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Over the past 20 years, motor response inhibition and interference control have received
considerable scientific effort and attention, due to their important role in behavior and
the development of neuropsychiatric disorders. Results of neuroimaging studies indicate
that motor response inhibition and interference control are dependent on cortical–striatal–
thalamic–cortical (CSTC) circuits. Structural and functional abnormalities within the CSTC
circuits have been reported for many neuropsychiatric disorders, including obsessive–
compulsive disorder (OCD) and related disorders, such as attention-deficit hyperactivity
disorder, Tourette’s syndrome, and trichotillomania. These disorders also share impair-
ments in motor response inhibition and interference control, which may underlie some
of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies
on inhibitory functions in these disorders show that impaired task performance is related
to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory
performance is dependent upon dopamine, noradrenaline, and serotonin signaling, neu-
rotransmitters that have been implicated in the pathophysiology of these disorders. In
this narrative review, we discuss the common and disorder-specific pathophysiological
mechanisms of inhibition-related dysfunction in OCD and related disorders.

Keywords: response inhibition, obsessive–compulsive disorder, Tourette’s syndrome, trichotillomania, attention-
deficit hyperactivity disorder, interference control

INTRODUCTION
Response inhibition, the ability to suppress pre-potent behav-
ior that is inappropriate or no longer required, is critical for
goal-directed behavior in everyday life (Chambers et al., 2009).
Over the past decades, researchers have shown increased inter-
est in response inhibition. Response inhibition is considered an
operationalization of certain aspects of impulsivity and compul-
sivity (Bari and Robbins, 2013). Impulsivity is commonly defined
as a tendency to act on impulses, acts performed immediately
and without voluntary control, whereas compulsivity is the ten-
dency to repeat specific behavior and to be unable to inhibit
the behavior even when it is no longer appropriate (Bari and
Robbins, 2013). Due to the importance of response inhibition
in everyday life, many neuropsychological paradigms have been
developed to probe inhibitory performance. In these paradigms,
subjects are asked to respond to a target stimulus, but withhold
this response to irrelevant or distracting stimuli, or distracting
stimulus characteristics (Nigg, 2000).

Response inhibition is not a unitary construct and consists
of motor response inhibition and interference control. Motor
response inhibition involves the inhibition of pre-potent and auto-
matic motor responses, and can be further differentiated into
action restraint (or action suppression) and action cancelation
(Schachar et al., 2007). The Go/No Go task (Donders, 1969) is
considered to probe action restraint, whereas the Stop-signal task

(Logan, 1994) measures action cancelation (see Figure 1 for a
description of these tasks). Interference control on the other hand,
refers to the cognitive control needed to prevent interference due
to competition of relevant and irrelevant stimuli or stimulus char-
acteristics (Nigg, 2000). Several tasks including the Stroop task, the
Flanker task and the Simon task are measures of interference con-
trol (see Figure 1). It has been proposed that the inhibitory load is
highest in the Stop-signal task, as the response that needs to be sup-
pressed has already been initiated (Schachar et al., 2007). Contrary
to the motor response inhibition tasks, interference control tasks
may also rely on response selection processes (Nee et al., 2007). It
has been suggested that interference control, action restraint, and
action cancelation represent early, intermediate, and late processes
of response inhibition, respectively (Sebastian et al., 2013a).

The symptoms of obsessive–compulsive and related disorders
within the impulsive–compulsive spectrum are characterized by
a failure to inhibit certain behaviors, e.g., washing hands, pulling
hair, motor tics, or impulsive actions. Response inhibition might
therefore be a suitable measure to investigate the neural substrates
of these shared symptoms. In this narrative review, we will provide
an overview of studies that have examined the neuroanatomical
and functional underpinnings of response inhibition impairment
in healthy subjects and patients with these disorders but this
review by no means constitutes an exhaustive account of the cur-
rent literature. We will focus on the shared mechanisms that may
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FIGURE 1 | Examples of interference control and motor response
inhibition tasks. The Flanker task is a test in which subjects are asked to
respond to a target stimulus by pressing a button to indicate the direction
of the target stimulus. The target, however, is flanked by non-target
distracter stimuli, which are presented in the same or in the opposite
direction as the target (congruent and incongruent trials, respectively).
During a Simon task, participants are asked to press a button depending
on the orientation of the arrow, irrespective of the location of the arrow.
Orientation and location can either be congruent of incongruent. In the
Stroop task names of colors are presented in either the same (congruent)

or a different color (incongruent). Subjects are instructed to name to color
of the word but not the word itself. In the Go/No-go task, subjects need
to respond as fast as possible when letters are presented (Go-trials), but
must withhold the response when a certain letter (e.g., “X”) is presented
(Stop-trials). In a Stop-signal task, the participant is asked to respond as
fast as possible by pressing a button to a stimulus (Go-trials) that is
presented. On a minority of trials, a stop-signal is presented and the
subject is asked to suppress the response when the stop-signal occurs.
Task demands gradually increase from interference control to action
cancelation.

underlie the inhibitory dysfunction and symptoms of these disor-
ders. Pharmacological and genetic alterations are also addressed
and focus on the dopamine, serotonin, and noradrenalin system.
We acknowledge that other neurotransmitters, such as glutamate
and gamma-Aminobutyric acid, are also important for response
inhibition and the pathophysiology obsessive–compulsive and
related disorders (MacMaster et al., 2003; Turner et al., 2003; van
Minnen et al., 2003; DeVito et al., 2005; Starck et al., 2008; Silveri
et al., 2013), but discussion of all these neurotransmitters would
considerably lengthen this review.

NEURAL CORRELATES OF RESPONSE INHIBITION IN
HEALTHY CONTROLS
NEUROIMAGING OF RESPONSE INHIBITION
Neuroimaging studies in healthy controls have revealed the neural
substrates of response inhibition [for excellent reviews, see Rob-
bins (2007), Chambers et al. (2009), and Aron (2011)]. While
major contributions to our understanding of response inhi-
bition come from electrophysiological studies, in this review,
we will focus on neuroimaging studies. Readers interested in
the electrophysiology of response inhibition are directed to
Huster et al. (2013).

In brief, response inhibition activates a network of mainly right
lateralized frontal brain areas. The inferior frontal gyrus (IFG) and
pre-supplementary motor area (pre-SMA) are key components
(Aron et al., 2003b; Chambers et al., 2006; Floden and Stuss, 2006;
Cai et al., 2012), and the neural stop-signal is then sent from

these frontal areas to the motor cortex through cortico-striatal–
thalamic–cortical (CSTC) projections (Chambers et al., 2009).

The subcomponents of response inhibition are found to depend
on overlapping, yet distinct, brain areas. Interference inhibition,
action restraint and action cancelation are all associated with
activation of the IFG, anterior insula, anterior cingulate cortex
(ACC), dorsolateral prefrontal cortex (DLPFC), pre-SMA, and
parietal regions (Wager et al., 2005; Nee et al., 2007; Sebastian
et al., 2013b). When inhibitory task load increases, activation of
frontal–striatal regions increases and additional inhibition-related
brain areas are recruited (Blasi et al., 2006; Swick et al., 2011; Sebas-
tian et al., 2013b). However, each task recruits distinct brain areas
as well, depending on the unique cognitive processes that they
represent. Regions involved in response selection, including the
parietal cortex, for instance, are activated to a greater extent dur-
ing interference control tasks and action restraint (Rubia et al.,
2001; Sebastian et al., 2013b).

NEUROTRANSMITTERS IN RESPONSE INHIBITION
In addition to differences in neural activation, differences in the
neurotransmitter systems underlying interference control, action
restraint, and action cancelation have also been observed. Current
studies suggest that interference control is dependent on sero-
tonin and dopamine neurotransmission. Depletion of serotonin
and dopamine has been shown to decrease interference effects
on incongruent trials, and thus improve performance, during the
Stroop task (Schmitt et al., 2000; Scholes et al., 2007). Decreases
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in serotonin may improve performance by increasing arousal and
attention (Scholes et al., 2007). Increased activation of the DLPFC
and ACC was observed during performance of a Stroop task after
serotonin depletion (Horacek et al., 2005). Stroop performance
was positively correlated with serotonin transporter (SERT) bind-
ing in the right DLPFC as well (Madsen et al., 2011). However,
contradicting results have also been reported, as neuroimaging
studies showed that decreased dopamine transporter (DaT) bind-
ing in the striatum in women (Mozley et al., 2001) and decreased
postsynaptic striatal D2-receptor availability was associated with
poor performance on a Stroop task (Volkow et al., 1998). Admin-
istration of a dopamine D2 agonist decreased interference, and
thereby improved performance on the Stroop task (Roesch-Ely
et al., 2005). Based on the available literature in healthy sub-
jects it seems that both serotonin and dopamine are important
for interference control.

