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Abstract: Clostridium perfringens causes a wide range of diseases in a variety of hosts, due to the
production of a diverse set of toxins and extracellular enzymes. The C. perfringens toxins play an
important role in pathogenesis, such that the presence and absence of the toxins is used as a typing
scheme for the species. In recent years, several new toxins have been discovered that have been shown
to be essential or highly correlated to diseases; these include binary enterotoxin (BecAB), NetB and
NetF. In the current study, genome sequence analysis of C. perfringens isolates from diverse sources
revealed several putative novel toxin homologs, some of which appeared to be associated with
potential mobile genetic elements, including transposons and plasmids. Four novel toxin homologs
encoding proteins related to the pore-forming Leukocidin/Hemolysin family were found in type
A and G isolates. Two novel toxin homologs encoding proteins related to the epsilon aerolysin-like
toxin family were identified in Type A and F isolates from humans, contaminated food and turkeys.
A novel set of proteins related to clostridial binary toxins was also identified. While phenotypic
characterisation is required before any of these homologs can be established as functional toxins,
the in silico identification of these novel homologs on mobile genetic elements suggests the potential
toxin reservoir of C. perfringens may be much larger than previously thought.

Keywords: toxin; plasmid; pCW3; pCP13; Clostridium perfringens; leukotoxin; epsilon; binary toxin;
hemolysin

1. Introduction

Clostridium perfringens is a pathogen of humans and animals and is responsible for a wide range
of enterotoxigenic and histotoxic diseases that vary in both symptoms and severity. The disease
capability of particular strains is due to the production of toxins and extracellular enzymes with
specialised roles in pathogenesis. The presence and absence of six major toxins is used to classify
C. perfringens isolates into seven different toxin types, A-G (Table 1) [1]. Toxin typing is used as an
indicator of disease-causing capability as some toxins are strongly associated with disease in certain
animal hosts, such as NetB (type G) and necrotic enteritis in chickens, and enterotoxin (type F) in
food poisoning. However, toxin typing does not account for the full toxin repertoire a strain may be
capable of producing and therefore lacks the high resolution afforded with whole genome sequencing
(WGS). Furthermore, the clostridial toxin typing system does not account for strain clonality and is
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inappropriate for inference of evolutionary relationships [2] as many of the toxins are encoded on large
plasmids [3] and capable of horizontal gene transfer [4–6].

Table 1. The toxin typing scheme of C. perfringens [1].

Toxin Type Alpha
(plc or cpa)

Beta
(cpb)

Epsilon
(etx)

Iota
(iap and ibp)

Enterotoxin
(cpe)

NetB
(netB)

A + - - - - -
B + + + - - -
C + + - - +/- -
D + - + - +/- -
E + - - + +/- -

F * + - - - + -
G * + - - - - +

* type F and G strains were formally categorised as Type A until reclassification in 2018 [1].

Excluding the 6 genes used in toxin typing strains, a further 16 toxins and enzymes have been
described in C. perfringens including sialidases (NanI, NanJ, NanK), hyaluronidases (NagH, NagI, NagJ,
NagK), collagenase (Kappa), Beta2 (consensus and atypical variants), TpeL, Delta, BecAB/CPILE and
NetE, NetF, NetG. Many of these toxins are recent discoveries, such as NetB, NetE, NetF, NetG, BecAB,
further demonstrating the importance of host-specific toxins which lie outside of the currently defined
mechanisms of disease and subsequent toxin typing framework [7–10].

Pore-forming toxins are commonly associated with disease in C. perfringens. The pore-forming
toxins are comprised of a single protein that forms multimeric complexes. Each type of pore-forming
toxin has distinct domain structures. Six beta-barrel pore-forming toxins have been characterised in
C. perfringens including beta toxin, delta toxin, NetB, NetE, NetF and NetG [10–13]. Each of these
proteins has a unique amino acid sequence with a shared domain structure which includes a signal
sequence followed by a leukotoxin/hemolysin domain. This domain is shared with toxins from other
species including Staphylococcus, Bacillus, and other Clostridium members [10–13].

