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Abstract
Purpose  Cerebral oxygenation as measured by near-infrared spectroscopy (NIRS) might be useful to discriminate between 
physiological and pathological responses after standing up in individuals with orthostatic hypotension. This study addressed 
the physiological sensitivity of the cerebral oxygenation responses as measured by NIRS to different types and speeds of 
postural changes in healthy adults and assessed the reliability of these responses.
Methods  Cerebral oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb) and tissue saturation index (TSI) 
were measured bilaterally on the forehead of 15 healthy individuals (12 male, age range 18–27) using NIRS. Participants 
performed three repeats of sit to stand, and slow and rapid supine to stand movements. Responses were defined as the dif-
ference between mean, minimum and maximum O2Hb, HHb and TSI values after standing up and baseline. Test–retest, 
interobserver and intersensor reliabilities were addressed using intraclass correlation coefficients (ICCs).
Results  The minimum O2Hb response was most sensitive to postural changes and showed significant differences 
(− 4.09 µmol/L, p < 0.001) between standing up from sitting and supine position, but not between standing up at different 
speeds (− 0.31 µmol/L, p = 0.70). The minimum O2Hb response was the most reliable parameter (ICC > 0.6).
Conclusions  In healthy individuals, NIRS-based cerebral oxygenation parameters are sensitive to postural change and dis-
criminate between standing up from supine and sitting position with minimum O2Hb response as the most sensitive and 
reliable parameter. The results underpin the potential value for future clinical use of NIRS in individuals with orthostatic 
hypotension.

Keywords  Cerebrovascular circulation · Sensitivity · Reliability · Physiology · Orthostatic hypotension · Cerebral 
autoregulation
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SD	� Standard deviation
TSI	� Tissue saturation index

Introduction

Adequate cerebral oxygenation is essential for physical 
and cognitive functioning (Agbangla et  al. 2017; Lotte 
et al. 2018; Vasta et al. 2018; Kovarova et al. 2018). Cer-
ebral oxygenation depends on blood pressure and cerebral 
perfusion (Krakow et al. 2000), which are challenged by 
postural changes, such as standing up from supine or sit-
ting position (Kim et al. 2011). Changes in blood pressure 
and cerebral perfusion after standing up are counteracted 
by the baroreflex and cerebral autoregulation (Xing et al. 
2017; Purkayastha et al. 2018). However, these systems do 
not fully prevent cerebral oxygenation drops after standing 
up in most individuals (van Lieshout et al. 2001), which 
may be the cause of symptoms of dizziness, impaired 
physical function and falls in patients with impaired blood 
pressure control after standing up, i.e., orthostatic hypoten-
sion (Mehagnoul-Schipper et al. 2000; Thomas et al. 2009; 
Bachus et al. 2018).

To discriminate between physiological and pathological 
cerebral oxygenation responses, physiological responses 
to various types and speeds of postural changes must be 
investigated. Near-infrared spectroscopy (NIRS) is a non-
invasive and non-obtrusive method to measure cerebral oxy-
genation and was suggested to be valid by studies reporting 
the correlation of NIRS signals with fMRI BOLD signals 
and cerebral blood flow measured by transcranial Doppler 
(Smielewski et al. 1995; Huppert et al. 2006). Furthermore, 
NIRS is potentially useful to assess cerebral autoregulation 
(Steiner et al. 2009; Kainerstorfer et al. 2015). Previous 
studies investigated cerebral oxygenation responses using 
NIRS in healthy adults during head-up tilt (Houtman et al. 
1999; Krakow et al. 2000; Kurihara et al. 2003), compared 
responses to standing up or sitting up in younger and older 
adults (Kawaguchi et al. 2001; Gatto et al. 2007; Edlow et al. 
2010; Kim et al. 2011), compared responses to standing up 
with and without calf muscle tensing (Kawaguchi et al. 
2001; van Lieshout et al. 2001), or determined reproducibil-
ity of responses in older adults (Mehagnoul-Schipper et al. 
2001). These studies reported a cerebral oxygenation drop 
within 30 s after standing up. However, a comprehensive 
assessment of the dependence of NIRS-derived cerebral oxy-
genation responses on the type (i.e., standing up from supine 
versus sitting position) and speed of postural change (i.e., 
slow versus rapid standing up) is missing and the reliability 
of these responses has not been assessed.

This aim of this study was to investigate the sensitivity 
of the cerebral oxygenation response as measured by NIRS 

to different types and speeds of postural changes in healthy 
adults and to assess the reliability of these responses.

