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Predictive coding postulates that we make (top-down) predictions about the world
and that we continuously compare incoming (bottom-up) sensory information with
these predictions, in order to update our models and perception so as to better
reflect reality. That is, our so-called “Bayesian brains” continuously create and update
generative models of the world, inferring (hidden) causes from (sensory) consequences.
Neuroimaging datasets enable the detailed investigation of such modeling and updating
processes, and these datasets can themselves be analyzed with Bayesian approaches.
These offer methodological advantages over classical statistics. Specifically, any number
of models can be compared, the models need not be nested, and the “null model” can
be accepted (rather than only failing to be rejected as in frequentist inference). This
methodological paper explains how to construct posterior probability maps (PPMs) for
Bayesian Model Selection (BMS) at the group level using electroencephalography (EEG)
or magnetoencephalography (MEG) data. The method has only recently been used
for EEG data, after originally being developed and applied in the context of functional
magnetic resonance imaging (fMRI) analysis. Here, we describe how this method can
be adapted for EEG using the Statistical Parametric Mapping (SPM) software package
for MATLAB. The method enables the comparison of an arbitrary number of hypotheses
(or explanations for observed responses), at each and every voxel in the brain (source
level) and/or in the scalp-time volume (scalp level), both within participants and at the
group level. The method is illustrated here using mismatch negativity (MMN) data from
a group of participants performing an audio-spatial oddball attention task. All data and
code are provided in keeping with the Open Science movement. In doing so, we hope
to enable others in the field of M/EEG to implement our methods so as to address their
own questions of interest.

Keywords: EEG, MEG, Bayes, PPMs, BMS, code:matlab, code:spm

INTRODUCTION

The statistical testing of hypotheses originated with Thomas Bayes (Neyman and Pearson, 1933),
whose famous eponymous theorem (Bayes and Price, 1763) can be written in terms of probability
densities as follows:

p
(
θ|y
)

=
p
(
y
∣∣θ)p(θ)
p(y)

(1)
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where θ denotes unobserved parameters, y denotes observed
quantities, and p(θ|y) denotes the probability p of the unknown
parameters θ, given (“|”) the set of observed quantities y. More
generally, p(event|knowledge) denotes the probability of an event
given existing knowledge. In other words, Bayes conceptualizes
statistics as simply the plausibility of a hypothesis given the
knowledge available (Meinert, 2012).

Bayes’ theorem allows one to update one’s knowledge of
the previously estimated (or “prior”) probability of causes, to
a new estimate, the “posterior” probability of possible causes.
This process can be repeated indefinitely, with the prior being
recursively updated to the new posterior each time. This gives
rise to multiple intuitive and useful data analysis methods, one
of which is the explained in detail in this paper.

Even when it first appeared, Bayes’ theorem was recognized
as an expression of “common sense,” a “foundation for all
reasonings concerning past facts,” (Bayes and Price, 1763).
Centuries later, neuroscientific evidence suggests that Bayes’
theorem may not only explain our “common sense” and internal
reasoning processes, but may be common to all our senses: it
can actually explain the way in which we use our various senses
to perceive the world. That is, Bayesian statistics can be used to
accurately model and predict the ways in which our own brains
process information (Dayan et al., 1995; Feldman and Friston,
2010; Friston, 2012; Hohwy, 2013). This has given rise to the
concepts of predictive coding and the Bayesian brain. In this
context, it is unsurprising that Bayesian approaches to statistics
have high face validity (Friston and Penny, 2003). This allows
for intuitive descriptions of probability and enables experimental
results to be relatively easily understood and communicated both
within and between scientific communities, as well as to the
general public (Dunson, 2001).

Despite the intuitiveness of Bayesian approaches, however, the
mainstay of hypothesis-testing since the 20th century (Vallverdú,
2008) has instead been classical or frequentist statistics, which
conceptualizes probability as a “long-run frequency” of events,
and which has dominated most approaches to neuroimaging
analysis to date (Penny et al., 2003). For example, creating
statistical parametric maps (SPMs), which is a popular method
of analyzing neuroimaging data, mainly involves frequentist
approaches (Friston and Penny, 2003).

In frequentist statistics, the null hypothesis (that there is no
relationship between the causes and the data) is compared with
one alternative hypothesis; the null is then either rejected in
favor of the alternative hypothesis, or it fails to be rejected – it
can never be directly “supported.” Rejection of the null depends
on the somewhat unintuitive p-value, which communicates how
likely it is that the effect (of at least the size seen in the
experiment), would be seen in the absence of a true effect, if the
experiment were repeated many times. This is a more complex
and counterintuitive way of communicating results compared to
Bayesian statistics (where the probability of the hypothesis in
question is what is being estimated and communicated).

Also, unfortunately, multiple different models cannot be
compared at once, and either the null and the alternative models
need to be nested, or specific modifications need to be made
(Horn, 1987; McAleer, 1995), for frequentist statistical tests to

be feasible (Rosa et al., 2010). These features cause frequentist
statistics to be less useful in certain contexts, compared to the
approaches enabled by Bayesian statistics.

In recent decades, Bayesian approaches are becoming
increasingly recognized for their superior utility for addressing
certain questions and in specific data analysis situations, as
explained below (Beal, 2003; Rosa et al., 2010; Penny and
Ridgway, 2013). Importantly, with Bayesian approaches to data
analysis, any number of models can be compared, the models
need not be nested, and the “null model” can be accepted (Rosa
et al., 2010). The fact that Bayesian hypothesis-testing also allows
researchers to evaluate the likelihood of the null hypothesis is
crucially important in light of the replication crisis in psychology
and neuroscience (Hartshorne, 2012; Larson and Carbine, 2017;
Szucs et al., 2017). Importantly, results supporting the null
hypothesis are equally noteworthy or reportable as other results
within Bayesian statistics. The use of Bayesian statistics may also
ameliorate some statistical power-related problems documented
in the literature (Dienes, 2016).

