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Abstract

Muscles of older animals are more susceptible to injury and regenerate poorly, in part due to

a persistent inflammatory response. The janus kinase (Jak)/signal transducer and activator

of transcription (Stat) pathway mediates inflammatory signaling and is tightly regulated by

the suppressor of cytokine signaling (SOCS) proteins, especially SOCS3. SOCS3 expres-

sion is altered in the muscle of aged animals and may contribute to the persistent inflamma-

tion and impaired regeneration. To test this hypothesis, we performed myotoxic injuries on

mice with a tamoxifen-inducible deletion of SOCS3 specifically within the muscle stem cell

compartment. Muscle stem cell-specific SOCS3 deletion reduced muscle mass at 14 days

post-injury (-14%, P < 0.01), altered the myogenic transcriptional program, and reduced

myogenic fusion based on the number of centrally-located nuclei per muscle fiber. Despite

the delay in myogenesis, muscles with a muscle stem cell-specific deletion of SOCS3 were

still able to regenerate after a single bout or multiple bouts of myotoxic injury. A reduction in

SOCS3 expression in muscle stem cells is unlikely to be responsible for the incomplete

muscle repair in aged animals.

Introduction

Successful skeletal muscle repair is essential for the maintenance of muscle integrity to main-

tain quality of life. When injured, damaged muscle fibers release factors that promote recruit-

ment of inflammatory cells and the activation and proliferation of muscle stem cells. Activated

muscle stem cells proliferate, migrate, and fuse to repair damaged muscle fibers in a process

highly dependent on a properly regulated inflammatory response [1]. In drosophila, the family

member Tinman was discovered to be a major regulator of cell fate and muscle development

via the Janus kinase (Jak)/Signal transducers and activators of transcription (Stat) Jak/Stat sig-

naling pathway [2]. Since then, Jak/Stat signaling has been shown to regulate muscle stem cell

activity, as mice with a muscle stem cell specific deletion of STAT3 demonstrate impaired

myogenesis resulting from altered myogenic fusion [3].

One key family of negative regulators of Jak/Stat signaling are the suppressor of cytokine

signalling (SOCS) proteins. Of the eight members of the SOCS protein family [cytokine-
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inducible SH2-containing protein (CISH) and SOCS1-7], SOCS3 is the best characterised in

skeletal muscle [4–9]. Gene expression analyses in mice showed significantly higher Socs3 gene

expression in freshly isolated ‘quiescent’ versus in vitro activated muscle stem cells, suggesting

a potential role for SOCS3 in maintaining quiescence [10, 11]. Additionally, in the C2C12

myogenic cell line, SOCS3 promotes myogenic differentiation by modulating the leukemia

inhibitory factor (LIF) and insulin-like growth factor (IGF-1) signaling pathways [5, 8]. Regu-

lation of Jak/Stat signaling by SOCS3 is therefore likely to be important for successful progres-

sion through myogenesis.

Muscles of old animals are more susceptible to injury and regenerate poorly resulting in

incomplete functional recovery, a process linked to a persistent inflammatory response [12,

13]. As the Jak/Stat signaling pathway is a major mediator of the inflammatory response in

skeletal muscle, dysregulated Jak/Stat signaling results in persistent inflammation [14–18].

Increased STAT3 signaling in old skeletal muscle has been commonly reported [6, 19, 20], sug-

gesting that the negative regulation of Jak/Stat signaling by SOCS3 is impaired. Consistent

with these observations, Jak/Stat signaling is increased in the muscle stem cell population of

aged (18 month old) relative to young (3 week old) mice [21], indicating dysregulation of Jak/

Stat signalling.

Thus, SOCS3 may play a regulatory role during myogenesis and altered levels of SOCS3 in

old muscles might impair the regenerative response. As multiple cell types within regenerating

skeletal muscles express SOCS3, including the muscle fibers, inflammatory cells and the mus-

cle stem cells, the relative contribution of SOCS3 within these cell types to altered muscle

inflammation and regeneration remains to be determined. We previously reported that spe-

cific deletion of SOCS3 in mature skeletal muscle fibers enhances the inflammatory response

after myotoxic injury but does not impair regeneration [9]. Using mice lacking SOCS3 specifi-

cally within Pax7-expressing muscle stem cells, we now test the hypothesis that deletion of

SOCS3 within the muscle stem cell population delays muscle regeneration after myotoxic

injury.