Methods

All data generated or analyzed during this study are included 
in the supplementary information file of the published 
article.

Subjects

Fifteen healthy young (mean age 22 years, SD 2.8; 12 male) 
individuals were recruited via oral and written advertisement 
in an undergraduate university teaching setting.

Volunteers were excluded from participation when hav-
ing a history of stroke, cardiovascular or cerebrovascular 
diseases, cardiac arrhythmias, cardiovascular-related medi-
cation use, diabetes mellitus or orthostatic hypotension. 
Exclusion criteria were checked prior to study participation 
by completing a short survey. All procedures performed in 
studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national 
research committee and with the 1964 Helsinki Declaration 
and its later amendments or comparable ethical standards. 
The study was approved by the Ethics Committee of the 
Faculty of Science of the Radboud University in Nijmegen. 
Informed consent was obtained from all individual partici-
pants included in the study.

Instrumentation

NIRS signals reflecting concentration changes of cerebral 
oxygenated hemoglobin (O2Hb) and deoxygenated hemo-
globin (HHb) and cerebral tissue saturation index (TSI) were 
continuously measured bilaterally on the forehead, approxi-
mately 2.5 cm above the eyebrows, using two Portalite sys-
tems (Artinis Medical Systems B.V., Elst, The Netherlands), 
each consisting of three light sources and one detector. The 
inter-optode distance (i.e., the distance between the light 
sources and the light detector) of the different light sources 
was 30, 35 and 40 mm. The sampling frequency was set 
at 50 Hz. O2Hb and HHb were computed using the modi-
fied Lambert–Beer law using Oxysoft (version 3.0, Artinis 
Medical Systems B.V., Elst, The Netherlands), calculating 
the differential pathway factor using the formula proposed 
by Scholkmann and Wolf (2013). TSI, defined as oxygen-
ated hemoglobin as a percentage of total hemoglobin, was 
computed using spatially resolved spectroscopy (Suzuki 
et al. 1999).

To identify the start of postural change, a digital goni-
ometer was attached to the participant’s trunk to measure 
its angle relative to the horizontal. Time needed to stand 
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up was defined as the time from the beginning of the first 
deviation from baseline to the instance where the angle 
was stabilized.

Beat-to-beat mean arterial pressure, interbeat interval 
and cardiac output were measured to assess whether cere-
bral oxygenation responses to postural changes correspond 
to systemic cardiovascular responses, as these are consid-
ered to be a cause of cerebral oxygenation drops (Levine 
et al. 1994). Mean arterial pressure, interbeat interval and 
cardiac output were measured continuously using a pho-
toplethysmograph with a cuff placed on the left middle 
finger (Finapres NOVA, Finapres Medical Systems BV, 
Enschede, The Netherlands). Peripheral oxygen saturation 
(SpO2) was measured to assess blood oxygenation changes 
during standing up. An analog reference signal containing 
a binary coding of time was imported in every device to 
enable off-line synchronization of the signals.

Protocol

The measurements were performed in a quiet, semi-dark 
room with a room temperature of 21–23 °C. Three differ-
ent postural changes were performed, after demonstration 
of the correct task execution using a short video: (1) sit 
to stand, defined as standing up from sitting position at 
a self-chosen speed; (2) slow supine to stand, defined as 
standing up from supine position in approximately 10 s; 
(3) rapid supine to stand, defined as standing up from 
supine position within 3 s. Subjects were stimulated to 
relax, instructed not to talk and asked to move as little 
as possible during the experiment. The three different 
postural changes were performed in blocks, consisting 
of three repetitions per block. Each repetition encom-
passed a 5-min resting period (supine or sitting) and a 
3-min standing period (Fig. 1). The sequence of the blocks 
was randomized among participants to eliminate the bias 
due to previous postural changes. After the three blocks, 
the NIRS system was reapplied by a second investigator 

to assess the interobserver reliability. Then the last per-
formed postural change was repeated once.

Data analysis

NIRS, goniometer and continuous blood pressure data were 
synchronized and analyzed off-line using MATLAB R2017b 
(MathWorks, Natick, United States). NIRS and mean arterial 
pressure signals were filtered using a 5-s moving average 
filter to reduce the artifacts. Baseline values of the signals 
were computed as means of the 60-s period before postural 
change. For visualization, all signals were normalized at 
baseline and signals from the left and right NIRS systems 
were averaged. Based on previous studies reporting an early 
and a late oxygenation drop, the period after standing up 
was divided into an early and late interval, i.e., 0–30 and 
30–180 s after standing up, respectively (Thomas et al. 2009; 
Kim et al. 2011). Parameters expressing the mean, maximum 
and minimum were determined for each postural change and 
NIRS signal for both intervals. Signal response sensitivity 
for postural changes was defined as the difference between 
these parameters and baseline.

