Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories

Lancet 2018; 392: 2052-90
Published Online
October 16, 2018 http://dx.doi.org/10.1016/ S0140-6736(18)31694-5

See Comment page e14 Institute for Health Metrics and Evaluation (KJ Foreman PhD, A Dolgert PhD, K Fukutaki BA, N Fullman MPH,

M McGaughey BA,
M A Pletcher BS, A E Smith MPA
K Tang BS, CYuan PhD,
J C Brown MAIS, DJ Patel MPH A Carter MPH, K Cercy BS,

A Chapin BA,
D Douwes-Schultz BS, T Frank BS, F Goettsch BA,
V Nandakumar BSC, M B Reitsma BS, N Sadat MA

RJ D Sorensen MPH, V Srinivasan BA, R L Updike AB HYork BA, Prof R Lozano PhD,

Prof S S Lim PhD, ProfA H Mokdad PhD Prof CJL Murray DPhil, Prof S E Vollset DrPH) and Department of Sociology (N Marquez BA), University of Washington, Seattle, WA, USA; School of Public Health (J Friedman MPH) and School of Medicine (P Y Liu MPH), University of California Los Angeles, Los Angeles, CA, USA; Baidu, Beijing, China (J He MS); OM1, Boston, MA, USA (K R Heuton MPH); Department of Geography, University of British Columbia, Vancouver, BC, Canada (M Holmberg BS); Wellframe,

Boston, MA, USA
(P Reidy MPH); Memorial Sloan Kettering Cancer Center,

New York, NY, USA
(V Reuter BS); School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia (Prof A D Lopez PhD);

Abstract

Kyle J Foreman, Neal Marquez, Andrew Dolgert, Kai Fukutaki, Nancy Fullman, Madeline McGaughey, Martin A Pletcher, Amanda E Smith, Kendrick Tang, Chun-Wei Yuan, Jonathan C Brown, Joseph Friedman, Jiawei He, Kyle R Heuton, Mollie Holmberg, Disha J Patel, Patrick Reidy, Austin Carter, Kelly Cercy, Abigail Chapin, Dirk Douwes-Schultz, Tahvi Frank, Falko Goettsch, Patrick Y Liu, Vishnu Nandakumar, Marissa B Reitsma, Vince Reuter, Nafis Sadat, Reed J D Sorensen, Vinay Srinivasan, Rachel L Updike, Hunter York, Alan D Lopez, Rafael Lozano, Stephen S Lim, Ali H Mokdad, Stein Emil Vollset, ChristopherJ L Murray

Summary

Background Understanding potential trajectories in health and drivers of health is crucial to guiding long-term investments and policy implementation. Past work on forecasting has provided an incomplete landscape of future health scenarios, highlighting a need for a more robust modelling platform from which policy options and potential health trajectories can be assessed. This study provides a novel approach to modelling life expectancy, all-cause mortality and cause of death forecasts -and alternative future scenarios-for 250 causes of death from 2016 to 2040 in 195 countries and territories.

Methods We modelled 250 causes and cause groups organised by the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) hierarchical cause structure, using GBD 2016 estimates from 1990-2016, to generate predictions for 2017-40. Our modelling framework used data from the GBD 2016 study to systematically account for the relationships between risk factors and health outcomes for 79 independent drivers of health. We developed a three-component model of cause-specific mortality: a component due to changes in risk factors and select interventions; the underlying mortality rate for each cause that is a function of income per capita, educational attainment, and total fertility rate under 25 years and time; and an autoregressive integrated moving average model for unexplained changes correlated with time. We assessed the performance by fitting models with data from 1990-2006 and using these to forecast for 2007-16. Our final model used for generating forecasts and alternative scenarios was fitted to data from 1990-2016. We used this model for 195 countries and territories to generate a reference scenario or forecast through 2040 for each measure by location. Additionally, we generated better health and worse health scenarios based on the 85 th and 15 th percentiles, respectively, of annualised rates of change across location-years for all the GBD risk factors, income per person, educational attainment, select intervention coverage, and total fertility rate under 25 years in the past. We used the model to generate all-cause age-sex specific mortality, life expectancy, and years of life lost (YLLs) for 250 causes. Scenarios for fertility were also generated and used in a cohort component model to generate population scenarios. For each reference forecast, better health, and worse health scenarios, we generated estimates of mortality and YLLs attributable to each risk factor in the future.

Findings Globally, most independent drivers of health were forecast to improve by 2040, but 36 were forecast to worsen. As shown by the better health scenarios, greater progress might be possible, yet for some drivers such as high body-mass index (BMI), their toll will rise in the absence of intervention. We forecasted global life expectancy to increase by 4.4 years (95% UI 2.2 to $6 \cdot 4$) for men and 4.4 years $(2 \cdot 1$ to 6.4) for women by 2040 , but based on better and worse health scenarios, trajectories could range from a gain of 7.8 years $(5.9$ to 9.8$)$ to a non-significant loss of 0.4 years $(-2.8$ to 2.2$)$ for men, and an increase of 7.2 years $(5.3$ to 9.1$)$ to essentially no change (0.1 years [-2.7 to 2.5]) for women. In 2040, Japan, Singapore, Spain, and Switzerland had a forecasted life expectancy exceeding 85 years for both sexes, and 59 countries including China were projected to surpass a life expectancy of 80 years by 2040. At the same time, Central African Republic, Lesotho, Somalia, and Zimbabwe had projected life expectancies below 65 years in 2040, indicating global disparities in survival are likely to persist if current trends hold. Forecasted YLLs showed a rising toll from several non-communicable diseases (NCDs), partly driven by population growth and ageing. Differences between the reference forecast and alternative scenarios were most striking for HIV/AIDS, for which a potential increase of $120 \cdot 2 \%$ (95% UI $67 \cdot 2-190 \cdot 3$) in YLLs (nearly 118 million) was projected globally from 2016-40 under the worse health scenario. Compared with 2016, NCDs were forecast to account for a greater proportion of YLLs in all GBD regions by 2040 ($67 \cdot 3 \%$ of YLLs [95\% UI 61•9-72•3] globally); nonetheless, in many lower-income countries, communicable, maternal, neonatal, and nutritional (CMNN) diseases still accounted for a large share of

YLLs in 2040 (eg, 53.5\% of YLLs [95\% UI 48•3-58.5] in Sub-Saharan Africa). There were large gaps for many health risks between the reference forecast and better health scenario for attributable YLLs. In most countries, metabolic risks amenable to health care (eg, high blood pressure and high plasma fasting glucose) and risks best targeted by population-level or intersectoral interventions (eg, tobacco, high BMI, and ambient particulate matter pollution) had some of the largest differences between reference and better health scenarios. The main exception was sub-Saharan Africa, where many risks associated with poverty and lower levels of development (eg, unsafe water and sanitation, household air pollution, and child malnutrition) were projected to still account for substantive disparities between reference and better health scenarios in 2040.

Interpretation With the present study, we provide a robust, flexible forecasting platform from which reference forecasts and alternative health scenarios can be explored in relation to a wide range of independent drivers of health. Our reference forecast points to overall improvements through 2040 in most countries, yet the range found across better and worse health scenarios renders a precarious vision of the future-a world with accelerating progress from technical innovation but with the potential for worsening health outcomes in the absence of deliberate policy action. For some causes of YLLs, large differences between the reference forecast and alternative scenarios reflect the opportunity to accelerate gains if countries move their trajectories toward better health scenarios-or alarming challenges if countries fall behind their reference forecasts. Generally, decision makers should plan for the likely continued shift toward NCDs and target resources toward the modifiable risks that drive substantial premature mortality. If such modifiable risks are prioritised today, there is opportunity to reduce avoidable mortality in the future. However, CMNN causes and related risks will remain the predominant health priority among lower-income countries. Based on our 2040 worse health scenario, there is a real risk of HIV mortality rebounding if countries lose momentum against the HIV epidemic, jeopardising decades of progress against the disease. Continued technical innovation and increased health spending, including development assistance for health targeted to the world's poorest people, are likely to remain vital components to charting a future where all populations can live full, healthy lives.

Funding Bill \& Melinda Gates Foundation.

Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction

Health and social-services planning and investments require consideration of possible future trends in health and corresponding drivers. Many choices have long lag periods between initial investments and their effects, which can unfold over several decades; examples include training in different medical specialties, research and development for new drugs and vaccines, health system infrastructure construction, fiscal solvency of social security or health insurance, and policy implementation. Forecasts and alternative scenarios can help to frame these choices and to identify areas of more or less uncertainty. For instance, determining whether a country is likely to see more deaths from diabetes amid decreases in deaths from tuberculosis can serve as a crucial input to inform national policy dialogues and resource allocation. Quantitative forecasts of mortality and causes of death might be useful in this respect, particularly if they are linked to forecast and posited changes or alternative scenarios derived from the main independent drivers of population health. Such drivers include risk factors (eg, tobacco use, hypertension, air pollution, diet, and sanitation), interventions (eg, HIV treatment and vaccinations), and broader sociodemographic and health system factors.
Health forecasts, sometimes known as reference scenarios, aim to delineate the most likely future health
trends. Forecast performance or accuracy can be empirically assessed by withholding data from recent periods and comparing forecasts generated without these data with what actually happened. Nonetheless, even forecasts based on models with a good out-of-time performance cannot anticipate all future drivers of health change. For example, no model from the 1970s would have forecast the HIV epidemic or, more recently, a cure for hepatitis C. Health forecasts are fundamentally imperfect, grounded only in what we know of the past and present; such forecasts can and should be supplemented with alternative scenarios that examine the universe of plausible futures. Alternative scenarios are particularly useful when they are linked to actionable choices that can affect different health drivers. A comprehensive forecast and scenarios framework for mortality and causes of death should possess two key attributes: good out-of-time forecast performance; and preservation of the causal effects for independent drivers and health outcomes that are consistent with known evidence from randomised controlled trials, and cohort or other observational studies.
Many disease-specific forecasts and some alternative scenarios have been published for particular countries or regions. ${ }^{1-8}$ Likewise, demographers in governments and intergovernmental agencies routinely produce forecasts of all-cause mortality using models based on
and National Institute of Public Health, Cuernavaca, Mexico (Prof R Lozano)
Correspondenceto: Dr Christopher JL Murray, Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA cjlm@uw.edu

Research in context

Evidence before this study

Health forecasts and alternative future scenarios can serve as vital inputs into long-term planning and investments in health, particularly in terms of framing different choices, their potential effects, and the relative certainty associated with each option. Past work to generate health-focused forecasts includes that from the UN Population Division, which routinely produces all-cause mortality forecasts through year 2100, and the Austrian Wittgenstein Center, which produces life expectancy forecasts with different scenarios to the end of the 21st century. Longer-range forecasts have also been developed to assess the potential effects of climate change on mortality. Furthermore, various national agencies produce country-level mortality forecasts, and forecasts for individual causes of death have been produced periodically as well. Comprehensive forecasts of cause-specific and all-cause mortality were developed as part of the Global Burden of Disease Study 1990 (GBD 1990); those methods were then applied for the period from 2002-30. The primary purpose of these past modelling efforts was to generate reference or baseline forecasts of what was likely to occur on the basis of past trends; however, few-if any-offered insights into a range of future scenarios while accounting for independent drivers of potential health changes.

Added value of this study

With this study, we provided a completely novel approach to forecasting all-cause and cause-specific mortality and scenario construction. Our modelling framework was designed to leverage the data on risk outcome relationships in the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 such that the relationship between risk factors (eg, smoking) and specific disease outcomes (eg, lung cancer) were consistent with relevant cohort studies and randomised controlled trials. Because this forecasting framework is grounded in 79 independent drivers of health change, we could leverage these models to generate a full suite of alternative scenarios beyond reference forecasts. The overall model has three components: a model for risk-attributable deaths, a model for mortality not explained by risk factors that is a function of the

Socio-demographic Index (SDI) and other covariates depending on the cause and time, and an autoregressive integrated moving average process for the unexplained latent trends for each location-age-sex-cause. To ensure the robustness of this framework, we assessed the overall model performance by fitting it to data from 1990-2006 and evaluating its forecasts for 2007-2016. Our model performed better than other widely used methods such as Lee-Carter. Based on our model, we generated reference scenarios for all-cause mortality, life expectancy, and 250 causes of death for 195 countries and territories from 2016-40. Additionally, we assessed better health and worse health scenarios for each metric by country, reflecting the 85th and 15 th percentiles, respectively, of the annualised rates of change observed for the drivers across locations in the past.

Implications of all the available evidence

Our reference forecast predicted continued declines in global mortality and improvements in life expectancy, though at a slower rate than achieved in the past. Because of faster progress among many lower-SDI countries, absolute disparities between countries are currently projected to narrow by 2040. Nonetheless, the differences between better health and worse health scenarios for 2040 remain substantial, emphasising that the reference forecast is not inevitable and thus policy choices made today can profoundly affect each country's future health trajectories. For most countries, prioritising non-communicable diseases (NCDs) and NCD-related risks in health planning and investment decisions has the potential to markedly reduce premature mortality by 2040. Although NCDs were projected to rise in many low-SDI countries, communicable, maternal, neonatal, and nutritional diseases are likely to remain among the leading causes of early death. Furthermore, based on our 2040 worse health scenario, rebounds in HIV mortality and thus reversals in life expectancy could occur if countries cannot maintain the gains achieved in the past. Continued technical innovation and increased health spending, both domestic and international funding targeted to countries with the most need, are crucial for a future where all people have the opportunity to live full, healthy lives.
recent time trends. ${ }^{3.9}$ Comprehensive forecasts of allcause mortality and causes of death have occurred less often: two studies forecast the entire Global Burden of Diseases, Injuries and Risk Factors Study (GBD) cause list while another looked at large cause categories over time. ${ }^{10-12}$ Such work forecasted an anticipated continuation of the epidemiologic transition, with a global shift from communicable to non-communicable diseases (NCDs) as the predominant cause of burden. While comprehensive, these studies did not report on forecast performance and did not systematically account for causal pathways of health changes consistent with randomised controlled trials and cohort studies. Some country-specific forecasts show the alarming potential
of rising obesity and subsequent declines in life expectancy, particularly driven by increased diabetesrelated morbidity and mortality. ${ }^{13}$ As health and social service agencies face an increasing set of complex challenges (eg, population ageing, escalating expenses, and shortages in health-care providers), the value of robust forecasts and alternative scenarios that can chart probable health futures and options for modifying these trajectories rises in tandem.
The GBD provides a unique resource from which a new generation of health forecasts with alternative scenarios can be developed. ${ }^{14,15}$ GBD has refined the collection and standardisation of detailed health and risk data over several recent publication cycles and now covers, from

1990-2016, 195 countries and territories with data on cause-specific and all-cause mortality, risk factors, and selected interventions. ${ }^{16,17}$ The GBD comparative risk assessment, with its meta-analyses of published studies (ie, randomised trials and cohort and other observational data) on risk-outcome causal relationships, enables the modelling of future disease burden while accounting for drivers of health change. ${ }^{16}$ Additionally, an overall measure of development-the Socio-demographic Index (SDI)—was developed as part of GBD, providing a mechanism for assessing the effects of improved development on health. Drawing from the broader GBD study, we have developed a novel forecasting model, producing reference forecast, better health scenario, and worse health scenario for life expectancy, all-cause mortality, and cause-specific mortality from 250 causes from 2017-40 in 195 countries and territories. By leveraging the relationships between independent drivers of health captured within GBD, we provide a robust platform from which alternative scenarios can be assessed, which could be vital inputs for strategies and investments to improve population health.

Methods

Overall forecasting model structure

We modelled 250 causes and cause groups organised by the GBD hierarchical cause structure, using GBD data from 1990-2016 to generate predictions from 2017-2040. Predictions were made for 195 countries and territories modelled in GBD 2016, referred to as locations in this study. For 246 of these causes, we developed a three-component model of cause-specific mortality: a component explained by changes in behavioural, metabolic, and environmental risks, and select interventions quantified in GBD; a component explained by income per person, educational attainment, and total fertility rate under 25 years, which was combined into the SDI metric, and time; and an autoregressive integrated moving average (ARIMA) model to capture the unexplained component correlated over time. ${ }^{18}$ We summarise the overall model and individual components below; further detail and model formulae are in appendix 1 (pp 7-31).
The model's main component captured the prevalence for 65 risk factors reported in GBD 2016 and the relative risks (RRs) between levels of risk exposure and each GBD outcome. GBD 2016 reported RRs for each riskoutcome pair based on meta-analyses of randomised trials and cohort studies. ${ }^{16}$ Details, including how risks operate through each other such as body-mass index (BMI) through systolic blood pressure and cholesterol, are provided elsewhere (appendix 1, pp 12-21). Interventions quantified in GBD currently include antiretroviral therapy (ART) for people living with HIV, prevention of mother-to-child transmission of HIV, met need for family planning with modern contraception methods, and vaccination coverage of
diphtheria, tetanus, pertussis, (three doses) and measles; pneumococcal conjugate vaccine; and vaccination coverage of rotavirus; and Haemophilus influenzae type B. We refer to these risks, interventions, and measures of development as independent drivers, a term that originates in regression terminology and does not imply that the drivers are independent of each other. For instance, we used SDI rather than its individual components because of their strong correlations with each other.
Our model's second component captured relationships between variations in each cause of death that were not explained by risks and interventions (ie, underlying mortality rate) to three variables reflective of overall development: income per person, educational attainment among populations aged 15 years and older, and total fertility rate under 25 years. ${ }^{18}$ Because of high co-linearity between these three factors, we used SDI, which combines all three into a single measure. ${ }^{17}$ For some causes, other independent variables with strong known relationships for which data were available (ie, agespecific fertility for maternal causes, HIV mortality for maternal HIV, and vehicles per person for road injuries) or risks which could not be quantified in terms of RR because they are part of the disease definition (eg, systolic blood pressure for hypertensive heart disease, fasting plasma glucose [FPG] for diabetes, and alcohol consumption for alcohol-related cirrhosis; other risks are in appendix 1 [p 14]) were added as additional model covariates. For these two model components, we specified the following relationship between the logarithm of cause-specific mortality and drivers of mortality:

$$
\begin{gathered}
\log \left(m_{\mathrm{T}}\right) \sim \mathrm{N}(\hat{y}, \sigma) \\
\hat{y}=\alpha_{1 \mathrm{la}}+\beta_{0} \mathrm{SDI}_{<0.8}+\beta_{1} \mathrm{SDI}_{20.8}+\theta_{\mathrm{a}} t+\log (\Omega)
\end{gathered}
$$

where $\alpha_{1 \mathrm{a}}$ is a location-age-specific intercept, β_{0} is a global effect on an SDI of less than $0 \cdot 8, \beta_{1}$ is a global effect on an SDI of more than $0 \cdot 8, \theta_{\mathrm{a}}$ is an age-specific secular trend, and \S is the scalar capturing the effects of all relevant risks or interventions on each cause, with separate models fitted for each cause-sex pair. Thus, on the \log scale we modelled the total cause-specific mortality rate $\left(m_{\mathrm{T}}\right)$ as the sum of the underlying mortality captured by SDI, the secular trend, and a scalar component that captures the effect of relevant risks or interventions for that cause. We used a broken stick (linear piecewise) spline on SDI (one piece for SDI between 0 and 0.8 , another piece for 0.8 to 1.0) to account for rates of change in underlying mortality among high-SDI countries. For several NCDs (eg, diabetes and stroke), for which mortality has substantially decreased in many high-SDI countries, we also included an SDI*time interaction effect; more detail is in appendix 1 (pp 9-12).