Even though Bayesian statistics has gained popularity in
the context of “accepting the null,” its strength lies beyond
this, in the sense that it enables the relative quantification of
any number of alternative models (or hypotheses). In Bayesian
Model Selection (BMS), models are compared based on the
probability of observing a particular dataset given each model’s
parameters. The probability of obtaining observed data, y, given
model m, p(y|m), is known as the model evidence. In BMS, an
approximation of the model evidence is calculated for multiple
models; the model evidences are then compared to determine
which model returns the highest probability of generating the
particular dataset in question (Rosa et al., 2010).

A computationally efficient and relatively accurate (Stephan
et al., 2009) method of approximating the model evidence is to
use variational Bayes (VB). If each participant in the dataset is
assumed to have the same model explaining their data, then this is
called a fixed effects (FFX) approach. If, on the other hand, every
participant is permitted to have their own (potentially different)
model, this is called a random effects (RFX) approach.

An elegant approach to succinctly communicating results
is to use Posterior Probability Maps (PPMs), which provide
a visual depiction of the spatial and/or temporal locations in
which a particular model is more probable than the alternatives
considered, given the experimental data in question. The
development of PPMs is essentially the Bayesian alternative to the
creation of SPMs (Friston and Penny, 2003). PPMs may display
the posterior probability of the models (the probability that a
model explains the data), or, alternatively, they may be displayed
as Exceedance Probability Maps (EPMs), which are maps of the
probabilities that a model (say k) is more likely compared to all
other (K) models considered (Rosa et al., 2010). (EPMs will be
identical to PPMs in cases where there are only two models being
considered, as in this study.) EPMs are useful in that they allow
us to directly quantify which model is more probable than the
other/s considered.

The data analysis method that forms the focus of this paper
is Posterior Probability Mapping with an RFX approach to VB.
First introduced (Rosa et al., 2010) for functional magnetic
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resonance imaging (fMRI), the method has recently been adapted
for inference using electroencephalography (EEG) data (Garrido
et al., 2018). In their study, Garrido et al. (2018) used VB to
approximate the log of the model evidence for each voxel (in
space and time) in every participant, in order to construct PPMs
at the group level. They did this in the context of comparing
between two computational models describing the relationship
between attention and prediction in auditory processing. While
that paper focused on using this Bayesian methodology to address
an important neuroscientific question, the precise way in which
Rosa and colleagues’ (2010) methods were adapted for use with
EEG data, has not been formally described to date – leading to
the purpose of this paper.

Here, we describe in a tutorial-like manner how to build
and compare PPMs for EEG and/or magnetoencephalography
(MEG) data (M/EEG), using an RFX approach to VB. This
approach provides useful ways of displaying the probabilities of
different models at different times and brain locations, given
any set of neuroimaging data [as done in Garrido et al. (2018)]
using the Statistical Parametric Mapping (SPM) software package
for MATLAB. Furthermore, in keeping with the Open Science
movement, we provide the full EEG dataset1 and the code2 to
facilitate future use of the method. In doing so, we hope that
this paper and its associated scripts will enable others in the
field of M/EEG to implement our methods to address their own
questions of interest.

THEORY

In frequentist hypothesis testing, what is actually being tested is
the null hypothesis (i.e., that there is no relationship between the
variables of interest; Friston and Penny, 2007). If it is assumed
that there is a linear relationship between the causes and data,
then the relationship between the causes (x) and data (y) can be
represented as below (Friston and Penny, 2007):

y = xθ+ ε (2)

where y denotes data, x denotes causes and ε is an error term. The
null hypothesis is that the relationship between the causes and
data does not exist, that is, θ = 0. The null hypothesis is compared
to one alternative hypothesis; the null is then either rejected in
favor of the alternative hypothesis, or it fails to be rejected – it
can never be directly “supported.”

Using the frequentist framework, one cannot test multiple
models at once (unlike what can be done when using Bayesian
approaches). (In this setting, a model corresponds to a particular
mixture of explanatory variables in the design matrix x.) Even
if one only wishes to test one model against the null, however,
frequentist statistics still gives rise to problems unless the null
and alternate models are nested. When the variables in one
model cannot be expressed as a linear combination of the
variables in another model, the two models are said to be non-
nested (McAleer, 1995). Non-nested models usually arise when

1https://figshare.com/s/1ef6dd4bbdd4059e3891
2https://github.com/ClareDiane/BMS4EEG

model specifications are subject to differences in their auxiliary
assumptions or in their theoretical approaches, and can still
be dealt with by making specific modifications to frequentist
approaches (Horn, 1987; McAleer, 1995). However, there are
many situations where Bayesian approaches are more appropriate
for non-nested models than adapted frequentist inference (Rosa
et al., 2010). Indeed, Penny et al. (2007a), showed that fMRI
haemodynamic basis sets are best compared using Bayesian
approaches to non-nested models.

Furthermore, Bayesian approaches to statistics have long
been recognized for their relative advantages outside of the
realm of neuroimaging. In clinical trials, Bayesian experimental
design techniques and interim analyses have been found to
improve trials’ statistical power, cost-effectiveness and clinical
outcomes (e.g., Trippa et al., 2012; Connor et al., 2013),
compared to when classical approaches are used alone. Bayesian
statistics are also especially useful in the worlds of computational
physics (Mohammad-Djafari, 2002) and biology (Needham et al.,
2007), and in machine learning (Lappalainen and Miskin,
2000).