The remaining known pore-forming toxins, including alpha toxin (phospholipase C),
perfringinolysin O (theta), epsilon toxin and enterotoxin, contain distinctly different functional
domains [14–16]. Phospholipase C is a hemolysin with sphingomyelinase activity and phospholipase
activity [17]. Perfringinolysin O is a pore-forming cholesterol-dependent cytolysin [18]. Epsilon toxin
and enterotoxin both belong to the aerolysin-like toxin family but are comprised of distinctly different
amino acid sequences and protein structures [19]. While phospholipase C and perfringinoylsin O are
chromosomally encoded toxins, epsilon and enterotoxin are located on mobile genetic elements [5,6].

The binary toxins in C. perfringens (iota toxin and binary enterotoxin (BEC)) are usually composed
of an enzyme component (Ia) and a binding component (Ib) [20]. Ib binds to a receptor on targeted
cells and Ia is translocated into the cytosol of the cells Ia. ADP-ribosylates actin, resulting in cell
rounding and death [20]. Another binary toxin with ADP-ribosylation activity in C. perfringens is
BecAB/CPILE [9,21]. Binary toxins are present in other closely related species such as Clostridiodies
difficile, Clostridium spiroforme and Clostridium botulinum [22–24], and have been shown to be associated
with disease in these bacteria.

Due to the specificity of many C. perfringens isolates to particular animal hosts and disease
outcomes, and the diverse pan-genome of the species [4,25], we hypothesize that only a subset of
the potential toxins encoded by C. perfringens have been identified. The aim of this study was to
bioinformatically identify novel virulence-associated genes in previously characterised C. perfringens
strains to inform and refine future studies, as well as narrow down potential drug or vaccine targets.
Here, we describe seven novel protein sequences homologous to known toxins and the associated
mobile genetic elements associated with the encoding genes, which were identified from the whole
genome sequences (WGS) of a diverse set of previously characterised and described C. perfringens
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isolates. Our study demonstrates the value of reanalysing publicly available WGS data and of collating
large WGS datasets for use in comparative genomic analysis.

2. Results

2.1. Identification of Toxin Homologs in C. perfringens Isolates

To identify toxin homologs, we carried out an investigation of WGS from 240 publicly available
C. perfringens genomes and short read data (Supplementary Table S1). Short read data was assembled
using Spades v3.12.0, assembled genomes were annotated using prokka v1.13.2 using a custom
database of C. perfringens protein sequences obtained from NCBI. Protein sequences were clustered
using Roary v3.12.0. Using a 90% identity threshold each of the C. perfringens toxins formed a single
protein cluster. Six distinct clusters were observed for the hemolysin/leukotoxin domain toxins: NetB
(n = 33), NetE (n = 29), NetF (n = 31), NetG (n = 16), delta (n = 1) and beta toxin (n = 4). Single protein
clusters also corresponded to epsilon toxin (n = 2), enterotoxin (n = 92), and two clusters corresponding
to the subunits of iota toxin (n = 1). Each of these clusters corresponded to the toxin type of each isolate
and demonstrated a high level of conservation within the toxin protein sequence.

Several additional protein clusters were also annotated as potential virulence factors including
four clusters annotated as hemolysin/leukotoxin-like toxins, two clusters annotated as epsilon-like
toxins and two clusters annotated as iota-like toxin subunits (Table 2). As the protein identity that was
used for assigning protein sequences to a cluster was 90%, each of these seven protein clusters with
toxin annotations are distinct protein sequences compared to their toxin homologs, as the sequence
divergence is too high for these homologs to be considered as allelic variants.

Table 2. Strains encoding toxin homologs.