Our model's third component captured variation over time that was not explained by independent drivers included in the first two components. This was achieved by fitting ARIMA models to the residual trends that remained from the first two components. Appendix 1 details the ARIMA specifications used and outlines how the ARIMA component was organised hierarchically (ie, a more robust residual trend on all-cause mortality was used to constrain the more sensitive cause-specific residual trends; appendix 1, pp 10-12).
We developed separate models for some causes of death because of their unique nature, largely following GBD methods. ${ }^{17}$ For deaths from stochastic events such as conflict and natural disasters, we randomly sampled past death rates from 1950-2016 for location, age group, and sex 1000 times for each year in the future and then applied an SDI-adjustment factor derived from by how much increases in SDI were associated with reducing mortality from such events in the past. For HIV mortality, we sought to account for its high sensitivity to changes in intervention coverage by projecting incidence hazard, ART, prevention of mother-to-child transmission of HIV, and co-trimoxazole coverage. These forecasts were informed by a frontier analysis to predict ART prices ${ }^{19}$ and translating predicted funding into expected treatment coverage. Incidence hazards were generated for each scenario using a rate of change approach across high-prevalence and low-prevalence countries with additional discounting from forecasted ART coverage (appendix 1, pp 32-40). We then used these inputs and scenarios in Spectrum, ${ }^{20-22}$ a cohort component model used by GBD and UNAIDS that applies disease progression parameters to an agespecific and sex-specific population over time; these results provided a full time series of HIV mortality by location through 2040.
We calculated the years of life lost (YLLs)—a measure of premature mortality-by summing up the remaining life expectancy for people dying in each age group. For GBD 2016, the reference life expectancy at birth was 86.6 years, derived from the lowest observed risk of death for each 5 -year age group; to avoid problems associated with small numbers, we restricted this calculation to all populations greater than 5 million individuals in 2016. Age-standardised mortality rates and YLL rates were computed using the world standard population developed for the GBD study, which is a timeinvariant standard. ${ }^{17}$

Reference forecasts, and better health and worse health scenarios

For each independent driver- 65 risk factors, select interventions, income per person, educational attainment, and total fertility rate under 25 years-we developed reference forecasts through 2040 and two alternative scenarios: better health and worse health. These scenarios corresponded with the relative effect of
these drivers on health outcomes; they did not necessarily reflect societal valuations of other non-health consequences. Below, we summarise the models used to forecast independent drivers of health; more details are in appendix 1 (pp 15-31).
We produced better health and worse health scenarios by taking the 85th and 15th percentiles, respectively, of annualised rates of change (ARC) observed across all locations and years in the past and constructed hypothetical future scenarios to show what would happen if each place had that level of change in the future. In cases where the reference scenario was higher than the 85 th percentile or lower than the 15 th percentile, the reference was used as the better health or worse health scenario, respectively. Further computational details regarding reference forecasts and scenarios are in appendix 1 (p 20).

Modeling the independent drivers of health

GBD 2015 introduced SEVs, a univariate measure of RR-weighted prevalence of risks that allowed all risk exposures, whether dichotomous, polytomous, or continuous, to be reported on a $0-1$ scale. ${ }^{24}$ For SEVs, 0 indicates that no one in the population is at increased risk and 1 indicates that the whole population has levels of exposure associated with the highest risk. We forecast SEVs for each risk by location, age, and sex using the weighted mean of its past ARC, and projecting these rates into the future. These weights allow for more recent trends to be more heavily weighted in forecasts; weight selection was based on out-of-sample predictive validity (appendix 1, pp 16-20). For each cause of death, we combined relevant risks to calculate the population-level RR or scalar, then multiplied this value by the underlying mortality rate in the future (appendix $1, \mathrm{pp} 13-15$).
We produced reference forecasts for income per person by testing an ensemble pool of 11520 individual models from 1970-2017, each of which captured relationships between the annual log growth rate in income and a different combination of demographic indicators, time-series components, and weighting functions. ${ }^{23}$ This ensemble pool and its corresponding model selection are described in more detail in appendix 1 (pp 26-28). We generated better health and worse health scenarios by scaling the growth rate to the 85th and 15th percentiles of the residuals from a model of log growth rate against income level, which captured plausible variation in income growth.
Data for mean years of education and the proportion of women of reproductive age who had their need for family planning satisfied with modern methods (ie, contraceptive met need) were from GBD 2017 and were forecasted from the weighted mean of their past ARC in a similar framework as the SEVs for risk factors (appendix 1, pp 28-30).
For age-specific fertility, we first modelled fertility in women aged 20-24 years based on met need for
contraception and women's educational attainment in that age group, plus an ARIMA to capture recent latent trends in each location. We modelled fertility in other age groups ($10-14$ and $15-19$ years, and 5 -year bins from 25-49 years) based on the age-specific fertility of the 20-24 year-olds, accounting for possible non-linear relationships and age-specific contraceptive met need where applicable. We combined estimates of age-specific fertility to calculate the total fertility rate under 25 years and produced better and worse health scenarios of each fertility metric based on corresponding better and worse health scenarios of estimated female education and met need for family planning (appendix pp 30-32). We forecasted population by using our all-cause mortality and age-specific fertility forecasts as inputs to a cohort component model. Initial population in 2016 and annual net migration projections were derived from UN Population Division estimates. ${ }^{9}$

Vaccine coverage

We forecasted coverage for the diphtheria, tetanus, and pertussis vaccine, and the measles-containing vaccine, 1 dose using linear models with SDI as an independent variable. H influenzae type B vaccine, pneumococcal conjugate vaccine, and rotavirus vaccines, which have not yet been introduced in all countries, were modelled relative to third-dose diphtheria, tetanus, and pertussis vaccine, and were assumed to scale up to this ratio with this vaccination coverage for each country over time. For countries with known introduction dates, we ran spatiotemporal Gaussian process regression on the ratio of vaccine coverage to third-dose diphtheria, tetanus, and pertussis vaccine coverage, mirroring GBD methods. ${ }^{10,17,25}$ For the other countries, we simulated introduction dates based on a Weibull distribution and generated theoretical scale-up curves for each year (appendix 1 pp 22-24).

Model validation and forecasting analysis

We assessed the overall performance of the forecasting and scenarios framework by fitting models using only data from 1990-2006 and then forecasting from 2007-16. Out-of-sample validation forecasts for 2014-16 were then compared with observed data for 2014-16. We assessed model performance using two metrics: mean error (a measure of bias) and root-mean-squared error (a measure of accuracy). Appendix 1 provides these metrics for life expectancy, all-cause mortality, and cause-specific mortality (pp 43-59). Our model was better at forecasting all-cause mortality and life expectancy than the mostwidely used demographic approach, the Lee-Carter method. ${ }^{26}$ To generate forecasts, we re-fit the model for the entire period of 1990-2016.

Uncertainty analysis

We sought to propagate uncertainty from both model parameters and inputs throughout our estimation
process. We sampled correlated draws of each parameter from the variance-covariance matrix of each fitted model when generating predictions. We incorporated uncertainty from the GBD by predicting each independent driver and cause-specific mortality rate in 2016, finding the difference between predicted draws and GBD 2016 draws in log space, then adding that correction factor to 2017-40 forecasts at the draw level. Point estimates were computed as the mean of 1000 draws from the final draw distribution and 95% uncertainty intervals (UIs) from the 2.5 and 97.5 percentiles.

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

Global trends and patterns through 2040

The course of future all-cause and cause-specific mortality largely will be determined by how trends in key drivers unfold (figure 1). Most of these drivers were projected to improve, whereas 36 were forecast to worsen by 2040. Uneven distributions of progress for drivers such as income per person and education suggested that many locations are unlikely to see conditions improve based on current forecasts. For instance, by 2040, 31 countries were forecast to be still classified as low-income (ie, income per person less than US $\$ 1000$, per the World Bank), while 36 countries averaged less than 10 years of education among populations aged 25 years and older. The better health scenario highlighted the potential for accelerated progress; nonetheless, eight countries would remain lowincome and 31 would average less 10 years of education under this scenario.
With increasing SDI, many countries were projected to see rising metabolic and behavioural risks, including some dietary risks, alcohol, and smoking. Because high BMI has increased almost everywhere since 1990, its continued rise was forecasted through 2040-even in the better health scenario. Similarly, high FPG and systolic blood pressure were projected to increase through 2040; however, because of advances in treatment and expansion of NCD risk management in some countries, the better health scenario reflected the future potential for reducing these metabolic risks. By contrast, continued decreases in risks that generally improve alongside gains in development (eg, low birthweight, child malnutrition, household air pollution, unsafe water and sanitation) were forecasted for the reference and better health scenarios; at the global level, the 2040 worse health scenario ranged from similar levels in 2016 to moderately higher levels of risk exposure. Country-level smoking trends were markedly variable in the past, corresponding with where countries

Global Health Metrics

(Figure 1 continues on next page)

Global Health Metrics

are on the tobacco-epidemic curve and in the scale-up of tobacco control; ${ }^{27}$ subsequently, our better and worse health scenarios showed comparably varied future trajectories. In 2016, the age-standardised prevalence of smoking over age 30 years was 19.4% (95% UI 19.2-19.6) globally, with a reference forecast of 14.5% (14.3-14.7) in 2040, and the better health scenario showed the potential to reduce prevalence to 10.4% ($10 \cdot 3-10 \cdot 6$). Conversely, the worse health scenario portended global stagnation-or potential reversal-for progress against smoking, with a projected agestandardised prevalence of $20 \cdot 6 \%(20 \cdot 3-20 \cdot 8)$ in 2040. Globally, ambient particulate matter increased from 1990-2016, but country-level trends showed widening inequalities in levels of exposure, with some countries achieving substantial declines. ${ }^{28,29}$ As a result, our reference forecast showed similar levels of exposure in 2040 as in 2016, whereas our better health scenario showed the potential for substantial reductions.
Figure 2 shows examples of all-cause mortality modelling for men and women in China and Australia. For each country and age group, we compared ARCs for underlying and total death rates observed 1990-2016, and then ARCs for predicted death rates from 2017-40 based on the three model components. In China, past ARCs for underlying mortality nearly equalled ARCs for total mortality in most age groups, suggesting that the net effects of risk factors and select interventions were not a large contributor to past progress in China. Conversely, underlying plus risk factor mortality ARC was faster in the future than the ARCs in underlying alone, particularly among adult age groups; this indicates risk factors could have a larger effect on future changes in China's total mortality. Compared with China, different patterns emerged for Australia; for instance, among populations older than 50 years, past ARCs were fuelled partly by favourable risk factor trends, as shown by faster declines in total versus underlying mortality. From 2016-40, Australia's underlying mortality rate was projected to decline less rapidly because of slowed increases in SDI

[^0]and relative stagnation of risk trends with respect to the all-cause death rate. As with China, the ARIMA component contributed to widening UIs substantially for each age group.
Based on reference forecasts and scenarios from 2016-40 (figure 3), a range of global demographic trends have the potential to unfold. Although total population was projected to increase in each trajectory, estimates spanned from 8.7 billion (95% UI $8 \cdot 5-8 \cdot 9$) in 2040 under the better health scenario (a $17 \cdot 2 \%$ increase since 2016) to 9.0 billion ($8 \cdot 7-9 \cdot 2$) under the worse health scenario (a $21 \cdot 0 \%$ rise since 2016). This range was primarily driven by differences in forecasted total fertility rate, which would essentially stagnate from 2016-40 under the worse health scenario, and subsequent effects in population age structure. Compared with 2016, all three scenarios point to a much larger proportion of the overall population older than 10 years; it is projected to increase from $82 \cdot 8 \%$ in 2016 to 84.8% (95% UI $84 \cdot 0-85 \cdot 5$) under the worse health scenario, 87.5% ($86.8-88.0$) in the reference scenario, and 88.7% (88-2-89-2) in the better health scenario. However, under the age of 25 , vastly different population patterns could emerge by 2040. The reference and better health scenarios each showed declines in total population under age 10, from 1.3 billion in 2016 to 1.1 billion ($1 \cdot 0-1 \cdot 2$) and 1.0 billion $(0 \cdot 9-1 \cdot 1)$ in 2040, respectively. Conversely, the population under age 10 years in the worse health scenario was expected to increase to 1.4 billion (1.3-1.5) by 2040. This range reflects the effect of forecasted fertility and the potential vast differences in population structure under different scenarios.
Global life expectancy was projected to increase by 4.4 years $(95 \%$ UI $2 \cdot 2-6 \cdot 4$) for men and 4.4 years (2•1-6.4) for women by 2040, to $74 \cdot 3$ years ($72 \cdot 1-76 \cdot 4$) and 79.7 years ($77.4-81 \cdot 8$), respectively. The better health scenario showed a potential increase of 7.8 years $(5 \cdot 9-9 \cdot 8)$ and $7 \cdot 2$ years $(5 \cdot 3-9 \cdot 1)$ for male and female life expectancy, rising to 77.8 years $(75 \cdot 7-79.7$) for men and 82.5 years $(80 \cdot 5-84.5)$ for women in 2040. The worse health scenario had both male and female life expectancy plateauing through 2040 (ie, a nonsignificant loss of 0.4 years [-2.8 to $2 \cdot 2$] for men and a non-significant decrease of 0.1 years [-2.7 to 2.5] for women, to $69 \cdot 5$ years $[67 \cdot 1-72 \cdot 1]$ and $75 \cdot 2[72 \cdot 6-78 \cdot 0]$, respectively). Compared with the past, global progress in extending life expectancy was forecasted to be slower from 2016-40. This trend resulted from forecasts of slowed advances on key drivers such as SDI; worsening of several risks, particularly high BMI; and stagnated gains on cardiovascular diseases, which was a major factor in historical improvements in life expectancy.
Reference forecasts showed a $37 \cdot 6 \%$ increase (95% UI $22 \cdot 7-54 \cdot 0$) in total deaths by 2040 (table), rising from 54.7 million in 2016 to $75 \cdot 3$ million ($67 \cdot 3-83 \cdot 9$) in 2040. By contrast, projected total YLLs had a non-significant drop, reflecting the effects of aging and projected

 causes

 of change are calculated from 2016 to 2040 in the forecasts and from 1990 to 2016 on past GBD estimates. GBD=Global Burden of Disease Study. EN=early neonatal. LN=late neonatal. PN=post-neonatal. Std=age standardised.
life expectancy gains. By 2040, the reference forecast showed that $12 \cdot 0 \%(9 \cdot 3-16 \cdot 3)$ of global deaths were due to communicable, maternal, neonatal, and nutritional (CMNN) diseases; $81 \cdot 0 \%$ (75.5-84.4) to NCDs; and $7 \cdot 0 \%(5 \cdot 9-8 \cdot 0)$ to injuries. Better and worse health scenarios both showed a continued global transition from CMNN to NCDs, yet how this shift could occur varied considerably across scenarios. For instance, in the better health scenario, $11 \cdot 3 \%(9 \cdot 0-15 \cdot 7)$ of deaths and $18 \cdot 9 \%(15 \cdot 4-23 \cdot 0)$ of YLLs were from CMNN causes. The worse health scenario predicted 14.9% (11.6-20.0) of deaths and $27 \cdot 6 \%(22 \cdot 9-33 \cdot 2)$ of YLLs from CMNN causes in 2040.
Assessing differences and ranges for reference forecasts compared with better and worse health scenarios identified important opportunities for accelerating progress-or threats of reversing health gains. For instance, the global
reference forecast for HIV/AIDS YLLs showed a $30 \cdot 6 \%$ decline (19.1-40.4) from 2016-40. The better health scenario had HIV/AIDS YLLs decreasing more than 50%. Yet if the worse health scenario prevails, a $120 \cdot 2 \%$ increase (67-2-190 3) in YLLs-or nearly 118 million YLLs-from HIV/AIDs could occur by 2040. For most of the leading NCDs, reference forecasts showed rising YLLs by 2040; however, for some causes such as ischaemic heart disease, projections under the better health scenario showed possible declines by 2040. Reference forecasts for chronic obstructive pulmonary disease (COPD) and tracheal, bronchus, and lung cancer had moderate YLL increases from 2016-40, while the better health scenario had small, non-significant decreases for each cause. For many NCDs, including COPD and lung cancer, the worse health scenario pointed to YLL increases exceeding 70\% by 2040. Projections across all scenarios showed rising YLLs due to

Figure 3: Global distribution of population in 2016 and 2040 reference forecasts, 2040 better health scenario, and 2040 worse health scenario
 for corresponding years and forecasts. Inlays show total population forecasts, and associated inputs into the population forecast: fertility and life expectancy.
several cancers, including cervical, breast, colon and rectum, and liver cancers, reflecting the effects of both population growth and ageing. Such demographic factors were also pronounced for Alzheimer's disease and other dementias, for which deaths and YLLs more than doubled by 2040 in each scenario; and diabetes, for which YLLs were forecast to rise in all scenarios for 2040 (ie, a 76.7% [10.3-228.8] increase for the reference; $11 \cdot 6 \%$ [-27.3 to $100 \cdot 5$] for better and $169 \cdot 3 \%$ [$66 \cdot 7$ to $397 \cdot 1$] for worse. Injury YLLs generally showed potential for sizeable decreases in the future, as exemplified by the reference and better health scenarios for 2040. However, for some injuries, including road injuries and self-harm, 2040 worse health scenarios showed rising YLLs and deaths.
Deaths from lower respiratory infections (LRIs) were projected to increase between 2016 (2.4 million [2•1-2.5]) and 2040 ($3 \cdot 1$ million [2.4-3•9]). YLLs for LRIs, however, were forecasted to decrease by 24.8% ($-3 \cdot 4$ to $47 \cdot 9$), surpassing the more moderate reduction in projected all-cause YLLs in 2040. These results represent how LRIs have their greatest toll among both children younger than 5 years and elderly people, and thus population ageing may differentially affect overall measures of mortality from LRIs. Relative to the reference forecast, the range between better and worse health scenarios provides a signal on the scope for policy change. Among the leading causes of death and

YLLs, the largest range-to-reference ratios included HIV/AIDS, neonatal disorders, road injuries, diarrhoeal diseases, tuberculosis, lung cancer, and stroke. This metric was particularly pronounced for HIV/AIDS, with the ratio exceeding 2 for deaths and YLLs.
From 2016-40, the reference forecast showed the potential for major shifts in the leading causes of YLLs (figure 4). While the leading three causes of YLLs in 2016 remained the same in 2040 (ie, ischaemic heart disease, stroke, and LRIs), most of the top ten causes fell in rank by 2040. The primary exception was COPD, which was forecasted to rise from 9th to 4th between 2016 and 2040. Several other NCDs were projected to rise in ranking by 2040, particularly diabetes (from 15th to 7th), chronic kidney disease (from 16th to 5th), and Alzheimer's disease (from 18th to 6th). By comparing forecasted changes in terms of total YLLs, all-age YLL rates, and agestandardised YLL rates, the amount by which shifts in projected population growth and age structure account for changing patterns, as compared with cause-specific mortality rates, can be parsed out. For many NCDs, population growth and ageing fuelled their upward trajectories, with significant increases projected from 2016-40. By contrast, several CMNN causes, including HIV/AIDS, neonatal disorders, and malaria, recorded significant reductions across all three measures as well as relative rank; these trends underscore the potential for