The aim of BMS is to adjudicate between models using each
one’s model evidence. Also written as p(y|m), the model evidence
is defined as the probability (p) of obtaining observed data
(denoted y) given the model (denoted m). It is given by the
following integral (Rosa et al., 2010):

p
(
y|m

)
=
∫

p
(
y|θ,m

)
p (θ|m) dθ (3)

This integral is usually intractable, so numerous methods have
been developed to approximate it. As Blei et al. (2017) succinctly
summarize, there are two main ways to solve the problem of
approximating the integral above. One is to sample a Markov
chain (Blei et al., 2017), and the other is to use optimisation.
The conversion of an integration problem into an optimisation
problem is due to Richard Feynman, who introduced variational
free energy in the setting of path integral problems in quantum
electrodynamics (Feynman and Brown, 1942; Feynman et al.,
2010). By inducing a bound on the integral above – through
an approximate posterior density (please see below) – one
converts an intractable integration problem into a relatively
straightforward optimisation problem, that can be solved using
gradient descent.

Some of the specific approximation methods that have been
used to date include Annealed Importance Sampling (AIS;
Neal, 1998; Penny and Sengupta, 2016), Bayesian Information
Criterion (BIC) measures (Rissanen, 1978; Schwarz, 1978; Penny,
2012), Akaike Information Criterion (AIC) measures (Akaike,
1980; Penny, 2012), and finally, the variational Free Energy (F),
which was first applied to the analysis of functional neuroimaging
time series by Penny et al. (2003) and which is explained in this
paper (Rosa et al., 2010). These methods have varying degrees of
accuracy and computational complexity, and have been studied
in detail elsewhere (Beal and Ghahramani, 2003; Penny et al.,
2004; Penny, 2012). The variational Free Energy provides a
relatively high level of accuracy, without a great computational
cost (Rosa et al., 2010), and so it is unsurprising that it is
widely used in neuroimaging (Rosa et al., 2010). The Free Energy
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formula is (Penny et al., 2003):

F =
∫

q
(
θ|y
)
log

p
(
y, θ

)
q
(
θ|y
) dθ (4)

where q(θ|y) is an (initially) arbitrary distribution of the
parameters θ given the data at each voxel y, p(y,θ) denotes the
joint probability of the data and the parameters occurring, and
dθ simply denotes that the integral given by F is with respect to
the model parameters θ.

The “variational” term in variational Free Energy, and in VB,
refers to the branch of calculus (the calculus of variations) that
deals with maximizing or minimizing functionals, or integrals.
The utility of variational calculus in neuroimaging analysis has
been reviewed in numerous other papers (Friston K.J. et al.,
2008). In brief, the aim in VB is to maximize the functional given
by the equation above. The reason for doing this is that it provides
information about the model evidence. More specifically, the Free
Energy relates to the log of the model evidence (or log-model
evidence) as described by the following equation (Rosa et al.,
2010), known as the fundamental equation (Penny et al., 2003)
of Variational Bayes:

log p
(
y|m

)
= F (m)+ KL

(
q (θ) ||p

(
θ|y,m

))
(5)

where log p(y|m) is the log-model evidence, F is the variational
Free Energy, and KL(q(θ)||p(θ|y,m)) is the Kullback–Leibler
divergence (Kullback and Leibler, 1951), or relative information,
with respect to the approximate distribution q(θ) and the
distribution that is diverging from it, namely the true
distribution, p(θ|y,m), as further described below.

The reason why Free Energy can be used as an approximation
of the model evidence is better understood in light of the
meaning of the second term in the fundamental VB equation,
the Kullback–Leibler (KL) divergence (Penny et al., 2003). The
equation for this is:

KL =
∫

q
(
θ|y
)
log

q
(
θ|y
)

p
(
θ|y
)dθ (6)

where all terms listed here have the same meanings as defined
in earlier paragraphs. The KL divergence is also known as KL
information, and this is because it is a measure of the information
“difference” or divergence between two distributions. It can be
derived by considering the so-called cross-entropy and entropy
of the two distributions, respectively, as outlined below (Carter,
2007). The concept of “relative entropy” is essentially “average
information,” with “information” being defined as Shannon
(1948/2001) originally introduced:

I
(
p
)

= logb

(
1
p

)
= − logb

(
p
)

(7)

where I(p) is the information given by observation of an event
of probability p, and logb (1/p) is the logarithm (in base b) of
the inverse of the probability of that event. The formula above is
used to derive the “average information,” also sometimes referred
to as relative entropy, from a set of events. A related concept
is the “cross entropy” between two distributions (see Carter,

2007); and the difference between the cross entropy and the
entropy of the original/true distribution is equivalent to the KL
divergence. Being a measure of information, the KL divergence
has the property that it is non-negative; consequently, the lowest
value it can take is zero.

The KL divergence between two distributions is zero only if
the two distributions are equivalent. The closer KL is to zero,
the less dissimilar the two distributions are. Thus, minimizing
KL is equivalent to maximizing F, and F is said to provide a
lower bound on the log-evidence. The aim of VB learning is to
maximize F so that the approximate posterior thereby becomes
as close as possible to the true posterior (Penny et al., 2007a).