Materials and methods

Animals

B6.Cg-Pax7tm1(cre/ERT2)Gaka/J (Pax7-CreER) mice were obtained from The Jackson Laboratory

(Bar Harbor, ME, USA) and mated to SOCS3fl/fl mice (obtained originally from Prof. Gregory

Steinberg, St Vincent’s Institute for Medical Research, Melbourne, Australia). Breeding gener-

ated animals homozygous for Cre-recombinase expression (SOCS3fl/fl Pax7-CreER+ mice) and

Cre-negative controls (SOCS3fl/fl Pax7-CreER- mice). All mice were bred and maintained in

the Biological Research Facility (BRF) at The University of Melbourne, Australia. To induce

Cre-recombinase expression, ten-week-old male and female control (SOCS3fl/fl Pax7-CreER-)

and SOCS3 MscKO (SOCS3fl/fl Pax7-CreER+) mice received daily intraperitoneal (i.p) admin-

istration of tamoxifen (Sigma Aldrich, St. Louis, MO, USA; 200 μL of 10 mg/mL tamoxifen in

corn oil) for 5 d and experiments commenced 14 d after the first tamoxifen injection. All

experimental protocols were approved by the Animal Ethics Committee of The University of

Melbourne, Australia and conducted in accordance with the Australian code of practice for

the care and use of animals for scientific purposes as stipulated by the National Health and

Medical Research Council (Australia).

Myotoxic injury

Following tamoxifen administration, twelve-week-old male and female control and SOCS3

MscKO were anesthetized with 100 mg/kg ketamine (i.p; Ceva Animal Health Pty. Ltd.,
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Glenorlie, NSW, Australia) and 10 mg/kg xylazine (ilium xylazil-20; Troy Laboratories, Smith-

field, NSW, Australia) and received an injection of notexin into the right tibialis anterior (TA)

muscle. Mice were killed at 1, 2, 3, 7, or 14 d after notexin injury, as described previously [9].

All muscles were subsequently stored at -80˚C.

Confirmation of SOCS3 deletion in muscle stem cells

To confirm SOCS3 deletion within the muscle stem cell compartment, the right TA muscle of

tamoxifen-treated control and SOCS3 MscKO mice was injected with 40 μl notexin (10 μg/ml

saline; Latoxan, Valence, France) to induce muscle fiber degeneration. At 28 d post-notexin

injury, mice received an i.p. injection of either saline (n = 2) or lipopolysaccharide (LPS; n = 2)

to induce Socs3 gene expression. At 4 h after injection, mice were killed by cervical dislocation

and the right TA muscles dissected and snap frozen. Total RNA was extracted from each right

TA muscle (n = 6/genotype/timepoint) using an RNeasy Fibrous Tissue Mini Kit (Qiagen,

Venlo, Limburg, Netherlands) as per manufacturer’s instructions, converted to cDNA and

analyzed by qPCR for Socs3 gene expression.

Assessment of skeletal muscle contractile properties

At 7 d post-notexin injury, both injured and uninjured mice were anesthetized with sodium

pentobarbitone (Nembutal; 60 mg/kg; Sigma-Aldrich) via i.p. injection and contractile proper-

ties were assessed as described previously [9, 22].

Histology

Serial sections (5 μm) were cut transversely through the TA muscle using a refrigerated

(−20˚C) cryostat (CTI Cryostat; IEC, Needham Heights, MA). Sections were stained with

hematoxylin and eosin (H&E) and digital images of stained sections obtained using an upright

microscope with camera (Axio Imager day 1, Carl Zeiss, Wrek, Göttingen, Germany), con-

trolled by AxioVision AC software (AxioVision AC Rel. 4.8, Carl Zeiss Imaging Solutions,

Wrek, Göttingen, Germany) as described previously [9].

Immunofluorescence

Sections of TA muscle (5 μm) were fixed for 10 min in methanol at -20˚C, air-dried and incu-

bated with Alexa488-conjugated Anti-F4/80 (ab204266; 1:100; Abcam, Cambridge, UK) and

Alexa647-conjugated Anti-CD68 (ab201845; 1:200; Abcam, Cambridge, UK) antibodies for 1

h at room temperature in a humidified chamber. Slides were rinsed for 5 min in PBS contain-

ing 0.05% Tween20 (PBStw) and 2 × 5 min in PBS and then incubated for 30 min with 4’,6-

diamindino-2-phenylindole (DAPI, 5 μg/mL PBS) to visualize nuclei. For Pax7 immunostain-

ing, sections were fixed in 4% PFA for 10 min and rehydrated in 0.1% PBStw for 2 × 5 min.