Global Health Metrics

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
All causes	$\begin{aligned} & 1585864 \cdot 98 \\ & (1559572 \cdot 96- \\ & 1613799 \cdot 53) \end{aligned}$	$\begin{aligned} & 1529212 \cdot 73 \\ & (1315165 \cdot 66- \\ & 1744642 \cdot 71) \end{aligned}$	$\begin{aligned} & 1188899.29 \\ & (1021216.03- \\ & 1357596.47) \end{aligned}$	$\begin{aligned} & 2170421 \cdot 82 \\ & (1858433 \cdot 76- \\ & 2480811 \cdot 12) \end{aligned}$	$\begin{aligned} & 54698.58 \\ & (54028.68- \\ & 55514.89) \end{aligned}$	$\begin{aligned} & 75263 \cdot 26 \\ & (67310 \cdot 21- \\ & 83866 \cdot 49) \end{aligned}$	$\begin{aligned} & 62570 \cdot 88 \\ & (55675 \cdot 51- \\ & 70026 \cdot 74) \end{aligned}$	$\begin{aligned} & 96717 \cdot 00 \\ & (86181 \cdot 44- \\ & 107125 \cdot 85) \end{aligned}$
Communicable, maternal, neonatal, and nutritional diseases	$\begin{aligned} & 566351 \cdot 51 \\ & (544844 \cdot 20- \\ & 589177 \cdot 03) \end{aligned}$	$\begin{aligned} & 327915 \cdot 23 \\ & (259161 \cdot 31- \\ & 411573 \cdot 26) \end{aligned}$	$\begin{aligned} & 224435 \cdot 34 \\ & (178473 \cdot 79- \\ & 284556 \cdot 33) \end{aligned}$	$\begin{aligned} & 598656 \cdot 74 \\ & (477682 \cdot 48- \\ & 738597.66) \end{aligned}$	$\begin{aligned} & 10557 \cdot 99 \\ & (10097 \cdot 72- \\ & 11143 \cdot 43) \end{aligned}$	$\begin{array}{r} 9045 \cdot 20 \\ (7140 \cdot 61- \\ 12255 \cdot 51) \end{array}$	$\begin{aligned} & 7062.37 \\ & (5620.93- \\ & 9774.50) \end{aligned}$	$\begin{aligned} & 14412.69 \\ & (11287.00- \\ & 19346 \cdot 12) \end{aligned}$
HIV/AIDS and tuberculosis	$\begin{aligned} & 94262 \cdot 23 \\ & (91006 \cdot 54- \\ & 97422 \cdot 77) \end{aligned}$	$\begin{aligned} & 61740 \cdot 92 \\ & (52484 \cdot 54- \\ & 72255 \cdot 86) \end{aligned}$	$\begin{aligned} & 40791 \cdot 02 \\ & (32831 \cdot 31- \\ & 49852 \cdot 17) \end{aligned}$	$\begin{array}{r} 159169.97 \\ (127603.05- \\ 198280.29) \end{array}$	$\begin{aligned} & 2246 \cdot 81 \\ & (2172 \cdot 76- \\ & 2314 \cdot 46) \end{aligned}$	$\begin{array}{r} 1615.03 \\ (1382.99- \\ 1895.90) \end{array}$	$\begin{aligned} & 1097 \cdot 66 \\ & (921 \cdot 12- \\ & 1295 \cdot 95) \end{aligned}$	$\begin{aligned} & 3693 \cdot 73 \\ & (2974 \cdot 48- \\ & 4535 \cdot 38) \end{aligned}$
Tuberculosis	$\begin{aligned} & 40718.82 \\ & (38983 \cdot 48- \\ & 42538.24) \end{aligned}$	$\begin{aligned} & 24447 \cdot 59 \\ & (19148 \cdot 30- \\ & 33027 \cdot 79) \end{aligned}$	$\begin{aligned} & 15420 \cdot 20 \\ & (12129.08- \\ & 20306.06) \end{aligned}$	$\begin{aligned} & 41289 \cdot 76 \\ & (31424 \cdot 17- \\ & 57573 \cdot 96) \end{aligned}$	$\begin{aligned} & \quad 1213 \cdot 06 \\ & (1161.55- \\ & 1265 \cdot 42) \end{aligned}$	$\begin{gathered} 873 \cdot 38 \\ (682 \cdot 40-1152 \cdot 23) \end{gathered}$	$\begin{gathered} 592.71 \\ (476 \cdot 39-758 \cdot 25) \end{gathered}$	$\begin{aligned} & 1390.68 \\ & (1053.96- \\ & 1839.04) \end{aligned}$
HIV/AIDS	$\begin{aligned} & \quad 53543 \cdot 41 \\ & (50984 \cdot 67- \\ & 56292.03) \end{aligned}$	$\begin{aligned} & 37293 \cdot 33 \\ & (30627.08- \\ & 43943.07) \end{aligned}$	$\begin{aligned} & 25370.81 \\ & (18112.95- \\ & 33054.78) \end{aligned}$	$\begin{gathered} 117880 \cdot 21 \\ (88380 \cdot 31- \\ 154595 \cdot 33) \end{gathered}$	$\begin{gathered} 1033 \cdot 75 \\ (987 \cdot 35-1081 \cdot 57) \end{gathered}$	$\begin{gathered} 741.65 \\ (622.58-861 \cdot 74) \end{gathered}$	$\begin{gathered} 504 \cdot 95 \\ (391 \cdot 05-622.73) \end{gathered}$	$\begin{aligned} & 2303 \cdot 05 \\ & (1693 \cdot 81- \\ & 3021.48) \end{aligned}$
Diarrhoea, lower respiratory, and other common infectious diseases	$\begin{aligned} & 209304 \cdot 89 \\ & (195330 \cdot 83- \\ & 228343 \cdot 14) \end{aligned}$	$\begin{aligned} & 138761 \cdot 43 \\ & (93594 \cdot 79- \\ & 213267 \cdot 31) \end{aligned}$	$\begin{aligned} & 93032 \cdot 67 \\ & (63217 \cdot 08- \\ & 145739 \cdot 80) \end{aligned}$	$\begin{array}{r} 238083 \cdot 51 \\ (156241 \cdot 30- \\ 360986 \cdot 16) \end{array}$	$\begin{aligned} & 4805 \cdot 16 \\ & (4381 \cdot 23- \\ & 5480 \cdot 60) \end{aligned}$	$\begin{aligned} & 5298.39 \\ & (3703.14- \\ & 8351.15) \end{aligned}$	$\begin{aligned} & 4259 \cdot 99 \\ & (3011 \cdot 67- \\ & 6855 \cdot 53) \end{aligned}$	$\begin{array}{r} 7704 \cdot 67 \\ (5126 \cdot 24- \\ 12563 \cdot 43) \end{array}$
Diarrhoeal diseases	$\begin{aligned} & 66908.74 \\ & (56202.72- \\ & 85858.53) \end{aligned}$	$\begin{gathered} 40524.03 \\ (14762 \cdot 73- \\ 101647 \cdot 27) \end{gathered}$	$\begin{aligned} & 28021.71 \\ & (9794 \cdot 70- \\ & 76730 \cdot 50) \end{aligned}$	$\begin{aligned} & 71076.51 \\ & (26699.92- \\ & 179056 \cdot 22) \end{aligned}$	$\begin{aligned} & 1655 \cdot 94 \\ & (1244.07- \\ & 2366.55) \end{aligned}$	$\begin{gathered} 1611 \cdot 38 \\ (482 \cdot 52-4664 \cdot 63) \end{gathered}$	$\begin{gathered} 1339 \cdot 44 \\ (429 \cdot 02-3975 \cdot 25) \end{gathered}$	$\begin{gathered} 2694 \cdot 30 \\ (755 \cdot 15- \\ 7522.05) \end{gathered}$
Intestinal infectious diseases	$\begin{aligned} & 10476.49 \\ & (5926.65- \\ & 17188.46) \end{aligned}$	$\begin{gathered} 5701 \cdot 35 \\ (3107 \cdot 03-9562 \cdot 97) \end{gathered}$	$\begin{aligned} & \quad 5206 \cdot 44 \\ & (2904 \cdot 21- \\ & 8598 \cdot 60) \end{aligned}$	$\begin{aligned} & \quad 7481.47 \\ & (4010.80- \\ & 12801.64) \end{aligned}$	$\begin{gathered} 155 \cdot 45 \\ (87.59-255 \cdot 41) \end{gathered}$	$\begin{gathered} 95 \cdot 71 \\ (52 \cdot 70-159 \cdot 94) \end{gathered}$	$\begin{gathered} 89.75 \\ (50.46-148.62) \end{gathered}$	$\begin{gathered} 119.73 \\ (64 \cdot 59-205 \cdot 69) \end{gathered}$
Typhoid fever	$\begin{aligned} & \quad 8729.56 \\ & (4775 \cdot 28- \\ & 14334 \cdot 44) \end{aligned}$	$\begin{gathered} 4569 \cdot 82 \\ (2478 \cdot 06-7700 \cdot 70) \end{gathered}$	$\begin{gathered} 4207 \cdot 58 \\ (2336 \cdot 90-6992 \cdot 10) \end{gathered}$	$\begin{aligned} & \quad 5975 \cdot 76 \\ & (3159 \cdot 86- \\ & 10219 \cdot 72) \end{aligned}$	$\begin{gathered} 128 \cdot 17 \\ (70 \cdot 08-210 \cdot 19) \end{gathered}$	$\begin{gathered} 75 \cdot 35 \\ (41 \cdot 37-126 \cdot 60) \end{gathered}$	$\begin{gathered} 71 \cdot 21 \\ (39 \cdot 51-117 \cdot 74) \end{gathered}$	$\begin{gathered} 93 \cdot 95 \\ (50 \cdot 61-158.55) \end{gathered}$
Paratyphoid fever	$\begin{gathered} 1596 \cdot 58 \\ (750 \cdot 49-3096 \cdot 66) \end{gathered}$	$\begin{gathered} 1076 \cdot 47 \\ (490 \cdot 50-2096 \cdot 87) \end{gathered}$	$\begin{gathered} 964 \cdot 15 \\ (444 \cdot 02-1850 \cdot 37) \end{gathered}$	$\begin{gathered} 1412 \cdot 76 \\ (646 \cdot 14-2803 \cdot 89) \end{gathered}$	$\begin{gathered} 25 \cdot 19 \\ (11 \cdot 75-49 \cdot 24) \end{gathered}$	$\begin{gathered} 19 \cdot 36 \\ (8.89-37 \cdot 78) \end{gathered}$	$\begin{gathered} 17 \cdot 81 \\ (8 \cdot 23-34 \cdot 18) \end{gathered}$	$\begin{gathered} 24 \cdot 30 \\ (11 \cdot 23-47 \cdot 93) \end{gathered}$
Other intestinal infectious diseases	$\begin{gathered} 150 \cdot 35 \\ (40 \cdot 76-410 \cdot 64) \end{gathered}$	$\begin{gathered} 55.05 \\ (14.42-158.56) \end{gathered}$	$\begin{array}{r} 34.71 \\ (9.70-98.90) \end{array}$	$\begin{gathered} 92 \cdot 94 \\ (23 \cdot 58-268 \cdot 24) \end{gathered}$	$\begin{array}{r} 2.09 \\ (0.63-5.46) \end{array}$	$\begin{array}{r} 0.99 \\ (0.32-2.53) \end{array}$	$\begin{gathered} 0.73 \\ (0.24-1.76) \end{gathered}$	$\begin{gathered} 1.49 \\ (0.45-3.89) \end{gathered}$
Lower respiratory infections	$\begin{aligned} & 91363 \cdot 09 \\ & (84223 \cdot 22- \\ & 97870 \cdot 27) \end{aligned}$	$\begin{aligned} & \quad 68700 \cdot 69 \\ & (47070 \cdot 49- \\ & 95459.61) \end{aligned}$	$\begin{aligned} & \quad 43223 \cdot 40 \\ & (31094 \cdot 43- \\ & 57744 \cdot 00) \end{aligned}$	$\begin{aligned} & 120751 \cdot 92 \\ & (78575 \cdot 87- \\ & 169498 \cdot 36) \end{aligned}$	$\begin{aligned} & 2377 \cdot 70 \\ & (2145 \cdot 58- \\ & 2512 \cdot 81) \end{aligned}$	$\begin{aligned} & 3120.44 \\ & (2448.88- \\ & 3873.80) \end{aligned}$	$\begin{aligned} & 2442 \cdot 72 \\ & (1975 \cdot 59- \\ & 2949.52) \end{aligned}$	$\begin{array}{r} 4244.98 \\ (3153 \cdot 62- \\ 5294.84) \end{array}$
Upper respiratory infections	$\begin{gathered} 126 \cdot 68 \\ (105 \cdot 23-154 \cdot 86) \end{gathered}$	$\begin{gathered} 80 \cdot 17 \\ (61 \cdot 87-105 \cdot 86) \end{gathered}$	$\begin{array}{r} 51 \cdot 80 \\ (39.82-65 \cdot 67) \end{array}$	$\begin{gathered} 136 \cdot 50 \\ (104.57-178.61) \end{gathered}$	$\begin{array}{r} 2.31 \\ (2.04-2.65) \end{array}$	$\begin{gathered} 1.97 \\ (1 \cdot 66-2 \cdot 36) \end{gathered}$	$\begin{array}{r} 1 \cdot 43 \\ (1 \cdot 17-1.74) \end{array}$	$\begin{gathered} 2.98 \\ (2.46-3.62) \end{gathered}$
Otitis media	$\begin{array}{r} 50 \cdot 36 \\ (37 \cdot 49-72 \cdot 37) \end{array}$	$\begin{array}{r} 13 \cdot 59 \\ (8.94-20 \cdot 10) \end{array}$	$\begin{array}{r} 13.61 \\ (8.94-20.27) \end{array}$	$\begin{array}{r} 14 \cdot 05 \\ (9 \cdot 34-20 \cdot 76) \end{array}$	$\begin{array}{r} 1.08 \\ (0.84-1.47) \end{array}$	$\begin{gathered} 0.50 \\ (0.34-0.70) \end{gathered}$	$\begin{gathered} 0.54 \\ (0.36-0.75) \end{gathered}$	$\begin{gathered} 0.46 \\ (0.31-0.65) \end{gathered}$
Meningitis	$\begin{aligned} & 20383.03 \\ & (16781 \cdot 47- \\ & 26724 \cdot 06) \end{aligned}$	$\begin{aligned} & 12372 \cdot 35 \\ & (8642 \cdot 93- \\ & 18279 \cdot 73) \end{aligned}$	$\begin{aligned} & \quad 9346 \cdot 04 \\ & (6723.01- \\ & 12956.00) \end{aligned}$	$\begin{aligned} & 20279 \cdot 99 \\ & (12993 \cdot 78- \\ & 31788 \cdot 31) \end{aligned}$	$\begin{gathered} 318 \cdot 40 \\ (265 \cdot 22-408 \cdot 71) \end{gathered}$	$\begin{gathered} 238 \cdot 61 \\ (177 \cdot 78-340 \cdot 30) \end{gathered}$	$\begin{gathered} 203 \cdot 01 \\ (154 \cdot 23-286 \cdot 29) \end{gathered}$	$\begin{gathered} 330 \cdot 65 \\ (234 \cdot 15-489 \cdot 14) \end{gathered}$
Pneumococcal meningitis	$\begin{gathered} 1268 \cdot 37 \\ (996 \cdot 16-1721 \cdot 54) \end{gathered}$	$\begin{gathered} 739 \cdot 19 \\ (516 \cdot 71-1074 \cdot 29) \end{gathered}$	$\begin{gathered} 627 \cdot 21 \\ (449 \cdot 45-885 \cdot 63) \end{gathered}$	$\begin{gathered} 1036 \cdot 47 \\ (694 \cdot 55-1534 \cdot 35) \end{gathered}$	$\begin{gathered} 23 \cdot 14 \\ (18 \cdot 70-30 \cdot 93) \end{gathered}$	$\begin{gathered} 18 \cdot 10 \\ (13 \cdot 43-26 \cdot 28) \end{gathered}$	$\begin{gathered} 17.05 \\ (12.75-24.90) \end{gathered}$	$\begin{gathered} 21 \cdot 72 \\ (15 \cdot 81-32 \cdot 20) \end{gathered}$
Haemophilus influenzae type B meningitis	$\begin{gathered} 2177 \cdot 50 \\ (1723 \cdot 91-2955 \cdot 18) \end{gathered}$	$\begin{gathered} 2973 \cdot 90 \\ (979 \cdot 79-6864 \cdot 46) \end{gathered}$	$\begin{gathered} 1418 \cdot 74 \\ (633 \cdot 61-2857 \cdot 77) \end{gathered}$	$\begin{aligned} & \quad 8137 \cdot 38 \\ & (2178 \cdot 25- \\ & 18545 \cdot 53) \end{aligned}$	$\begin{gathered} 31 \cdot 41 \\ (25 \cdot 37-41 \cdot 43) \end{gathered}$	$\begin{gathered} 41 \cdot 39 \\ (17 \cdot 21-87 \cdot 12) \end{gathered}$	$\begin{gathered} 23 \cdot 63 \\ (13 \cdot 54-41 \cdot 45) \end{gathered}$	$\begin{gathered} 101 \cdot 17 \\ (31 \cdot 39-222 \cdot 98) \end{gathered}$
Meningococcal meningitis	$\begin{aligned} & \quad 8159 \cdot 59 \\ & (6630 \cdot 42- \\ & 10743 \cdot 55) \end{aligned}$	$\begin{gathered} 4046 \cdot 14 \\ (2959 \cdot 09-5655 \cdot 49) \end{gathered}$	$\begin{gathered} 3430 \cdot 39 \\ (2520 \cdot 21-4817 \cdot 57) \end{gathered}$	$\begin{gathered} 5143 \cdot 10 \\ (3722 \cdot 39-7248 \cdot 47) \end{gathered}$	$\begin{gathered} 127 \cdot 42 \\ (105 \cdot 43-164 \cdot 01) \end{gathered}$	$\begin{gathered} 84 \cdot 70 \\ (64 \cdot 28-122 \cdot 35) \end{gathered}$	$\begin{gathered} 77 \cdot 20 \\ (58 \cdot 18-112 \cdot 99) \end{gathered}$	$\begin{gathered} 97 \cdot 61 \\ (73 \cdot 46-138 \cdot 20) \end{gathered}$
Other meningitis	$\begin{aligned} & \quad 8777 \cdot 57 \\ & (7123 \cdot 54- \\ & 11853 \cdot 65) \end{aligned}$	$\begin{gathered} 4613 \cdot 11 \\ (3358 \cdot 62-6281 \cdot 61) \end{gathered}$	$\begin{gathered} 3869 \cdot 69 \\ (2808 \cdot 40-5253 \cdot 24) \end{gathered}$	$\begin{gathered} 5963 \cdot 03 \\ (4319 \cdot 87-8332 \cdot 46) \end{gathered}$	$\begin{gathered} 136 \cdot 42 \\ (112 \cdot 68-178 \cdot 02) \end{gathered}$	$\begin{gathered} 94 \cdot 43 \\ (71.84-128 \cdot 98) \end{gathered}$	$\begin{gathered} 85 \cdot 12 \\ (64 \cdot 95-118.61) \end{gathered}$	$\begin{gathered} 110 \cdot 13 \\ (83.98-149.09) \end{gathered}$
Encephalitis	$\begin{gathered} 5053 \cdot 33 \\ (4020 \cdot 10-6845 \cdot 05) \end{gathered}$	$\begin{gathered} 3952 \cdot 14 \\ (2945 \cdot 46-5493 \cdot 69) \end{gathered}$	$\begin{gathered} 3666 \cdot 49 \\ (2662 \cdot 00-5292 \cdot 85) \end{gathered}$	$\begin{gathered} 4877 \cdot 10 \\ (3706 \cdot 02-6756.93) \end{gathered}$	$\begin{gathered} 102 \cdot 87 \\ (83 \cdot 93-138 \cdot 39) \end{gathered}$	$\begin{gathered} 129.64 \\ (98 \cdot 07-184 \cdot 26) \end{gathered}$	$\begin{gathered} 129.98 \\ (97.00-187.56) \end{gathered}$	$\begin{gathered} 138 \cdot 68 \\ (108 \cdot 44-194 \cdot 11) \end{gathered}$
Diphtheria	$\begin{gathered} 86.90 \\ (62 \cdot 45-123 \cdot 42) \end{gathered}$	$\begin{array}{r} 37 \cdot 30 \\ (18.76-68 \cdot 20) \end{array}$	$\begin{array}{r} 14 \cdot 11 \\ (9 \cdot 10-22 \cdot 06) \end{array}$	$\begin{gathered} 60 \cdot 55 \\ (32 \cdot 52-104 \cdot 75) \end{gathered}$	$\begin{gathered} 1 \cdot 11 \\ (0.82-1.54) \end{gathered}$	$\begin{gathered} 0.49 \\ (0.27-0.85) \end{gathered}$	$\begin{gathered} 0.21 \\ (0.15-0 \cdot 31) \end{gathered}$	$\begin{gathered} 0.76 \\ (0.42-1 \cdot 29) \end{gathered}$
(Table continues on next page)								