Strain Toxin
Type Host * Year Country Accession Toxins Toxin

Homologs

T43 A Turkey, Healthy 2009 Finland SAMN05933484 plc dlpA, ilpA/B
T46 A Turkey, NE 2010 Finland SAMN05933485 plc dlpA, ilpA/B
T84 A Turkey, NE 2011 Finland SAMN05929587 plc dlpA, ilpA/B

16SBCL571 A Contaminated food 2015 France SAMN09721446 plc lpdA
16SBCL572 A Contaminated food 2015 France SAMN09721448 plc lpdA
WER-NE36 G Chicken, NE 2010 Australia SAMN07326176 plc, netB, cpb2 ldpB
EHE-NE7 G Chicken, NE 2002 Australia SAMN07326146 plc, netB, cpb2 ldpB

T6 A Turkey, NE 2005 Finland SAMN05929277 plc, cpb2 ldpB, lpdC
16SBCL648 A - 2016 France SAMN09721463 plc ldpB

T34 A Turkey, NE 2009 Finland SAMN05933483 plc ldpC
T53 G Turkey, Healthy 2010 Finland SAMN05929586 plc, netb, ldpC

16SBCL1142 A - 2015 France SAMN09721467 plc ldpC
T22 A Turkey, Healthy 2009 Finland SAMN05929282 plc ilpA/B

NY83906550 A Human, Blood 2012 USA SAMN08466960 plc, cpb2 edpA
NY83905249 A Human, Blood 2010 USA SAMN08466959 plc, cpb2 edpA
16SBCL600 A Contaminated food 2015 France SAMN09721470 plc edpA
16SBCL609 A Contaminated food 2015 France SAMN09721433 plc edpA

16SBCL1126 F Contaminated food 2015 France SAMN09721434 plc, cpe edpA
T1 A Turkey, NE 1998 Finland SAMN05928332 plc, cpb2 edpB

* NE = Necrotic enteritis; - = unknown.

To confirm the preliminary annotations of the clusters, representative proteins sequences of
each of the toxin homolog clusters were subjected to sequence alignment against the UniProtKB
database to investigate the protein domain structures. Four predicted proteins were found to contain
leukocidin/hemolysin domains and were accompanied by signal sequences. This general amino acid
structure conforms to the C. perfringens beta toxin structure. Two predicted proteins were found to
contain an ETX/Bacillus mosquitocidal toxin MTX2 domain also with signal sequences, with a domain
architecture similar to that of epsilon toxin. The two predicted proteins corresponding to the two
binary toxin components, A and B, showed highly similar domain structures to iota toxin. Component
A contained two PFO3496 domains and a signal sequence, and component B contained a signal peptide,
PA14 domain and three Binary toxB/anthrax toxin PA CA-binding domains.
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2.2. Novel Protein Sequences with Leukotoxin/Hemolysin Domain

Genes encoding four distinct leukocidin domain proteins that have similar structure to the
beta-pore forming toxins (beta, delta, NetB, NetE, NetF, NetG toxins) were identified. Based on
sequence similarity to the other leukocidin domain proteins in C. perfringens and topology of maximum
likelihood phylogeny of sequence alignment, we designated these four proteins delta-like protein A
(DlpA), leukocidin domain protein A (LdpA), leukocidin domain protein B (LdpB) and leukocidin
domain protein C (LdpC) (Figure 1).
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Figure 1. (A) Schematic showing key features of the C. perfringens leukocidin domain containing
proteins. The purple region represents the signal peptide and the blue region the PF07968
leukocidin/hemolysin domain. Numbers marked correspond to amino acid positions of the start
and end of the features with the range showing the variation between the different protein sequences
(n = 13). (B) A maximum likelihood tree based on alignment of novel toxin homologs (marked
with *) against protein sequences of the C. perfringens leukocidin domain containing proteins and
representative sequences of CctA from Clostridium chauvei the Staphylococcus aureus hemolysin,
leukotoxin components F and D. Protein sequences were aligned using clustal omega, and maximum
likelihood was implemented in IQtree. The tree was inferred using the LG+F+G4 model and rapid
bootstrapping -bb 2000; bootstrap support is shown at the nodes. Scale bar indicates the number of
changes per site. Heatmap shows percent identity matrix of protein alignments, colours correspond to
the following percent identity: dark red, 80–100%; light red, 60–79%; orange, 40–59%; bright yellow,
30–39%; pale yellow, 20–29% and white, <19%.