Action restraint (Go/No Go task) seems to be primarily medi-
ated by serotonin [for a review of evidence, see Eagle et al. (2008)].
Serotonin depletion has been shown to decrease activation of
the IFG during inhibition and decreases activation of the medial
prefrontal lobe during error monitoring in the Go/No Go task
(Rubia et al., 2005a; Evers et al., 2006). Administration of a
serotonin 2C receptor agonist (Anderson et al., 2002) or mir-
tazapine (Vollm et al., 2006), which acts on both the noradrena-
lin and serotonin system, increased inhibition-related activation
of the right IFG. Nevertheless, dopamine may play a role in
action restraint as well since methylphenidate, a dopamine re-
uptake inhibitor, improved performance on the Go/No Go task
and led to decreased task-related striatal activation (Vaidya et al.,
1998).

Several lines of evidence support an important role for
dopamine in action cancelation. Increased Dopamine D2/3-
receptor availability in the striatum is associated with better
Stop-signal task performance, i.e., shorter stop-signal reaction
time (SSRT), and correlates positively with inhibition-related
activation of the dorsal caudate and putamen (Ghahremani
et al., 2012). Also, administration of a D2-receptor agonist
improved action cancelation (Nandam et al., 2013). Administra-
tion of methylphenidate and atomoxetine, which both target the
dopamine and noradrenalin system, by inhibiting the re-uptake
from the synaptic cleft, decreased SSRT in humans and in ani-
mals, raising the possibility that noradrenalin is involved in motor
response inhibition as well (Chamberlain et al., 2006b; Eagle et al.,
2007; Bari et al., 2009; Nandam et al., 2011). Serotonin does
not seem to mediate performance of the Stop-signal task, as use
of selective serotonin re-uptake inhibitors (SSRIs) and serotonin
depletion did not affect action cancelation in humans or in ani-
mals (Clark et al., 2005; Chamberlain et al., 2006b; Bari et al., 2009;
Eagle et al., 2009; Drueke et al., 2010).

To summarize, interference control seems to be mediated by
both serotonin and dopamine. Action restraint seems to be pre-
dominantly mediated by serotonin, whereas action cancelation
seems to be mediated by dopamine and noradrenalin. More
detailed information on the neuropharmacology of response inhi-
bition is provided by Dalley and Roiser (2012) and Bari and
Robbins (2013).

GENES IN RESPONSE INHIBITION
Several gene-association studies have examined the relationship
between genes involved in the dopaminergic and serotonergic
systems and response inhibition. Genetic polymorphisms in the
dopamine D4-receptor gene (DRD4), associated with reduced
functional activity (Asghari et al., 1995), have been related
to decreased performance on the Stop-signal task (Congdon
et al., 2008), although conflicting results have also been reported
(Kramer et al., 2009).

The DRD2 gene codes for the dopamine receptor D2. The
presence of a TaqIA allele, which has been linked to decreased
availability of striatal D2-receptors (Thompson et al., 1997), was
associated with poor response inhibition in the Stop-signal task
(White et al., 2008). A second polymorphism, which has been
associated with decreased cortical and thalamic D2-receptor avail-
ability (Hirvonen et al., 2009), was also related to poor action
cancelation (Colzato et al., 2010).

Genetic polymorphisms that increased expression of the DaT
have been associated with impaired performance on an interfer-
ence control task (Cornish et al., 2005) and decreased brain activa-
tion in the STN and pre-SMA during action cancelation (Congdon
et al., 2009). Furthermore, two novel single nucleotide polymor-
phisms in the DaT gene predicted individual SSRT (Cummins
et al., 2012) and genotype of one of these polymorphisms pre-
dicted activation of frontal areas and the caudate nucleus during
task performance.

Polymorphisms in catechol-O-methyltransferase (COMT) and
monoamine oxidase A (MAO-A) genes, coding for enzymes play-
ing a role in neurotransmitter metabolism, have been associ-
ated with normal variations in inhibition-related activity as well.
COMT is involved in the degradation of dopamine and nora-
drenalin and MAO-A is involved in degradation of dopamine,
noradrenalin, and serotonin. A polymorphism of COMT with
decreased function (Chen et al., 2004), was associated with
increased activation of the IFG during action cancelation (Cong-
don et al., 2009) and decreased interference inhibition (Solis-Ortiz
et al., 2010), although conflicting results have also been reported
(Kramer et al., 2007). Polymorphisms of the MAO-A gene, which
increase MAO-A activity, were associated with increased activity
in the right IFG and ACC and decreased activity in the supe-
rior parietal cortex during action restraint (Passamonti et al.,
2006).

Gene-association studies have focused on genes involved in
serotonergic transmission as well. Serotonin synthesis in the brain
is regulated by tryptophan-hydroxylase-2 (TPH-2) (Walther and
Bader, 2003). Individuals homozygous for the T-allele of a poly-
morphism in the TPH-2 gene showed increased SSRT in the
Stop-signal task (Stoltenberg et al., 2006). A second study found
that two other polymorphisms in the TPH-2 gene were associ-
ated with reduced brain activity during action restraint in an
EEG study (Baehne et al., 2009). Lastly, Osinsky et al. (2009)
found that a polymorphism located in the promotor region of
the TPH-2 gene, affected reaction time during performance of a
Stroop task. Interpretation of these findings is, however, challeng-
ing as it is uncertain how these polymorphisms affect serotonin
levels.
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Polymorphisms in the SERT gene (SLC6A4) that decrease the
rate of re-uptake from the synaptic cleft, were associated with
decreased interference inhibition (Holmes et al., 2010), but not
to action cancelation (Clark et al., 2005). Participants with a
decreased function polymorphism in SERT also showed increased
rostral ACC activation in response to errors and decreased activa-
tion of the dorsal ACC in response to conflict during the Flanker
task (Holmes et al., 2010).

INTERMEDIATE SUMMARY
In summary, current evidence suggests that response inhibition
is dependent on brain areas in the CSTC circuits and activation
in these circuits increases with increasing inhibitory load. Proper
function of these CSTC circuits depends on a complex interplay
between dopamine, serotonin, and noradrenalin, although the
weight of their importance may differ between the subcomponents
of response inhibition. While reducing levels of serotonin and
dopamine appears to ameliorate interference control, increasing
dopamine levels appears to ameliorate action restraint and action
cancelation. Gene-association studies have primarily reported
that polymorphisms associated with decreased dopamine signal-
ing are also associated with decreased motor response inhibition
performance.

Structural and functional alterations in CSTC circuits and
altered serotonin, noradrenalin, and dopamine transmission may
underlie response inhibition deficits in obsessive–compulsive
disorder (OCD) patients and in patients with related disorders.

OBSESSIVE–COMPULSIVE DISORDER AND INHIBITION
Obsessive–compulsive disorder is an anxiety disorder that affects
2–3% of the population and causes severe impairment in social
and occupational functioning (Ruscio et al., 2010). The disor-
der is characterized by distress- and anxiety provoking obsessions
(repetitive intrusive thoughts) and compulsions (repetitive ritual-
istic behavior), which are performed to diminish anxiety (Ameri-
can Psychiatric Association, 2013). These symptoms are common,
as more than 25% of the population experiences sub-clinical
obsessions or compulsions in their lives (Ruscio et al., 2010). Phar-
macotherapy for OCD consists mainly of SSRIs, which suggests
involvement of the serotonin system in the pathophysiology of
the disorder. Nevertheless, an estimated 40–60% of patients does
not respond to this treatment and require additional treatment
with atypical antipsychotics, which affects both the serotonergic
and dopaminergic system (Denys et al., 2004a; Fineberg et al.,
2005). Neuroimaging studies have strengthened the notion of sero-
tonergic dysfunction in OCD by providing evidence for reduced
availability of SERTs in the midbrain, thalamus, and brainstem
and reduced availability of serotonin 2A receptors in prefrontal,
parietal, and temporal brain regions (Hesse et al., 2005; Perani
et al., 2008). Abnormalities in the dopamine system have also been
observed in OCD patients, such as increased DaT levels in the
striatum and reduced availability of the D1- and D2-receptors in
the striatum (Kim et al., 2003; Denys et al., 2004b; van der Wee
et al., 2004; Olver et al., 2009).