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Whooping cough	$\begin{aligned} & \quad 6170.82 \\ & (3287.59- \\ & 10666 \cdot 24) \end{aligned}$	$\begin{gathered} 4754 \cdot 38 \\ (2208 \cdot 32-8636 \cdot 49) \end{gathered}$	$\begin{gathered} 2080 \cdot 42 \\ (931 \cdot 29-3736 \cdot 91) \end{gathered}$	$\begin{gathered} 8243 \cdot 37 \\ (3998 \cdot 94- \\ 14647 \cdot 80) \end{gathered}$	$\begin{gathered} 73.01 \\ (38.90-126 \cdot 14) \end{gathered}$	$\begin{gathered} 56 \cdot 42 \\ (26 \cdot 33-102 \cdot 48) \end{gathered}$	$\begin{gathered} 24 \cdot 93 \\ (11 \cdot 21-44 \cdot 69) \end{gathered}$	$\begin{gathered} 97 \cdot 52 \\ (47.47-173 \cdot 05) \end{gathered}$
Tetanus	$\begin{gathered} 2362 \cdot 79 \\ (1440 \cdot 70-3057 \cdot 88) \end{gathered}$	$\begin{gathered} 465 \cdot 28 \\ (268 \cdot 52-739 \cdot 51) \end{gathered}$	$\begin{gathered} 318.63 \\ (178.66-524.95) \end{gathered}$	$\begin{gathered} 815 \cdot 99 \\ (456.69-1266 \cdot 35) \end{gathered}$	$\begin{gathered} 36 \cdot 69 \\ (22 \cdot 20-47 \cdot 21) \end{gathered}$	$\begin{gathered} 7.68 \\ (4.56-11.64) \end{gathered}$	$\begin{gathered} 6.10 \\ (3 \cdot 42-9 \cdot 67) \end{gathered}$	$\begin{gathered} 11 \cdot 59 \\ (6 \cdot 86-17 \cdot 24) \end{gathered}$
Measles	$\begin{aligned} & \quad 5702 \cdot 64 \\ & (2133 \cdot 93- \\ & 12239 \cdot 05) \end{aligned}$	$\begin{gathered} 1879 \cdot 97 \\ (514.03-5457 \cdot 86) \end{gathered}$	$\begin{gathered} 884.76 \\ (334 \cdot 63-2351 \cdot 01) \end{gathered}$	$\begin{aligned} & 3889.69 \\ & (880 \cdot 91- \\ & 10481 \cdot 31) \end{aligned}$	$\begin{gathered} 68.12 \\ (25 \cdot 50-146 \cdot 06) \end{gathered}$	$\begin{gathered} 26.02 \\ (8 \cdot 35-68 \cdot 90) \end{gathered}$	$\begin{gathered} 13 \cdot 39 \\ (5 \cdot 65-30 \cdot 74) \end{gathered}$	$\begin{gathered} 51 \cdot 03 \\ (14 \cdot 05-129 \cdot 25) \end{gathered}$
Varicella and herpes zoster	$\begin{gathered} 620 \cdot 02 \\ (557 \cdot 00-693 \cdot 29) \end{gathered}$	$\begin{gathered} 280 \cdot 20 \\ (219 \cdot 32-345 \cdot 09) \end{gathered}$	$\begin{gathered} 205 \cdot 28 \\ (160 \cdot 73-255 \cdot 27) \end{gathered}$	$\begin{gathered} 456 \cdot 40 \\ (350 \cdot 67-558 \cdot 36) \end{gathered}$	$\begin{gathered} 12 \cdot 47 \\ (11 \cdot 38-13 \cdot 95) \end{gathered}$	$\begin{gathered} 9.53 \\ (7.94-11 \cdot 31) \end{gathered}$	$\begin{gathered} 8.50 \\ (7 \cdot 14-10 \cdot 13) \end{gathered}$	$\begin{gathered} 11 \cdot 99 \\ (9 \cdot 92-13 \cdot 99) \end{gathered}$
Neglected tropical diseases and malaria	$\begin{aligned} & \quad 61330.01 \\ & (50832.05- \\ & 73173.51) \end{aligned}$	$\begin{aligned} & 29561 \cdot 40 \\ & (22780 \cdot 21- \\ & 36729.59) \end{aligned}$	$\begin{aligned} & 24157.32 \\ & (18726 \cdot 60- \\ & 29742.99) \end{aligned}$	$\begin{aligned} & \begin{array}{l} 37825 \cdot 85 \\ (29076 \cdot 49- \\ 47538 \cdot 20) \end{array} \end{aligned}$	$\begin{aligned} & 843.59 \\ & (708.02- \\ & 988.97) \end{aligned}$	$\begin{aligned} & 574 \cdot 29 \\ & (447 \cdot 63- \\ & 696.86) \end{aligned}$	$\begin{aligned} & 516.05 \\ & (400.92- \\ & 622.13) \end{aligned}$	$\begin{aligned} & \quad 667.01 \\ & (519.06- \\ & 806.19) \end{aligned}$
Malaria	$\begin{aligned} & 54460 \cdot 50 \\ & (44151 \cdot 02- \\ & 66240 \cdot 10) \end{aligned}$	$\begin{aligned} & 19913 \cdot 82 \\ & (14344 \cdot 62- \\ & 25844 \cdot 54) \end{aligned}$	$\begin{aligned} & 15475 \cdot 13 \\ & (11573 \cdot 05- \\ & 19663 \cdot 19) \end{aligned}$	$\begin{aligned} & 26062 \cdot 22 \\ & (18939.87- \\ & 34396.98) \end{aligned}$	$\begin{gathered} 719.55 \\ (594.61-863.03) \end{gathered}$	$\begin{gathered} 332 \cdot 65 \\ (252 \cdot 96-419.06) \end{gathered}$	$\begin{gathered} 281 \cdot 88 \\ (219 \cdot 50-354 \cdot 17) \end{gathered}$	$\begin{aligned} & \quad 402.52 \\ & (306.81- \\ & 508.98) \end{aligned}$
Chagas disease	$\begin{gathered} 156 \cdot 13 \\ (146 \cdot 16-168 \cdot 66) \end{gathered}$	$\begin{gathered} 96 \cdot 37 \\ (82 \cdot 15-116 \cdot 78) \end{gathered}$	$\begin{gathered} 118 \cdot 95 \\ (103 \cdot 62-142 \cdot 79) \end{gathered}$	$\begin{gathered} 84 \cdot 88 \\ (72 \cdot 45-104 \cdot 49) \end{gathered}$	$\begin{array}{r} 7.14 \\ (6.74-7 \cdot 77) \end{array}$	$\begin{gathered} 5.54 \\ (4.75-6.69) \end{gathered}$	$\begin{gathered} 7.02 \\ (6.13-8.29) \end{gathered}$	$\begin{gathered} 4.75 \\ (4.02-5.81) \end{gathered}$
Leishmaniasis	$\begin{gathered} 705 \cdot 85 \\ (398 \cdot 32-1204 \cdot 23) \end{gathered}$	$\begin{gathered} 260 \cdot 41 \\ (150 \cdot 91-442 \cdot 31) \end{gathered}$	$\begin{gathered} 215 \cdot 54 \\ (123 \cdot 60-371 \cdot 18) \end{gathered}$	$\begin{gathered} 473.69 \\ (285.65-780 \cdot 94) \end{gathered}$	$\begin{gathered} 13 \cdot 67 \\ (7.66-23 \cdot 00) \end{gathered}$	$\begin{gathered} 5 \cdot 28 \\ (3 \cdot 08-9 \cdot 41) \end{gathered}$	$\begin{gathered} 4.51 \\ (2 \cdot 59-8 \cdot 22) \end{gathered}$	$\begin{gathered} 8.73 \\ (5 \cdot 28-15 \cdot 02) \end{gathered}$
African trypanosomiasis	$\begin{gathered} 126.51 \\ (63.55-212 \cdot 07) \end{gathered}$	$\begin{array}{r} 16.00 \\ (6.76-32.43) \end{array}$	$\begin{aligned} & 15 \cdot 65 \\ & (6 \cdot 65-31 \cdot 17) \end{aligned}$	$\begin{array}{r} 17 \cdot 11 \\ (7 \cdot 18-34 \cdot 40) \end{array}$	$\begin{array}{r} 2.29 \\ (1.16-3.83) \end{array}$	$\begin{gathered} 0.30 \\ (0.13-0.61) \end{gathered}$	$\begin{gathered} 0.30 \\ (0.13-0.59) \end{gathered}$	$\begin{gathered} 0.32 \\ (0.14-0.63) \end{gathered}$
Schistosomiasis	$\begin{gathered} 367 \cdot 36 \\ (333 \cdot 89-401 \cdot 84) \end{gathered}$	$\begin{gathered} 287 \cdot 47 \\ (239 \cdot 53-349.08) \end{gathered}$	$\begin{gathered} 245 \cdot 88 \\ (203 \cdot 86-301 \cdot 41) \end{gathered}$	$\begin{gathered} 333 \cdot 76 \\ (280.73-405 \cdot 68) \end{gathered}$	$\begin{gathered} 10.09 \\ (9.26-10 \cdot 97) \end{gathered}$	$\begin{gathered} 8.93 \\ (7.73-10.47) \end{gathered}$	$\begin{gathered} 7.97 \\ (6 \cdot 84-9 \cdot 36) \end{gathered}$	$\begin{gathered} 9.90 \\ (8 \cdot 62-11 \cdot 55) \end{gathered}$
Cysticercosis	$\begin{array}{r} 47 \cdot 24 \\ (39.82-56 \cdot 34) \end{array}$	$\begin{array}{r} 21 \cdot 08 \\ (16 \cdot 21-27 \cdot 34) \end{array}$	$\begin{array}{r} 19 \cdot 26 \\ (14 \cdot 60-25 \cdot 04) \end{array}$	$\begin{gathered} 22.91 \\ (17.64-29.57) \end{gathered}$	$\begin{array}{r} 1 \cdot 00 \\ (0.86-1 \cdot 17) \end{array}$	$\begin{gathered} 0.51 \\ (0.40-0.64) \end{gathered}$	$\begin{array}{r} 0.48 \\ (0.38-0.61) \end{array}$	$\begin{gathered} 0.53 \\ (0.42-0.67) \end{gathered}$
Cystic echinococcosis	$\begin{array}{r} 46.04 \\ (36.82-57.76) \end{array}$	$\begin{array}{r} 19.52 \\ (14 \cdot 31-26 \cdot 15) \end{array}$	$\begin{array}{r} 13.59 \\ (9.96-18.51) \end{array}$	$\begin{gathered} 34 \cdot 91 \\ (25 \cdot 33-46 \cdot 70) \end{gathered}$	$\begin{array}{r} 1.01 \\ (0.84-1 \cdot 22) \end{array}$	$\begin{gathered} 0.57 \\ (0.44-0.75) \end{gathered}$	$\begin{gathered} 0.43 \\ (0.33-0.59) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.70-1 \cdot 20) \end{gathered}$
Dengue	$\begin{gathered} 1975 \cdot 12 \\ (619 \cdot 25-2751 \cdot 84) \end{gathered}$	$\begin{gathered} 6658 \cdot 50 \\ (2782 \cdot 71-8825 \cdot 22) \end{gathered}$	$\begin{gathered} 6459 \cdot 35 \\ (2656 \cdot 44-8603 \cdot 02) \end{gathered}$	$\begin{aligned} & \quad 7149.65 \\ & (2850 \cdot 34- \\ & 9664.67) \end{aligned}$	$\begin{gathered} 37.78 \\ (10 \cdot 91-52 \cdot 73) \end{gathered}$	$\begin{gathered} 182 \cdot 47 \\ (72 \cdot 22-242 \cdot 60) \end{gathered}$	$\begin{gathered} 184 \cdot 75 \\ (72 \cdot 17-246 \cdot 92) \end{gathered}$	$\begin{gathered} 182 \cdot 19 \\ (69 \cdot 91-243 \cdot 44) \end{gathered}$
Yellow fever	$\begin{gathered} 373 \cdot 91 \\ (80 \cdot 80-1074 \cdot 88) \end{gathered}$	$\begin{gathered} 151.00 \\ (28.19-486 \cdot 14) \end{gathered}$	$\begin{gathered} 112 \cdot 32 \\ (20 \cdot 43-363 \cdot 13) \end{gathered}$	$\begin{gathered} 239 \cdot 63 \\ (46 \cdot 28-735 \cdot 94) \end{gathered}$	$\begin{gathered} 5.80 \\ (1.24-16.73) \end{gathered}$	$\begin{gathered} 2.47 \\ (0.46-7.89) \end{gathered}$	$\begin{gathered} 1.87 \\ (0.34-5 \cdot 98) \end{gathered}$	$\begin{gathered} 3.81 \\ (0.73-11.83) \end{gathered}$
Rabies	$\begin{gathered} 744 \cdot 18 \\ (383 \cdot 72-1106 \cdot 23) \end{gathered}$	$\begin{gathered} 300.82 \\ (154 \cdot 43-508 \cdot 23) \end{gathered}$	$\begin{gathered} 187.53 \\ (104.04-310.85) \end{gathered}$	$\begin{gathered} 635 \cdot 28 \\ (330 \cdot 52-1034 \cdot 84) \end{gathered}$	$\begin{gathered} 13 \cdot 29 \\ (7 \cdot 16-19 \cdot 06) \end{gathered}$	$\begin{gathered} 6 \cdot 13 \\ (3 \cdot 44-10 \cdot 11) \end{gathered}$	$\begin{gathered} 4 \cdot 27 \\ (2 \cdot 52-7 \cdot 48) \end{gathered}$	$\begin{gathered} 12 \cdot 19 \\ (6.97-19 \cdot 00) \end{gathered}$
Intestinal nematode infections	$\begin{gathered} 385 \cdot 30 \\ (309 \cdot 19-484 \cdot 21) \end{gathered}$	$\begin{gathered} 433 \cdot 48 \\ (312 \cdot 40-573 \cdot 45) \end{gathered}$	$\begin{gathered} 346 \cdot 78 \\ (252 \cdot 10-447 \cdot 89) \end{gathered}$	$\begin{gathered} 558 \cdot 46 \\ (413.72-720 \cdot 82) \end{gathered}$	$\begin{array}{r} 4.88 \\ (3.98-6.06) \end{array}$	$\begin{array}{r} 5.88 \\ (4 \cdot 36-7.65) \end{array}$	$\begin{array}{r} 4.89 \\ (3.71-6 \cdot 21) \end{array}$	$\begin{gathered} 7 \cdot 30 \\ (5 \cdot 53-9 \cdot 27) \end{gathered}$
Other neglected tropical diseases	$\begin{gathered} 1940 \cdot 72 \\ (1328 \cdot 90-2505 \cdot 52) \end{gathered}$	$\begin{gathered} 1402 \cdot 93 \\ (958.86-1858 \cdot 61) \end{gathered}$	$\begin{gathered} 947 \cdot 33 \\ (662 \cdot 50-1216 \cdot 47) \end{gathered}$	$\begin{gathered} 2213 \cdot 36 \\ (1526 \cdot 52-2853 \cdot 69) \end{gathered}$	$\begin{gathered} 27 \cdot 06 \\ (19 \cdot 16-33 \cdot 98) \end{gathered}$	$\begin{gathered} 23 \cdot 56 \\ (17 \cdot 54-29 \cdot 97) \end{gathered}$	$\begin{gathered} 17.68 \\ (13 \cdot 69-22 \cdot 23) \end{gathered}$	$\begin{gathered} 33.86 \\ (24.83-42.94) \end{gathered}$
Maternal disorders	$\begin{aligned} & 12817 \cdot 77 \\ & (11808 \cdot 37- \\ & 14106 \cdot 37) \end{aligned}$	$\begin{aligned} & 7798 \cdot 31 \\ & (6182 \cdot 46- \\ & 10649 \cdot 41) \end{aligned}$	$\begin{aligned} & 5309 \cdot 20 \\ & (4176.87- \\ & 7291 \cdot 45) \end{aligned}$	$\begin{aligned} & 12187.02 \\ & (9652.10- \\ & 16660.62) \end{aligned}$	$\begin{gathered} 230 \cdot 61 \\ (212 \cdot 53-253 \cdot 39) \end{gathered}$	$\begin{gathered} 144 \cdot 68 \\ (115 \cdot 16-196 \cdot 43) \end{gathered}$	$\begin{gathered} 98 \cdot 31 \\ (77.65-134.04) \end{gathered}$	$\begin{aligned} & 225 \cdot 12 \\ & (178.49- \\ & 307.18) \end{aligned}$
Maternal haemorrhage	$\begin{gathered} 4018 \cdot 54 \\ (3248 \cdot 03-4975 \cdot 76) \end{gathered}$	$\begin{gathered} 2257 \cdot 76 \\ (1643 \cdot 05-3099 \cdot 19) \end{gathered}$	$\begin{gathered} 1588.79 \\ (1144 \cdot 08-2172 \cdot 40) \end{gathered}$	$\begin{gathered} 3595 \cdot 49 \\ (2643 \cdot 75-4943 \cdot 59) \end{gathered}$	$\begin{gathered} 72 \cdot 40 \\ (58 \cdot 51-89 \cdot 12) \end{gathered}$	$\begin{gathered} 41 \cdot 78 \\ (30 \cdot 54-57 \cdot 34) \end{gathered}$	$\begin{gathered} 29 \cdot 31 \\ (21 \cdot 20-40 \cdot 28) \end{gathered}$	$\begin{gathered} 66 \cdot 23 \\ (49 \cdot 16-90 \cdot 46) \end{gathered}$
Maternal sepsis and other maternal infections	$\begin{gathered} 1093 \cdot 59 \\ (789 \cdot 31-1478 \cdot 23) \end{gathered}$	$\begin{gathered} 568.50 \\ (376.83-841 \cdot 55) \end{gathered}$	$\begin{gathered} 389 \cdot 11 \\ (258 \cdot 50-575 \cdot 18) \end{gathered}$	$\begin{gathered} 891 \cdot 03 \\ (583 \cdot 79-1295 \cdot 11) \end{gathered}$	$\begin{gathered} 19 \cdot 53 \\ (14 \cdot 29-26 \cdot 19) \end{gathered}$	$\begin{gathered} 10 \cdot 43 \\ (6 \cdot 96-15 \cdot 15) \end{gathered}$	$\begin{gathered} 7 \cdot 13 \\ (4 \cdot 75-10 \cdot 30) \end{gathered}$	$\begin{gathered} 16 \cdot 26 \\ (10.81-23 \cdot 56) \end{gathered}$
Maternal hypertensive disorders	$\begin{gathered} 1780 \cdot 77 \\ (1360 \cdot 65-2265 \cdot 89) \end{gathered}$	$\begin{gathered} 1250 \cdot 12 \\ (896 \cdot 33-1796 \cdot 74) \end{gathered}$	$\begin{gathered} 792 \cdot 36 \\ (569 \cdot 70-1148 \cdot 96) \end{gathered}$	$\begin{gathered} 1907 \cdot 78 \\ (1367 \cdot 86-2750 \cdot 31) \end{gathered}$	$\begin{gathered} 31.60 \\ (24.46-39.84) \end{gathered}$	$\begin{gathered} 22 \cdot 59 \\ (16 \cdot 28-32 \cdot 67) \end{gathered}$	$\begin{gathered} 14 \cdot 32 \\ (10 \cdot 29-20 \cdot 90) \end{gathered}$	$\begin{gathered} 34 \cdot 32 \\ (24 \cdot 75-49 \cdot 71) \end{gathered}$
Maternal obstructed labour and uterine rupture	$\begin{gathered} 553 \cdot 65 \\ (369 \cdot 57-798 \cdot 39) \end{gathered}$	$\begin{gathered} 379 \cdot 32 \\ (236 \cdot 18-586 \cdot 43) \end{gathered}$	$\begin{gathered} 242 \cdot 75 \\ (152 \cdot 46-374 \cdot 34) \end{gathered}$	$\begin{gathered} 625 \cdot 08 \\ (391 \cdot 74-963 \cdot 69) \end{gathered}$	$\begin{gathered} 10 \cdot 25 \\ (6.84-14 \cdot 57) \end{gathered}$	$\begin{gathered} 7 \cdot 14 \\ (4 \cdot 44-10 \cdot 99) \end{gathered}$	$\begin{array}{r} 4.58 \\ (2 \cdot 86-7 \cdot 17) \end{array}$	$\begin{gathered} 11 \cdot 73 \\ (7 \cdot 36-17.88) \end{gathered}$
Maternal abortion, miscarriage, and ectopic pregnancy	$\begin{gathered} 1081 \cdot 93 \\ (796 \cdot 17-1466 \cdot 60) \end{gathered}$	$\begin{gathered} 669.82 \\ (421 \cdot 69-1034 \cdot 83) \end{gathered}$	$\begin{gathered} 480 \cdot 38 \\ (305 \cdot 32-736 \cdot 48) \end{gathered}$	$\begin{gathered} 1078.37 \\ (678.31-1661 \cdot 59) \end{gathered}$	$\begin{gathered} 19.70 \\ (14.56-26 \cdot 12) \end{gathered}$	$\begin{gathered} 12 \cdot 42 \\ (7.89-19 \cdot 21) \end{gathered}$	$\begin{gathered} 8.93 \\ (5.71-13.62) \end{gathered}$	$\begin{gathered} 19.91 \\ (12.65-30.74) \end{gathered}$
Indirect maternal deaths	$\begin{gathered} 1987.87 \\ (1463 \cdot 84-2619 \cdot 81) \end{gathered}$	$\begin{gathered} 1196 \cdot 12 \\ (805 \cdot 84-1823 \cdot 06) \end{gathered}$	$\begin{gathered} 791 \cdot 55 \\ (533 \cdot 07-1211 \cdot 43) \end{gathered}$	$\begin{gathered} 1774 \cdot 10 \\ (1200 \cdot 07-2639 \cdot 78) \end{gathered}$	$\begin{gathered} 35 \cdot 74 \\ (26 \cdot 39-46 \cdot 78) \end{gathered}$	$\begin{gathered} 22 \cdot 18 \\ (15 \cdot 00-33 \cdot 40) \end{gathered}$	$\begin{gathered} 14 \cdot 65 \\ (9 \cdot 89-22 \cdot 15) \end{gathered}$	$\begin{gathered} 32 \cdot 73 \\ (22 \cdot 39-48 \cdot 55) \end{gathered}$
Late maternal deaths	$\begin{gathered} 228 \cdot 46 \\ (134 \cdot 55-370 \cdot 93) \end{gathered}$	$\begin{gathered} 105 \cdot 43 \\ (58 \cdot 28-177 \cdot 79) \end{gathered}$	$\begin{gathered} 71 \cdot 14 \\ (39 \cdot 77-120 \cdot 02) \end{gathered}$	$\begin{gathered} 159 \cdot 24 \\ (87 \cdot 59-269 \cdot 43) \end{gathered}$	$\begin{gathered} 4 \cdot 11 \\ (2 \cdot 45-6 \cdot 55) \end{gathered}$	$\begin{array}{r} 1.96 \\ (1.08-3.30) \end{array}$	$\begin{gathered} 1.32 \\ (0.74-2.20) \end{gathered}$	$\begin{gathered} 2.95 \\ (1.59-5.04) \end{gathered}$
(Table continues on next page)								