Statistical analysis

Statistical analyses were performed using the MATLAB 
R2017b statistics toolbox. Response differences between 
postural changes were tested using paired t tests. The 
test–retest reliability (i.e., the agreement of responses 
between repeats), interobserver reliability (i.e., agreement 
between responses before and after reapplication of the 
NIRS system) and intersensor reliability (i.e., agreement 
between responses as measured simultaneously by the left 
and right NIRS system) were expressed using one-way, ran-
dom, single score intraclass correlation coefficients (ICCs) 
(McGraw and Wong 1996) and evaluated for each signal 
(i.e., O2Hb, HHb and TSI), response type (i.e., mean, maxi-
mum and minimum) and interval (i.e., 0–30 s and 30–180 s). 
ICC scores between 0–0.40, 0.40–0.59, 0.60–0.74 and 
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Time (minutes) Sensor replacement 

Block 1: sit to stand Block 2: slow supine to stand Block 3: rapid supine to stand Repeat of last postural change

Fig. 1   Protocol of the postural changes. The sequence of the three blocks varied among subjects due to block randomization. Each block consists 
of three repeats. The empty space between the dashes indicates the speed of standing up, with more space indicating higher speed
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0.75–1 were regarded as poor, fair, good and excellent, 
respectively (Cicchetti 1994).

p values below 0.05 were considered significant. Cor-
rection for multiple comparisons was performed according 

to the Bonferroni method, rendering p values below 0.0009 
significant.

Results

The characteristics of the included individuals are listed in 
Table 1. Postural changes for sit to stand, slow supine to 
stand and rapid supine to stand were performed in 4.3 (SD 
1.1), 14.4 (SD 3.9) and 6.0 (SD 1.5) s, respectively.

Figure 2 shows O2Hb, HHb, TSI and mean arterial pres-
sure before, during and after the three types of postural 
change (i.e., sit to stand, slow supine to stand and rapid 
supine to stand), normalized at baseline and averaged over 
all 15 subjects. In the early interval (0–30 s), O2Hb, HHb 
and TSI showed a drop, which was most prominent in the 
O2Hb signal and in the rapid supine to stand condition. In 
the late interval, O2Hb and TSI showed a small decrease, 
while HHb showed a clear increase. None of the NIRS sig-
nals returned to baseline within the measurement period. 
Mean arterial pressure showed a pattern similar to O2Hb 
and TSI in the early interval, but remained stable in the late 
interval. Figure 1 in the electronic supplementary material 
(ESM.1) shows the cerebral oxygenation responses for the 
three female participants, showing similar patterns as the 
responses of the entire population.

Mean SpO2 in the early interval did not differ sig-
nificantly from baseline in any type of postural change. 

Table 1   Characteristics of the cohort

HR was computed as the baseline mean. Systolic blood pressure 
(SBP) and diastolic blood pressure (DBP) were measured using a 
sphygmomanometer
SD standard deviation, BMI body mass index, HR heart rate, bpm 
beats per minute
a Excessive alcohol use is defined as > 14 units per week for females 
and > 21 units per week for males

Characteristic All (n = 15)

Age, years, mean (SD) 22 (2.8)
Male, n (%) 12 (80)
Light skin color, n (%) 13 (87)
Height, m, mean (SD) 1.80 (9.4)
Weight, kg, mean (SD) 71 (5.7)
Current smoking, n (%) 1 (6.7)
Excessive alcohol use, n (%)a 0 (0)
Resting HR, bpm, mean (SD) 75 (13)
Resting SBP, mmHg, mean (SD) 127 (7)
Resting DBP, mmHg, mean (SD) 74 (10)
Time needed for sit to stand, s, mean (SD) 4.3 (1.1)
Time needed for slow supine to stand, s, mean (SD) 14.4 (3.9)
Time needed for rapid supine to stand, s, mean (SD) 6.0 (1.5)
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Fig. 2   O2Hb, HHb, TSI and mean arterial pressure before, during and 
after standing up as a response to different postural changes, aver-
aged over subjects (n = 15). All signals are unfiltered and normal-
ized at baseline. The red vertical line indicates the onset of the pos-

tural change. The dashed line indicates the transition from the early 
(0–30  s) to the late (30–180  s) interval. The error bars indicate the 
standardized error of the mean
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Interbeat interval and cardiac output showed a decrease 
and an increase in the early interval, respectively, for any 
postural change, as shown in figure ESM.2.