In the past several years, research interest has focused on
response inhibition as a model of OCD symptoms (Chamber-
lain et al., 2005). In support of this, deficits in interference control,

e.g., increased reaction times during incongruent trials, have been
described in OCD (Bannon et al., 2002; Penades et al., 2007;
Nabeyama et al., 2008; Nakao et al., 2009; Schlosser et al., 2010).
A number of studies have used interference control paradigms
in OCD research during functional neuroimaging (see Table 1;
Fitzgerald et al., 2005; Nakao et al., 2005a, 2009; van den Heuvel
et al., 2005; Viard et al., 2005; Nabeyama et al., 2008; Wool-
ley et al., 2008; Page et al., 2009; Schlosser et al., 2010; Huyser
et al., 2011; Rubia et al., 2011a; Marsh et al., 2013). Some stud-
ies reported hyperactivation of the ACC in adults and children
with OCD following errors and interference control (Fitzgerald
et al., 2005; Huyser et al., 2011), while others reported hypoactiva-
tion of the ACC (Nakao et al., 2005a; Rubia et al., 2011a). Altered
inhibition-related brain activation has also been observed in the
pre-SMA (Fitzgerald et al., 2005; Rubia et al., 2011a) and insular
cortex (Huyser et al., 2011). Increased activation in frontal–striatal
regions, including the IFG and putamen, was seen in OCD patients
during performance of a Simon task (Marsh et al., 2013).

Abnormalities in activation during interference control tasks
have also been observed at a network level. Schlosser et al. (2010)
used dynamic causal modeling (DCM) to examine functional
connectivity in a fronto-cingulate network during performance
on a Stroop task, and found increased connectivity between the
DLPFC and ACC in OCD patients compared with healthy con-
trols. Increased functional connectivity between the putamen and
the inferior parietal cortex, caudate, thalamus, and frontal areas
was observed in patients during performance of a Simon task
(Marsh et al., 2013).

Impaired action cancelation and action restraint has been
described for OCD (Chamberlain et al., 2007b; Penades et al.,
2007); patients showed increased SSRT (i.e., slower inhibition) in
the Stop-signal task and higher error rates on the Go/No Go task
compared with healthy control subjects. Deficits in motor response
inhibition were also observed in unaffected first-degree relatives
of OCD patients (Chamberlain et al., 2007b; Menzies et al., 2007),
suggesting that motor response inhibition may be considered an
endophenotype [a trait that is heritable and co-segregates with
the illness in families (Gottesman and Gould, 2003)] of OCD
patients.

Structural neural correlates of impaired motor response inhi-
bition in OCD patients have been identified. Deficits in action
cancelation in OCD patients and first-degree relatives were associ-
ated with increased gray matter volume in the ACC, putamen, cau-
date, amygdala, parietal areas, and the cerebellum, and decreased
gray matter volume in the OFC, IFG, ACC, premotor cortex, and
regions in the temporal cortex (Menzies et al., 2007).

Functional neural correlates of motor response inhibition
impairments in OCD have also been identified (see Table 2; Maltby
et al., 2005; Roth et al., 2007; Woolley et al., 2008; Page et al., 2009;
Rubia et al., 2010; de Wit et al., 2012; Kang et al., 2012). Decreased
task-related activation is seen in the CSTC circuits during inhi-
bition in OCD patients (Roth et al., 2007; Woolley et al., 2008;
Page et al., 2009; Rubia et al., 2010; de Wit et al., 2012; Kang
et al., 2012), although, one study reported increased activation of
these regions (Maltby et al., 2005). In the largest study to date,
de Wit et al. (2012) found decreased activation of the IFG and
inferior parietal cortex during inhibition in unmedicated OCD
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Table 1 | Overview of fMRI studies that have used interference control tasks in obsessive–compulsive disorder.

Study Task Age group Participants Medication and

co-morbidities

Contrast Findings in OCD patients

Fitzgerald et al. (2005) Flanker

task

Adults 8 OCD patients (2 f)

7 Healthy controls

(2 f)

Three patients were treated

with SSRI’s, one with

benzodiazepines and one

received antipsychotic

medication

Three patients met criteria for

depression, two for

dysthymia. No severe medical

conditions, neurological

disorder, or head injury

E > Corr

IC > C

↑ Rostral ACC (+correlation

with severity of symptoms)

↓ R. pre-SMA

↑ Bilateral caudate nucleus

Huyser et al. (2011) Flanker

task

Children/

adoles-

cents

25 OCD patients

(16 f)

25 Healthy controls

(16 f)

Medication-free for at least

2 weeks prior to participation

Forty-eight percent of

patients had co-morbid

anxiety disorder, 12%

co-morbid affective disorders,

12% ADHD/ODD, and 8% tic

disorders

E > Corr

IC > C

↑ ACC, insula

↑ Bilateral insula

Nakao et al. (2005a) Stroop

task

Adults 24 OCD patients

(15 f)

14 Healthy controls

(9 f)

Medication-free for at least

2 weeks prior to participation

No co-morbid axis-I disorders,

no severe medical condition,

neurological disorder, head

injury, or substance abuse

IC > C ↑ R. frontal lobe

↓ Bilateral ACC, temporal

lobe, R. caudate nucleus

Nabeyama et al. (2008) Stroop

task

Adults 11 OCD patients (7 f)

19 Healthy controls

(11 f)

Medication-free for at least

2 weeks prior to participation

Co-morbid disorders

unreported

IC > C ↓R. ACC, R. cerebellum

Woolley et al. (2008) Motor

Stroop

task

Children/

adolescents

10 OCD patients (0 f)

9 Healthy controls

(0 f)

Eight patients treated with an

SSRI, five treated with CBT

No co-morbid axis-I disorder,

neurological disorder, head

injury, and severe medical

condition

IC > C ↓ R. middle temporal gyrus,

bilateral cerebellum

Page et al. (2009) Motor

Stroop

task

Adults 10 OCD patients (0 f)

11 Healthy controls

(0 f)

Medication-free

Two patients met criteria for

dysthymic disorder, three

previously met criteria for

depression, and one

previously met criteria for

alcohol dependence

IC > C ↑ L. Cerebellum, L. posterior

cingulate

↓ Bilateral precuneus, R.

temporal gyrus

L. temporo-parietal junction

Nakao et al. (2009) Stroop

task

Adults 17 OCD patients:

duration of illness

<10 years (12 f)

15 OCD patients:

duration of illness

>10 years (8 f)

16 Healthy controls

(7 f)

Medication-free for at least

2 weeks prior to participation

No co-morbid axis-I disorder,

no severe medical condition,

neurological disorder, head

injury, or substance abuse

IC > C ↓ R. caudate, cerebellum in

patients with disease duration

<10 years compared with

patients with longer disease

duration and controls

(Continued)
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Table 1 | Continued

Study Task Age group Participants Medication and

co-morbidities

Contrast Findings in OCD patients

Schlosser et al. (2010) Stroop

task

Adults 21 OCD patients

(16 f)

21 Healthy controls

(16 f)

Medication-free for at least

2 days prior to participation

No co-morbid axis-I disorder,

no psychosis, or neurological

disorder

IC > C

IC

↑ Bilateral DLPFC

↑ Bilateral superior frontal

gyri, dorsal ACC, left

precentral gyrus, right

superior parietal lobe, and

right inferior parietal

van den Heuvel et al. (2005) Stroop

task

Adults 18 OCD patients

(12 f)

19 Controls (9 f)

Medication-free for at least

4 weeks prior to participation

No neurological illness, other

psychiatric disorders

IC > C ↑ R. precuneus,

L. parahippocampal gyrus

L. rostral brainstem

Viard et al. (2005) Conflict

task

Adults 12 OCD patients (5 f)

15 Healthy controls

(4 f)

Eleven patients were treated

with SSRI’s, one also with a

TCA

No co-morbid disorders, no

severe medical condition,

neurological disorder, or head

injury

IC > C No difference in brain

activation

Marsh et al. (2013) Simon

task

Adults 22 OCD patients

(11 f)

22 Healthy controls

(11 f)

Medication-free

Five patients had a lifetime

history of depression

IC > C ↑ R. IFG, Insula, and putamen

Rubia et al. (2011a) Simon

task

Children/

adoles-

cents

10 OCD patients (0 f)

20 Healthy controls

(0 f)

Eight patients were treated

with SSRI’s; five patients with

CBT

No co-morbid psychiatric

disorders, no history of

learning disabilities, or

substance abuse

IC >

oddball

↓ R. pre-SMA, ACC, superior

parietal cortex

ADHD, attention-deficit hyperactivity disorder; C, congruent trials; CBT, cognitive behavioral therapy; corr, correct trials; DLPFC, dorsolateral prefrontal cortex; E,

error trials; f, female; IC, incongruent trials; ODD, oppositional defiant disorder; OFC, orbitofrontal cortex; SMA, supplementary motor area; SSRI, selective serotonin

re-uptake inhibitor; STG, superior temporal gyrus; TCA, tricyclic anti-depressant.

patients and increased activation of the left pre-SMA. This pre-
SMA hyperactivation was present in their unaffected siblings as
well. Activation of the pre-SMA correlated negatively with SSRT
in patients and siblings, indicating that hyperactivation of the pre-
SMA may be considered a compensatory mechanism. Overall, the
most consistent finding is decreased activation of the DLPFC, IFG,
striatum, and thalamus in OCD patients during inhibition (Roth
et al., 2007; Woolley et al., 2008; Page et al., 2009; Rubia et al., 2010;
de Wit et al., 2012).