Delta-like protein A (DlpA) has 75.31% identity (amino acid) to delta toxin and the next closest
sequence is beta toxin, with 44% identity (Figure 1). Three turkey isolates (one from a healthy bird
(T43) and two from birds afflicted with necrotic enteritis (T46 and T84)) were found to encode DlpA.
DlpA also appears to be chromosomally encoded, however it was not possible to identify the size of
the element. Delta toxin was also found to be chromosomally encoded in NCTC3182 (type C) on a large
genomic island of ~50 kb size (Figure 2). The presence of both of these toxin genes within otherwise
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conserved chromosomal regions suggest a chromosomal integration of the delta and DlpA-encoding
genes in some isolates.

The leukotoxin domain protein A (LdpA) was found in two isolates: 16SBCL571 (2015, France,
Paris, spices vegetables) and 16SBCL572 (2015, France, Essonne, salad vegetables). Maximum likelihood
of sequence alignment and percentage identity shows LdpA is most similar to the NetG and NetF toxins,
with 76% and 62% sequence identity, respectively (Figure 1). LdpA is chromosomally encoded and
appears to have been incorporated in this location through the insertion of an ~4 kb region. Sequence
alignment shows the corresponding genome sites in reference Strain 13 (Figure 2).
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leukotoxin domain protein A (ldpA) from strain 16SBCL572 and delta-like protein (dlpA) from strain
T84. Chromosomal regions are coloured blue, the unique regions grey, and toxin genes are coloured in
red. Genbank accession numbers for sequences are as follows: T84 dlpA region (MK285064), NCTC3182
cpd region (MK285058), and 16SBCL571 ldpA region (MK285056).

The leukotoxin domain protein B (LpdB) was found in four isolates and was comprised of two
sequence variants that share 93.62% identity. Three isolates contained a LpdB variant, two from
chickens (WER-NE36, EHE-NE7), and one from a turkey afflicted with necrotic enteritis (T6). In these
three isolates, LpdB was identified on a pCW3-like plasmid (~57 kb), flanked by two transposons
proteins and co-located atypically with cpb2 and a partial set of genes described as NELoc-2 [26].
The other variant of LpdB was found in isolate SRR7601223 (16SBCL648, unknown source, Paris).
It contained seven amino acid substitutions with the majority in the 5’ region of the sequence, in the
signal peptide region. This variant was also located on a pCW3-like plasmid but with a significantly
different variable region. It was instead co-located with the tetracycline resistance genes tetA(P), tetB(P)
(Figure 3).