Global Health Metrics

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Maternal deaths aggravated by HIV/AIDS	$\begin{gathered} 105 \cdot 42 \\ (66 \cdot 70-142 \cdot 91) \end{gathered}$	$\begin{gathered} 430 \cdot 32 \\ (219 \cdot 73-765 \cdot 51) \end{gathered}$	$\begin{gathered} 253 \cdot 70 \\ (108 \cdot 50-475 \cdot 83) \end{gathered}$	$\begin{gathered} 763 \cdot 37 \\ (401 \cdot 65-1499 \cdot 63) \end{gathered}$	$\begin{array}{r} 2.02 \\ (1.28-2 \cdot 73) \end{array}$	$\begin{gathered} 8 \cdot 53 \\ (4 \cdot 34-14 \cdot 58) \end{gathered}$	$\begin{array}{r} 4 \cdot 98 \\ (2 \cdot 30-9 \cdot 27) \end{array}$	$\begin{gathered} 15 \cdot 03 \\ (8 \cdot 24-28.61) \end{gathered}$
Other maternal disorders	$\begin{gathered} 1967 \cdot 54 \\ (1475 \cdot 03-2540 \cdot 02) \end{gathered}$	$\begin{gathered} 940 \cdot 92 \\ (640 \cdot 79-1337 \cdot 36) \end{gathered}$	$\begin{gathered} 699 \cdot 42 \\ (483 \cdot 11-998.06) \end{gathered}$	$\begin{gathered} 1392 \cdot 56 \\ (943.04-1990 \cdot 31) \end{gathered}$	$\begin{gathered} 35 \cdot 26 \\ (26 \cdot 84-45 \cdot 20) \end{gathered}$	$\begin{gathered} 17.64 \\ (12.04-25 \cdot 17) \end{gathered}$	$\begin{gathered} 13.09 \\ (9 \cdot 19-18 \cdot 56) \end{gathered}$	$\begin{gathered} 25.96 \\ (17.77-36.89) \end{gathered}$
Neonatal disorders	$\begin{aligned} & 149832 \cdot 24 \\ & (142306 \cdot 49- \\ & 157779 \cdot 95) \end{aligned}$	$\begin{aligned} & 71532 \cdot 70 \\ & (50184 \cdot 26- \\ & 101689 \cdot 62) \end{aligned}$	$\begin{aligned} & 46226 \cdot 36 \\ & (32810 \cdot 65- \\ & 65649 \cdot 90) \end{aligned}$	$\begin{aligned} & 125242 \cdot 45 \\ & (89349.23- \\ & 176163.80) \end{aligned}$	$\begin{aligned} & 1731.04 \\ & (1644 \cdot 11- \\ & 1822.86) \end{aligned}$	$\begin{aligned} & 826.50 \\ & (580.03- \\ & 1174.69) \end{aligned}$	$\begin{gathered} 534 \cdot 13 \\ (379 \cdot 23-758 \cdot 40) \end{gathered}$	$\begin{aligned} & 1447 \cdot 02 \\ & (1032.61- \\ & 2035 \cdot 11) \end{aligned}$
Neonatal preterm birth complications	$\begin{aligned} & 53703 \cdot 14 \\ & (49224 \cdot 85- \\ & 58402 \cdot 33) \end{aligned}$	$\begin{aligned} & \quad 23071 \cdot 13 \\ & (17788.51- \\ & 28231 \cdot 40) \end{aligned}$	$\begin{aligned} & \quad 13767.25 \\ & (10898.61- \\ & 16562.02) \end{aligned}$	$\begin{aligned} & 41394 \cdot 88 \\ & (32259 \cdot 50- \\ & 50431 \cdot 42) \end{aligned}$	$\begin{gathered} 620 \cdot 40 \\ (568.68-674.66) \end{gathered}$	$\begin{gathered} 266 \cdot 53 \\ (205 \cdot 53-326 \cdot 14) \end{gathered}$	$\begin{gathered} 159 \cdot 06 \\ (125 \cdot 91-191 \cdot 37) \end{gathered}$	$\begin{gathered} 478 \cdot 20 \\ (372 \cdot 69-582 \cdot 54) \end{gathered}$
Neonatal encephalopathy due to birth asphyxia and trauma	$\begin{aligned} & 45435 \cdot 32 \\ & (40396 \cdot 97- \\ & 49877 \cdot 36) \end{aligned}$	$\begin{aligned} & \quad 20742 \cdot 99 \\ & (11639 \cdot 24- \\ & 35181 \cdot 47) \end{aligned}$	$\begin{aligned} & 13856.95 \\ & (8078 \cdot 40- \\ & 22995 \cdot 26) \end{aligned}$	$\begin{aligned} & 34654 \cdot 55 \\ & (20226 \cdot 60- \\ & 57283 \cdot 90) \end{aligned}$	$\begin{gathered} 524 \cdot 89 \\ (466 \cdot 66-576 \cdot 25) \end{gathered}$	$\begin{gathered} 239 \cdot 66 \\ (134 \cdot 53-406 \cdot 40) \end{gathered}$	$\begin{gathered} 160 \cdot 10 \\ (93 \cdot 35-265 \cdot 66) \end{gathered}$	$\begin{gathered} 400 \cdot 38 \\ (233 \cdot 70-661 \cdot 74) \end{gathered}$
Neonatal sepsis and other neonatal infections	$\begin{aligned} & \quad 21029.06 \\ & (17740 \cdot 28- \\ & 27500.03) \end{aligned}$	$\begin{aligned} & 15385 \cdot 72 \\ & (10734 \cdot 18- \\ & 22527.89) \end{aligned}$	$\begin{aligned} & \quad 9832 \cdot 61 \\ & (6980 \cdot 69- \\ & 14274 \cdot 10) \end{aligned}$	$\begin{aligned} & 25900 \cdot 96 \\ & (18157.23- \\ & 38004.22) \end{aligned}$	$\begin{gathered} 242 \cdot 99 \\ (205 \cdot 03-317 \cdot 71) \end{gathered}$	$\begin{gathered} 177.79 \\ (124.06-260 \cdot 29) \end{gathered}$	$\begin{gathered} 113 \cdot 63 \\ (80 \cdot 69-164 \cdot 92) \end{gathered}$	$\begin{aligned} & \quad 299 \cdot 30 \\ & (209.84- \\ & 439.07) \end{aligned}$
Haemolytic disease and other neonatal jaundice	$\begin{gathered} 4258 \cdot 58 \\ (3689 \cdot 17-4937 \cdot 32) \end{gathered}$	$\begin{gathered} 1167.54 \\ \text { (753.90-1833.25) } \end{gathered}$	$\begin{gathered} 783 \cdot 30 \\ (517.92-1228 \cdot 71) \end{gathered}$	$\begin{gathered} 2248 \cdot 73 \\ (1444 \cdot 02-3482.05) \end{gathered}$	$\begin{gathered} 49 \cdot 21 \\ (42 \cdot 63-57 \cdot 04) \end{gathered}$	$\begin{gathered} 13 \cdot 49 \\ (8.71-21 \cdot 18) \end{gathered}$	$\begin{gathered} 9 \cdot 05 \\ (5 \cdot 9-14 \cdot 20) \end{gathered}$	$\begin{gathered} 25 \cdot 98 \\ (16 \cdot 69-40 \cdot 23) \end{gathered}$
Other neonatal disorders	$\begin{aligned} & \quad 25406 \cdot 13 \\ & (22984.87- \\ & 27937 \cdot 49) \end{aligned}$	$\begin{gathered} 11165 \cdot 32 \\ (7419 \cdot 11-17176 \cdot 36) \end{gathered}$	$\begin{aligned} & \quad 7986 \cdot 25 \\ & (5468 \cdot 16- \\ & 12253 \cdot 82) \end{aligned}$	$\begin{aligned} & 21043 \cdot 32 \\ & (13945 \cdot 66- \\ & 31869 \cdot 47) \end{aligned}$	$\begin{gathered} 293 \cdot 56 \\ (265 \cdot 56-322 \cdot 79) \end{gathered}$	$\begin{gathered} 129.03 \\ (85.77-198.47) \end{gathered}$	$\begin{gathered} 92 \cdot 29 \\ (63 \cdot 21-141 \cdot 56) \end{gathered}$	$\begin{gathered} 243 \cdot 16 \\ (161 \cdot 18-368 \cdot 19) \end{gathered}$
Nutritional deficiencies	$\begin{aligned} & 19504.73 \\ & (17125 \cdot 04- \\ & 22894 \cdot 16) \end{aligned}$	$\begin{aligned} & 8986.65 \\ & (7277.02- \\ & 11129.94) \end{aligned}$	$\begin{aligned} & \quad 6937.91 \\ & \text { (5770.91- } \\ & 8577.33) \end{aligned}$	$\begin{aligned} & 12969 \cdot 33 \\ & (10436 \cdot 93- \\ & 16068 \cdot 38) \end{aligned}$	$\begin{aligned} & 368.11 \\ & (334.00- \\ & 422.69) \end{aligned}$	$\begin{gathered} 327 \cdot 61 \\ (288 \cdot 44-384 \cdot 44) \end{gathered}$	$\begin{aligned} & 318.31 \\ & (288.04- \\ & 364 \cdot 30) \end{aligned}$	$\begin{aligned} & 364.60 \\ & (313 \cdot 47- \\ & 433.86) \end{aligned}$
Protein-energy malnutrition	$\begin{aligned} & 17513 \cdot 99 \\ & (15224.67- \\ & 20732.25) \end{aligned}$	$\begin{gathered} 7108.68 \\ (5653.91-8771.70) \end{gathered}$	$\begin{aligned} & 5303.04 \\ & (4356.63- \\ & 6438.46) \end{aligned}$	$\begin{aligned} & 10617 \cdot 12 \\ & (8432 \cdot 41- \\ & 13107 \cdot 99) \end{aligned}$	$\begin{gathered} 308 \cdot 39 \\ (276 \cdot 86-355 \cdot 83) \end{gathered}$	$\begin{gathered} 247 \cdot 26 \\ (216 \cdot 27-284 \cdot 24) \end{gathered}$	$\begin{gathered} 241 \cdot 13 \\ (217 \cdot 81-270 \cdot 52) \end{gathered}$	$\begin{gathered} 277 \cdot 70 \\ (238 \cdot 53-327 \cdot 29) \end{gathered}$
lodine deficiency	$\begin{gathered} 102 \cdot 59 \\ (66 \cdot 06-168 \cdot 78) \end{gathered}$	$\begin{gathered} 246 \cdot 57 \\ (145 \cdot 69-434.01) \end{gathered}$	$\begin{gathered} 185 \cdot 86 \\ (116.03-285 \cdot 81) \end{gathered}$	$\begin{gathered} 367.03 \\ (196.01-662 \cdot 26) \end{gathered}$	$\begin{array}{r} 2.23 \\ (1.62-3.14) \end{array}$	$\begin{gathered} 9.83 \\ (5 \cdot 88-15 \cdot 74) \end{gathered}$	$\begin{gathered} 8.92 \\ (5.12-15 \cdot 00) \end{gathered}$	$\begin{gathered} 11 \cdot 62 \\ (7 \cdot 14-17 \cdot 83) \end{gathered}$
Dietary iron deficiency	$\begin{gathered} 114 \cdot 38 \\ (101 \cdot 14-134 \cdot 79) \end{gathered}$	$\begin{gathered} 114 \cdot 98 \\ (96 \cdot 87-153 \cdot 19) \end{gathered}$	$\begin{gathered} 107 \cdot 09 \\ (90 \cdot 30-147 \cdot 39) \end{gathered}$	$\begin{gathered} 129.20 \\ (108.78-168.09) \end{gathered}$	$\begin{array}{r} 2.97 \\ (2.52-3.75) \end{array}$	$\begin{gathered} 4 \cdot 14 \\ (3 \cdot 42-6 \cdot 38) \end{gathered}$	$\begin{gathered} 4.21 \\ (3.44-6.62) \end{gathered}$	$\begin{gathered} 4 \cdot 17 \\ (3 \cdot 46-6 \cdot 34) \end{gathered}$
Other nutritional deficiencies	$\begin{gathered} 1773 \cdot 77 \\ (1481 \cdot 20-2040 \cdot 79) \end{gathered}$	$\begin{gathered} 1516 \cdot 43 \\ (1186 \cdot 34-2061 \cdot 48) \end{gathered}$	$\begin{gathered} 1341 \cdot 93 \\ (1064 \cdot 60-1792 \cdot 05) \end{gathered}$	$\begin{gathered} 1855 \cdot 99 \\ (1463 \cdot 36-2463 \cdot 38) \end{gathered}$	$\begin{gathered} 54 \cdot 51 \\ (46 \cdot 04-64 \cdot 97) \end{gathered}$	$\begin{gathered} 66 \cdot 37 \\ (54 \cdot 44-88 \cdot 52) \end{gathered}$	$\begin{gathered} 64 \cdot 05 \\ (52 \cdot 88-83 \cdot 78) \end{gathered}$	$\begin{gathered} 71 \cdot 11 \\ (57 \cdot 82-94 \cdot 48) \end{gathered}$
Other communicable, maternal, neonatal, and nutritional diseases	$\begin{aligned} & 19299 \cdot 64 \\ & (14992 \cdot 73- \\ & 24689 \cdot 33) \end{aligned}$	$\begin{aligned} & 9533 \cdot 83 \\ & (7866 \cdot 60- \\ & 11573 \cdot 30) \end{aligned}$	$\begin{aligned} & \quad 7980.87 \\ & (6693.68- \\ & 9500.80) \end{aligned}$	$\begin{aligned} & 13178.60 \\ & (10557.77- \\ & 16503.73) \end{aligned}$	$\begin{gathered} 332 \cdot 68 \\ (281 \cdot 00-395 \cdot 76) \end{gathered}$	$\begin{gathered} 258 \cdot 70 \\ (230 \cdot 29-291 \cdot 30) \end{gathered}$	$\begin{gathered} 237 \cdot 92 \\ (212 \cdot 52-265 \cdot 93) \end{gathered}$	$\begin{aligned} & 310 \cdot 54 \\ & (271 \cdot 66- \\ & 355 \cdot 70) \end{aligned}$
Sexually transmitted diseases excluding HIV	$\begin{aligned} & \quad 9470 \cdot 11 \\ & (5539 \cdot 12- \\ & 14702 \cdot 01) \end{aligned}$	$\begin{gathered} 2353 \cdot 54 \\ (1286 \cdot 32-3755 \cdot 26) \end{gathered}$	$\begin{gathered} 1816 \cdot 26 \\ (1018 \cdot 33-2852 \cdot 33) \end{gathered}$	$\begin{gathered} 3880 \cdot 23 \\ (2016.63-6290 \cdot 97) \end{gathered}$	$\begin{gathered} 115 \cdot 76 \\ (69 \cdot 90-176 \cdot 96) \end{gathered}$	$\begin{gathered} 32 \cdot 36 \\ (19.79-48.92) \end{gathered}$	$\begin{gathered} 25 \cdot 93 \\ (16.32-38.06) \end{gathered}$	$\begin{gathered} 50.48 \\ (28.85-78.95) \end{gathered}$
Syphilis	$\begin{aligned} & \quad 9228 \cdot 17 \\ & (5288.03- \\ & 14456 \cdot 12) \end{aligned}$	$\begin{gathered} 2149 \cdot 74 \\ (1091 \cdot 03-3541 \cdot 37) \end{gathered}$	$\begin{gathered} 1626 \cdot 93 \\ (849.93-2636 \cdot 56) \end{gathered}$	$\begin{gathered} 3649 \cdot 30 \\ (1799 \cdot 73-6059 \cdot 79) \end{gathered}$	$\begin{gathered} 109 \cdot 57 \\ (63 \cdot 52-170 \cdot 78) \end{gathered}$	$\begin{gathered} 26 \cdot 51 \\ (14.05-42 \cdot 90) \end{gathered}$	$\begin{gathered} 20 \cdot 32 \\ (11 \cdot 08-32 \cdot 27) \end{gathered}$	$\begin{gathered} 44 \cdot 15 \\ (22 \cdot 43-72 \cdot 29) \end{gathered}$
Chlamydial infection	$\begin{array}{r} 46.85 \\ (39.26-53 \cdot 45) \end{array}$	$\begin{array}{r} 39.71 \\ (31 \cdot 09-51 \cdot 74) \end{array}$	$\begin{array}{r} 36.81 \\ (28.66-48 \cdot 13) \end{array}$	$\begin{gathered} 45 \cdot 11 \\ (35 \cdot 47-57 \cdot 83) \end{gathered}$	$\begin{array}{r} 1 \cdot 19 \\ (0.98-1 \cdot 33) \end{array}$	$\begin{gathered} 1 \cdot 14 \\ (0.93-1 \cdot 40) \end{gathered}$	$\begin{gathered} 1 \cdot 10 \\ (0.89-1 \cdot 35) \end{gathered}$	$\begin{gathered} 1.23 \\ (1.01-1.50) \end{gathered}$
Gonococcal infection	$\begin{gathered} 127 \cdot 41 \\ (105 \cdot 62-144 \cdot 48) \end{gathered}$	$\begin{gathered} 108 \cdot 22 \\ (83.96-141 \cdot 93) \end{gathered}$	$\begin{gathered} 100 \cdot 90 \\ (78 \cdot 10-133 \cdot 09) \end{gathered}$	$\begin{gathered} 121 \cdot 99 \\ (94 \cdot 78-159 \cdot 15) \end{gathered}$	$\begin{array}{r} 3 \cdot 37 \\ (2 \cdot 77-3 \cdot 80) \end{array}$	$\begin{gathered} 3.24 \\ (2 \cdot 62-4.04) \end{gathered}$	$\begin{gathered} 3 \cdot 13 \\ (2 \cdot 52-3 \cdot 92) \end{gathered}$	$\begin{gathered} 3 \cdot 48 \\ (2 \cdot 80-4 \cdot 33) \end{gathered}$
Other sexually transmitted infections	$\begin{array}{r} 67.69 \\ (56.52-76.94) \end{array}$	$\begin{array}{r} 55 \cdot 87 \\ (43.17-74.01) \end{array}$	$\begin{array}{r} 51.61 \\ (39.68-68.71) \end{array}$	$\begin{gathered} 63 \cdot 83 \\ (49 \cdot 15-83 \cdot 57) \end{gathered}$	$\begin{array}{r} 1.63 \\ (1.35-1.83) \end{array}$	$\begin{array}{r} 1.46 \\ (1.17-1.86) \end{array}$	$\begin{array}{r} 1.39 \\ (1.11-1.76) \end{array}$	$\begin{gathered} 1.62 \\ (1.30-2.04) \end{gathered}$
Acute hepatitis	$\begin{gathered} 5497 \cdot 93 \\ (5228 \cdot 66-5778 \cdot 42) \end{gathered}$	$\begin{gathered} 3651 \cdot 32 \\ (3157 \cdot 93-4232 \cdot 51) \end{gathered}$	$\begin{gathered} 3315 \cdot 09 \\ (2847 \cdot 40-3878 \cdot 33) \end{gathered}$	$\begin{gathered} 4489 \cdot 15 \\ (3904 \cdot 65-5174 \cdot 41) \end{gathered}$	$\begin{gathered} 134 \cdot 04 \\ (127 \cdot 82-139 \cdot 97) \end{gathered}$	$\begin{gathered} 120 \cdot 68 \\ (107 \cdot 87-134 \cdot 84) \end{gathered}$	$\begin{gathered} 113 \cdot 68 \\ (100 \cdot 93-129 \cdot 30) \end{gathered}$	$\begin{gathered} 139 \cdot 04 \\ (125 \cdot 51-154 \cdot 03) \end{gathered}$
Acute hepatitis A	$\begin{gathered} 378.87 \\ (302.70-458.94) \end{gathered}$	$\begin{gathered} 97.01 \\ (69 \cdot 37-127.62) \end{gathered}$	$\begin{gathered} 82.06 \\ (58.49-108.20) \end{gathered}$	$\begin{gathered} 143.00 \\ (96.92-193.09) \end{gathered}$	$\begin{array}{r} 5 \cdot 25 \\ (4 \cdot 34-6 \cdot 23) \end{array}$	$\begin{gathered} 2.24 \\ (1.72-2.86) \end{gathered}$	$\begin{gathered} 2.03 \\ (1.56-2.65) \end{gathered}$	$\begin{gathered} 2.85 \\ (2.14-3.63) \end{gathered}$
Acute hepatitis B	$\begin{gathered} 3658 \cdot 41 \\ (3417 \cdot 23-3917 \cdot 82) \end{gathered}$	$\begin{gathered} 2763 \cdot 19 \\ (2368 \cdot 78-3243 \cdot 28) \end{gathered}$	$\begin{gathered} 2498.99 \\ (2121 \cdot 17-2968 \cdot 49) \end{gathered}$	$\begin{gathered} 3371 \cdot 88 \\ (2924 \cdot 42-3945 \cdot 13) \end{gathered}$	$\begin{gathered} 100 \cdot 28 \\ (94 \cdot 01-106 \cdot 30) \end{gathered}$	$\begin{gathered} 92.87 \\ (80.77-107.08) \end{gathered}$	$\begin{gathered} 86.46 \\ (74.58-100.76) \end{gathered}$	$\begin{gathered} 108.68 \\ (95.61-123.05) \end{gathered}$
Acute hepatitis C	$\begin{array}{r} 77 \cdot 22 \\ (60 \cdot 92-97 \cdot 72) \end{array}$	$\begin{gathered} 87 \cdot 58 \\ (64 \cdot 60-116 \cdot 78) \end{gathered}$	$\begin{gathered} 82 \cdot 14 \\ (60 \cdot 30-110 \cdot 08) \end{gathered}$	$\begin{gathered} 95 \cdot 12 \\ (70 \cdot 54-126 \cdot 20) \end{gathered}$	$\begin{array}{r} 2.46 \\ (1.87-3.24) \end{array}$	$\begin{gathered} 3 \cdot 43 \\ (2 \cdot 54-4 \cdot 60) \end{gathered}$	$\begin{gathered} 3 \cdot 32 \\ (2 \cdot 43-4 \cdot 50) \end{gathered}$	$\begin{gathered} 3 \cdot 53 \\ (2 \cdot 60-4 \cdot 75) \end{gathered}$
Acute hepatitis E	$\begin{gathered} 1383 \cdot 43 \\ (1195 \cdot 82-1570 \cdot 28) \end{gathered}$	$\begin{gathered} 703 \cdot 54 \\ (552 \cdot 00-884 \cdot 92) \end{gathered}$	$\begin{gathered} 651 \cdot 91 \\ (508 \cdot 79-829 \cdot 67) \end{gathered}$	$\begin{gathered} 879 \cdot 16 \\ (692 \cdot 70-1101 \cdot 35) \end{gathered}$	$\begin{gathered} 26 \cdot 05 \\ (22 \cdot 11-30 \cdot 43) \end{gathered}$	$\begin{gathered} 22 \cdot 14 \\ (17 \cdot 29-28 \cdot 13) \end{gathered}$	$\begin{gathered} 21.86 \\ (16.77-28.03) \end{gathered}$	$\begin{gathered} 23.98 \\ (18 \cdot 90-29.98) \end{gathered}$