If (and only if) the KL divergence is zero, then F is equal to
the log-model evidence. The free energy thus provides a lower
bound on the log-evidence of the model, which is why iteratively
optimizing it allows us to proceed with BMS using F as an
approximation of the log-model evidence (Penny et al., 2007a).
As the KL divergence is minimized by an iterative process of
optimisation, F becomes an increasingly “tighter” lower bound
on the desired (actual) log-model evidence; owing to this, BMS
can proceed using F as a “surrogate” for the log-model evidence
(Rosa et al., 2010). The iterations continue until improvements
in F are very small (below some desired threshold). This
method of estimating the log-model evidence is implemented
in the second script described in the Implementation section
(“BMS2_ModelSpec_VB.m”).

Although it has been summarized here, it is also worth noting
that VB is further fleshed out in multiple other research papers
(Penny et al., 2003, 2007a; Friston et al., 2007) and tutorials
(Lappalainen and Miskin, 2000). In Statistical Parametric
Mapping, Friston (2007) provides the mathematical derivations
for the fundamental equation of VB, and his colleagues provide a
full explanation of its application to BMS (Penny et al., 2007b).

The application of VB in the context of fMRI analysis has
been described in detail elsewhere (Penny et al., 2007a; Stephan
et al., 2009; Rosa et al., 2010). Penny et al. (2007a) used Bayesian
spatiotemporal models of within-subject log-model evidence
maps for fMRI data, in order to make voxel-wise comparison
of these maps and thereby to make inferences about regionally
specific effects. Rosa et al. (2010) developed their approach by
combining the methods described by Penny et al. (2007a) with
those of Stephan et al. (2009), who used an RFX approach to VB,
as described below.

After the log-model evidence has been estimated as described
above, given uniform priors over models, one can then estimate
posterior model probabilities by comparing model-evidences
between models. The ratio between model evidences, or Bayes
factor (BF), can be used to estimate posterior model probabilities.
A BF greater than 20 is equivalent to a posterior model probability
greater than 0.95 (Kass and Raftery, 1995), which is reminiscent
of the typical p-value smaller than 0.05. The product of Bayes
factors over all subjects is called the Group Bayes Factor (GBF),
and it gives the relative probability that one model (relative to
another) applies to the entire group of subjects. That is, it rests on
the assumption that the data were generated by the same model
for all participants, and that data are conditionally independent
over subjects. This is known as fixed effects (FFX) inference,
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and it is not as robust to outliers as RFX inference, which does
not assume that the data were necessarily generated by the same
model for each participant (Stephan et al., 2009).

Stephan et al. (2009) developed a novel VB approach for group
level methods of Bayesian model comparison that used RFX
instead of fixed effects analysis at the group level. They did this
by treating models as random variables whose probabilities can
be described by a Dirichlet distribution (which is conjugate to
the multinomial distribution) with parameters that are estimated
using the log-model evidences over all models and subjects
(as described below). Once the optimal Dirichlet parameters
have been estimated, they can be used to calculate posterior
probabilities or exceedance probabilities of a given model for
a randomly selected participant. This is what is done in the
third script (“BMS3_PPMs.m,” described in the Implementation
section below), and the underlying mathematics is explained
briefly below.

In the RFX approach introduced by Stephan et al. (2009),
we assume that the probabilities of the different models (or
hypotheses) are described by the following Dirichlet distribution:

p (r|α) = Dir (r, α) =
1

Z (α)

∏
k

rαk−1
k

Z (α) =

∏
k

0 (αk)

0

(∑
k

αk

) (8)

where r represents the probabilities r = [r1, . . .., rK] of K different
models (or hypotheses), and α = [α1, . . .., αk] are related to
unobserved “occurrences” of models in the population. This
distribution is part of a hierarchical model: the next level depends
on model probabilities, r, which are described by the Dirichlet
distribution.

In the next level of the hierarchical model, we assume that
the probability that a particular model generated the data of a
particular subject, is given by a multinomial variable mn whose
probability distribution is as follows:

p (mn|r) =
∏
k

rmnk (9)

where mn is the multinomial variable that describes the
probability that model k generated the data of subject n given the
probabilities r.

Finally, in the lowest level of this hierarchical model, the
probability of the data in the nth subject, given model k, over all
parameters (ϑ) of the selected model (i.e., the marginal likelihood
of the data in the nth subject, obtained by integrating over the
parameters of the model) is given by:

p
(
yn|mnk

)
=
∫

p
(
y|ϑ
)
p (ϑ|mnk) dϑ (10)

The goal is to invert this hierarchical model, that is, work
backward from data (yn) to find the parameters of the Dirichlet
distribution (which then allows the calculation of the expected

posterior probability of obtaining the kth model for any randomly
selected subject, as shown below). This model inversion is
done using a VB approach in which the Dirichlet distribution
is approximated with a conditional density, q(r)= Dir (r, α).
Stephan et al. (2009) show that the following algorithm yields the
optimal parameters of the conditional density q(r)= Dir (r, α):

α = α0

Until convergence

unk = exp

(
ln p

(
yn|mnk

)
+ψ (αk)−ψ

(∑
k

αk

))

βk =
∑
n

unk∑
k unk

α = α0 + β (11)

where α are “occurrences” of models in the population; α0 is the
Dirichlet prior, which, on the assumption that no models have
been “seen” a priori, is set as α0 = [1,...,1] so that all models are
equally probable to begin with; unk is the non-normalized belief
that model k generated the data yn for subject n (for the derivation
of this line, please see Stephan et al., 2009); ψ is the digamma
function ψ (αk) =

δlog0(αk)
δαk

; βk is the expected number of subjects
whose data are believed to be generated by model k (so-called
“data counts”); and the last line, α = α0 + β essentially obtains
the parameters of the Dirichlet distribution by starting with the
Dirichlet prior α0 and adding on “data counts” β (Stephan et al.,
2009).