Heat activated antigen retrieval was performed in citrate buffer (pH 6.0) in the high-pressure

cooker for 10 min, slides were cooled to RT and washed in 0.1% PBStw for 2 × 5 min. Sections

were blocked in 10% Affinipure FAB goat anti mouse IgG/3% bovine serum albumin (BSA; in

0.1% PBStw) for 45 min at RT, then washed with PBStw for 2 × 5 min and incubated in anti-

PAX7-s (pax7, RRID:AB_528428, developed by A. Kawakami from the Tokyo Institute of

Technology and obtained from the Developmental studies hybridoma bank, Iowa City, IO;

1:10) and anti-Laminin (#L9393; Sigma-Aldrich, St. Louis, MO, USA; 1:50) in 3% BSA (in

0.1% PBStw) overnight at 4˚C. Slides were rinsed with 0.1% PBStw for 3 × 10 min and incu-

bated with secondary antibodies (Goat anti-mouse IgG1 for Pax7 AF 647 (1:400): Goat anti-

Rabbit IgG for Laminin (1:200) diluted in 3% BSA (in 0.1% PBStw) for 1 h followed by a 30
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min incubation with DAPI (5 μg/mL PBS) to visualize nuclei. After washes with PBStw and

PBS sections were embedded in Mowiol1 and covered with a coverslip. Digital images of

stained sections were obtained using an upright microscope with camera (Axio Imager D1,

Carl Zeiss, Wrek Göttingen, Germany), controlled by AxioVision AC software (AxioVision

AC Rel. 4.8.2, Carl Zeiss Imaging Solutions, Wrek, Wrek Göttingen, Germany) as described

previously [9]. Images were quantified using AxioVision 4.8.2 software.

RNA extraction and qPCR

Total RNA was extracted from each portion of right TA muscle (n = 6/genotype/timepoint)

using an RNeasy Fibrous Tissue Mini Kit (Qiagen) as per manufacturer’s instructions. The

concentration and quality of RNA samples was determined using Nanodrop 2000 spectropho-

tometer (Thermo Scientific, Waltham, MA, USA). Real-time RT-PCR was performed as

described previously [9], using the forward and reverse primer sequences as described previ-

ously [9]. Gene expression was quantified and normalized as described previously [9, 13].

Antibodies

The following primary antibodies were used throughout the experiments in 5% BSA/TBS/

0.1% Tween-20: Rabbit-anti-phosphorylated STAT3 (Y705) (#9131; Cell Signaling Technol-

ogy, 1:1000), Rabbit-anti-STAT3 (#4904; Cell Signaling Technology, 1:1000), Mouse-anti-

myogenin (F5D; #sc12732; Santa Cruz Biotechnology Inc., Dallas, Texas, USA, 1:400), Mouse-

anti-Pax7 (developed by A. Kawakami from the Tokyo Institute of Technology and obtained

from the Developmental studies hybridoma bank, 1:100), Rabbit-anti-MyoD (M318; #sc760;

Santa Cruz, 1:250), and Mouse-anti-MyHC embryonic (F1.652, developed by H. Blau from the

Baxter Lab for Stem Cell Biology, Stanford University and obtained from the Developmental

studies hybridoma bank, 1:1000). Horseradish peroxidase (HRP)-conjugated donkey-anti-rab-

bit and sheep-anti-mouse immunoglobulin (GE healthcare life sciences; Marlborough, MA,

USA) secondary antibodies were used at 1:5000 in 5% BSA/TBS/0.1% Tween-20.

Western immunoblotting

For protein analysis the remaining portion of the right TA muscle was homogenized in ice-

cold buffer (10 mM Tris-HCl (pH 7.4), 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF,

1% Triton, 10% glycerol, 0.1% SDS, 20 mM Na4P2O7, 0.5 mM Na3VO4, 0.5% sodium deoxycho-

late, 0.1 mM PMSF and protease and phosphatase inhibitors, all from Sigma-Aldrich). Samples

were centrifuged at 10,000 g for 5 min at 4˚C and the resulting supernatant analyzed for total

protein content (DC Protein Assay; Bio-Rad Laboratories, Hercules, CA, USA), with BSA as

the standard. Samples were normalized to 2 μg/μl in lysis buffer, resolved in SDS-buffer and

heated for 5 min at 95˚C. Equal amounts of protein (20 μg per lane) were run on 4–20% Crite-

rion stain-free gels (Biorad) and proteins transferred to 0.45 mm PVDF. Membranes were

blocked in 5% BSA in TBS containing 0.1% Tween20 (TBStw) and incubated at 4˚C overnight

in primary antibody solutions. Horseradish peroxidase (HRP)-conjugated secondary antibod-

ies were applied for 1h at RT. Membranes were visualized with ECL (SuperSignal West Femto