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Other unspecified infectious diseases	$\begin{gathered} 4331 \cdot 60 \\ (2650 \cdot 24-5920 \cdot 94) \end{gathered}$	$\begin{gathered} 3528.96 \\ (2635 \cdot 59-4463 \cdot 68) \end{gathered}$	$\begin{gathered} 2849 \cdot 52 \\ (2175 \cdot 02-3500 \cdot 35) \end{gathered}$	$\begin{gathered} 4809 \cdot 21 \\ (3470 \cdot 38-6222 \cdot 55) \end{gathered}$	$\begin{gathered} 82 \cdot 88 \\ (56 \cdot 22-103 \cdot 72) \end{gathered}$	$\begin{gathered} 105 \cdot 66 \\ (84 \cdot 27-122 \cdot 39) \end{gathered}$	$\begin{gathered} 98 \cdot 30 \\ (79 \cdot 12-113.04) \end{gathered}$	$\begin{gathered} 121 \cdot 02 \\ (93 \cdot 48-142 \cdot 40) \end{gathered}$
Non-communicable diseases	$\begin{aligned} & 819437 \cdot 12 \\ & (804360.07- \\ & 836584.77) \end{aligned}$	$\begin{aligned} & 1029256 \cdot 35 \\ & (877741 \cdot 47- \\ & 1195845 \cdot 93) \end{aligned}$	$\begin{aligned} & 819015 \cdot 96 \\ & (700609 \cdot 53- \\ & 945763 \cdot 35) \end{aligned}$	$\begin{aligned} & 1356608 \cdot 44 \\ & (1140440.87- \\ & 1568374 \cdot 81) \end{aligned}$	$\begin{aligned} & 39529 \cdot 59 \\ & (38805 \cdot 36- \\ & 40253 \cdot 20) \end{aligned}$	$\begin{aligned} & 60993 \cdot 19 \\ & (51380 \cdot 73- \\ & 70111 \cdot 98) \end{aligned}$	$\begin{aligned} & 50805 \cdot 98 \\ & (43602.80- \\ & 57387.60) \end{aligned}$	$\begin{aligned} & 76275 \cdot 86 \\ & (64410 \cdot 32- \\ & 86415 \cdot 63) \end{aligned}$
Neoplasms	$\begin{aligned} & 208041 \cdot 17 \\ & (203600 \cdot 04- \\ & 212089 \cdot 56) \end{aligned}$	$\begin{aligned} & 295591.07 \\ & (259388.84- \\ & 336707.00) \end{aligned}$	$\begin{aligned} & 258069.82 \\ & (228893 \cdot 99- \\ & 292485 \cdot 35) \end{aligned}$	$\begin{aligned} & 350744 \cdot 38 \\ & (298153 \cdot 22- \\ & 407340 \cdot 25) \end{aligned}$	$\begin{aligned} & 8927.40 \\ & (8754.97- \\ & 9089.24) \end{aligned}$	$\begin{aligned} & 14880 \cdot 85 \\ & (13225 \cdot 95- \\ & 16619.79) \end{aligned}$	$\begin{aligned} & 13311 \cdot 52 \\ & (11909 \cdot 83- \\ & 14907.64) \end{aligned}$	$\begin{aligned} & 17115 \cdot 94 \\ & (14775 \cdot 33- \\ & 19646 \cdot 90) \end{aligned}$
Lip and oral cavity cancer	$\begin{gathered} 4492 \cdot 64 \\ (4287 \cdot 46-4677 \cdot 97) \end{gathered}$	$\begin{gathered} 7162 \cdot 57 \\ (4962 \cdot 19-9195 \cdot 49) \end{gathered}$	$\begin{gathered} 5315 \cdot 46 \\ (3882 \cdot 43-6578 \cdot 28) \end{gathered}$	$\begin{aligned} & 9476 \cdot 18 \\ & (6340 \cdot 46- \\ & 12321 \cdot 76) \end{aligned}$	$\begin{gathered} 176 \cdot 49 \\ (169 \cdot 18-183 \cdot 02) \end{gathered}$	$\begin{gathered} 308 \cdot 69 \\ (212 \cdot 18-394 \cdot 58) \end{gathered}$	$\begin{gathered} 239 \cdot 79 \\ (173 \cdot 39-299 \cdot 24) \end{gathered}$	$\begin{gathered} 393 \cdot 08 \\ (264 \cdot 26-510 \cdot 65) \end{gathered}$
Nasopharynx cancer	$\begin{gathered} 1866 \cdot 39 \\ (1770 \cdot 55-1967 \cdot 17) \end{gathered}$	$\begin{gathered} 2644 \cdot 37 \\ (1942 \cdot 11-3472 \cdot 28) \end{gathered}$	$\begin{gathered} 1819 \cdot 45 \\ (1374 \cdot 36-2322 \cdot 14) \end{gathered}$	$\begin{gathered} 3951 \cdot 95 \\ (2714 \cdot 65-5623 \cdot 44) \end{gathered}$	$\begin{gathered} 63.75 \\ (60.63-67.02) \end{gathered}$	$\begin{gathered} 102 \cdot 71 \\ (75 \cdot 07-135 \cdot 47) \end{gathered}$	$\begin{gathered} 71 \cdot 93 \\ (53 \cdot 88-91 \cdot 14) \end{gathered}$	$\begin{gathered} 150 \cdot 02 \\ (102 \cdot 78-217 \cdot 92) \end{gathered}$
Other pharynx cancer	$\begin{gathered} 3151 \cdot 70 \\ (2895 \cdot 96-3333 \cdot 59) \end{gathered}$	$\begin{gathered} 5051 \cdot 60 \\ (3607 \cdot 69-6837 \cdot 82) \end{gathered}$	$\begin{gathered} 4362 \cdot 45 \\ (3202 \cdot 40-5683 \cdot 25) \end{gathered}$	$\begin{gathered} 5323 \cdot 45 \\ (3755 \cdot 52-7308 \cdot 34) \end{gathered}$	$\begin{gathered} 118 \cdot 63 \\ (109 \cdot 33-125 \cdot 14) \end{gathered}$	$\begin{gathered} 216 \cdot 12 \\ (152 \cdot 75-286 \cdot 31) \end{gathered}$	$\begin{gathered} 192 \cdot 11 \\ (140 \cdot 71-248 \cdot 37) \end{gathered}$	$\begin{gathered} 218 \cdot 15 \\ (153 \cdot 05-293 \cdot 43) \end{gathered}$
Oesophageal cancer	$\begin{gathered} 9164 \cdot 59 \\ (8913 \cdot 46-9444 \cdot 10) \end{gathered}$	$\begin{aligned} & 14987 \cdot 57 \\ & (9099 \cdot 89- \\ & 24302 \cdot 18) \end{aligned}$	$\begin{aligned} & 10440 \cdot 66 \\ & (6949 \cdot 61- \\ & 16150 \cdot 58) \end{aligned}$	$\begin{aligned} & 22132 \cdot 59 \\ & (12409 \cdot 43- \\ & 38688 \cdot 61) \end{aligned}$	$\begin{gathered} 414 \cdot 89 \\ (404 \cdot 39-427 \cdot 18) \end{gathered}$	$\begin{gathered} 766.50 \\ (488.72-1285 \cdot 91) \end{gathered}$	$\begin{gathered} 550 \cdot 23 \\ (381.71-856.95) \end{gathered}$	$\begin{aligned} & 1090 \cdot 35 \\ & (630 \cdot 98- \\ & 1917.59) \end{aligned}$
Stomach cancer	$\begin{aligned} & \quad 18045 \cdot 32 \\ & (17580.05- \\ & 18535.04) \end{aligned}$	$\begin{aligned} & \quad 18058.20 \\ & (15116.92- \\ & 22424.00) \end{aligned}$	$\begin{aligned} & 15954 \cdot 31 \\ & (13600 \cdot 28- \\ & 19618.04) \end{aligned}$	$\begin{aligned} & \quad 21012 \cdot 28 \\ & (17403 \cdot 68- \\ & 25661 \cdot 16) \end{aligned}$	$\begin{gathered} 834 \cdot 17 \\ (813 \cdot 54-855 \cdot 46) \end{gathered}$	$\begin{gathered} 990 \cdot 23 \\ (830 \cdot 57-1230 \cdot 00) \end{gathered}$	$\begin{gathered} 891 \cdot 17 \\ (761 \cdot 40-1101 \cdot 76) \end{gathered}$	$\begin{aligned} & 1112 \cdot 24 \\ & (924 \cdot 89- \\ & 1391 \cdot 95) \end{aligned}$
Colon and rectum cancer	$\begin{aligned} & \quad 16597.93 \\ & (15919 \cdot 45- \\ & 17213.66) \end{aligned}$	$\begin{aligned} & \quad 26400 \cdot 77 \\ & (19633 \cdot 12- \\ & 37145 \cdot 60) \end{aligned}$	$\begin{aligned} & 22132 \cdot 48 \\ & (16739 \cdot 89- \\ & 29961.84) \end{aligned}$	$\begin{aligned} & 31331 \cdot 86 \\ & (23624 \cdot 71- \\ & 44545 \cdot 96) \end{aligned}$	$\begin{gathered} 829 \cdot 56 \\ (797 \cdot 30-860 \cdot 44) \end{gathered}$	$\begin{aligned} & 1547.75 \\ & (1164.32- \\ & 2191.05) \end{aligned}$	$\begin{gathered} 1329.82 \\ (1015 \cdot 91- \\ 1803.64) \end{gathered}$	$\begin{array}{r} 1774.75 \\ (1348.27- \\ 2565.66) \end{array}$
Liver cancer	$\begin{aligned} & \quad 20915 \cdot 71 \\ & (20029 \cdot 12- \\ & 21730 \cdot 96) \end{aligned}$	$\begin{aligned} & 35487.07 \\ & (27243 \cdot 22- \\ & 49706.06) \end{aligned}$	$\begin{aligned} & 32930 \cdot 35 \\ & (26712.73- \\ & 43698.83) \end{aligned}$	$\begin{aligned} & 37729 \cdot 38 \\ & (28311 \cdot 22- \\ & 55428 \cdot 12) \end{aligned}$	$\begin{gathered} 828.94 \\ (796 \cdot 16-857 \cdot 96) \end{gathered}$	$\begin{aligned} & 1679 \cdot 63 \\ & (1311 \cdot 17-2297 \cdot 91) \end{aligned}$	$\begin{array}{r} 1602.50 \\ (1328.19- \\ 2098.20) \end{array}$	$\begin{array}{r} 1720 \cdot 16 \\ (1315 \cdot 30- \\ 2493 \cdot 46) \end{array}$
Liver cancer due to hepatitis B	$\begin{aligned} & \quad 9704 \cdot 02 \\ & (8495 \cdot 14- \\ & 10846 \cdot 75) \end{aligned}$	$\begin{aligned} & 15984.92 \\ & (11742 \cdot 51- \\ & 22690 \cdot 54) \end{aligned}$	$\begin{aligned} & 15042.06 \\ & (11701.98- \\ & 20344.07) \end{aligned}$	$\begin{aligned} & \quad 16334 \cdot 40 \\ & (11643 \cdot 45- \\ & 24443 \cdot 45) \end{aligned}$	$\begin{gathered} 349 \cdot 53 \\ (301 \cdot 96-391 \cdot 78) \end{gathered}$	$\begin{gathered} 702 \cdot 26 \\ (515 \cdot 29-983 \cdot 42) \end{gathered}$	$\begin{gathered} 678.35 \\ (529.85-899.84) \end{gathered}$	$\begin{aligned} & 688.77 \\ & (498.29- \\ & 1007.57) \end{aligned}$
Liver cancer due to hepatitis C	$\begin{gathered} 3267 \cdot 80 \\ (2889 \cdot 48-3621 \cdot 48) \end{gathered}$	$\begin{gathered} 5875 \cdot 06 \\ (4443.66-8277.99) \end{gathered}$	$\begin{gathered} 5607 \cdot 86 \\ (4371 \cdot 30-7512 \cdot 71) \end{gathered}$	$\begin{gathered} 6268 \cdot 45 \\ (4531 \cdot 63-9172 \cdot 86) \end{gathered}$	$\begin{gathered} 159 \cdot 67 \\ (143 \cdot 42-176 \cdot 07) \end{gathered}$	$\begin{gathered} 326 \cdot 72 \\ (251 \cdot 67-446 \cdot 02) \end{gathered}$	$\begin{gathered} 321 \cdot 12 \\ (256.04-419.66) \end{gathered}$	$\begin{gathered} 335 \cdot 94 \\ (246 \cdot 15-474 \cdot 96) \end{gathered}$
Liver cancer due to alcohol use	$\begin{aligned} & \quad 2892 \cdot 13 \\ & (2438 \cdot 18- \\ & 3361 \cdot 38) \end{aligned}$	$\begin{gathered} 5059 \cdot 21 \\ (3590 \cdot 52-7105 \cdot 27) \end{gathered}$	$\begin{gathered} 4239 \cdot 98 \\ (3157 \cdot 41-5676 \cdot 54) \end{gathered}$	$\begin{gathered} 6191 \cdot 39 \\ (4305 \cdot 54-9114 \cdot 66) \end{gathered}$	$\begin{gathered} 129 \cdot 23 \\ (109 \cdot 78-150 \cdot 48) \end{gathered}$	$\begin{gathered} 261 \cdot 81 \\ (192 \cdot 09-355 \cdot 30) \end{gathered}$	$\begin{gathered} 227 \cdot 63 \\ (173 \cdot 25-300 \cdot 21) \end{gathered}$	$\begin{gathered} 305 \cdot 77 \\ (215 \cdot 03-436 \cdot 52) \end{gathered}$
Liver cancer due to other causes	$\begin{gathered} 5051 \cdot 76 \\ (4479 \cdot 84-5703 \cdot 84) \end{gathered}$	$\begin{aligned} & \quad 8567 \cdot 87 \\ & (6168 \cdot 28- \\ & 12352 \cdot 39) \end{aligned}$	$\begin{aligned} & 8040 \cdot 45 \\ & (6069 \cdot 37- \\ & 10948 \cdot 83) \end{aligned}$	$\begin{aligned} & 8935 \cdot 14 \\ & (6118.74- \\ & 13697.04) \end{aligned}$	$\begin{gathered} 190 \cdot 51 \\ (169 \cdot 75-214 \cdot 63) \end{gathered}$	$\begin{gathered} 388.84 \\ (283 \cdot 31-553.06) \end{gathered}$	$\begin{gathered} 375 \cdot 40 \\ (287 \cdot 52-502 \cdot 37) \end{gathered}$	$\begin{gathered} 389 \cdot 68 \\ (267 \cdot 60-589 \cdot 17) \end{gathered}$
Gallbladder and biliary tract cancer	$\begin{gathered} 3269 \cdot 80 \\ (2965 \cdot 89-3487 \cdot 77) \end{gathered}$	$\begin{gathered} 3731 \cdot 09 \\ (2854 \cdot 97-4996 \cdot 54) \end{gathered}$	$\begin{gathered} 3483 \cdot 65 \\ (2712 \cdot 79-4526 \cdot 05) \end{gathered}$	$\begin{gathered} 3811 \cdot 83 \\ (2888 \cdot 07-5246 \cdot 92) \end{gathered}$	$\begin{gathered} 161 \cdot 56 \\ (148 \cdot 71-170 \cdot 97) \end{gathered}$	$\begin{gathered} 209 \cdot 08 \\ (164 \cdot 45-272 \cdot 63) \end{gathered}$	$\begin{gathered} 201 \cdot 50 \\ (161 \cdot 99-255 \cdot 17) \end{gathered}$	$\begin{gathered} 206 \cdot 45 \\ (161 \cdot 22-274 \cdot 44) \end{gathered}$
Pancreatic cancer	$\begin{gathered} 8145 \cdot 03 \\ (7933 \cdot 68-8359 \cdot 17) \end{gathered}$	$\begin{aligned} & 13476 \cdot 41 \\ & (11270 \cdot 99- \\ & 16843 \cdot 51) \end{aligned}$	$\begin{aligned} & 12987 \cdot 49 \\ & (11090 \cdot 65- \\ & 15794 \cdot 67) \end{aligned}$	$\begin{aligned} & 14294.73 \\ & (11576.66- \\ & 18465.71) \end{aligned}$	$\begin{gathered} 405 \cdot 50 \\ (394 \cdot 38-416.00) \end{gathered}$	$\begin{gathered} 750.64 \\ (636 \cdot 08-936.87) \end{gathered}$	$\begin{gathered} 740 \cdot 47 \\ (638 \cdot 40-902 \cdot 30) \end{gathered}$	$\begin{aligned} & 773 \cdot 18 \\ & (637.08- \\ & 989.42) \end{aligned}$
Larynx cancer	$\begin{gathered} 2674 \cdot 72 \\ (2586 \cdot 78-2767 \cdot 61) \end{gathered}$	$\begin{gathered} 3567 \cdot 34 \\ (2289 \cdot 39-5400 \cdot 05) \end{gathered}$	$\begin{gathered} 2380 \cdot 00 \\ (1668 \cdot 99-3320 \cdot 91) \end{gathered}$	$\begin{gathered} 5584 \cdot 05 \\ (3314 \cdot 36-8626 \cdot 26) \end{gathered}$	$\begin{gathered} 111 \cdot 04 \\ (107 \cdot 60-114 \cdot 65) \end{gathered}$	$\begin{gathered} 159 \cdot 21 \\ (103 \cdot 66-243 \cdot 22) \end{gathered}$	$\begin{gathered} 110 \cdot 20 \\ (78 \cdot 23-151 \cdot 96) \end{gathered}$	$\begin{gathered} 242 \cdot 21 \\ (142 \cdot 28-377 \cdot 11) \end{gathered}$
Tracheal, bronchus, and lung cancer	$\begin{aligned} & 35966.80 \\ & (34937.63- \\ & 36978.97) \end{aligned}$	$\begin{aligned} & 43405 \cdot 12 \\ & (32788 \cdot 21- \\ & 57654 \cdot 61) \end{aligned}$	$\begin{aligned} & 30316.89 \\ & (23677 \cdot 54- \\ & 38223 \cdot 24) \end{aligned}$	$\begin{aligned} & 70199 \cdot 37 \\ & (49909 \cdot 54- \\ & 98211 \cdot 46) \end{aligned}$	$\begin{aligned} & 1706 \cdot 88 \\ & (1659 \cdot 40- \\ & 1753 \cdot 40) \end{aligned}$	$\begin{aligned} & 2358.90 \\ & (1782 \cdot 36- \\ & 3150 \cdot 61) \end{aligned}$	$\begin{aligned} & 1696 \cdot 70 \\ & (1327 \cdot 29- \\ & 2181.04) \end{aligned}$	$\begin{aligned} & 3687.93 \\ & (2631 \cdot 69- \\ & 5099 \cdot 19) \end{aligned}$
Malignant skin melanoma	$\begin{gathered} 1460 \cdot 67 \\ (1301 \cdot 99-1614 \cdot 12) \end{gathered}$	$\begin{gathered} 2147 \cdot 97 \\ (1908 \cdot 51-2427 \cdot 66) \end{gathered}$	$\begin{gathered} 2440 \cdot 76 \\ (2180 \cdot 20-2775 \cdot 96) \end{gathered}$	$\begin{gathered} 1927 \cdot 94 \\ (1721 \cdot 16-2167 \cdot 34) \end{gathered}$	$\begin{gathered} 61 \cdot 68 \\ (54 \cdot 39-66 \cdot 60) \end{gathered}$	$\begin{gathered} 108 \cdot 63 \\ (97 \cdot 40-118 \cdot 50) \end{gathered}$	$\begin{gathered} 127 \cdot 26 \\ (113 \cdot 24-140 \cdot 58) \end{gathered}$	$\begin{gathered} 93 \cdot 73 \\ (83 \cdot 17-101 \cdot 66) \end{gathered}$
Non-melanoma skin cancer	$\begin{gathered} 991 \cdot 73 \\ (953 \cdot 50-1031 \cdot 27) \end{gathered}$	$\begin{gathered} 1597 \cdot 39 \\ (1486 \cdot 91-1706 \cdot 77) \end{gathered}$	$\begin{gathered} 1490.00 \\ (1382.03-1610 \cdot 55) \end{gathered}$	$\begin{gathered} 1649 \cdot 27 \\ (1559 \cdot 36-1748 \cdot 79) \end{gathered}$	$\begin{gathered} 53 \cdot 06 \\ (51 \cdot 14-55 \cdot 18) \end{gathered}$	$\begin{gathered} 103 \cdot 93 \\ (97 \cdot 12-110 \cdot 59) \end{gathered}$	$\begin{gathered} 100 \cdot 60 \\ (94 \cdot 52-107 \cdot 21) \end{gathered}$	$\begin{gathered} 101 \cdot 89 \\ (93 \cdot 59-108 \cdot 96) \end{gathered}$
Breast cancer	$\begin{aligned} & 14368.87 \\ & (13568.90- \\ & 15369.65) \end{aligned}$	$\begin{aligned} & 21012 \cdot 59 \\ & (16070 \cdot 25- \\ & 26964 \cdot 36) \end{aligned}$	$\begin{aligned} & 18431 \cdot 79 \\ & (14335 \cdot 52- \\ & 23244 \cdot 57) \end{aligned}$	$\begin{aligned} & 23368 \cdot 20 \\ & (17530 \cdot 73- \\ & 30912 \cdot 46) \end{aligned}$	$\begin{gathered} 545 \cdot 59 \\ (516 \cdot 55-581 \cdot 67) \end{gathered}$	$\begin{gathered} 911 \cdot 29 \\ (706 \cdot 11-1158 \cdot 90) \end{gathered}$	$\begin{gathered} 809 \cdot 24 \\ (641 \cdot 24-1010 \cdot 41) \end{gathered}$	$\begin{aligned} & 993 \cdot 36 \\ & (756 \cdot 29- \\ & 1299 \cdot 51) \end{aligned}$
Cervical cancer	$\begin{gathered} 7204 \cdot 07 \\ (5855 \cdot 64-7673 \cdot 39) \end{gathered}$	$\begin{gathered} 8272 \cdot 64 \\ (6620 \cdot 70-9635 \cdot 85) \end{gathered}$	$\begin{gathered} 7543 \cdot 40 \\ (6040 \cdot 92-8897 \cdot 39) \end{gathered}$	$\begin{aligned} & \quad 9129 \cdot 20 \\ & (7137 \cdot 97- \\ & 10691 \cdot 02) \end{aligned}$	$\begin{gathered} 247 \cdot 16 \\ (204 \cdot 12-263 \cdot 48) \end{gathered}$	$\begin{gathered} 316 \cdot 85 \\ (256 \cdot 86-362 \cdot 10) \end{gathered}$	$\begin{gathered} 293 \cdot 02 \\ (241 \cdot 21-337 \cdot 30) \end{gathered}$	$\begin{gathered} 341 \cdot 19 \\ (273 \cdot 64-391 \cdot 55) \end{gathered}$
(Table continues on next page)								