Figure 3 shows the O2Hb, HHb and TSI signal response 
sensitivity to three postural changes for both intervals. 
As shown in Table 2, the responses differed significantly 
between sit to stand and both slow or rapid supine to stand, 
but no significantly different responses between slow and 
rapid supine to stand were observed. After correction for 
multiple comparisons, only differences in O2Hb responses 
remained significant, both in the early and late interval. 
The largest mean arterial pressure drop after standing 
up was 24.0 (SD 9.8), 26.4 (SD 14.6) and 29.0 (SD 7.1) 
mmHg for sit to stand, slow supine to stand and rapid 
supine to stand, respectively, being not significantly dif-
ferent between conditions.

Figure  4 shows the test–retest reliability, interob-
server reliability and intersensor reliability for each sig-
nal, parameter and interval. Overall, the minimum O2Hb 
response in the early interval resulted in the highest reli-
ability scores, being good to excellent. None of the param-
eters derived from HHb and TSI had good or excellent 
test–retest, interobserver and intersensor reliability.

Discussion

Cerebral oxygenation as measured by NIRS was sensitive to 
postural changes in healthy adults. Oxygenated hemoglobin 
(O2Hb) showed the most prominent drop after standing up, 
which was significantly different between standing up from 
supine and from sitting position, but not between slow and 
rapid standing up. Compared to other parameters, the mini-
mum O2Hb response in the early interval showed good to 
excellent reliability, identifying this as the preferred param-
eter in the assessment of cerebral oxygenation responses to 
postural changes.

Both oxygenated and deoxygenated hemoglobin dropped 
in the early phase after standing up, indicating a lower 
concentration of total hemoglobin, therewith reflecting a 
decrease of cerebral perfusion. This is in line with the early 
perfusion drop after standing up reported by transcranial 
Doppler studies (van Lieshout et al. 2001; Thomas et al. 
2009). This perfusion drop indicates that cerebral autoregu-
lation may not immediately compensate for blood pressure 
drops resulting from gravitational pooling after standing up, 
even in healthy adults (Zhang et al. 2002; Chisholm and 
Anpalahan 2017; Xing et al. 2017; van Wijnen et al. 2017). 
The perfusion drop in the context of a constant brain oxygen 
demand is likely to be the cause of the cerebral hemoglobin 
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Fig. 3   Signal response sensitivity of O2Hb, HHb and TSI for different 
types of postural changes, averaged over subjects (n = 15). The results 
are computed from the filtered signals. The upper panels depict the 
mean of the signal within the interval relative to baseline. The lower 
panels indicate the highest and lowest value (most positive and most 

negative bar, respectively) within the interval relative to baseline. The 
error bars indicate the standardized error of the mean. O2Hb oxygen-
ated hemoglobin, HHb deoxygenated hemoglobin, TSI tissue satura-
tion index
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saturation decrease, as reflected by the drop in TSI. Altered 
lung function during standing up may have contributed to 
the early drop in O2Hb and TSI after standing up. How-
ever, SpO2 did not show a significant drop after standing 
up, indicating this contribution was probably not large, if at 
all present. Furthermore, the decrease of interbeat interval 
and increase of cardiac output suggest a sufficient cardiac 
response to postural change, implying cardiac function does 
not account for the cerebral oxygenation drop.

The late, gradual drop of O2Hb and TSI to below base-
line and rise of HHb to above baseline are consistent 
with previous studies (Krakow et al. 2000; Mehagnoul-
Schipper et al. 2001; Kim et al. 2011) and are not likely to 
arise from gravitational pooling, as healthy adults usually 
recover blood pressure within 30 s after standing up (van 
Wijnen et al. 2017). These may be explained by a persis-
tently decreased brain perfusion after standing up due to 

persistent hydrostatic pressure differences, as reported by 
transcranial Doppler studies (van Lieshout et al. 2001; Kim 
et al. 2011). The lower brain perfusion and a constant brain 
oxygen demand might cause a larger part of the available 
hemoglobin to become deoxygenated, thereby explaining a 
drop of O2Hb and TSI and a rise of HHb.