Chemiluminescent Substrate, Thermo-Scientific Pierce, IL, USA) and imaged using Chemi-

Doc MP Imaging System. ECL and total protein stained images were quantified using Image

Lab 4.1 software (Bio-Rad Laboratories). To confirm equal loading between lanes, blots were

stained and quantified for total protein (Blot-fast Stain; G Biosciences, Maryland Heights, MO,

USA) according to manufacturer’s instructions. Representative blots are shown in the figures

with all western blots and total protein stained membranes used to generate graphs shown in

S1 Fig.
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Statistical analyses

All values are presented as mean ± standard error of mean (SEM). Data were analyzed between

groups for the effect of genotype and time using a two-way ANOVA with Bonferroni’s post-

hoc multiple comparisons test used to detect significant differences between means where

appropriate. A P value less than 0.05 was considered statistically significant. All statistical anal-

yses were carried out using Prism GraphPad 6 software (GraphPad Software Inc., La Jolla, CA,

USA).

Results

Deletion of SOCS3 in muscle stem cells disrupts muscle repair after

myotoxic injury but does not affect muscle function

SOCS3fl/fl Pax7-CreER mice (SOCS3 MscKO), in which the Socs3 gene is deleted only in cells

expressing Pax7 following administration of tamoxifen, were used to determine whether

absence of SOCS3 in muscle stem cells impairs muscle fiber regeneration after myotoxic dam-

age. Skeletal muscle is a heterogenous tissue comprised of multiple cell types that express

SOCS3 including mature muscle fibers, immune/inflammatory cells, fibroblasts, and the mus-

cle stem cells, making it difficult to isolate a pure population of SOCS3-deficient cells. We

therefore devised a strategy where we ablated the mature muscle fibers in the TA muscles of

tamoxifen-treated control and SOCS3 MscKO mice by notexin-injury and allowed the muscle

to regenerate for 28 days (Fig 1A), resulting in the formation of either SOCS3 control or

SOCS3 deficient muscle fibers from the respective muscle stem cell pools. The efficacy of the

tamoxifen-inducible Pax7-CreER mediated SOCS3 deletion was confirmed in these mice by

qPCR and identified a lipopolysaccharide (LPS)-induced increase in Socs3 gene expression in

TA muscles at D28 post-notexin injury from control but not SOCS3 MscKO mice (Fig 1B),

indicating successful deletion of SOCS3 in the muscle stem cell population of tamoxifen-

treated SOCS3fl/fl Pax7-CreER mice.

To examine the role of SOCS3 in the muscle stem cell during muscle repair, tamoxifen-

treated control and SOCS3 MscKO mice were either left uninjured (UN) or received a single

injection of notexin into the right TA muscle and then killed at D1, D2, D3, D7, or D14 post-

injury (Fig 1C). Myofiber degeneration and mononuclear cell infiltration was confirmed at

D1, D2 and D3 by hematoxylin and eosin staining (Fig 1D). Injured muscles from SOCS3

MscKO muscles were smaller than injured muscles from control muscles at D14 post-notexin

injury (Fig 1E; �� P< 0.01). There was no difference in the average muscle fiber cross-sectional

area (CSA) between control and SOCS3 MscKO mice at any timepoint (Fig 1F).

We previously reported that muscle fiber-specific deletion of SOCS3, using muscle creatine

kinase (MCK)-mediated SOCS3 deletion, increased skeletal muscle fatigue in response to a

repeated contraction protocol [9]. Here we examined the force producing capacity of muscles

from uninjured and D7 injured control and SOCS3 MscKO mice. Deletion of SOCS3 in the

muscle stem cell had no effect on maximal force production (Fig 1G), specific force (Fig 1H)

or fatigue response (Fig 1I) in uninjured muscles or in muscles at D7 post-notexin injury.