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Uterine cancer	$\begin{gathered} 1973 \cdot 17 \\ (1875 \cdot 54-2070 \cdot 08) \end{gathered}$	$\begin{gathered} 3101 \cdot 30 \\ (1996 \cdot 72-4858 \cdot 57) \end{gathered}$	$\begin{gathered} 2374 \cdot 50 \\ (1603 \cdot 40-3611 \cdot 99) \end{gathered}$	$\begin{gathered} 3907 \cdot 59 \\ (2479 \cdot 13-6130 \cdot 01) \end{gathered}$	$\begin{gathered} 87 \cdot 53 \\ (83 \cdot 14-91 \cdot 97) \end{gathered}$	$\begin{gathered} 158 \cdot 41 \\ (105 \cdot 67-242 \cdot 48) \end{gathered}$	$\begin{gathered} 125 \cdot 86 \\ (86 \cdot 78-187 \cdot 27) \end{gathered}$	$\begin{gathered} 191 \cdot 49 \\ (125 \cdot 75-292 \cdot 72) \end{gathered}$
Ovarian cancer	$\begin{gathered} 4141.91 \\ (3927.54-4340 \cdot 62) \end{gathered}$	$\begin{gathered} 6212 \cdot 55 \\ (4822 \cdot 50-7996 \cdot 13) \end{gathered}$	$\begin{gathered} 6040 \cdot 61 \\ (4750 \cdot 06-7667 \cdot 37) \end{gathered}$	$\begin{aligned} & \quad 6052 \cdot 57 \\ & (4660 \cdot 32- \\ & 7966 \cdot 76) \end{aligned}$	$\begin{gathered} 165 \cdot 04 \\ (156 \cdot 70-172 \cdot 73) \end{gathered}$	$\begin{gathered} 275 \cdot 23 \\ (218 \cdot 67-356 \cdot 82) \end{gathered}$	$\begin{gathered} 268 \cdot 72 \\ (215 \cdot 86-342 \cdot 99) \end{gathered}$	$\begin{aligned} & 265 \cdot 09 \\ & (207 \cdot 49- \\ & 349.88) \end{aligned}$
Prostate cancer	$\begin{gathered} 5540 \cdot 60 \\ (4536 \cdot 21-5992 \cdot 09) \end{gathered}$	$\begin{aligned} & 12299 \cdot 01 \\ & (9735 \cdot 70- \\ & 13524 \cdot 76) \end{aligned}$	$\begin{aligned} & \quad 12627 \cdot 11 \\ & (9989.87- \\ & 13981 \cdot 14) \end{aligned}$	$\begin{aligned} & 11371 \cdot 20 \\ & (8940 \cdot 84- \\ & 12527 \cdot 91) \end{aligned}$	$\begin{gathered} 380 \cdot 92 \\ (320 \cdot 81-412 \cdot 87) \end{gathered}$	$\begin{gathered} 927 \cdot 78 \\ (747 \cdot 88-1027 \cdot 50) \end{gathered}$	$\begin{gathered} 978 \cdot 74 \\ (803 \cdot 17-1079 \cdot 98) \end{gathered}$	$\begin{gathered} 826 \cdot 23 \\ (662 \cdot 01-926 \cdot 17) \end{gathered}$
Testicular cancer	$\begin{gathered} 368.08 \\ (350 \cdot 82-386 \cdot 93) \end{gathered}$	$\begin{gathered} 374 \cdot 95 \\ (336 \cdot 18-421 \cdot 94) \end{gathered}$	$\begin{gathered} 348 \cdot 52 \\ (311 \cdot 77-394 \cdot 56) \end{gathered}$	$\begin{gathered} 394.86 \\ (354.79-444.74) \end{gathered}$	$\begin{array}{r} 8.65 \\ (8.29-9.03) \end{array}$	$\begin{gathered} 10 \cdot 72 \\ (9.91-11 \cdot 61) \end{gathered}$	$\begin{gathered} 10 \cdot 33 \\ (9 \cdot 49-11 \cdot 30) \end{gathered}$	$\begin{gathered} 10 \cdot 79 \\ (9.99-11 \cdot 69) \end{gathered}$
Kidney cancer	$\begin{gathered} 2910 \cdot 03 \\ (2799 \cdot 88-3016 \cdot 36) \end{gathered}$	$\begin{gathered} 4617.06 \\ (3532.76-6091 \cdot 09) \end{gathered}$	$\begin{gathered} 4296 \cdot 38 \\ (3389 \cdot 27-5575 \cdot 18) \end{gathered}$	$\begin{gathered} 5103 \cdot 22 \\ (3751 \cdot 68-6883 \cdot 80) \end{gathered}$	$\begin{gathered} 131 \cdot 80 \\ (127 \cdot 34-136 \cdot 18) \end{gathered}$	$\begin{gathered} 241 \cdot 41 \\ (187 \cdot 34-311 \cdot 99) \end{gathered}$	$\begin{gathered} 232.08 \\ (184 \cdot 91-297.82) \end{gathered}$	$\begin{gathered} 257 \cdot 30 \\ (194 \cdot 84-344 \cdot 78) \end{gathered}$
Bladder cancer	$\begin{gathered} 3150 \cdot 24 \\ (3043 \cdot 85-3241 \cdot 97) \end{gathered}$	$\begin{gathered} 4852 \cdot 95 \\ (3953 \cdot 78-6358 \cdot 38) \end{gathered}$	$\begin{gathered} 4545 \cdot 54 \\ (3818 \cdot 35-5789 \cdot 27) \end{gathered}$	$\begin{gathered} 5288 \cdot 92 \\ (4204 \cdot 92-7189 \cdot 43) \end{gathered}$	$\begin{gathered} 186 \cdot 20 \\ (180.45-191.69) \end{gathered}$	$\begin{gathered} 323 \cdot 45 \\ (264 \cdot 72-427 \cdot 66) \end{gathered}$	$\begin{gathered} 311.75 \\ (262.53-402 \cdot 52) \end{gathered}$	$\begin{gathered} 339 \cdot 12 \\ (265 \cdot 98-470 \cdot 63) \end{gathered}$
Brain and nervous system cancer	$\begin{aligned} & 7554 \cdot 07 \\ & (6820 \cdot 68- \\ & 8181 \cdot 18) \end{aligned}$	$\begin{aligned} & 10583.46 \\ & (9469.21- \\ & 11808.96) \end{aligned}$	$\begin{aligned} & 10446.03 \\ & (9307.90- \\ & 11666.58) \end{aligned}$	$\begin{aligned} & 10514 \cdot 70 \\ & (9387 \cdot 52- \\ & 11631 \cdot 54) \end{aligned}$	$\begin{gathered} 227 \cdot 04 \\ (204 \cdot 78-241 \cdot 28) \end{gathered}$	$\begin{gathered} 397 \cdot 20 \\ (353 \cdot 10-430 \cdot 25) \end{gathered}$	$\begin{gathered} 401 \cdot 68 \\ (357 \cdot 28-438 \cdot 32) \end{gathered}$	$\begin{gathered} 378.98 \\ (338.06-407 \cdot 52) \end{gathered}$
Thyroid cancer	$\begin{gathered} 1043 \cdot 17 \\ (998.65-1088.04) \end{gathered}$	$\begin{gathered} 1539 \cdot 73 \\ (1225 \cdot 48-1998 \cdot 17) \end{gathered}$	$\begin{gathered} 1420 \cdot 82 \\ (1157 \cdot 90-1786 \cdot 48) \end{gathered}$	$\begin{gathered} 1654 \cdot 29 \\ (1302 \cdot 88-2166 \cdot 24) \end{gathered}$	$\begin{gathered} 42 \cdot 86 \\ (41 \cdot 19-44 \cdot 73) \end{gathered}$	$\begin{gathered} 73 \cdot 49 \\ (59 \cdot 55-91 \cdot 38) \end{gathered}$	$\begin{gathered} 69.58 \\ (57.55-84.89) \end{gathered}$	$\begin{gathered} 75 \cdot 53 \\ (60.06-94 \cdot 11) \end{gathered}$
Mesothelioma	$\begin{gathered} 649 \cdot 65 \\ (610 \cdot 14-687 \cdot 99) \end{gathered}$	$\begin{gathered} 934 \cdot 98 \\ (852 \cdot 21-1034 \cdot 21) \end{gathered}$	$\begin{gathered} 967.52 \\ (875 \cdot 60-1079.71) \end{gathered}$	$\begin{gathered} 893 \cdot 53 \\ (818 \cdot 92-982 \cdot 37) \end{gathered}$	$\begin{gathered} 30 \cdot 21 \\ (28 \cdot 30-31 \cdot 88) \end{gathered}$	$\begin{gathered} 50 \cdot 59 \\ (46 \cdot 70-54 \cdot 51) \end{gathered}$	$\begin{gathered} 53 \cdot 81 \\ (49 \cdot 37-58 \cdot 28) \end{gathered}$	$\begin{gathered} 46 \cdot 54 \\ (43 \cdot 21-49 \cdot 93) \end{gathered}$
Hodgkin's lymphoma	$\begin{gathered} 1097 \cdot 68 \\ (916 \cdot 41-1300 \cdot 78) \end{gathered}$	$\begin{gathered} 1007 \cdot 46 \\ (824 \cdot 44-1189 \cdot 40) \end{gathered}$	$\begin{gathered} 870 \cdot 15 \\ (707 \cdot 80-1029 \cdot 18) \end{gathered}$	$\begin{gathered} 1190 \cdot 30 \\ (961 \cdot 57-1399 \cdot 15) \end{gathered}$	$\begin{gathered} 28.74 \\ (24 \cdot 61-33 \cdot 79) \end{gathered}$	$\begin{gathered} 31 \cdot 96 \\ (27 \cdot 07-37 \cdot 45) \end{gathered}$	$\begin{gathered} 28 \cdot 39 \\ (23 \cdot 84-33 \cdot 35) \end{gathered}$	$\begin{gathered} 35 \cdot 94 \\ (29 \cdot 91-42 \cdot 08) \end{gathered}$
Non-Hodgkin lymphoma	$\begin{aligned} & 6635 \cdot 98 \\ & (6029.97- \\ & 6928.74) \end{aligned}$	$\begin{aligned} & \quad 9683 \cdot 47 \\ & (8323 \cdot 51- \\ & 11551 \cdot 64) \end{aligned}$	$\begin{aligned} & \quad 9401.25 \\ & (8137.88- \\ & 11168.66) \end{aligned}$	$\begin{aligned} & 9681 \cdot 24 \\ & (8284.78- \\ & 11642 \cdot 21) \end{aligned}$	$\begin{gathered} 239 \cdot 58 \\ (221 \cdot 18-247 \cdot 87) \end{gathered}$	$\begin{gathered} 416 \cdot 59 \\ (366 \cdot 81-493 \cdot 16) \end{gathered}$	$\begin{gathered} 413 \cdot 54 \\ (365 \cdot 95-488 \cdot 33) \end{gathered}$	$\begin{aligned} & 398 \cdot 39 \\ & (349 \cdot 60- \\ & 474 \cdot 88) \end{aligned}$
Multiple myeloma	$\begin{gathered} 2044 \cdot 37 \\ (1839 \cdot 22-2262 \cdot 64) \end{gathered}$	$\begin{gathered} 3628 \cdot 90 \\ (3014 \cdot 63-4400 \cdot 33) \end{gathered}$	$\begin{gathered} 3597 \cdot 16 \\ (3002 \cdot 17-4325 \cdot 75) \end{gathered}$	$\begin{gathered} 3497 \cdot 68 \\ (2893 \cdot 87-4289 \cdot 98) \end{gathered}$	$\begin{gathered} 98.44 \\ (87 \cdot 38-109 \cdot 81) \end{gathered}$	$\begin{gathered} 191.08 \\ (162 \cdot 41-228.03) \end{gathered}$	$\begin{gathered} 193 \cdot 11 \\ (164 \cdot 00-229 \cdot 90) \end{gathered}$	$\begin{gathered} 179 \cdot 25 \\ (152 \cdot 20-215 \cdot 92) \end{gathered}$
Leukaemia	$\begin{aligned} & 9990 \cdot 00 \\ & (9167.13- \\ & 10596.07) \end{aligned}$	$\begin{aligned} & \quad 11451 \cdot 15 \\ & (9608 \cdot 19- \\ & 13282 \cdot 31) \end{aligned}$	$\begin{aligned} & 10613.01 \\ & (8963.63- \\ & 12239.56) \end{aligned}$	$\begin{aligned} & 12397 \cdot 52 \\ & (10216 \cdot 13- \\ & 14618 \cdot 94) \end{aligned}$	$\begin{gathered} 310 \cdot 17 \\ (286 \cdot 15-324 \cdot 38) \end{gathered}$	$\begin{gathered} 473.78 \\ (396 \cdot 84-552 \cdot 65) \end{gathered}$	$\begin{gathered} 451 \cdot 55 \\ (382 \cdot 29-519 \cdot 15) \end{gathered}$	$\begin{gathered} 493 \cdot 24 \\ (407 \cdot 94-587 \cdot 57) \end{gathered}$
Acute lymphoid leukaemia	$\begin{gathered} 2391 \cdot 03 \\ (2182 \cdot 08-2644 \cdot 47) \end{gathered}$	$\begin{gathered} 2195 \cdot 74 \\ (1851 \cdot 45-2580 \cdot 26) \end{gathered}$	$\begin{gathered} 2025 \cdot 75 \\ (1708 \cdot 11-2369 \cdot 05) \end{gathered}$	$\begin{gathered} 2358 \cdot 88 \\ (1970 \cdot 57-2792 \cdot 19) \end{gathered}$	$\begin{gathered} 50 \cdot 94 \\ (46 \cdot 16-55 \cdot 60) \end{gathered}$	$\begin{gathered} 61 \cdot 78 \\ (52 \cdot 19-72 \cdot 75) \end{gathered}$	$\begin{gathered} 58 \cdot 22 \\ (49 \cdot 30-67 \cdot 64) \end{gathered}$	$\begin{gathered} 64 \cdot 07 \\ (53 \cdot 51-75 \cdot 59) \end{gathered}$
Chronic lymphoid leukaemia	$\begin{gathered} 645 \cdot 93 \\ (602 \cdot 60-738 \cdot 73) \end{gathered}$	$\begin{gathered} 851 \cdot 73 \\ (675 \cdot 66-1039 \cdot 42) \end{gathered}$	$\begin{gathered} 817 \cdot 32 \\ (656 \cdot 49-990 \cdot 52) \end{gathered}$	$\begin{gathered} 890.72 \\ (690 \cdot 24-1116.05) \end{gathered}$	$\begin{gathered} 35 \cdot 39 \\ (33 \cdot 12-40 \cdot 15) \end{gathered}$	$\begin{gathered} 54.06 \\ (43.84-65.08) \end{gathered}$	$\begin{gathered} 53 \cdot 38 \\ (43 \cdot 65-63 \cdot 76) \end{gathered}$	$\begin{gathered} 54.55 \\ (43.01-67.87) \end{gathered}$
Acute myeloid leukaemia	$\begin{gathered} 2622 \cdot 62 \\ (2419 \cdot 48-2809 \cdot 79) \end{gathered}$	$\begin{gathered} 3886 \cdot 68 \\ (3231 \cdot 10-4538 \cdot 42) \end{gathered}$	$\begin{gathered} 3765 \cdot 82 \\ (3143 \cdot 83-4397 \cdot 85) \end{gathered}$	$\begin{gathered} 3987 \cdot 65 \\ (3283 \cdot 54-4744 \cdot 19) \end{gathered}$	$\begin{gathered} 85 \cdot 33 \\ (78 \cdot 40-89 \cdot 70) \end{gathered}$	$\begin{gathered} 154 \cdot 32 \\ (128 \cdot 94-181 \cdot 59) \end{gathered}$	$\begin{gathered} 153 \cdot 02 \\ (129 \cdot 41-178 \cdot 12) \end{gathered}$	$\begin{gathered} 154 \cdot 23 \\ (126 \cdot 52-183 \cdot 76) \end{gathered}$
Chronic myeloid leukaemia	$\begin{gathered} 597.98 \\ (538 \cdot 80-661 \cdot 31) \end{gathered}$	$\begin{gathered} 587.66 \\ (473 \cdot 58-720 \cdot 41) \end{gathered}$	$\begin{gathered} 524 \cdot 27 \\ (425 \cdot 06-634 \cdot 46) \end{gathered}$	$\begin{gathered} 631 \cdot 60 \\ (501 \cdot 24-780 \cdot 22) \end{gathered}$	$\begin{gathered} 21 \cdot 94 \\ (20 \cdot 21-23 \cdot 76) \end{gathered}$	$\begin{gathered} 23.86 \\ (19 \cdot 47-28.72) \end{gathered}$	$\begin{gathered} 21 \cdot 47 \\ (17 \cdot 71-25 \cdot 55) \end{gathered}$	$\begin{gathered} 24 \cdot 95 \\ (20 \cdot 13-30 \cdot 45) \end{gathered}$
Other leukaemia	$\begin{gathered} 3732 \cdot 44 \\ (3252 \cdot 39-3950 \cdot 12) \end{gathered}$	$\begin{gathered} 3929 \cdot 34 \\ (3272 \cdot 08-4604 \cdot 97) \end{gathered}$	$\begin{gathered} 3479 \cdot 86 \\ (2883 \cdot 62-4036 \cdot 85) \end{gathered}$	$\begin{gathered} 4528 \cdot 66 \\ (3704 \cdot 88-5387 \cdot 17) \end{gathered}$	$\begin{gathered} 116 \cdot 56 \\ (103 \cdot 31-123 \cdot 02) \end{gathered}$	$\begin{gathered} 179 \cdot 76 \\ (150 \cdot 31-210 \cdot 19) \end{gathered}$	$\begin{gathered} 165 \cdot 46 \\ (138 \cdot 92-191 \cdot 00) \end{gathered}$	$\begin{gathered} 195 \cdot 44 \\ (160 \cdot 26-233 \cdot 79) \end{gathered}$
Other neoplasms	$\begin{aligned} & 12626 \cdot 26 \\ & (11487 \cdot 26- \\ & 13043 \cdot 60) \end{aligned}$	$\begin{aligned} & \quad 18301 \cdot 42 \\ & (16278.65- \\ & 20373.56) \end{aligned}$	$\begin{aligned} & 18492.06 \\ & (16391 \cdot 65- \\ & 20760 \cdot 12) \end{aligned}$	$\begin{aligned} & 17874 \cdot 50 \\ & (16004 \cdot 21- \\ & 19746 \cdot 99) \end{aligned}$	$\begin{gathered} 431 \cdot 34 \\ (392 \cdot 75-443 \cdot 83) \end{gathered}$	$\begin{gathered} 779.02 \\ (702 \cdot 08-832.60) \end{gathered}$	$\begin{gathered} 815 \cdot 84 \\ (734 \cdot 36-881 \cdot 38) \end{gathered}$	$\begin{gathered} 719 \cdot 37 \\ (651 \cdot 79-761 \cdot 26) \end{gathered}$
Cardiovascular diseases	$\begin{aligned} & 319638.66 \\ & (312436.72- \\ & 327187.01) \end{aligned}$	$\begin{aligned} & 326257.96 \\ & (234399 \cdot 69- \\ & 423736 \cdot 41) \end{aligned}$	$\begin{aligned} & 220070 \cdot 39 \\ & (161641 \cdot 21- \\ & 292676 \cdot 91) \end{aligned}$	$\begin{gathered} 496321 \cdot 31 \\ (375174 \cdot 81- \\ 629672 \cdot 75) \end{gathered}$	$\begin{gathered} 17646 \cdot 59 \\ (17281 \cdot 71- \\ 18071 \cdot 08) \end{gathered}$	$\begin{aligned} & 21888 \cdot 53 \\ & (15543 \cdot 92- \\ & 28468 \cdot 09) \end{aligned}$	$\begin{aligned} & 15888 \cdot 53 \\ & (11706 \cdot 11- \\ & 21545 \cdot 02) \end{aligned}$	$\begin{aligned} & 31210 \cdot 25 \\ & (22879 \cdot 87- \\ & 40778.05) \end{aligned}$
Rheumatic heart disease	$\begin{gathered} 8347 \cdot 62 \\ (7957 \cdot 19-8806 \cdot 00) \end{gathered}$	$\begin{gathered} 5651 \cdot 84 \\ (4299 \cdot 48-8799 \cdot 24) \end{gathered}$	$\begin{gathered} 5175 \cdot 09 \\ (3970 \cdot 48-7913 \cdot 68) \end{gathered}$	$\begin{aligned} & \quad 6844 \cdot 20 \\ & (5188 \cdot 38- \\ & 11167 \cdot 80) \end{aligned}$	$\begin{gathered} 314 \cdot 58 \\ (302 \cdot 34-328 \cdot 71) \end{gathered}$	$\begin{gathered} 303 \cdot 21 \\ (222 \cdot 03-597 \cdot 74) \end{gathered}$	$\begin{gathered} 290.06 \\ (212.65-552.00) \end{gathered}$	$\begin{aligned} & 338.12 \\ & (249.04- \\ & 619.98) \end{aligned}$
Ischaemic heart disease	$\begin{aligned} & 167695 \cdot 16 \\ & (163400 \cdot 63- \\ & 172479.67) \end{aligned}$	$\begin{aligned} & 161610 \cdot 26 \\ & (94677 \cdot 32- \\ & 237291.03) \end{aligned}$	$\begin{aligned} & 104342 \cdot 24 \\ & (58047 \cdot 10- \\ & 154373 \cdot 64) \end{aligned}$	$\begin{aligned} & 247683 \cdot 10 \\ & (152717 \cdot 04- \\ & 349779 \cdot 28) \end{aligned}$	$\begin{aligned} & 9480 \cdot 54 \\ & (9230 \cdot 53- \\ & 9757.70) \end{aligned}$	$\begin{aligned} & 10872 \cdot 35 \\ & (5646 \cdot 40- \\ & 16897 \cdot 12) \end{aligned}$	$\begin{array}{r} 7442 \cdot 13 \\ (3798 \cdot 26- \\ 11930 \cdot 22) \end{array}$	$\begin{aligned} & 16034.02 \\ & (8686 \cdot 24- \\ & 24368 \cdot 53) \end{aligned}$
Stroke	$\begin{aligned} & 101992 \cdot 79 \\ & (99104 \cdot 55- \\ & 105018 \cdot 72) \end{aligned}$	$\begin{aligned} & 91064 \cdot 29 \\ & (61314 \cdot 72- \\ & 134761 \cdot 46) \end{aligned}$	$\begin{aligned} & 58155 \cdot 44 \\ & (39025 \cdot 40- \\ & 86818 \cdot 38) \end{aligned}$	$\begin{gathered} 153332.71 \\ (102916 \cdot 43- \\ 234211.51) \end{gathered}$	$\begin{aligned} & 5528 \cdot 23 \\ & (5334 \cdot 61- \\ & 5734 \cdot 68) \end{aligned}$	$\begin{aligned} & 5973.78 \\ & (3978 \cdot 57- \\ & 9391 \cdot 60) \end{aligned}$	$\begin{aligned} & 4231 \cdot 39 \\ & (2826 \cdot 29- \\ & 7050.62) \end{aligned}$	$\begin{array}{r} 9151 \cdot 31 \\ (6109.85- \\ 14387.85) \end{array}$
(Table continues on next page)								