Once the Dirichlet parameters have been optimized as per
the algorithm above, this can be used for model comparisons
at the group level. One way of comparing models is to simply
compare the parameter estimates, α. Another way is to calculate
the multinomial parameters, 〈rk〉, that encode the posterior
probability of model k being selected for a randomly chosen
subject in the group:

〈rk〉 = αk/ (α1 + · · · + αk) (12)

where rk is the probability of the model; the numerator
of the fraction, αk, is the “occurrence” of model k; and
the denominator (α1 + · · · + αk) is the sum of all model
“occurrences.” This was how the PPMs were generated in the
third script (“BMS3_PPMs.m”) below.

Another option for comparing models after the optimal
Dirichlet parameters have been found, is to calculate the
exceedance probability for a given model, as follows (Rosa et al.,
2010):

ϕk = p

∏
j6=k

rk > rj|Y; α

 (13)

where ϕk is the exceedance probability for model k, that is, the
probability that it is more likely than any of the other models
considered; rk is the probability of model k; rj is the probability
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of all other models considered; Y represents the data from all
subjects and α represents the Dirichlet parameters.

Having introduced this RFX approach to VB, Stephan
et al. (2009) then used both simulated and empirical data to
demonstrate that when groups are heterogeneous, fixed effects
analyses fail to remain sufficiently robust. Crucially, they also
showed that RFX is robust to outliers, which can confound
inference under FFX assumptions, when those assumptions are
violated. Stephan et al. thus concluded that although RFX is more
conservative than FFX, it is still the best method for selecting
among competing neurocomputational models.

MATERIALS AND METHODS

Experimental Design
This experiment is a direct replication of that performed by
Garrido et al. (2018), apart from the omission of a “divided
attention” condition. As they describe in greater detail in
their paper, Garrido et al. (2018) utilized a novel audio-spatial
attention task during which attention and prediction were
orthogonally manipulated; this was done to evaluate the effect
of surprise and attention in auditory processing (Garrido et al.,
2018). The authors compared two models (shown in Figure 1)
which may explain the effect attention has on the neural
responses elicited by predicted and unpredicted events.

The original study supported the model in which attention
boosts neural responses to both predicted and unpredicted
stimuli, called the Opposition Model (Garrido et al., 2018).
Prediction attenuates neural activity, while attention enhances
this activity. Since these effects occur in opposite directions
or have opposing effects, the researchers named the model
(describing these effects) the Opposition Model. According to
this model, attention improves the accuracy of predictions by
precision weighting prediction errors more heavily. Thus, in
light of this model, attention and prediction work together (in
opposite directions) to improve our ability to make more accurate
representations of the sensorium.

Our current study attempted to replicate the above-mentioned
study with an independent dataset and employing the Bayesian
methods that resembled the original study as closely as possible.
The only difference was that the divided-attention condition
was not administered because it was not required for the
implementation and description of the BMS steps. It is hoped
that the detailed description of our methods, adapted from those
originally developed for fMRI by Rosa et al. (2010), prove to be
useful for other EEG and/or MEG researchers. Furthermore, a
replication study such as this one has the additional benefit of
being responsive to the persisting replication crisis that continues
to pose a significant problem for neuroscience and psychology
(Hartshorne, 2012; Larson and Carbine, 2017; Szucs et al.,
2017).

To this end we employed BMS to adjudicate between two
competing hypotheses (see Figure 1), namely:

(1) Attention increases (boosts) neural responses to both
predicted and unpredicted stimuli. This is formalized in

the Methods section and is then called Model One – the
Opposition Model.

(2) Attention boosts neural responses to predicted stimuli
more than it boosts responses to unpredicted stimuli. This
causes predicted attended stimuli to generate the highest
neural responses, followed by attended unpredicted stimuli.
This is formalized in the Methods section and is then called
Model Two – the Interaction Model.

Participants
Twenty-one healthy adults (aged between 19–64 years,
M = 25.00 years, SD = 9.83, nine females) were recruited
via the University of Queensland’s Psychology Research
Participation Scheme (SONA). Exclusion criteria included
any history of mental or neurological disease, any previous
head injury resulting in unconsciousness, or an age outside the
prescribed range (18–65 years). All participants gave both written
and verbal informed consent to both the study and to having
their de-identified data made available in publicly distributed
databases. Participants completed practice blocks of stimulus
presentation prior to undergoing the EEG recording, in order
to enable them to withdraw if they found the task unpleasant or
excessively challenging. (No participants wished to withdraw.)
Participants were monetarily compensated for their time. This
study was approved by the University of Queensland Human
Research Ethics Committee.

Task Description
Participants wore earphones with inner-ear buds (Etymotic, ER3)
and were asked to follow instructions on a computer screen.
Participants were asked to pay attention to the sound stream in
either the left or the right ear (ignoring the sounds that were
being played in the other ear). Gaussian white noise was played
to both ears and an oddball sequence was played to one of
the ears. During a given block, participants were tasked with
listening carefully for gaps in the white noise on the side to
which they had been asked to attend. They were asked to press
a “1” on the numbered keyboard when they heard a single gap
(lasting 90 ms) in the white noise, and a “2” when they heard
a double gap (two 90 ms gaps separated by 30 ms of white
noise). They were asked to ignore any tones played on both
the attended and the opposite ear. This task is described in
further detail, including pictorial representations, in Garrido et al.
(2018).