The significantly different O2Hb responses between 
standing up from sitting and supine position measured in 
the present study could not be explained by correspond-
ing differences in blood pressure drop. Instead, these O2Hb 
response differences might be explained by dependence 
of cerebral autoregulation on the type of postural change, 
independent of the magnitude of the blood pressure drop. 
The vestibular system may be involved, as standing up from 
supine and sitting position causes different vestibular stim-
uli, influencing cerebral autoregulation (Serrador et al. 2009) 
and therewith cerebral oxygenation.

Table 2   NIRS response differences between postural changes

Bold values indicate significant differences before correction for multiple comparisons
NIRS responses (i.e., mean, highest value and lowest value) in two intervals, compared between postural changes.  Significantly different 
responses were observed when comparing sit to stand with supine to stand. The responses do not differ significantly between slow and rapid 
supine to stand
*This association remains significant after correction for multiple comparisons

Sit to stand versus slow 
supine to stand

p value Sit to stand versus rapid 
supine to stand

p value Slow supine to stand versus 
rapid supine to stand

p value

0–30 s interval
 O2Hb, ∆µmol/L, mean (SD)
  Mean − 2.89 (3.60) 0.0077 − 3.44 (3.64) 0.0026 − 0.56 (2.58) 0.4169
  Maximum − 1.45 (2.44) 0.0368 − 1.27 (1.86) 0.0189 0.18 (1.54) 0.6551
  Minimum − 3.78 (3.82) 0.0018 − 4.09 (3.58) 0.0006* − 0.31 (3.04) 0.6959

 HHb, ∆µmol/L, mean (SD)
  Mean − 0.67 (1.06) 0.0279 − 0.89 (1.26) 0.0158 − 0.22 (0.99) 0.4047
  Maximum − 0.27 (1.00) 0.3231 − 0.50 (0.97) 0.0642 − 0.24 (0.50) 0.0848
  Minimum − 0.71 (0.98) 0.0143 − 0.91 (1.24) 0.0131 − 0.20 (1.05) 0.4689

 TSI, ∆%, mean (SD)
  Mean 0.0 (1.1) 0.9580 0.2 (1.5) 0.6058 0.2 (1.4) 0.5495
  Maximum 0.3 (1.2) 0.3031 0.9 (2.4) 0.1792 0.6 (2.4) 0.3941
  Minimum − 0.3 (1.0) 0.3169 − 0.7 (1.1) 0.0309 − 0.4 (0.8) 0.0625

30–180 s interval
 O2Hb, ∆µmol/L, mean (SD)
  Mean − 4.79 (3.78) 0.0002* − 4.45 (3.84) 0.0005* 0.34 (3.95) 0.7451
  Maximum − 4.31 (3.71) 0.0005* − 2.57 (8.74) 0.2739 1.74 (8.59) 0.4448
  Minimum − 4.50 (4.01) 0.0007* − 5.31 (4.44) 0.0004* − 0.81 (3.46) 0.3792

 HHb, ∆µmol/L, mean (SD)
  Mean 1.01 (1.10) 0.0031 1.58 (3.06) 0.0663 0.57 (2.51) 0.3941
  Maximum 1.11 (1.11) 0.0017 3.01 (8.13) 0.1731 1.90 (7.67) 0.3537
  Minimum 0.42 (1.41) 0.2653 0.00 (1.65) 0.9956 − 0.42 (1.25) 0.2145

 TSI, ∆%, mean (SD)
  Mean − 0.1 (2.1) 0.8743 − 0.1 (1.9) 0.7806 − 0.1 (1.0) 0.8259
  Maximum 0.1 (1.9) 0.8672 0.8 (3.6) 0.4273 0.7 (3.5) 0.4644
  Minimum − 0.0 (2.1) 0.9637 − 0.5 (2.4) 0.4707 − 0.4 (1.3) 0.2260



1123European Journal of Applied Physiology (2019) 119:1117–1125	

1 3

No significant differences were found between responses 
to rapid and slow supine to standing in the O2Hb, HHb and 
TSI signals, as would be expected from studies showing that 
cerebral autoregulation acts as a high-pass filter, implying 
that rapid blood pressure drops cannot be compensated for 
as adequately as slow blood pressure drops (Rickards and 
Tzeng 2014; Tarumi and Zhang 2018). Cerebral autoregula-
tion may not have been tested to its maximum, as measured 
differences of blood pressure drops between the slow and 
rapid supine to stand conditions in the present population 
were small and not significant. Further studies in patients 
with impaired blood pressure control, e.g., patients with 
orthostatic hypotension are required.