Deletion of SOCS3 in muscle stem cells does not alter the muscle

inflammatory response after myotoxic injury

In control and SOCS3 MscKO mice, STAT3 phosphorylation was low in uninjured muscles

but increased at D1 and D2 post-notexin injury and decreased to basal levels by D3 (Fig 2A;

P< 0.0001 injury main effect). No difference in STAT3 phosphorylation was observed

between control and SOCS3 MscKO mice (Fig 2A). Like our previous observations,[9] Socs3
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gene expression increased at D1 post-notexin injury and remained high to D3, returning to

basal levels by D7 (Fig 2B). No difference was observed in Socs3 gene expression after injury

between control and SOCS3 MscKO mice (Fig 2B).

Gene expression of the inflammatory cytokines IL-6 (Fig 2C) and TNF-α (Fig 2D) and the

inflammatory cell marker CD68 (Fig 2E) was low in uninjured muscles, highly expressed at

D1, D2, and D3 post-injury, and decreased to basal levels by D7 (Fig 2C–2E; P< 0.0001 injury

main effect). SOCS3 deletion had no effect on IL-6 (Fig 2C), TNF-α (Fig 2D), or CD68 (Fig 2E)

expression after injury. The gene expression of the pro-inflammatory cytokine IFN-γ, as well

as the inflammatory cell marker F4/80, was low in uninjured muscles from control and SOCS3

MscKO mice, increased progressively until D3, then reduced to basal levels by D7 post-injury

(Fig 2F and 2G; P< 0.0001 injury main effect). In muscles from SOCS3 MscKO mice, IFN-γ
gene expression was higher than in muscles from control mice at D3 post-injury (Fig 2F; �

P< 0.05). Similarly, F4/80 gene expression was higher in muscles from SOCS3 MscKO mice

compared to muscles from control mice at D2 and D3 post-injury (Fig 2G; �� P< 0.01, ����

P< 0.0001 respectively).

Inflammatory cell markers CD68 (Fig 2H) and F4/80 (Fig 2I) were higher at D2 and D3

after injury in muscles from control and SOCS3 MKO mice, but there was no difference in

infiltration of inflammatory cells between SOCS3 MKO and control mice (Fig 2J and 2K;

P< 0.0001 injury main effect). Together, these results imply that absence of SOCS3 in the

muscle stem cell does not affect the muscle inflammatory response after injury.

Deletion of SOCS3 in muscle stem cells delays but does not impair muscle

regeneration

To examine the effect of SOCS3 deletion on muscle regeneration after notexin injury, we ana-

lyzed the gene and protein expression of the muscle stem cell marker, Pax7, the master myo-

genic regulator, MyoD, the marker of early muscle cell differentiation, Myogenin, and the

protein expression of embryonic myosin heavy chain (eMyHC). In muscles from control mice,

gene expression of Pax7, MyoD, and Myogenin was low in uninjured muscles and at D1 and

D2 post-notexin injury, peaked at D3, and subsequently decreased to basal levels by D7 (Fig

3A–3C; P< 0.001 injury main effect). Compared to muscles from control mice, Pax7 gene

expression was lower (Fig 3A; ����P< 0.0001), MyoD gene expression was not different (Fig

3B), and Myogenin gene expression was lower (Fig 3C; ����P< 0.0001) at D3 post-notexin

injury in muscles from SOCS3 MscKO mice.

At the protein level, expression of Pax7 (Fig 3D) and MyoD (Fig 3E) was unchanged in

muscles from SOCS3 MscKO mice compared to control at all time points after injury, but

Fig 1. SOCS3 deletion in muscle stem cells in vivo delays regeneration after myotoxic injury. (A) Tamoxifen-treated control (SOCS3fl/fl

Pax7-CreER-) and SOCS3 MscKO (SOCS3fl/fl Pax7-CreER+) mice received a single 40 μL injection of notexin (10 μg/ml) into the right TA

muscle and were allowed to recover for 28 days. On day 28 post-injury, mice received an i.p. injection of either saline or lipopolysaccharide

(LPS; 1 mg/kg). Four hours post-injection, mice were killed and the left and right TA muscles frozen for biochemical analysis. (B) qRT-PCR

using primers to detect Socs3 gene expression in RNA extracted from TA muscles isolated from saline or LPS-injected control and SOCS3

MscKO mice. Data are expressed as mean ± SEM and compared with a two-way ANOVA and Bonferroni’s post-hoc multiple comparisons test

to determine the effect of genotype and LPS injection (n = 2 mice/genotype). �P< 0.001. (C) Tamoxifen-treated control (SOCS3fl/fl

