure S7). When reducing the sequencing depth in the analysis
from 15M to 5M reads and adding increasing proportions
of samples with a low sequencing depth (2.5M reads; Sup-
plementary Figure S9A), similar patterns, albeit less pro-
nounced, were observed (Supplementary Figure S9B). Fi-
nally, when samples with low sequencing depth were un-
evenly distributed such that all samples under a condition
suffer from this limitation, an increase in identification of
false positives (unchanged mRNAs) was observed for all
methods except babel and TE-score (Supplementary Fig-
ure S10). Hence, all algorithms except TE score perform
relatively well when the proportion of samples with low se-
quencing depth (i.e. 2.5M reads mapped to protein coding
mRNA) is 25% or less.

Anota2seq allows batch adjustment during statistical analysis

Polysome- or ribosome-profiling data sets can include batch
effects commonly manifested as systematic differences be-
tween replicated experiments. Batch effects can lead to re-
duced power for detection of changes in translational ef-
ficiency and thus adjusting for batch effects during statis-
tical analysis is warranted (54). We therefore implemented
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Figure 3. Efficient identification of translational buffering using anota2seq. (A) Receiver operating characteristics curves (left) and precision recall curves
(right) for analysis of translational buffering using anota2seq. The data set is the same as in Figure 2A and B but identification of mRNAs from the buffering
set were considered true positive events. Vertical lines indicate 5% and 15% false positive rates. (B) Numbers of mRNAs identified as buffered belonged
to the translation (FP), buffering (TP), mRNA abundance (FP) or unchanged (FP) sets are indicated at several FDR thresholds (mean and standard
deviations from 5 simulated data sets are indicated). Red lines indicate the total amount of mRNAs simulated for each set of regulated transcripts. (C)
Shown are differences in the number of mRNAs identified as buffered belonging to the four sets in (B) when changing the FDR threshold from 5% to 15%
(mean from five simulated data sets).

Table 2. Mean and standard deviation (sd) of AUCs and pAUCs for an ROC analysis assessing performance for identification of changes in translational
efficiency leading to buffering in simulated data sets (n = 5) including translation, buffering, mRNA abundance and unchanged sets of transcripts (Figure
2A)

AUC pAUC 5% pAUC 15%

Method Mean sd Mean sd Mean sd

anota2seq (rlog transf.) 0.965 0.004 0.703 0.016 0.848 0.016
anota2seq (TMM-log2 transf.) 0.966 0.004 0.706 0.016 0.849 0.012

the possibility to use batch adjustment in anota2seq, which
is applied during APV (18) and also affects parameters for
variance shrinkage. To assess the impact of such batch ad-
justment on anota2seq analysis we selected a data set (11)
harboring a systematic batch effect related to replicated
experiments (Figure 5C) and applied anota2seq with and
without batch adjustment. Batch adjustment led to a dra-
matic increase in identification of mRNAs with an FDR
<15% for changes in translational efficiency which affect
protein levels (Figure 5D, top). Therefore, batch adjustment
should be considered during anota2seq analysis.

Assessing the need for replication in anota2seq analysis

Polysome- and ribosome-profiling data sets may include
substantial variance. This indicates that sufficient replica-
tion is essential for efficient analysis. Because anota2seq re-
quires three replicates in the case of two treatment groups
(or two replicates when there are three or more treatment
groups) due to the limitation of degrees of freedom in
the APV model, we determined the effect of reducing the
number of replicates from four to three on anota2seq per-
formance using the data set with two conditions (Figure
5C) (11). Reducing the number of replicates from four to
three decreased the number of transcripts identified with an
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Figure 4. Evaluation of sensitivity to increased variance during analysis of changes in translational efficiency affecting protein levels. (A) Hierarchical
clustering of simulated data sets harboring transcripts from unchanged, translation, buffering and mRNA abundance sets (Figure 1A). Data sets were
simulated with increasing variance. Red dotted lines provide references across simulated data sets. (B) Numbers of mRNAs identified as differentially
translated from translation (TP), buffering (FP), mRNA abundance (FP) or unchanged (FP) sets of transcripts are indicated for each method at a 15%
FDR threshold (mean and standard deviations from 5 simulated data sets are indicated). Red lines indicate the total amount of mRNAs simulated for each
set of regulated transcripts. (C) Difference in the number of mRNAs identified as differentially translated (FDR < 0.15) belonging to the four sets in (B)
when changing from 15% to no additional variance (mean from five simulated data sets).