The lower overall test–retest reliability and intersensor 
reliability of TSI responses compared to O2Hb and HHb 

responses may be explained by an insufficient validity of the 
assumptions needed to compute TSI, such as homogeneity 
of brain tissue (Yoshitani et al. 2007; Murkin and Arango 
2009). The substantial TSI response differences, as meas-
ured by the left and right NIRS devices, suggest different 
tissue properties underlying both devices, e.g., differences in 
skull thickness, which were reported to be considerable in a 
recent study (Sawosz et al. 2016). Alternatively, a relatively 
low sensitivity of TSI to postural changes may imply that 
TSI parameters are relatively sensitive to noise, leading to 
lower TSI reliability scores.

The NIRS measurements investigated in the present study 
are potentially influenced by changes in scalp perfusion 
after standing up, which is not directly regulated by cerebral 
autoregulation. Studies on the contribution of scalp perfusion 
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to cerebral oxygenation as measured by NIRS are contradic-
tory. Cerebral oxygenation was reported to correlate signifi-
cantly with jugular vein oxygenation, but not with facial vein 
oxygenation, suggesting signals derived from NIRS measure-
ments primarily reflect cerebral processes (Murkin and Arango 
2009). However, significant changes in TSI, as measured by 
NIRS, were reported after inducing scalp ischemia using a 
tourniquet, indicating a significant influence of scalp blood 
flow (Germon et al. 1994).

The subjects needed more time to stand up than instructed 
in both the slow and rapid supine to stand conditions. This 
may be attributable to underestimation of the speed of stand-
ing up by the subjects. Alternatively, it may be due to the 
definition of the time needed to stand up, which requires a 
stabilized goniometer signal. If subjects stood up sufficiently 
rapidly, but needed some extra time to fully stabilize, this 
may have prolonged the measured time needed to stand up.

Strength and limitations

The strength of this study is that it addresses the sensitivity 
of cerebral oxygenation signals for different types and speeds 
of postural change and systematically assesses the test–retest, 
interobserver and intersensor reliability for various parameters. 
The small number of included individuals is a limitation of 
this study, potentially introducing sampling error and limiting 
study power. The majority of the included individuals were 
young males, potentially limiting generalizability. Further-
more, as the experiment included only one session, no con-
clusions can be drawn regarding the day-to-day reproducibil-
ity of the parameters, which may be important to explain the 
variation of cerebral oxygenation responses in healthy adults.

The results elucidate the cerebral oxygenation response 
to different types and speeds of postural change in healthy 
adults. However, they do not provide an integrative view on 
the cardiovascular reaction to postural change, which would 
contribute to the understanding of the pathophysiology of 
orthostatic hypotension. Future studies should address this 
issue, simultaneously assessing blood pressure, arterial and 
venous vasoreactivity, calf muscle function, sympathetic and 
parasympathetic function as well as cerebral oxygenation.

This study does not provide results on how to predict syn-
cope or orthostatic symptoms, as these were not recorded in 
this study. However, the reported results on cerebral oxygena-
tion changes during different types and speeds of standing up 
in healthy adults are necessary to determine any dependence of 
these responses on age in future studies and to classify future 
NIRS measurements in patients with orthostatic hypotension 
as physiological or pathological.

Conclusion and future direction

This study demonstrates that cerebral oxygenation responses 
measured using NIRS are sensitive to postural change and 
discriminate between standing up from supine and from 
sitting position, but not between slow and rapid standing 
up in healthy adults. Furthermore, it identifies minimum 
O2Hb response in the early interval as a sensitive and reli-
able parameter, suggesting this parameter to be of potential 
value for future clinical use in older adults with impaired 
blood pressure control, e.g., orthostatic hypotension. Future 
research should address other cardiovascular responses to 
postural change such as arterial and venous vasoreactivity 
in an integrative approach. Furthermore, it should address 
the effect of aging on the cerebral oxygenation response to 
different types and speeds of postural change, and investigate 
the potential of NIRS to predict clinical outcomes such as 
falls in patients with orthostatic hypotension. In contrast to 
healthy adults, the speed of standing up might be impor-
tant for the cerebral oxygenation response in this group of 
patients due to inadequate blood pressure regulation and 
cerebral autoregulation, warranting further research.
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