Pax7-CreER-) and SOCS3 MscKO (SOCS3fl/fl Pax7-CreER+) mice were either left uninjured (UN) or received a single 40 μL injection of

notexin (10 μg/ml) into the right TA muscle and were killed for analysis at 1 day (D1), 2 days (D2), 3 days (D3), 7 days (D7) or 14 days (D14)

post-notexin injury. (D) Representative hematoxylin and eosin stained sections of TA muscle from uninjured and injured control and SOCS3

MscKO mice. Scale bar = 100 μm. Muscle mass relative to the uninjured left TA muscle (E) and muscle fiber cross sectional area (CSA; F) were

measured at each time-point post-injury. Maximum isometric force (G) and specific (normalized) force (H) were determined at day 7 post-

notexin injury. Absolute force production during a 4-minute fatiguing protocol comparing uninjured and day 7 injured right TA muscles

from control and SOCS3 MscKO mice (I). Data are expressed as mean ± SEM. Statistical analysis was performed using a two-way ANOVA

with a Bonferroni’s post-hoc multiple comparisons test to determine effects of genotype and injury. n = 6 mice/time-point/genotype.
��P< 0.01, ����P< 0.0001 compared to uninjured muscles.

https://doi.org/10.1371/journal.pone.0212880.g001
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myogenin expression was lower at D3 (Fig 3F; ����P< 0.0001). Expression of embryonic myo-

sin heavy chain (eMyHC) was blunted at D3 post-notexin injury in muscles from SOCS3

MscKO mice compared to control (Fig 3G; �P< 0.05Immunofluorescence staining showed

no change in the number of Pax7+ve muscle stem cells in injured muscles from SOCS3

MscKO mice compared to control (Fig 3H; P = 0.12). To determine how altered expression of

these myogenic factors affected muscle repair, we next examined the number of centralized

nuclei per muscle fiber at D14 post-injury. SOCS3 MscKO muscles contained a higher propor-

tion of fibers with a single central nucleus (Fig 3I; ���P< 0.001) compared to muscles from

control mice that contained a higher proportion of fibers with two centralised nuclei (Fig 3I;
�P< 0.05). These observations suggest impaired myogenic fusion in muscles of SOCS3

MscKO mice.

We next examined the ability of muscles from control and SOCS3 MscKO mice to regener-

ate after sequential rounds of myotoxic injury. Tamoxifen-treated control and SOCS3 MscKO

mice were either left uninjured (UN) or received a single injection of notexin into the right TA

muscle. After 28 days, the mice received a second injection of notexin into the same muscle,

and then assessed 14 days later (Fig 4A). The mass of the injured right TA muscle relative to

the uninjured left TA muscle was not different (Fig 4B) nor was muscle fiber CSA (Fig 4C) dif-

ferent between muscles of control and SOCS3 MscKO mice. Similar to our findings after a sin-

gle bout of myotoxic injury, deletion of SOCS3 in the muscle stem cell had no effect on

maximal force production (Fig 4D), specific force (Fig 4E) or fatigue (Fig 4F) at D14 after the

second bout of notexin injury compared to muscles from control mice. Furthermore, there

was no difference in the number of CD68 or Pax7 positive cells in muscles of control and

SOCS3 MscKO mice (Fig 4G and 4H). However, consistent with our observations after a single

injury, SOCS3 MscKO muscles contained a higher proportion of fibers with a single central

nucleus after two sequential injuries (Fig 4I; ��P< 0.01) compared to muscles from control

mice which showed a trend towards a higher proportion of fibers with more than two central-

ised nuclei (Fig 4I; P = 0.12). Together, these data implicate SOCS3 in myogenic fusion.

Discussion

It is widely accepted that SOCS3 is expressed by multiple cell types in regenerating skeletal

muscles, but its relative contribution to altered muscle inflammation and regeneration has yet

to be established. We previously reported that specific deletion of SOCS3 in mature muscle

fibers enhanced the inflammatory response after myotoxic injury but did not impair regenera-

tion [9]. Using mice specifically lacking SOCS3 in Pax7-expressing muscle stem cells we have

now shown in vivo that SOCS3 deletion alters the myogenic program but does not impact

overall muscle regeneration post-injury.