Participants listened to eight different blocks, each 190 s
in duration. Each block contained a total of 30 targets (15
single gaps and 15 double gaps, randomly distributed across
the block, but never occurring within 2.5 s of each other and
never occurring at the same time as a tone). Throughout each
block there were also 50-ms-long pure tones being played in
one of the ears, with a 450 ms inter-stimulus interval. In each
block there were two tones: the standard tone (either 500 Hz or
550 Hz counterbalanced between blocks) that occurred 85% of
the time, and the deviant (either 550 Hz or 500 Hz, the opposite
of the standard tone and counterbalanced across blocks) that
occurred 15% of the time. All sound files were created using
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FIGURE 1 | The two competing models that were evaluated using BMS. Reprinted with permission from Garrido et al. (2018) DOI: 10.1093/cercor/bhx087. Figure
Published by Oxford University Press. All rights reserved. Available online at: https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx087/
3571164?searchresult=1. This figure is not covered by the Open-Access license of this publication. For permissions contact Journals.permissions@OUP.com.

MATLAB (RRID:SCR_001622; The MathWorks3, Inc.) with
sound recordings done using Audacity R© (Audacity: Free Audio
Editor and Recorder, RRID:SCR_007198) as previously described
by Garrido et al. (2018). The order was counterbalanced such that
no two participants received the same order of blocks.

Prior to and during the practice block/s, the volume of sound
delivery was adjusted until the participant stated that they were
able to hear the white noise well enough to complete the task. For
each participant, an accuracy level was calculated, consisting of
the percentage of white noise gaps that were correctly identified
(as single or double) and responded to promptly (i.e., within
2 s of the gap/s). This was calculated separately for the practice
block, which was repeated if a participant did not achieve at least
50% accuracy. Once participants achieved above 50% accuracy,
they were invited to participate in the rest of the experiment.
At the end of the experiment each participant’s accuracy was
again calculated to ensure their accuracy level remained at
least 50% (otherwise they were excluded from the study). This
was to ensure that participants were attending to the task as
instructed.

EEG Data Acquisition
Using a standardized nylon head cap fitted tightly and
comfortably over the scalp, 64 silver/silver chloride (Ag/AgCl)
scalp electrodes were placed according to the international 10–10
system for electrode placement. As is usual for this system,
electrodes were placed above and below the left eye and just
lateral to the outer canthi of both left and right eyes, to
generate the vertical electrooculogram (VEOG) and horizontal
electrooculogram (HEOG) recordings, respectively. Continuous
EEG data were recorded using a Biosemi Active Two system
at a sampling rate of 1024 Hz. The onset of targets, standards
and deviants were recorded with unique trigger codes at the
time of delivery to the participant. Within each block, the target
triggers were used for accuracy calculations, while the standard

3http://www.mathworks.com

and deviant triggers were kept as the time points around which
to epoch the data at a later stage.

EEG Preprocessing
Following the collection of the raw EEG data, preprocessing
was completed using SPM software (SPM12, RRID:SCR_007037;
Wellcome Trust Center for Neuroimaging, London4). EEG data
preprocessing included referencing data to the common average
of all electrodes; downsampling to 200 Hz; bandpass filtering
(between 0.5 to 40 Hz); eyeblink correction to remove trials
marked with eyeblink artifacts (measured with the VEOG and
HEOG channels); epoching using a peri-stimulus window of
−100 to 400 ms and artifact rejection (with 100 uV cut-off).

Source Reconstruction
For source BMS, SPM12 software was used to obtain source
estimates on the cortex by reconstructing the scalp activity
using a single-shell head model. The forward model was then
inverted with multiple sparse priors (MSP) assumptions for
the variance components (Friston K. et al., 2008) under group
constraints (Litvak and Friston, 2008). The entire time window
of 0 to 400 ms was used to infer the most likely cortical
regions that generated the data observed during this time. Images
for each participant and each condition were obtained from
the source reconstructions and were smoothed at full width
at half maximum (FWHM) 12 × 12 × 12 mm. This source
reconstruction step is available as an online script (named
“BMS1_Source_ImCreate.m” and available online5).

Bayesian Model Selection Maps:
Implementation for M/EEG
For all data analysis steps (Table 1), we used SPM12 software
package for MATLAB. We wrote in-house MATLAB scripts,

4http://www.fil.ion.ucl.ac.uk/spm/
5https://github.com/ClareDiane/BMS4EEG
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TABLE 1 | Step-by-step summary of method.

Task: Suggested steps:

Saving the correct spm_spm_vb.m files 1. Find and open the SPM12 folder on your computer.
2. Find the spm_spm_vb.m script in that folder, and rename this to spm_spm_vb_fMRI.m. Then add the
spm_spm_vb_ST.m and spm_spm_vb_source.m scripts (saved in the associated Github repository) to your
SPM12 folder.
3. Before undertaking either the spatiotemporal BMS or source BMS steps, rename the currently relevant script
from the above step to spm_spm_vb.m. Once you have finished the BMS steps, rename the script back to its
original name, to re-identify it as being for either the spatiotemporal (‘spm_spm_vb_ST.m’) or source BMS
(‘spm_spm_vb_source.m’). In this way, you will keep track of which spm_spm_vb.m script to use for whichever
BMS steps you are about to do.

Creating spatiotemporal (“scalp”) PPMs: 1. BMS script 1: Change the file paths to reflect the location of ERP data.
2. Run BMS script 1: BMS1_ST_ImCreate.m.
3. Ensure the correct spm_spm_vb.m file is saved in SPM12 folder.
4. Run BMS script 2: BMS2_ModelSpec_VB.m.
5. Run BMS script 3: BMS3_PPMs.m. Threshold is set to 0.75 and adjustable.