FDR <0.15 for a change in translational efficiency affect-
ing protein levels (Figure 5D, top). Thus, similar to what
was previously reported for babel (23), anota2seq is sensi-
tive to the number of replicate experiments although the
precise number needed will depend on e.g. the magnitude
of changes in translational efficiencies and the sequencing
depth. It should also be noted that the batch adjustment re-
duces the degrees of freedom for the residual error in the
APV model (18). Therefore, fewer replicates may be suffi-
cient when analyzing data sets not requiring batch adjust-
ment or with more than two conditions. Indeed, analysis of
data from Guan et al. (36) with three conditions which did
not require batch adjustment (see original publication) in-
dicated sufficient power for detection of changes in trans-
lational efficiency altering protein levels at an 15% FDR
threshold when using two replicates per condition (Figure
5D, bottom).

Anota2seq applied to ribosome-profiling data identifies trans-
lational buffering following RPS19 depletion

To assure that anota2seq can also be efficiently applied
to ribosome-profiling data, we analyzed a previously pub-
lished data set assessing the impact of knockdown of RPS19
(43). To this end, we performed the analysis considering
only RPFs mapping to coding sequences (CDS) and com-
pared these findings to a data set where RPFs were mapped
to full-length transcripts (full transcript). Of note, a rela-
tively low number of reads mapping to mRNA were ob-
tained for RPFs as compared to reads originating from
total mRNA sequencing libraries (Figure 6A). The num-
ber of RPF reads only mapping to the CDS was on av-
erage 20.3% lower as compared to full transcript map-
ping of RPFs (Figure 6A). Moreover, in a PCA, although
there were larger distances between replicated conditions
for RPF data as compared to total mRNA data (consis-
tent with poorer reproducibility for RPF data), both map-
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Figure 5. Evaluation of sensitivity to sequencing depth during analysis of changes in translational efficiency affecting protein levels. (A) Numbers of
mRNAs identified as differentially translated from the translation (TP), buffering (FP), mRNA abundance (FP) or unchanged (FP) sets (Figure 1A) are
indicated for each method at a 15% FDR threshold (mean and standard deviations from 5 simulated data sets are indicated) (B) Difference in the number
of mRNAs identified as differentially translated (FDR < 0.15) belonging to the four sets in (A) when changing the sequencing depth from 15 million to 2.5
million reads (mean from 5 simulated data sets). Red lines indicate the total amount of mRNAs simulated for each set of regulated transcripts. (C) PCA
analysis of the RNAseq data set from Liang et al. Lines connect replicate experiments (individual replicates are indicated by numbers). PC: Princinpal
component (D) Density plots of adjusted p-values (FDRs) from analysis of changes in translational efficiencies leading to altered protein levels using
anota2seq and RNAseq data from Liang et al. (top) or Guan et al. (bottom). Vertical line indicates a 5% and 15% FDR threshold. Numbers of identified
mRNAs are reported at a 15% FDR threshold. All possible replicate combinations were analyzed when using three or two replicates and the mean number
of identified mRNAs is indicated.