The leukotoxin domain protein C (LdpC) was also found in four isolates. Three isolates from
turkeys (two from birds afflicted with necrotic enteritis (T6, T34) and one from a healthy turkey (T53)),
and a single isolate from Paris SRR7601202 (16SBCL1142, source unknown, France, 2015). LdpB and
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LpbC share 63–65.55% identity to each other (Figure 1). LdpC was found to be carried on a pCW3-like
plasmid, co-located with a bacteriocin-like locus of an approximate size of 72 kb (Figure 3). While the
domain structure of LdpB and LdpC matches what is observed for the other leucocidin/hemolysin
domain proteins, the sequence identity ranges from 18.31% to 23.32% in comparison to the previously
characterised toxins (Figure 1). These two leukotoxin domain proteins are the most divergent sequences
of similar domain proteins in C. perfringens.Pathogens 2019, 8, x FOR PEER  7 of 15 
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perfringens, C. botulinum and Brevibacillus laterosporus. Two C. perfringens strains, ATCC3626 (type B) 
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Figure 3. Schematic representation showing the comparative alignment of sequenced C. perfringens
plasmids compared to plasmid contigs containing toxin homologs, made in EasyFig v2.2.2. (A) Shown
are a sequence alignment of pCP13 (cpb2-con) compared to the epsilon domain protein containing
plasmids pCPNY83906550-1 (edpA) and pCPT1 (edpB). (B) Shown are sequence alignments of pCW3
(Tet), pCP16SBCL1142-1 (LdpC), pCPT6-1 (ldpB, cpb2-atyp), pCP16SBCL648-1 (ldpB, Tet) and pCPT84-1
(ilpA/ilpB). The ORFs in the conserved backbone for pCP13-like plasmid are depicted as light blue
arrows. The ORFs in the conserved backbone for pCW3-lke plasmids are depicted as dark blue
arrows. Virulence factors and toxin homologs are labelled and other open reading frames are shown
as red arrows. Light grey arrows represent open reading frames that are unique to that plasmid,
* denotes plasmids containing a toxin homolog. Genbank accession numbers for plasmid sequences
are DQ366035 for pCW3, AP003515 for pCP13, MK285071 for pCPNY83906550-1, MK285059 for
pCPT1, MK285071 for pCP16SBCL1142-1, MK285060 for pCPT6-1, MK285061 for pCP16SBCL648-1
and MK285057 for pCPT84-1.

2.3. Novel Protein Sequences with Epsilon Toxin-Like Aerolysin Domain

Two novel epsilon toxin ETX/Bacillus mosquitocidal toxin MTX2 domain-containing protein
sequences were identified (Figure 4). Five isolates contained one of the epsilon homologs designated
epsilon domain protein A (EdpA). Two isolates from human blood, specifically, NY83906550 (NY, 2012,
human blood) and NY83905249 (human blood, NY, 2010), as well as three isolates from contaminated
food, 16SBCL600 (2015, France, poultry sausage), 16SBCL609 (2015, white bean vegetables, France) and
16SBCL1126 (2016, poultry, minced turkey), were found to encode EdpA. The other epsilon homolog
designated epsilon domain protein B (EdpB) was found in a single turkey isolate afflicted with necrotic
enteritis (T1).
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white, <19%.

The novel homologs were compared to the other epsilon domain-containing proteins from
C. perfringens, C. botulinum and Brevibacillus laterosporus. Two C. perfringens strains, ATCC3626 (type B)
and JGS1721 (type D), encode the epsilon toxin with 99.9% nucleotide identity and 99% protein identity
between them. Sequence comparison shows that EdpA from all five isolates shared 100% protein
identity between them but only 25–27% amino acid identity to the epsilon toxin from ATCC3626 and
JGS1721 and 47% to EdpB (Figure 4). EdpA and EdpB shared 30–31% protein identify to the epsilon
toxin from C. botulinum (Figure 4).

The novel ETX/MTX2 domain proteins are encoded on pCP13-like plasmids. Both variants
encoded the same conserved plasmid regulation regions, but the Turkey isolate T1 has a distinctly
different variable region of the plasmid compared to the human isolates. The T1 pCP13-like plasmid
is ~52 kb in size while the human isolates carry an ~61 kb plasmid (Figure 3). These plasmids are
distinctly different to epsilon toxin-encoding plasmids such as pCP8533etx, which have a pCW3-like
plasmid backbone.
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2.4. Novel Protein Sequences with Similarity to Clostridial Binary Toxins