In a recent study, we examined functional connectivity during
performance of the Stop-signal task in unmedicated adult OCD
patients, their unaffected siblings, and healthy controls (van Velzen
et al., under review). We performed psychophysiological interac-
tion (PPI) analyses and DCM and found abnormal connectivity
between the IFG and amygdala in patients and their siblings, sug-
gesting that this pattern of connectivity is an endophenotype.
Limbic activation may interfere with CSTC circuit activation in

OCD. We did not find evidence for altered connectivity between
the IFG, pre-SMA, and striatum during inhibition. These results
warrant replication in other samples.

Two studies have investigated the effects of pharmacologi-
cal treatment for OCD on response inhibition. Treatment with
SSRI’s increased task-relevant brain activation during perfor-
mance of an interference control task along with symptom
improvement (Nakao et al., 2005b). However, due to the study
design, it remains unknown if this change in activation occurs
secondary to symptom improvement or due to the pharma-
cological treatment. A second study reported increased activa-
tion of multiple cortical and subcortical brain areas during a
Go/No Go task in OCD patients treated with SSRIs compared
to OCD patients who were not treated with SSRIs (Roth et al.,
2007). However, this study was crossectional, included small
patient groups and did not study the relationship with disease
severity.
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Table 2 | Overview of fMRI studies that have used response inhibition paradigms in obsessive–compulsive disorder.

Study Task Age group Participants Medication and

co-morbidities

Contrast Findings in OCD patients

Maltby

et al. (2005)

Go/No-

go

task

Adults 11 OCD patients (7 f)

11 Healthy controls

(7 f)

Medication free; OCD is

primary diagnosis, six patients

met criteria for one other axis-I

disorder

No psychosis, neurological

disorder, head injury, and

substance abuse

FS > Go

SS > Go

↑ Lateral prefrontal cortex,

ACC, lateral OFC, caudate,

thalamus during failed, and

successful inhibition

Roth et al.

(2007)

Go/No-

go

task

Adults 12 OCD patients (7 f)

14 Healthy controls

(8 f)

Six patients treated with an

SSRI

Two patients met criteria for

depression, one for social

phobia. No neurological

disorder, head injury, severe

medical condition, or

substance abuse

No Go > Go ↓ R. IFG, R. middle frontal

gyrus

Woolley

et al. (2008)

Stop-

signal

task

Children/

adoles-

cents

10 OCD patients (0 f)

9 Healthy controls

(0 f)

Eight patients treated with an

SSRI, five treated with CBT

No comorbid axis-I disorder,

neurological disorder, head

injury, and severe medical

condition

SS > FS

FS > Go

↓ R. OFC, thalamus, basal

ganglia

↓ DLPFC, temporal lobe

activation

Page et al.

(2009)

Go/No-

go

task

Adults 10 OCD patients (0 f)

11 Healthy controls

(0 f)

Medication free

Two patients met criteria for

dysthymic disorder, three

previously met criteria for

depression and one previously

met criteria for alcohol

dependence

No Go > Go

No Go > Go

↑ VMPFC posterior cingulate,

premotor cortex, cerebellum

↓ OFC, DLPFC, ACC, putamen,

caudate, hippocampus,

thalamus

Rubia et al.

(2010)

Stop-

signal

task

Adolescents 10 OCD patients (0 f)

20 Healthy controls

(0 f)

Patients received treatment

and were in partial remission

No major psychiatric disorders,

substance abuse, and learning

disabilities

SS > Go

FS > Go

↓ R. OFC (+correlation with

improvement of symptoms)

↓ Left middle frontal gyrus

de Wit et al.

(2012)

Stop-

signal

task

Adults 41 OCD patients

(20 f)

17 Siblings (5 f)

37 Healthy controls

(19 f)

Medication free

Twenty-two patients met

diagnostic criteria for another

axis-I disorder. No psychosis,

neurological illness, and severe

medical conditions

SS > SG

SS > SG

↑ Pre-SMA (also in unaffected

siblings)

↓R. IFG and R. inferior parietal

cortex

Kang et al.

(2012)

Stop-

signal

task

Adults 18 OCD patients (6f)

18 Healthy controls

(6f)

Medication free

No major psychiatric disorders,

psychosis, neurological illness,

substance abuse, depression,

and mental retardation

SS > Go

SS > Go

↑ Bilateral superior parietal

cortex, cerebellum, R.

parahippocampal cortex

↓R. putamen, L. precentral

gyrus, R. fusiform cortex,

bilateral caudate and temporal

lobe; R. middle occipital cortex,

L. angular gyrus, L. cerebellum,

and R. cingulate cortex

ACC, anterior cingulate cortex; CBT, cognitive behavioral therapy; DLPFC, dorsolateral prefrontal cortex; f, female; FS, failed stop; IFG, inferior frontal gyrus; MTL,

middle temporal lobe; OFC, orbitofrontal cortex; SS, successful stop; SSRI, selective re-uptake inhibitor; VMPFC, ventromedial prefrontal cortex.

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 419 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

van Velzen et al. Inhibition deficits in obsessive–compulsive spectrum disorders

In summary, OCD patients show impairment in both interfer-
ence control and motor response inhibition. Prefrontal and other
brain areas within the CSTC circuits appear to be hyperactive
during interference control, although results have been incon-
sistent. As task load increases during action restraint and action
cancelation, CSTC areas generally become hypoactive compared
with controls, although some compensation may occur. Decreased
serotonin and increased dopamine transmission in CSTC circuits
may underlie the response inhibition deficits. The presence of,
and functional correlates of response inhibition deficits have also
been investigated in disorders related to OCD, such as Tourette’s
syndrome (TS), trichotillomania (TTM), and attention-deficit
hyperactivity disorder (ADHD), enabling the disorder specificity
of these cognitive dysfunctions and enabling comparison of these
inhibition deficits across these disorders.

INHIBITION IN OTHER FRONTAL–STRIATAL DISORDERS
TOURETTE’S SYNDROME
Gilles de la Tourette’s syndrome, also known as Tourette’s syn-
drome, is a neurodevelopmental disorder characterized by motor
tics and vocal tics (American Psychiatric Association, 2013). TS
affects between 0.4 and 1% of the population (Swain et al., 2007;
Robertson, 2008).

Like in OCD,dysfunction of the serotonergic and dopaminergic
systems is implicated in the pathophysiology of TS [for a review,
see Steeves and Fox (2008)]. Several clinical trials have shown
that administration of dopamine antagonists, such as risperidone
and haloperidol, are effective in suppressing tics in most patients
(Bloch et al., 2011; Roessner et al., 2011). Neuroimaging studies
have reported decreased availability of the D2 and D3-receptors
in cortical (OFC, ACC, insula, temporal, and occipital cortex)
and subcortical areas (thalamus and hippocampus) (Gilbert et al.,
2006; Steeves et al., 2010) and increased striatal DaT availability
(Malison et al., 1995; Muller-Vahl et al., 2000; Cheon et al., 2004;
Serra-Mestres et al., 2004; Liu et al., 2010), although conflicting
results have also been reported (Singer et al., 2002; Hwang et al.,
2008). Neuroimaging of the serotonergic system in TS has shown
increased binding of the serotonin 2A-receptor in many corti-
cal (OFC, ACC, insula, temporal lobe, parietal lobe, and occipital
lobe) and subcortical areas (thalamus, caudate, and hippocam-
pus) (Haugbol et al., 2007) and increased SERT availability in the
striatum and midbrain (Wong et al., 2008).