ping strategies achieved similar separation between RNA
source (i.e. RPFs or total mRNA) and condition (Figure
6B). Anota2seq analysis of both these datasets revealed sim-
ilar number of changes in total mRNA, RPFs and buffer-
ing as assessed by distributions of FDRs (Figure 6C) and
comparable numbers of mRNA classified into the different
modes of regulation (Figure 6D). Notably, consistent with

the lower reproducibility of RPF samples and low number
of reads (Figure 6A and B), few changes in translational
efficiencies affecting protein levels could be detected (Fig-
ure 6C). As translational buffering emerged as the major
post-transcriptional mode for regulation of gene expression
upon silencing of RPS19, we compared whether the map-
ping strategy (i.e. CDS or full transcripts) for RPFs affected
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Figure 6. Anota2seq analysis of ribosome-profiling data identifies translational buffering following RPS19 silencing. (A) Number of RNAseq reads from
sequencing libraries for total mRNA mapping to full transcript and for RPF mapping to CDS or full transcript. (B) PCA plots of components 1 and 2
from analysis using data sets where RPFs were mapped to CDSs (left) or the full transcript (right) as input. (C) Density plot of FDRs following anota2seq
analysis comparing RPS19 knock-down to control (shLuc) using the two data sets from (B) as input. (D) Scatter plots of log2 fold-changes (shRPS19 vs
shLuc) for total mRNA and RPF data (CDS [left] or full transcript [right] RPF mapping). Numbers of identified transcripts under each mode of regulation
are indicated. (E) A Venn diagram comparing transcripts identified as buffered from anota2seq analysis of the two data sets from (B). (F) Scatter plots of
log2 fold-changes (shRPS19 versus shLuc) of total mRNA and RPF data (CDSs data [right] and full transcript [left]). Transcripts identified as buffered
only when anota2seq was applied on the data sets where RPFs were mapped to the full transcript (left) or CDS (right) are indicated (i.e. corresponding to
[E]). Note: not all mRNAs identified during analysis of the full transcript data set were represented in the CDS data set (due to filtering [see materials and
methods]).
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the set of identified buffered mRNAs. A Venn diagram-
based comparison indicated a substantial number of genes
identified regardless whether RPFs from CDSs or full tran-
scripts were employed. Subsets of transcripts, however, were
captured by one, but not both mapping approaches (Fig-
ure 6E). When applying statistics-based thresholds to com-
pare results using Venn diagrams, identified differences may
be due to small shifts in statistical significances and there-
fore not indicative of differences in patterns of regulation.
To assess this, we considered mRNAs identified as buffered
in the CDS-based analysis only, and visualized their fold
changes as measured using full transcript mapping, and
vice versa (Figure 6F). This revealed that the majority of
such transcripts showed similar regulation in both datasets
despite being suggested as distinctly identified depending
on mapping strategy by the Venn diagram (Figure 6E).
Thus, anota2seq can be efficiently applied to ribosome pro-
filing data. Moreover, although the analysis suffers from a
low number of RPF reads, this assessment suggests wide-
spread translational buffering following silencing of RPS19.
Furthermore, although read mapping strategies produced
very similar results following anota2seq analysis, some tran-
scripts may be concluded as regulated differently depending
on whether RPFs are allowed to map to CDS or full tran-
scripts. As this may have significant biological implications,
mapping strategy should be considered when performing
anota2seq analysis of ribosome-profiling data.

DISCUSSION

Modulation of translation underlies numerous biological
and pathological processes ranging from stress response
and cancer (55) to learning and memory (56). Nonethe-
less, translatomes are vastly under-studied in comparison
to transcriptomes (which reflect mRNA abundance deter-
mined at the level of transcription and/or mRNA stabil-
ity) (7). Stringent and efficient application of transcriptome-
wide methods to measure changes in translation are there-
fore required to advance knowledge regarding the role of
translation in homeostasis and disease. Moreover, sufficient
replication and efficient data analysis is crucial for deriv-
ing valid conclusions. Notwithstanding the noisy nature of
polysome- and ribosome-profiling data, it is often paradox-
ically suggested that algorithms for identification of differ-
ential translation do not require replication (22). This does
not seem to be consistent with concerns about reproducibil-
ity in quantitative biology, which instead suggests that suf-
ficient experimental replication is essential to derive mean-
ingful conclusions. Consistently, we reveal that analysis us-
ing Xtail on datasets with one replicate is associated with
exceptionally high rates of false positive findings (Supple-
mentary Figure S1B).