Four turkey isolates were found to encode homologous protein sequences to the iota binary toxin
(IlpA and IlpB). Three of the isolates (T43 healthy bird, T46 diseased bird and T84 diseased bird)
were also found to encode DlpA while the fourth (T22 healthy bird) did not. The IlpB from T22 also
contained two amino acid substitutions (A226D, R253K) compared to the other three isolates. Sequence
comparison of the IlpA and IlpB components show the four turkey isolates have 100% (99% in T22)
protein identity to each other, while an 82% protein identity for JGS1987 for the Iap and 84% to Ibp was
determined, with most of the sequence vitiation in the 5’ region of the protein. Comparison to other
iota-like toxins including BecA and BecB (CPILE) shows an ~43% protein identity to BecA and ~39%
identity to BecB (Figure 5). Iota-like toxins are also described in other species and these were compared
to the sequences identified in this study. Iota-like toxin from C. spiroforme had a 78.4% identity to
JGS1987 and 81.72% identify to the putative iota-like toxin. Similar identity was observed to the
C. difficile binary toxin components CdtA and CdtB. In comparison to phage encoded neurotoxin from
C. botulinum C2, only 28% identity was observed in C2-I (component A) and 42% in C2-II (component
B) (Figure 5). The iota-like sequence was located on a pCW3-like plasmid of ~57 kb in size (Figure 3).
Unlike the other toxin homologs characterised in this study, the IlpA/B was found exclusively in
turkey isolates.
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Figure 5. (A) Schematic showing key features of the C. perfringens functional domains of the iota binary
toxins family of proteins as characterised in Pfam. The PF03496 regions are ADP-ribosytransferase toxin
A domains and are coloured green; PA14 is coloured blue; PF03295, PF17475 and PF17476, the toxB
domains, are coloured red and the signal peptide is coloured purple. Numbers marked correspond to
amino acid positions of the start and end of the features with the range showing the variation between
the different protein sequences. (B,(C)) Maximum likelihood trees based on alignment of novel toxin
homologs of each toxin component (marked with *) against protein sequences of the C. perfringens
binary toxin proteins iota and Bec and representative sequences from C. botunilim C2, C. difficile binary
toxin and C. spiroforme binary toxin. Protein sequences were aligned using clustal omega, and maximum
likelihood was implemented in IQtree. The tree was inferred using the LG+F+G4 model and rapid
bootstrapping -bb 2000; bootstrap support is shown at the nodes. Scale bar indicates the number of
changes per site. Heatmap showing percent identity matrix of protein alignments, colours correspond
to the following percent identity: dark red, 80–100%; light red, 60–79%; orange, 40–59%; bright yellow,
30–39%; pale yellow, 20–29% and white, <19%.
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3. Discussion

In this study we identified seven potential toxin homologs with homology to beta, delta, epsilon
and iota toxins, and their corresponding putative mobile genetic elements and chromosomal insertions.
The toxin homologs were defined based on sequence identity and domain structure of the proteins
to the known toxins from C. perfringens and other species. The discovery of novel protein sequences
with similarity to previously characterised C. perfringens toxins suggests that much genetic diversity
and toxin diversity still remains to be discovered in this bacterium. The advances in throughput
and continuing reduction in the cost of WGS has made it a readily accessible tool for the deeper
exploration of bacterial genome structure and content. We demonstrate its use as a screen for putative
virulence factors based on domain sequence analysis and a large pool of isolates for which genome
data is available.

Four new leukotoxin domain containing proteins, DlpA, LdpA, LdpB and LdpC, two epsilon
domain containing proteins sequences, EdpA and EdpB, and the iota-like protein (IlpAB) were
identified in this study. Three of these toxin homologs IlpA/IlpB, DlpA and EdpB, were found
exclusively in Type A turkey isolates. Three of the four turkey isolates that carried the plasmid
encoded IlpAB also carried DlpA integrated into the chromosome. Two other toxin homologs (LdpB
and LdpC) were predominantly identified in isolates from turkeys suffering from necrotic enteritis,
but were also identified in isolates from other sources. While there is only a small sample of turkey
isolates used in this study (n=13), screening of future isolates from turkeys for these factors may reveal
more about the prevalence of these genes and the potential mechanism of virulence in turkeys.

EpdA was found in two isolates from human blood and three different sources of contaminated
food, providing a possible association with human disease, although considerably more sampling is
required before statistical significance could be reached. It is clear given the diverse geographical range
of isolates (France and New York) that the plasmid present in these strains may be widely dispersed.