There is increasing evidence for frontal–striatal dysfunction in
TS [for reviews, see Albin and Mink (2006) and Felling and Singer
(2011)]. For instance, symptom severity correlated negatively with
the degree of activation of CSTC circuits during tic suppression
(Peterson et al., 1998) and prefrontal cortical thickness (Draganski
et al., 2010) and volume of prefrontal CSTC areas was decreased
in TS patients compared with healthy controls (Draganski et al.,
2010).

More than 90% of all patients with TS also have co-morbid psy-
chiatric disorders, most often OCD or ADHD (Robertson, 2011).
It has been estimated that between 45 and 60% of TS patients suffer
from OCD as well (Ghanizadeh and Mosallaei, 2009). As in OCD,
many studies have investigated whether the involuntary motor
symptoms in TS are related to motor response inhibition and
interference control. Evidence for this, however, has been mixed;

as some studies report impaired performance (Baron-Cohen et al.,
1994; Crawford et al., 2005; Rankins et al., 2006; Channon et al.,
2009; Eichele et al., 2010), especially with increasing task demands,
while others do not (Ozonoff et al., 1994; Ozonoff and Jensen,
1999; Hershey et al., 2004; Verte et al., 2005; Watkins et al., 2005;
Channon et al., 2006; Ray Li et al., 2006; Marsh et al., 2007; Raz
et al., 2009; Sukhodolsky et al., 2010). These studies often included
TS patients with co-morbid disorders and patients often used
psychotropic medication. A meta-analysis of four studies using
the Stop-signal task in TS found mild inhibitory deficits (Lipszyc
and Schachar, 2010).

While evidence for behavioral impairment is not straightfor-
ward, inhibition-related brain activity seems to be altered in TS
(see Table 3). With increasing age, patients with TS, compared
with healthy controls, show increased recruitment of CSTC regions
during interference control (Raz et al., 2009). Greater activation
of CSTC areas, which was observed in TS patients during interfer-
ence inhibition, might be considered a compensatory mechanism
(Marsh et al., 2007). During motor response inhibition, patients
with TS showed increased inhibition-related frontal brain activity
in an event-related potential (ERP) study (Johannes et al., 2001).
The authors noted that compensatory brain activation may explain
why studies have not consistently observed response inhibition
deficits in TS patients. No difference was found in brain activation
between patients and controls during performance of a Go/No Go
task, although the sample size was limited (Hershey et al., 2004).
No study has yet investigated the direct effects of pharmacolog-
ical treatment on behavioral or functional measures of response
inhibition in TS, although, see Wylie et al. (2013).

In summary, behavioral inhibitory deficits may be limited
to a subgroup of Tourette’s patients, as compensatory brain
activation during inhibition may conceal behavioral deficits in
response inhibition in some patients. Increased dopamine trans-
mission in CSTC circuits may underlie the deficits in response
inhibition.

TRICHOTILLOMANIA
Trichotillomania is an obsessive–compulsive related disorder
(American Psychiatric Association, 2013). Patients with this disor-
der experience an urge to pull out their hair, which causes distress
and functional impairment. Due to similarities between TTM and
OCD, TTM was historically treated with SSRIs. Although initially
considered effective in TTM (Stein et al., 1997), more recent stud-
ies report that SSRIs are ineffective in TTM (Streichenwein and
Thornby, 1995; van Minnen et al., 2003) or only effective in a
specific subgroup of TTM patients (Stanley et al., 1997a; Gadde
et al., 2007). More recent clinical trials showed that treatment
with atypical antipsychotics, such as olanzapine and aripiprazole,
which exert their effects on among others, the serotonergic and
dopaminergic system, are more promising (Van Ameringen et al.,
2010; White and Koran, 2011).

It has been suggested that TTM symptoms originate from CSTC
circuit dysfunction (Mataix-Cols and van den Heuvel, 2006). In
support of this hypothesis, structural abnormalities in frontal areas
and regions of the striatum have been observed in TTM (Cham-
berlain et al., 2008). As patients have difficulty suppressing a motor
response, i.e., pulling out their hair, deficits in response inhibition
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Table 3 | Overview of fMRI studies that have used interference control tasks and response inhibition tasks in patients withTourette’s syndrome.

Study Task Age group Participants Medication and co-morbidities Contrast Findings inTS patients

Hershey

et al. (2004)

Go/No-

go

task

Adults 8 TS patients (2 f)

10 Healthy controls

Medication-free (<24 h)

Two patients with comorbid

OCD, four patients with

comorbid ADHD

Task > fixation No differences in brain

activation during task

performance compared to

controls

Raz et al.

(2009)

Simon

task

Children/

adults

42 TS patients (16 f)

37 Healthy controls

(17 f)

Medication use unreported

One patient with comorbid

OCD and one patient with

comorbid OCD and ADHD

IC > C ↑ Activation of frontal–striatal

regions with age in TS

Marsh et al.

(2007)

Stroop

task

Children/

adults

66 TS patients (19 f)

70 Healthy controls

(36 f)

Thirty-eight patients used

psychoactive medication

(haloperidol/risperidone/SSRIs)

Twenty-five patients with

comorbid ADHD; eight with

comorbid ADHD, and five with

comorbid OCD/ADHD

IC > C ↓ Deactivation of the mesial

PFC and ventral ACC with age

in TS patients

Activation of the R. IFG,

L. DLPFC, lenticular nucleus,

and thalamus associated with

better performance in controls

and poorer performance in TS

patients

ACC, anterior cingulate cortex; C, congruent; DLPFC, dorsolateral prefrontal cortex; IC, incongruent; IFG, inferior frontal gyrus; f, female; L, left; PFC, prefrontal cortex;

R, right; SSRI, selective serotonin re-uptake inhibitor.

may underlie the symptoms of this disorder (Chamberlain et al.,
2006a).

Research on response inhibition in TTM is limited and con-
flicting. While performance of a related cognitive control task was
unaltered, TTM patients showed deficits in interference control in
the Stroop task (Stanley et al., 1997b; Bohne et al., 2005). Deficits
in action cancelation have been reported, and the degree of impair-
ment correlated with disease severity (Chamberlain et al., 2006a).
Impairment in action restraint was limited to a distinct subgroup
of patients with an early onset of the disorder (Bohne et al., 2008).

The neural or pharmacological substrates of response inhibi-
tion deficits in TTM have not yet been fully elucidated, as no
inhibition-related neuroimaging studies have been performed in
this patient group. Nor have there been any studies on the effects of
pharmacological treatment on response inhibition. TTM patients
do, however, exhibit structural abnormalities in CSTC circuit
regions associated with inhibition, for instance in the striatum,
IFG, SMA, and prefrontal areas (Grachev, 1997; O’Sullivan et al.,
1997; Chamberlain et al., 2008), which may underlie response
inhibition impairment in TTM.

ATTENTION-DEFICIT HYPERACTIVITY DISORDER
Attention-deficit hyperactivity disorder is a neuropsychiatric dis-
order characterized by hyperactivity, inattentiveness, and impul-
siveness (American Psychiatric Association, 2013). It is a common
disorder, as it is thought to affect almost 10% of school-aged chil-
dren (Froehlich et al., 2007). The neuropharmacology of ADHD
is complex and still not well-understood. Current evidence sug-
gest that ADHD is characterized by deficits in the noradrena-
lin and dopamine systems [for a review, see McAlonan et al.
(2009)], although some studies show additional involvement of
the serotonergic (Oades et al., 2002) system. Pharmacotherapeutic

treatment of ADHD with methylphenidate, amphetamines, or ato-
moxetine is effective in treating symptoms, presumably through
increasing extracellular levels of dopamine and noradrenalin [see
Prince (2008) for a review].

Patients with ADHD show behavioral impairments on a num-
ber of interference control tasks, including the Simon task and the
Flanker task (Rubia et al., 2011a; Sebastian et al., 2012). Activation
of the ACC, IFG, thalamus, SMA, striatum, and inferior parietal
cortex is decreased in ADHD patients during interference control
(see Table 4). A recent meta-analysis revealed decreased activation
of CSTC areas, including the right IFG, insular cortex, right cau-
date nucleus, left inferior parietal cortex, and left ACC in ADHD
patients during performance of the Stroop and the Simon task
(Hart et al., 2012).