Fig 2. Loss of SOCS3 in muscle stem cells in vivo does not affect the inflammatory response after myotoxic injury. Tamoxifen-treated control

(SOCS3fl/fl Pax7-CreER-) and SOCS3 MKO (SOCS3fl/fl Pax7-CreER+) mice were left uninjured (UN) or received a 40 μL injection of notexin (10 μg/

ml) into the right TA muscle. Mice were killed for analysis at 1 (D1), 2 (D2), 3 (D3), 7 (D7) or 14 days (D14) post-notexin injury. Protein was

extracted from right TA muscles after sectioning and western immunoblotting for phosphorylated and total STAT3 protein. (A) Representative

immunoblots for phosphorylated (top) and total (bottom) STAT3 protein levels are shown. Band intensity was quantified using ImageQuant software

(Bio-Rad Laboratories) and the ratio of phosphorylated/total STAT3 protein levels was determined. RNA was extracted from snap frozen muscles

following dissection and qRT-PCR performed using primers to detect Socs3 (B) IL-6 (C), TNF-α (D), CD68 (E), IFN-γ (F) and F4/80 (G). (H)

Representative CD68 (red) and DAPI (blue) immunostained sections of TA muscle from uninjured or day 1, 2, 3, 7, or 14 injured control and SOCS3

MscKO mice. (I) Representative F4/80 (green) and DAPI (blue) immunostained sections of TA muscle from uninjured or day 1, 2, 3, 7, or 14 injured

control and SOCS3 MscKO mice. The proportion of CD68 (J) and F4/80 (K) positive nuclei were determined using Axiovision software. Data are

expressed as mean ± SEM. Statistical analysis was performed using a two-way ANOVA with a Bonferonni’s post-hoc multiple comparisons test to

determine the effects of genotype and time. n = 3–6 mice/time-point/genotype. �P< 0.05, ��P< 0.01, ����P< 0.0001 compared to control.

https://doi.org/10.1371/journal.pone.0212880.g002
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Fig 3. Loss of SOCS3 in muscle stem cells in vivo alters the myogenic repair program. Tamoxifen-treated control (SOCS3fl/fl Pax7-CreER-) and SOCS3

MKO (SOCS3fl/fl Pax7-CreER+) mice were left uninjured (UN) or received a 40 μL injection of notexin (10 μg/ml) into the right TA muscle. Mice were

killed for analysis at 1 (D1), 2 (D2), 3 (D3), 7 (D7) or 14 days (D14) post-notexin injury. RNA was extracted from snap frozen muscles following dissection

and qRT-PCR performed using primers to detect Pax7 (A), MyoD (B), and Myogenin (C). Protein was extracted from remaining OCT embedded right TA

muscles after sectioning and western immunoblotting performed. Representative immunoblots for Pax7 (D), MyoD (E), Myogenin (F) and embryonic
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A previous study utilized the tamoxifen-inducible Pax7-Cre to selectively ablate Stat3 in the

muscle stem cell compartment and demonstrated that conditional ablation of Stat3 increased

muscle stem cell expansion during regeneration, but compromised differentiation [3]. This

resulted in an increased number of Pax7 positive cells and a reduction in the CSA of the regen-

erated myofibers [3]. Similar increases in Pax7 positive cells have been observed following

administration of Jak/Stat inhibitors in mice [3, 23]. As SOCS3 is a critical negative regulator

of STAT3, and SOCS3 deletion results in increased STAT3 activation in all cell types examined

to date [16, 17, 24, 25], targeted deletion of SOCS3 in the muscle stem cell would be expected

to have the opposite effect to Stat3 deletion; reducing muscle stem cell proliferation and poten-

tially increasing muscle fiber CSA as a consequence of favoured differentiation. Interestingly,

our data show that this was not the case and muscle stem cells lacking SOCS3 could regenerate

injured muscles despite alterations in the myogenic signaling program.

Analysis of microarray and RNAseq studies performed on freshly isolated (quiescent) ver-

sus activated muscle stem cells showed a decrease in Socs3 gene expression upon activation,

suggesting a role for SOCS3 in quiescent muscle stem cells [10, 11]. In contrast, we observed

no difference in the number of Pax7 positive cells in muscle sections from control and SOCS3

MscKO mice after a single myotoxic injury, and no change even after two consecutive myo-

toxic injuries, indicating that SOCS3 is not required to either prevent precocious differentia-

tion or to return muscle stem cells to quiescence. This is supported by analyses incorporating

fixation of muscle stem cells prior to isolation that show increased expression is an immediate

early response to isolation and that SOCS3 was not higher in truly quiescent muscle stem cells

[26].