While most of the toxin homologs described in this study were found on a single conserved class
of plasmid, the LdpB gene was found to be co-located on two different plasmids, a beta2-encoding
plasmid in a single turkey isolate and two chicken isolates, as well as on a tetracycline resistance
plasmid in an isolate from an unknown source in France. This is a similar observation to enterotoxin
and beta2 toxin, which are found to be encoded on multiple different plasmids, however, their
co-location with tetracycline resistance is not commonly observed. Both of these plasmids encode a
pCW3-like backbone, which shares a common backbone with the IlpAB plasmid.

The epsilon domain proteins EdpA and EdpB were found to be encoded on a pCP13-like
backbone plasmid. The EdpA-encoding plasmid was found intact in five different isolates, while
the EdpB-encoding plasmid was found in a single isolate. In contrast, the epsilon toxin is found on
a pCW3-like plasmid [5]. These results demonstrate that similar toxins can be found encoded on a
diverse range of C. perfringens plasmids with different backbones or large variable regions.

Conjugative plasmids play a very important role in C. perfringens virulence [3]. A single strain
can encode up to four different toxin plasmids, with a single plasmid encoding up to three toxin
genes [2,3,7]. C. perfringens encodes two different classes of large plasmids, pCP13 and pCW3 [3,13,27],
both of which have been demonstrated to be conjugative [27–29]. This study has identified six new
plasmids, two pCP13-backbone plasmids and four pCW3 backbone plasmids. The location of toxin
homologs on conjugative plasmids, sometimes co-localised with other virulence genes and tetracycline
resistance, was also observed here. This study therefore provides further support that a significant
contribution to the genetic diversity of C. perfringens is plasmid mediated and involves unique variable
regions, including the toxin homologs, and many other genes are present on each of the plasmids.

Thresholds for protein clustering and annotation of coding sequences are important for
pan-genome analysis and identification of putative new proteins. Reducing sequence thresholds
too low can result in different toxins being clustered together. For example, reducing thresholds below
85% results in netB and netE being clustered together, hence the error in a previous study claiming netB
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is present in the dog and horse isolates [25], which has since been corrected as it is clear now that both
netB and netE are established as two different proteins [25].

The discovery of four newly identified leukotoxin domain-containing proteins, DlpA, LdpA, LdpB
and LdpC, emphasises the diversity of this class of protein in C. perfringens. With the recent discovery
of NetB, NetE, NetF and NetG [8,10], as well as increased functional work to define the mechanism
of action of the toxins, including delta toxin, it has been shown that leukotoxin domain proteins in
C. perfringens are largely responsible for virulence and pathogenesis in multiple diseases [8,11,30,31]
Characterisation of two epsilon domain proteins, and the characterisation of another protein sequence
with similarity to the clostridial binary toxins, suggests that there is also a high amount of genetic
variability of these toxins classes, and not just within the leukotoxin domains.

The most widely published method for investigating C. perfringens isolates from outbreaks is the
use of diagnostic PCR for the toxins used in the typing scheme as well as cpb2 [1,32–37]. This study has
shown that toxin diversity may be much greater than previously revealed and restricting diagnostics
to PCR may be missing key information regarding C. perfringens pathogenesis. We suggest the use
of whole genome sequencing for C. perfringens diagnostics and virulence investigations, in particular
from diverse animal sources, as it can provide a more complete and accurate source of information,
particularly on new mechanisms of virulence and associations of genetic elements with particular hosts.

This analysis has used publicly available genomic data to identify seven novel putative toxin
proteins with striking similarities to characterised toxins and has localised the genes of most of them to
plasmids. Further investigation, particularly on protein expression and functionality of these proteins
in animal hosts or cell lines, is required before conclusions can be drawn about the functionality of
these proteins as C. perfringens toxins.