Motor response inhibition is also affected in ADHD. A meta-
analysis of 24 Stop-signal paradigm studies showed increased
SSRT and mean GO reaction times in ADHD patients (Alder-
son et al., 2007). Structural abnormalities have been observed in
CSTC circuit areas, including the IFG, caudate, and globus pallidus
(Durston, 2003; Sowell et al., 2003; Batty et al., 2010; Depue et al.,
2010; Frodl and Skokauskas, 2012), leading some to argue that
altered brain structure of these areas may underlie the impairments
in response inhibition (Chambers et al., 2009). Gray matter vol-
ume of the right IFG, ACC, caudate nucleus, medial temporal lobe,
and globus pallidus correlated negatively with task performance
in patients (Casey et al., 1997; McAlonan et al., 2009). Functional
neuroimaging studies show reduced inhibition-related activation
of the caudate nucleus, IFG, and SMA, and increased activation
of areas in the temporal and parietal lobe in children and adults
with ADHD (see Table 5; Schulz et al., 2004; Tamm et al., 2004;
Booth et al., 2005; Rubia et al., 2005b; Suskauer et al., 2008; Dibbets
et al., 2009; Dillo et al., 2010; Kooistra et al., 2010; Mulligan et al.,
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Table 4 | Overview of fMRI studies that have used interference control tasks in patients with attention-deficit hyperactivity disorder.

Study Task Age group Participants Medication and co-morbidities Contrast Findings in ADHD patients

Vaidya et al.

(2005)

Modified

Flanker

task

Children 10 ADHD patients

(3 f)

10 Healthy controls

(3 f)

Medication-naïve or medication

free (36 h)

Symptoms of ODD present in

seven patients; symptom of CD

reported in two children

IC > N ↓ L. IFG

Vasic et al.

(2012)

Modified

Flanker

task

Adults 14 ADHD patients

(0 f)

12 Healthy controls

(0 f)

Medication free (4 days)

No comorbid psychiatric

disorders, substance abuse,

neurological disorders, learning

disabilities

Error > correct ↓ L. IFG during error processing

Cubillo

et al. (2011)

Simon

task

Adults 11 ADHD patients

(0 f)

15 Healthy controls

(0 f)

Medication-naive

Three patients had ADHD

symptoms, but did not meet all

criteria for ADHD. Comorbid

disorders: one patient with

anxiety, three with mood

disorders, one with CD, and

two with substance abuse

IC > C ↓ L. IFG/OFC, L. medial frontal

cortex, L. ACC, L. caudate,

L. premotor cortex

Rubia et al.

(2011b)

Simon

task

Children 12 ADHD patients

(0 f)

13 Healthy controls

(0 f)

Medication-naïve

One patient met criteria for

ODD/CD

IC > oddball ↓R. IFG, R. IPC, L. VMPFC,

basal ganglia, thalamus, R.

SMA/ACC/posterior cingulate,

L. superior/middle

temporal/occipital cortex

Rubia et al.

(2011a)

Simon

task

Children 18 ADHD patients

(0 f)

20 Healthy controls

(0 f)

Medication-naïve

One patient met criteria for CD

IC > oddball ↓ R. SMA/ACC/superior parietal

lobe, R. IPC

Sebastian

et al. (2012)

Simon

task

Adults 20 ADHD patients

(9 f)

24 Healthy controls

(13 f)

Unmedicated or

medication-free (2 months)

Eight patients with current

comorbid disorders (dysthymia,

anxiety disorders, substance

abuse, and personality

disorders)

IC > C ↓ R. precentral gyrus,

L. paracentral lobe, L. middle

cingulate cortex, bilateral

superior temporal gyrus,

L. middle temporal gyrus, R.

temporal pole, R. insula, R.

pallidum

Bush et al.

(1999)

Stroop

task

Adults 8 ADHD patients (3 f)

8 Healthy controls

(3 f)

Medication-free (>48 h)

No comorbid psychiatric

disorders, neurological

disorders, learning disability,

and medical illness

IC > N ↓ACC (cognitive division)

Smith et al.

(2006)

Stroop

task

Children/

adoles-

cents

17 ADHD patients

(0 f)

18 Healthy controls

(0 f)

Medication-naïve

Five patients with comorbid

conduct disorder

IC > oddball No significant differences

Banich

et al. (2009)

Stroop

task

Adults 23 ADHD patients

(9 f)

23 Healthy controls

(10 f)

Medication-free (24 h)

No comorbid psychiatric

disorders, learning disability,

history of seizures, or head

injury

IC > N

IC > C

↓ L. supramarginal gyrus

↑ R. cuneus, R. middle frontal

gyrus

(Continued)
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Table 4 | Continued

Study Task Age group Participants Medication and co-morbidities Contrast Findings in ADHD patients

Peterson

et al. (2009)

Stroop

task

Adolescents 16 ADHD patients

(3 f)

20 Healthy controls

(8 f)

Medication-free

Five patients had comorbid

disorders (ODD, depression,

anxiety disorders, and phobias)

IC > C ↓ L. ACC, L. insula, R.

precuneus, thalamus, and

caudate

↑ R. hippocampus, R. superior

frontal gyrus, and L. ACC

Burgess

et al. (2010)

Stroop

task

Adults 20 ADHD patients

(8 f)

23 Healthy controls

(10 f)

Medication free (24 h)

No comorbid psychiatric or

learning disorder

IC > N ↑ R. superior frontal gyrus

ACC, anterior cingulate cortex; C, congruent trials; CD, conduct disorder; IC, incongruent trials; IFG, inferior frontal gyrus; IPC, inferior parietal cortex; f, female; L, left;

N, neutral trials; ODD, oppositional defiance disorder; OFC, orbitofrontal cortex; R, right; SMA, supplementary motor area; VMPFC, ventromedial prefrontal cortex.

2011; Spinelli et al., 2011). A recent meta-analysis of 21 response
inhibition studies revealed hypoactivation of the right ACC, right
IFG, right insular cortex, right thalamus, left caudate nucleus, and
right fusiform gyrus (Hart et al., 2012). In addition to decreased
frontal–striatal connectivity, altered frontal–parietal connectivity
may also play a role in the response inhibition impairment of
ADHD (Cubillo et al., 2010).

Pharmacological studies show that administration of
methylphenidate and atomoxetine improve action cancelation
(Aron et al., 2003a; Chamberlain et al., 2007a; DeVito et al., 2009;
Coghill et al., 2013) and action withholding (Vaidya et al., 1998) in
ADHD patients, thereby suggesting that deficits in dopamine and
noradrenalin underlie motor response inhibition deficits. Further-
more, use of methylphenidate increased prefrontal and striatal
activation during performance of a Go/No Go task in ADHD
patients (Vaidya et al., 1998). Methylphenidate also normalizes
activation deficits in prefrontal, parietal, temporal, and cerebellar
regions during performance of the Stop-signal task (Rubia et al.,
2011b). When effects of atomoxetine and methylphenidate were
directly compared, both medications normalized left prefrontal
underactivation during performance of the stop-signal task, while
normalization of the right prefrontal activation was specific to use
of methylphenidate (Cubillo et al., 2014).

Several candidate gene studies report on an association between
genotype and response inhibition deficits in ADHD. In patients
with ADHD, a polymorphism of the DRD4 gene, which is asso-
ciated with decreased functional activity of the dopamine D4-
receptor (Asghari et al., 1995), was related to altered performance
on tasks with an inhibitory component (Langley et al., 2004; Bell-
grove et al., 2005), impaired performance on the Stroop task (Loo
et al., 2008), and reduced prefrontal cortical thickness (Shaw et al.,
2007).

Attention-deficit hyperactivity disorder patients homozygous
for a polymorphism of the DaT gene associated with increased
transporter expression (Brookes et al., 2007), showed increased
frontal and parietal brain activation during a modulated Go/no-
go task (Braet et al., 2011), and showed increased activation in
the striatum, premotor, and parietal cortices during inhibition
in the Go/No-go task (Bedard et al., 2010). In contrast, a sec-
ond study found increased striatal activity during inhibition in

polymorphisms that result in decreased function (Durston et al.,
2008).

In individuals with a specific polymorphism of the MAO-A
gene, associated with lower levels of MAO-A, ADHD symptoms
were related to decreased IFG activation during the Stop-signal
task (Nymberg et al., 2013). MAO-A genotype of ADHD patients
was not related to interference inhibition (Liu et al., 2011).