Creating source PPMs: 1. BMS script 1: Change the file paths to reflect location of source reconstructed images.
2. Run BMS script 1: BMS1_Source_ImCreate.m.
3. Ensure the correct spm_spm_vb.m file is saved in SPM12 folder.
4. Run BMS script 2: BMS2_ModelSpec_VB.m.
5. Replace NaNs with zeros in the LogEv.nii files: BMS2b_Source_NaNtoZeros.m.
6. Run BMS script 3: BMS3_PPMs.m. Adjust probability threshold as desired.

integrated with SPM12 and now available online6. Copies of
the scripts are also given in the Supplementary Material.
The online scripts are divided into three BMS scripts. In
the first script (BMS1_ST_ImCreate.m for spatiotemporal BMS
and BMS1_Source_ImCreate.m for source BMS), we call the
preprocessed EEG data and then create images for every trial,
for every condition, and for every participant. The second
script (BMS2_ModelSpec_VB.m) specifies the hypotheses and
implements VB (as described in the Theory section). The last
script (BMS3_PPMs.m) then creates PPMs.

In the model specification and VB script
(BMS2_ModelSpec_VB.m), we changed individual participants’
data file structures in order to match the format that
SPM typically requires to read fMRI data. This is done by
first loading the relevant file path and then changing the file
structure. Once these newly structured files had been saved,
we next specified the models to be compared: this was done by
assigning covariate weights to describe both models (please see
the instructions contained within BMS2_ModelSpec_VB.m on
Github). The Opposition Model was assigned weights of [1, 2,
2, and 3] for the unattended predicted, attended predicted and
unattended unpredicted, and attended unpredicted, respectively.
The Interaction Model was assigned weights of [1, 4, 2, and 3] for
the same conditions.

These covariate weights essentially describe the assumed
relationship between the different conditions according to a given
model. For example, using [1, 2, 2, and 3] as employed in
the Opposition Model, means that according to the Opposition
Model, the unattended predicted condition (the first condition
with an assigned weight of 1) evokes the smallest activity, whereas
the attended unpredicted (the fourth condition with a weight
of 3) has the greater activity, and both attended predicted and
unattended unpredicted (second and third conditions with an

6https://github.com/ClareDiane/BMS4EEG

equal weight of 2) are in between the former two conditions and
indistinguishable in magnitude from each other.

We then created log-evidence images, representing the
log-model evidences, for both models (separately), for every
participant (individually) at every voxel. In the case of
spatiotemporal (scalp-level) BMS, each voxel was representative
of a specific spatiotemporal location within the peristimulus
time window (0 to 400 ms) and topologically across the scalp,
such that the first two dimensions of the voxel refer to the
space across the scalp and the third dimension is time (as
shown in Figure 2). Conversely, in the source BMS (which
began with the source reconstruction steps described above),
each voxel was representative of an inferred location in three-
dimensional source space. Once log-evidence images had been
created, these were smoothed with a 1 mm half-width Gaussian
kernel.

In summary, one can create PPMs or log evidence maps in
sensor or source space. In sensor space, this involves creating
a two-dimensional image over the scalp surface and equipping
the space with a peristimulus time dimension. This creates
PPMs over the scalp surface and peristimulus time, enabling one
to identify regionally and temporally specific effects due to a
particular model, relative to other contrasts. Alternatively, one
can create three-dimensional PPMs in source space, following
source reconstruction.

The core SPM script that allows VB to be used on fMRI
data is named spm_spm_vb.m and is found in the SPM12
package, downloadable from the SPM site. This core script was
edited in order to adapt the VB method for EEG, as follows.
Changes were made such that different data structures could
be read in the same way that fMRI data would usually be
read. Furthermore, high-pass filtering steps were removed as
these only apply to low-frequency drifts associated with fMRI
data. The specific changes made between the original script
and the altered one to be used for spatiotemporal BMS are
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FIGURE 2 | Scalp Posterior Probability Maps of the two competing models over space and time. (The scalp images include the participant’s nose, pointing upward,
and ears, visible as if viewed from above.) These maps display all posterior probabilities exceeding 75% over space and time for both models. The left sides of both
panels (A,C) both depict the temporal information, showing the model probabilities at each point in time from 0 ms (when the tone was played, at the top of the
diagrams) to 400 ms after the stimulus presentation (at the bottom of the diagram), across the surface of the scalp (which traverses the width of the panels). The
right sides (B,D) show the spatial locations of the probability clusters which exceeded the threshold of 75% probability. Panels (B) and (D) were generated using the
spatiotemporal visualization tools developed by Jeremy Taylor. These tools are available at: https://github.com/JeremyATaylor/Porthole.

accessible online (goo.gl/ZVhPT7). For the source BMS steps,
the same changes were left in place as outlined above, and in
addition, the required minimum cluster size was changed from
16 to 0 voxels to allow for visualization of all clusters of any
size. The specific differences between the original and source
BMS versions of the spm_spm_vb script are accessible online
(goo.gl/WXAo67).

In the final step (BMS3_PPMs.m), the SPM Batch Editor was
used to apply a RFX approach to the group model evidence
data in a voxel-wise manner, thus translating the log-evidence
images from the previous step into PPMs (similar to how Rosa
et al. (2010) have produced PPMs previously for fMRI data).
The maps, displayed in the Figures 2–4, were generated by
selecting threshold probabilities of 75% for the spatiotemporal
maps (Figure 2) and 50% for the source maps (Figures 3 and
4). This threshold can be adjusted by the user. EPMs can also
be displayed by selecting the relevant setting in the final script
(please see the instructions on Github).