Despite the deletion of SOCS3 in muscle stem cells, we observed a significant level of Socs3
gene expression between days 1 and 3 after myotoxic injury that matched the level of expres-

sion seen in the muscles from control mice. Interestingly, this pattern of expression mirrored

what we have previously reported in mice lacking SOCS3 only in mature muscle fibers [9].

Together these data strongly suggest that this Socs3 gene expression is likely to come from the

infiltrating inflammatory cells present at these timepoints. As inflammation strongly influ-

ences the success of muscle regeneration [27], this indicates that SOCS3 may play an important

role in inflammatory cells during muscle regeneration, although this has yet to be investigated.

The main finding from this study was that deletion of SOCS3 in the muscle stem cell popu-

lation delayed expression of the myogenic factors, myogenin and embryonic myosin heavy

chain, indicating a role for SOCS3 in myogenic fusion. By assessing the timecourse of myo-

genic regulatory factor expression we observed a significant blunting in the expression profiles

of both myogenin and embryonic myosin heavy chain, suggesting altered myogenic program-

ming. Interestingly, gene expression analyses in myogenin-null muscle stem cells show

reduced Socs3 expression [28], indicating possible cross-regulation between the two genes.

Importantly, however, this had little to no impact on the regenerative capacity of muscles from

SOCS3 MscKO mice which regenerated successfully after a single injury or consecutive myo-

toxic injuries.

myosin heavy chain (G) protein levels are shown. Band intensity was quantified using ImageQuant software (Bio-Rad Laboratories) and normalized to

total protein levels (TPS). Data are expressed as mean ± SEM. Statistical analysis was performed using a two-way ANOVA with a Bonferroni’s post-hoc

multiple comparisons test to determine the effects of genotype and time. n = 5–6 mice/time-point/genotype. �P< 0.05, ����P< 0.0001 compared to

control. (H) Representative Pax7 (left) and DAPI (right) immunostained sections of TA muscle from control and SOCS3 MscKO mice at D14 post-injury.

The number of Pax7 positive nuclei (as indicated by arrows) was counted per field of view. (I) Representative black and white laminin and DAPI

immunostained sections of TA muscle from control and SOCS3 MscKO mice at D14 post-injury. Muscle fibers containing 1, 2, or 3+ -located nuclei were

counted per field of view. Data are expressed as mean ± SEM. Statistical analysis was performed using an unpaired Student’s t-test. Scale bar = 100 μm.

n = 5–6 mice/time-point/genotype. �P< 0.05, ���P< 0.001 compared to control.

https://doi.org/10.1371/journal.pone.0212880.g003
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Fig 4. SOCS3 deletion in muscle stem cells does not impair regenerative capacity after sequential myotoxic injuries. Tamoxifen-treated

control (SOCS3fl/fl Pax7-CreER-) and SOCS3 MscKO (SOCS3fl/fl Pax7-CreER+) mice received a single 40 μL injection of notexin (10 μg/ml) into
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It is surprising that SOCS3 deletion within the muscle stem cell compartment did not have

more of an effect on muscle regeneration given that: 1) Jak/Stat signalling plays a key role in

orchestrating the myogenic signalling pathway, particularly promoting myogenic differentia-

tion [3, 5, 29, 30]; and 2) gene knockdown and overexpression in C2C12 cells in vitro revealed

knockdown of SOCS3 impaired differentiation [5]. However, a potential role for SOCS3 in

fusion has been suggested from previous studies using the C2C12 myogenic cell line [5, 8], and

Stat3 conditional knockout mice [3]. These previous studies suggested that SOCS3 had a

major role in promoting differentiation and fusion, but we show here that genetic deletion of

SOCS3 does not impact muscle repair, despite delaying expression of myogenic factors critical

for myogenesis. This highlights a functional redundancy between the SOCS protein family

members, which explains the lack of phenotype in mice lacking CIS, SOCS5, or SOCS [31].

Although studies in mice with a dual deletion of SOCS1 and SOCS3 suggested no redundancy

between the two in the regulation of cytokine signalling in immune cells [32], the interplay

between SOCS3 and the other SOCS proteins in muscle cells has yet to be investigated.

Using a tamoxifen-inducible model of genetic deletion we have confirmed in vivo that dele-

tion of SOCS3 in the muscle stem cell compartment alters the myogenic program but does not

affect overall muscle regeneration after injury. Together with our previous findings in SOCS3

MKO mice [9], we conclude that a reduction in SOCS3 expression in muscle stem cells or

muscle fibers does not impair muscle regeneration.
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