In summary, behavioral deficits in interference control and
motor response inhibition are prominent in ADHD and associ-
ated with decreased volume and hypoactivation of CSTC areas.
Results of gene-association studies suggest that reduced inhibitory
performance may be related to decreased dopamine transmission
in CSTC circuits.

COMPARISON BETWEEN AND INTEGRATION ACROSS
DISORDERS
All discussed disorders exhibit symptoms that signify a failure
to inhibit certain impulses or responses. Response inhibition
tasks therefore provide a very good operationalization to study
the neural correlates of some dysfunctions contributing to the
symptomatology of these disorders. From the above reviewed
literature we can conclude that, overall, patients with obsessive–
compulsive or related disorders exhibit deficits in response inhibi-
tion concomitant with alterations in the task-related brain activity.
Whether these brain areas are hypo- or hyperactivated compared
with matched healthy controls depends largely on the complexity
of the task. In general, we can state that patients compensate behav-
ior by recruiting additional inhibition-related brain areas, explain-
ing why behavioral performance is often normal, but only during
less complex tasks (e.g., the Flanker task and the Simon task).
With increasing task demand (e.g., the Go/no-go and the Stop-
signal task), these compensational mechanisms fail and patients
start to show behavioral impairments and decreased inhibition-
related neural circuit activity. This phenomenon has also been
observed in healthy subjects (Sebastian et al., 2013a), although
they can “endure” tasks with higher demands before overstressing
the inhibition network and concomitant decrements in perfor-
mance. In other words, patients exhibit performance impairments
and failure of compensatory activation at a lower task load than
healthy controls. This has also been observed in OCD patients and
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Table 5 | Overview of fMRI studies that have used response inhibition tasks in patients with attention-deficit hyperactivity disorder.

Study Task Age group Participants Medication and co-morbidities Contrast Findings in ADHD patients

Rubia et al.

(1999)

Stop-signal

task

Adolescents 7 ADHD patients (0 f)

9 Healthy controls

(0 f)

Medication-naïve or

medication-free (1 week)

No comorbid psychiatric

disorder (except conduct

disorder) or neurological

disease

Stop > Go ↓ R. IFG, R. MPFC, L. caudate

Rubia et al.

(2005b)

Stop-signal

task

Adolescents 16 ADHD patients

(0 f)

21 Healthy controls

(0 f)

Medication-naïve

Five patients with conduct

disorder. No neurological

disease, substance abuse or

previous treatment with

stimulants

SS > FS

FS > Go

↓ R. frontotemporal pole, R.

OFC, R. superior temporal lobe

↓ R. Posterior

cingulate/precuneus

Pliszka

et al. (2006)

Stop-signal

task

Children/

adolescents

9 Treated ADHD

patients (1f)

8 Medication-free

ADHD patients (3 f)

15 Healthy controls

(6 f)

Medication-naïve or medication

free

No psychiatric disorder (except

ODD), substance abuse,

alcohol abuse

Stop > Go ↑ R. DLPFC

Cubillo

et al. (2010)

Stop-signal

task

Adults 11 Adults with

persistent ADHD

(0 f)

14 Healthy controls

(0 f)

Medication-naïve

Seven subjects with axis-I

disorders (anxiety, depression,

conduct disorder, substance

related disorders). No

neurological abnormalities,

treatment with stimulants

SS > Go

FS > Go

↓ L. IFG/insula, R. IFG/insula,

striatum, thalamus, R.

premotor cortex, bilateral

SMA/ACC

↓R. IFG/insula, thalamus,

striatum

Passarotti

et al. (2010)

Stop-signal

task

Children/

adolescents

11ADHD patients

(5 f)

15 Healthy controls

(8 f)

Medication-naïve or

medication-free (1 week)

No comorbid psychiatric

conditions, neurological

disorders, learning disabilities,

history of substance abuse

Stop > Go ↑ L. caudate, R. caudate tail,

L. cerebellum

↓ R. middle, superior and

inferior frontal gyrus,

L. superior and inferior frontal

gyrus; L. superior temporal

gyrus

Rubia et al.

(2011c)

Stop-signal

task

Children 12 ADHD patients

(0 f)

13 Healthy controls

(0 f)

Medication-naive

One patient with comorbid

ODD/CD. No psychiatric

disorders, learning disabilities,

neurological disorders,

epilepsy, substance abuse,

treatment with stimulants

FS > Go

SS > Go

↓ L. IFG, Pre-SMA, R. premotor

cortex, bilateral thalamus, R.

IPC, L. posterior cingulate,

L. precuneus, cerebellum

↓ Bilateral IFG, bilateral

pre-SMA, thalamus, bilateral

ACC, R.

IPC/precuneus/posterior

cingulate, cerebellum

Sebastian

et al. (2012)

Stop-signal

task

Adults 20 ADHD patients

(9 f)

24 Healthy controls

(13 f)

Unmedicated or

medication-free (2 months)

Eight patients with current

comorbid disorders (dysthymia,

anxiety disorders, substance

abuse, personality disorders)

Stop > Go

SS > FS

↓ R. Pallidum

↓ L.IFG, bilateral putamen, R.

caudate, L. insula, L. pallidum

(Continued)
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Table 5 | Continued

Study Task Age group Participants Medication and co-morbidities Contrast Findings in ADHD patients

Durston

et al. (2003)

Go/No-go

task

Children 7 ADHD patients (1 f)

7 Healthy controls

(1 f)

Medication-free (1 day)

Comorbid disorders not

reported

No Go > Go ↓ L. caudate

↑ R. Middle and superior frontal

gyrus, L. IPC, bilateral posterior

cingulate/precuneus, R.

superior temporal gyrus

Tamm et al.

(2004)

Go/No-go

task

Adolescents 10 ADHD patients

(0 f)

12 Healthy controls

(0 f)

Medication-naïve and

medication free (18 h)

Controls had no family history

of psychiatric disorders, no

neurological or developmental

disorders

No Go > Go ↓ R. ACC/SMA, R. superior and

middle frontal gyrus

↑ L. superior/middle/inferior

temporal gyrus

Schulz et al.

(2004)

Go/No-go

task

Adolescents 10 Individuals with

childhood ADHD

diagnosis (0 f)

9 Healthy controls

(0 f)

Medication-free (6 months)

One patient with conduct

disorder

No Go > Go ↑ Bilateral IFG, bilateral middle

frontal gyrus, L. ACC, bilateral

IPC, right precuneus

↓ R. precentral gyrus, R.

inferior temporal gyrus,

L. hippocampus, bilateral

cerebellum

Booth et al.

(2005)

Go/No-go

task

Children 12 ADHD patients

(4 f)

12 Healthy controls

(5 f)

Medication-free (2 days)

No comorbid psychiatric

disorders, neurological

disorders, substance abuse,

visual or hearing impairment

No Go > Go ↓ R. IFG, R. superior frontal

gyrus, medial frontal gyrus,

bilateral caudate, R. amygdala,

thalamus, fusiform gyrus,

L. cuneus, L. globus pallidum

Smith et al.

(2006)

Go/No-go

task

Children/

adolescents

17 ADHD patients

(0 f)

18 Healthy controls

(0 f)

Medication-naïve No Go > oddball

go

Five patients

with comorbid

conduct

disorder

↓ L. rostral mesial frontal cortex

Suskauer

et al. (2008)

Go/No-go

task

Children/

adolescents

25 ADHD patients

(10 f)

25 Healthy controls

(10 f)

Medication-free (2 days)

Eleven patients also met

criteria for ODD, five patients

met criteria for specific phobia,

two controls met criteria for

specific phobia

No Go ↑ R. precentral gyrus

↓R. ACC, L. precentral gyrus,

L. putamen, R.

temporal–parietal junction, R.

fusiform gyrus, L. precuneus,

L. posterior cingulate,

L. cerebellum

Dibbets

et al. (2009)

Go/No-go

task

Adults 16 ADHD patients

(0 f)

13 Healthy controls

(0 f)

Medication-free (24 h)

Two patients with depressive

symptoms, one reported OCD

symptoms, two reported

learning disabilities and one

reported substance abuse

Go

No Go

↑ R. middle frontal gyrus, L. IFG

↑ L. IFG, R. putamen

Dillo et al.