4. Materials and Methods

The DNA sequences analysed in this study were obtained from two sources: FASTA files of
published genomes downloaded from the NCBI genome database and genomes with only unassembled
and unannotated sequence reads publicly available were downloaded from the NCBI short-read
archive (SRA). Where available, the metadata (disease association, year of isolation, country of isolate)
was collected for all genomes. For details of the isolates used in this study refer to Supplementary
Table S1.

For the genomes that required assembly, reads were assembled using Spades v.3.12.0 at default
settings. All genomes were annotated with Prokka v1.13.2, and protein clustering was performed
using Blastp v2.7.1 and CD-HIT in Roary v3.12.0) [38] with minimum percentage identity of 90%
(-I 90) with no splitting of paralogs (-s). Protein sequence was examined for functional domains
using the NCBI conserved domains database search and Pfam [39], signal sequences were screened
using SignalP 4.1[40]. Sequence homologs were also searched using profile hidden Markov models
implemented in HMMER v3.2.1 (hmmer.org) [41]; hmmbuild was used to create a profile for each
toxin type (leukotoxin, epsilon and binary toxin) and was created from multiple sequence alignment
of protein sequences of each toxin type (leukotoxin, epsilon and binary toxin). The profile was then
used to search the pan-genome hmmsearch for proteins sequences with significant matches to each of
the toxin profiles (–tblout).

Maximum likelihood trees of protein sequences based on alignment of novel toxin homologs to
representative protein sequences were obtained from NCBI. Protein sequences were aligned using
clustal omega [42], and maximum likelihood was implemented in IQtree [43]. The tree was inferred
using the LG+F+G4 model, and rapid bootstrapping -bb 2000 and non-parametric bootstrap (-v) [43,44]
and visualized in Figtree. Heatmaps were produced using a percent identity matrix based on clustal
omega alignments and rounded to the nearest whole number. Heatmap colours correspond to the
following percent identity: dark red, 80–100%; light red, 60–79%; orange, 40–59%; bright yellow,
30–39%; pale yellow, 20–29% and white, <19%.
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Plasmid assembly was performed de novo using Spades v3.12 where reads were assembled.
Contigs were scaffolded using the closed plasmids pCW3 and pCP13 as scaffolding references and to
assist with gap closure and repeat resolution. Reads were mapped back to contigs for error correction
using Pilon [45] and to ensure gap closure of plasmid contigs. Plasmid contigs containing the genes of
interest were extracted from the genomes and sequence alignment was performed on plasmid contigs
against reference plasmids using tBlastx or blastn to investigate similarity (BLAST 2.7.1+) [46–48].
Schematics of alignments were produced using Easyfig v.2.2.2 [49]. Plasmids sequences were deposited
to Genbank under the Bioproject accession PRJNA508810; the accession numbers for each plasmid are
as follows: MK285071 for pCPNY83906550-1, MK285059 for pCPT1, MK285071 for pCP16SBCL1142-1,
MK285060 for pCPT6-1, MK285061 for pCP16SBCL648-1 and MK285057 for pCPT84-1. The accession
numbers for chromosomal regions are as follows: MK285064 for T84 dlpA region, MK285058 for
NCTC3182 cpd region, and MK285056 for 16SBCL571 ldpA region. Sequences of toxin homologs
were deposited to Genbank under the accession numbers: MK285070 for edpA, MK285055 for edpB,
MK285066 for dlpA, MK285067 for ldpA, MK285068 for ldpB, MK285063 for ldpC, MK285069 for ilpA
and MK285065 for ilpB.

5. Conclusions

Here we have demonstrated through analysis of whole genome sequences a series of novel toxin
homologs located on conjugative plasmids and chromosomal insertions in C. perfringens. Although
these genes cannot be assigned as toxins without further molecular and microbiological functional
confirmation, the presence of iota, beta, delta and epsilon homologs carried on mobile genetic elements
in strains from various backgrounds demonstrates that the plasmid diversity and potential toxin
diversity encoded by C. perfringens is still widely under-reported.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/8/1/16/s1,
Table S1: Strains used in study.
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