Currently, polysome- and ribosome-profiling are most
commonly used methods to interrogate translatomes
whereby polysome-profiling is more efficient for identifi-
cation of changes in translational efficiency (12,14), while
ribosome-profiling generates information about ribosome
positioning at a single nucleotide resolution (57,58). A pow-
erful unique property of polysome-profiling is that it al-
lows examination of 5′ and/or 3′UTRs of translated mR-
NAs, thereby facilitating identification of regulatory el-

ements as well as potential differences in translation of
mRNA isoforms co-expressed but differing in their 5′ or
3′UTRs (12). Ribosome- and polysome-profiling therefore
represent complementary methodologies providing ample
opportunity to study translatomes. Hence, there is interest
to develop efficient algorithms to analyze polysome- and
ribosome-profiling data. Analyses of changes in bona fide
translational efficiencies need to be adapted to advances
in technology that bear distinct characteristics, such as the
count nature of RNAseq data, but also has to parallel the
understanding of mechanisms regulating mRNA transla-
tion. Translational buffering represents one such mecha-
nism of translation control wherein alterations in mRNA
levels are compensated at the level of translation such that
levels of polysome-associated mRNAs or RPFs are not af-
fected by changes in mRNA abundance (4,16,29,30,32).
Translational buffering is thus expected to retain protein
levels despite changes in mRNA levels.

Herein, we developed the anota2seq algorithm, which
can be employed to analyze DNA-microarray and RNAseq
data and efficiently identify and separate changes in trans-
lational efficiency affecting protein levels and translational
buffering. Evaluation of anota2seq compared to other
methods for translatome analyses indicated superior per-
formance of anota2seq in detecting differential translation
with low type-1-error rates and robustness against noise and
varying sequencing depths. Importantly, anota2seq is ap-
plicable to both polysome- and ribosome-profiling studies.
This highlights the effectiveness of anota2seq analysis for
various types of data and the need to consider translational
buffering during analysis of translatomes given that this
mode for regulation of gene expression appears to be preva-
lent in multiple systems (29–35). One unexpected finding
was the poor performance of Xtail under the NULL condi-
tion inasmuch as a large number of mRNAs were identified
as differentially translated despite no true changes in their
translational efficiency (Figure 1C, Supplementary Figures
S1B and S2D). This most likely stems from incorrect as-
sumptions regarding data independence in the models ap-
plied by Xtail (22). Indeed, assessing the performance un-
der the NULL condition during algorithm development to
derive tools that can be used for efficient and valid analy-
sis is critical. Moreover, anota2seq has several distinct fea-
tures as compared to other methods: (i) it is not based on
interpretation of differences between log-ratios and hence
will not be affected by spurious correlations; (ii) it dis-
tinguishes changes in translation efficiency affecting pro-
tein levels from translational buffering; (iii) it allows for
gene-level batch correction and (iv) it permits analysis of
polysome-associated and total mRNA changes using the
same analytical methods thereby allowing simple and com-
parable identification of changes in polysome-associated
mRNA, total mRNA, translational efficiency affecting pro-
tein levels and buffering.

Although, using simulated data, rlog and TMM-log2 ap-
proaches performed similarly, prudence is advised when
selecting normalization/transformation methods for an-
ota2seq analysis, as technological biases not tested herein
may influence outcomes. Anota2seq therefore incorporates
both TMM-log2 and rlog but also allows the user to supply
custom transformed and normalized data.
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In summary, we designed anota2seq for analysis of
mRNA translation which can be applied independent of
platform used for quantification. Application of such sta-
tistically stringent analyses holds a promise to critically im-
prove understanding of the role of translation in health and
disease.

DATA AVAILABILITY

The anota2seq software is available as a Bioconductor
package. (http://bioconductor.org/packages/release/bioc/
html/anota2seq.html)

Four datasets were retrieved from GEO (38) with ac-
cession numbers GSE99909, GSE90070, GSE35469 and
GSE89183. One dataset was retrieved from ArrayExpress
(41) with accession number E-MEXP-958
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Supplementary Data are available at NAR Online.
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