(2010)

Go/No-go

task

Adults 15 ADHD patients

(4 f)

15 Healthy controls

(4 f)

Medication-free (3 weeks)

No comorbid psychiatric

diagnosis, substance abuse,

neurological disorders

No Go > Go ↑ Bilateral inferior/superior

parietal lobe, left inferior/middle

occipital gyrus

(Continued)
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Table 5 | Continued

Study Task Age group Participants Medication and co-morbidities Contrast Findings in ADHD patients

Kooistra

et al. (2010)

Go/No-go

task

Adults 10 ADHD patients

(0 f)

10 Healthy controls

(0 f)

Medication-naive

Two patients in partial

remission, no comorbid

psychiatric disorders,

neurological disorders,

cognitive impairment, motor

disabilities

No Go > Go ↑ R. supramarginal gyrus, R.

ACC

Mulligan

et al. (2011)

Go/No-go

task

Adults 12 ADHD patients

(0 f)

12 Healthy controls

(0 f)

Medication free (>2 days)

No comorbid axis-I diagnosis,

history of learning disability,

history of neurological

disorders, alcohol or substance

dependence, use of stimulants

No Go ↓ R. Pre-SMA, bilateral IPC,

L. precentral gyrus, R. frontal

eye fields, L. precuneus

Spinelli

et al. (2011)

Go/No-go

task

Children 13 ADHD patients

(4 f)

17 Healthy controls

(9 f)

Medication free (2 days)

Three patients had comorbid

ODD, one a specific phobia

Post

error > Post

correct

↑ R. superior frontal gyrus,

L. medial frontal gyrus, R.

cingulate gyrus, R. postcentral

gyrus, R. inferior/middle

temporal gyrus

Sebastian

et al. (2012)

Go/No-go

task

Adults 20 ADHD patients

(9 f)

24 Healthy controls

(13 f)

Unmedicated or

medication-free (2 months)

Eight patients with dysthymia,

anxiety disorders, substance

abuse

Stop > Go ↓ R. caudate

ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; FS, failed stop-trials; IFG, inferior frontal gyrus; IPC, inferior parietal cortex; f, female; L, left; MPFC,

medial prefrontal cortex; ODD, oppositional defiance disorder; OFC, orbitofrontal cortex; Pre-SMA, pre-supplementary motor area; R, right; SMA, supplementary

motor area; SS, successful stop-trials.

their siblings and adult patients with ADHD while performing a
working memory task such as the N-Back (de Vries et al., 2013;
Ko et al., 2013). Figure 2 illustrates this as a shift to the left of an
inverse U -shape relation between task load and inhibition-related
activity. This shift in compensatory abilities does not have to be
specific for the discussed disorders but may also apply to oth-
ers, such Parkinson’s disease (Vriend et al., under review) or even
natural aging (Sebastian et al., 2013a).

The actual neurobiological mechanism for this shift is, unfortu-
nately, less apparent and may involve (interactions between) elec-
trophysiological anomalies, neurotransmitter dysfunction, genetic
variance, etc. A prime candidate for the cause of the shift might
by dysfunction of dopamine signaling. Dopamine is the major
neuromodulator in the CSTC circuits and can either facilitate or
inhibit their activation depending on the activation of their differ-
ent receptor subtypes and dopamine concentrations (Alexander
et al., 1986; Vriend et al., 2014).

As reviewed above, the CSTC circuits seem to be important
for response inhibition (Aron, 2011) and are also involved in the
pathophysiology underlying the dysfunctions related to the symp-
tomatology of the obsessive–compulsive and related disorders.
Whether or not dopamine is primarily involved in the patho-
physiology of these disorders is still under debate, with some of
the above reviewed studies showing clear associations, while oth-
ers do not. Nevertheless, current evidence suggests that ADHD

FIGURE 2 | Shift in the inverted U -shaped relation between task load
and inhibition-related activity. Inhibition-related neural circuit activity
gradually increases with task load (green to red gradient). However, when
task demands become too high the compensatory activity starts to fail and
behavioral performance becomes impaired (solid red). In obsessive–
compulsive and related disorders performance impairments and failure of
compensatory neural activation occur at a lower task load than in healthy
controls (visualized as a shift of the inverted U -shaped curve to the left).
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FIGURE 3 | Inverted U -shaped relation between dopamine levels and
inhibitory control. The ability to control behaviors, impulses, and urges is
influenced by dopamine, and both reduced and increased dopamine
levels (green to red gradient) have a detrimental effect on inhibitory
control. Current evidence suggests that ADHD is a hypodopaminergic
disorder, while OCD, TTM, and TS are considered hyperdopaminergic
disorders. Inhibitory deficits are also evident in patients with Parkinson’s
disease, a prototypical hypodopaminergic disease. Pharmacotherapeutics

used to treat the symptoms of these disorders are listed and are thought
to normalize dopamine levels and thereby ameliorate response inhibition
(indicated by the arrows). PD, Parkinson’s disease; ADHD, attention-deficit
hyperactivity disorder; OCD, obsessive–compulsive disorder; TTM,
trichotillomania; TS, Tourette’s syndrome. NB. Since comparison studies
across OCD, TTM, and TS are in short supply, the spacing between these
disorders on the U -shaped curve is arbitrary and does not necessarily
represent actual differences in dopamine levels between these disorders.

can be seen as a hypodopaminergic disorder, whereas OCD, TTM,
and TS can be regarded as hyperdopaminergic disorders (Buse
et al., 2013). This is also consistent with the currently available
pharmacological treatments, whose neurobiological mechanism is
thought to rely on restoring dopamine to physiological levels (Abi-
Dargham and Laruelle, 2005; Gerlach et al., 2013). Even SSRI’s
and tricyclic antidepressants, the first line pharmacological treat-
ment of OCD, may normalize dopamine levels by upregulation
of serotonin signaling, that has an inhibitory effect on dopamine
(Boureau and Dayan, 2010). Figure 3 provides a schematic rep-
resentation of the proposed relation between dopamine levels
and inhibitory control. This relation is similar to the inverse
U -shaped relation proposed for dopamine levels and working
memory function (Cools and D’Esposito, 2011).

The proposed relation obviously does not provide the full story
and is merely intended as a framework to understand some of the
findings discussed in this review. Dopamine has differential effects
in the prefrontal cortex and striatum, different firing modes (i.e.,
tonic and phasic) and highly complex interactions with other neu-
rotransmitter systems, including the serotonin, noradrenalin, and
glutamate system, and even hormones, such as estrogens (Boureau
and Dayan,2010; Cools and D’Esposito,2011; de Bartolomeis et al.,
2013), which prohibits a clear understanding of the influence of
these neurotransmitters on brain activity and behavior.

In short, the functional and behavioral deficits in response
inhibition in obsessive–compulsive and related disorders can be
conceptualized as a shift in the relation between task demands and
inhibition-related neural circuit activity. What causes this shift
and what could thereby underlie the symptoms of these disorders

is currently unknown, although we postulate that dopamine plays
a critical role.

CONCLUSION AND FUTURE DIRECTIONS
The aim of this review was to provide an overview of the studies
that examined the neural, pharmacological, and genetic substrates
of inhibitory impairment of disorders within the impulsive–
compulsive spectrum, with a focus on OCD, ADHD, TS, and
TTM. We have shown that functionally and behaviorally impaired
response inhibition is a shared characteristic among these disor-
ders and may underlie at least some of the dysfunctions related to
the symptomatology of the disorders. Neuroimaging studies sug-
gest that inhibition-related brain areas are mostly hypoactivated
in ADHD and OCD (although dependent on the task load), while
studies in TS have provided mixed results. To our knowledge, no
study has yet been published on the neural correlates of response
inhibition in TTM. Dopamine and serotonin signaling seems to
be important for response inhibition and dysfunction of these
neurotransmitters has been frequently observed in the obsessive–
compulsive and related disorders. Nevertheless, almost all imaging
studies on neurotransmitters have been performed in patients that
received (chronic) pharmacotherapy, which may have influenced
the scan directly, due to competition of the drug with a radioli-
gand for a specific binding site, or indirectly because the brain
adapts to the pharmacological effects (Wang et al., 2013). For a
better understanding of the pathophysiology of the disease itself
and the identification of novel treatment targets, more studies
are needed in medication-naïve patients. Prospective follow-up
of these patients after commencing treatment can subsequently
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provide insights into the effect of treatment on response inhibi-
tion impairments and its relation to disorder-specific symptoms.
Lastly, there is a relative lack of studies that compare the patho-
physiology of inhibitory deficits across related mental disorders.
Such studies allow the identification of common as well as specific
disease biomarkers of impulsivity and compulsivity symptoms.
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