RESULTS

The raw dataset for this study can be found; on Figshare
(EEG_Auditory_Oddball_Raw_Data repository7; Harris et al.,
2018a).

The preprocessed dataset for this study can also be
found on Figshare (EEG_Auditory_Oddball_Preprocessed_Data
repository8; Harris et al., 2018b).

Scalp – Spatiotemporal
Figure 2 shows scalp (spatiotemporal) PPMs of the two
competing models over space and time. These maps display all
posterior probabilities exceeding 75% over space and time for
both models. As can be seen in the figure, spatiotemporal BMS
results revealed that Model One (the Opposition Model) was

7https://figshare.com/s/1ef6dd4bbdd4059e3891
8https://figshare.com/s/c6e1f9120763c43e6031
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FIGURE 3 | Source Posterior Probability Map for the Opposition Model (that
is, reconstructed images representing the model inference at the group level
for this model), thresholded at > 50% posterior probability. (A) View from the
left side. (B) View from the left side, from the posterior (back) end. (C) View
from the right side. (D) View from above.

FIGURE 4 | Source Posterior Probability Map for the Interaction Model (that
is, reconstructed images representing the model inference at the group level
for this model), thresholded at > 50% posterior probability. (A) View from the
left side. (B) View from the left side, from the posterior (back) end. (C) View
from the right side. (D) View from above.

by and large the superior model. The Opposition Model had
model probabilities exceeding 75% across the majority of later
time points (with most significant clusters between 225–360 ms),
and over most frontocentral and bilateral channel locations, as
shown in (A). On the other hand, as shown in (C), the Interaction

FIGURE 5 | Comparison of the posterior probabilities for the two models
at the location of the highest-probability cluster of the Opposition Model (left)
and the location of the highest-probability cluster of the Interaction Model
(right). The left supramarginal gyrus cluster, which was the highest probability
cluster for the Opposition Model (left), was located at Montreal Neurological
Institute (MNI) coordinates (62, –42, 30), while the left inferior parietal lobe
cluster, which was the highest probability cluster for the Interaction Model,
was located at MNI coordinates (–54, –32, 46).

Model did have over 75% model probability centrally between
175–185 ms, which is within the mismatch negativity (MMN)
time window. These findings replicate those of Garrido et al.
(2018), and strongly support the implications discussed in great
depth in that paper.

Source
As shown in Figures 3, 4, and 5, source BMS results also favored
the Opposition Model, with higher model probability over the
left supramarginal gyrus (with 91% model probability over a
relatively large cluster, KE = 6115), the right superior temporal
gyrus (with 87% model probability over a cluster with KE = 5749)
as well as over parts of the left inferior parietal lobe, right inferior
parietal lobe and left postcentral gyrus. Having said this, the
Interaction Model also had two large clusters, albeit with lower
model probabilities compared to the Opposition Model’s highest-
probability clusters: specifically, the Interaction Model had a
cluster of size KE = 6346 over the left inferior parietal lobe and
a cluster of size KE = 5353 over the right inferior parietal lobe
(with 74% model probability in both places).

Figures 3 and 4 show that different brain regions are likely to
perform different computations best described by the Opposition
and Interaction Models, respectively. Furthermore, Figure 5
compares the magnitude of the calculated posterior probabilities,
at the locations of the highest probability cluster for both models.
The possible functional reasons for the different anatomical
locations that emerge for the two different models may be an
interesting subject for future study, but fall outside the scope of
this methods paper. In any case, the usefulness of this probability
mapping approach illustrated in Figures 2, 3, and 4, lies in the
ability to pinpoint where and when given computations are likely
to be performed in the brain.
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DISCUSSION

This paper shows how to use RFX BMS mapping methods for
M/EEG data analysis. This method was originally developed for
fMRI by Rosa et al. (2010), and provides a way of displaying the
probabilities of different cognitive models at different timepoints
and brain locations, given a neuroimaging dataset. We aimed to
provide an in-depth explanation, written in a didactical manner,
of the BMS and posterior probability mapping steps that were
successfully used by Garrido et al. (2018) in their recent EEG
paper.

Being a Bayesian approach to hypothesis-testing, the method
described here provides multiple advantages over frequentist
inference methods. The first of these advantages is that VB allows
for comparisons between non-nested models. Consequently, it
is especially useful in the context of model-based neuroimaging
(Montague et al., 2004; O’Doherty et al., 2007; Rosa et al.,
2010; Garrido et al., 2018). Another advantage is that the
probability of the null hypothesis itself can be assessed
(instead of simply being, or failing to be, rejected). A final
advantage is that, although only two models were compared
here, the same method can also be applied to any arbitrary
number of models. For example, the analyses described here
could proceed slightly differently, based on the same data
but introducing another (or multiple other) model/s against
which to compare the Opposition and Interaction Models.
Potentially, any number of theoretically motivated models could
be considered. Considering all of these advantages, the method
described here should prove useful in a wide variety of M/EEG
experiments.

In summary, we have shown here how to adapt BMS maps,
originally developed for fMRI data by Rosa et al. (2010),
to M/EEG data analysis. It is hoped that the reporting of
analytical methods such as these, as well as the availability
of all the code and dataset, will not only contribute to
the Open Science movement, but may also encourage other
researchers to adopt this novel M/EEG data analysis method
in a way that is useful for addressing their own neuroscience
questions. We postulate that the use of this Bayesian model
mapping of M/EEG data to adjudicate between competing
computational models in the brain, both at the scalp and

source level, will be a significant advancement in the field of
M/EEG neuroimaging and may provide new insights in cognitive
neuroscience.
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