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Ischaemic stroke	$\begin{aligned} & 40095 \cdot 14 \\ & (38501.65- \\ & 41842.07) \end{aligned}$	$\begin{aligned} & \quad 37575 \cdot 58 \\ & (22612 \cdot 73- \\ & 66879 \cdot 26) \end{aligned}$	$\begin{aligned} & 26057.01 \\ & (15733.98- \\ & 48118.92) \end{aligned}$	$\begin{gathered} 56877 \cdot 92 \\ (34814 \cdot 92- \\ 100588 \cdot 50) \end{gathered}$	$\begin{aligned} & \quad 2690 \cdot 17 \\ & (2571.77- \\ & 2817.62) \end{aligned}$	$\begin{aligned} & 2948.05 \\ & (1749.03- \\ & 5869.85) \end{aligned}$	$\begin{aligned} & 2221 \cdot 88 \\ & (1336 \cdot 04- \\ & 4661 \cdot 31) \end{aligned}$	$\begin{aligned} & 4055 \cdot 62 \\ & (2312 \cdot 36- \\ & 7919 \cdot 19) \end{aligned}$
Intracerebral haemorrhage	$\begin{aligned} & 61897.65 \\ & (60240 \cdot 15- \\ & 63722.74) \end{aligned}$	$\begin{aligned} & 53488.71 \\ & (35930 \cdot 13- \\ & 79150 \cdot 90) \end{aligned}$	$\begin{aligned} & 32098.43 \\ & (21458.26- \\ & 47853.48) \end{aligned}$	$\begin{aligned} & 96454.79 \\ & (62636.80- \\ & 136941 \cdot 77) \end{aligned}$	$\begin{aligned} & 2838.06 \\ & (2748.57- \\ & 2934.06) \end{aligned}$	$\begin{aligned} & 3025 \cdot 72 \\ & (2063 \cdot 62- \\ & 4704.00) \end{aligned}$	$\begin{aligned} & 2009.51 \\ & (1320.53- \\ & 3092.59) \end{aligned}$	$\begin{aligned} & 5095 \cdot 69 \\ & (3308.84- \\ & 8261.56) \end{aligned}$
Hypertensive heart disease	$\begin{aligned} & 14955 \cdot 00 \\ & (12105 \cdot 83- \\ & 16330 \cdot 59) \end{aligned}$	$\begin{aligned} & 28401.65 \\ & (15523.83- \\ & 68261.60) \end{aligned}$	$\begin{aligned} & 17688 \cdot 25 \\ & (10641 \cdot 16- \\ & 38483 \cdot 51) \end{aligned}$	$\begin{gathered} 44607 \cdot 61 \\ (23102 \cdot 18- \\ 110344 \cdot 80) \end{gathered}$	$\begin{gathered} 893 \cdot 73 \\ (698.62-982 \cdot 93) \end{gathered}$	$\begin{array}{r} 2073 \cdot 74 \\ (1104 \cdot 34- \\ 4950 \cdot 72) \end{array}$	$\begin{aligned} & 1425.58 \\ & (808.83- \\ & 3000.09) \end{aligned}$	$\begin{aligned} & 2956.96 \\ & (1506.48- \\ & 7141.03) \end{aligned}$
Cardiomyopathy and myocarditis	$\begin{gathered} 8159 \cdot 05 \\ (7052 \cdot 67-9049 \cdot 67) \end{gathered}$	$\begin{aligned} & \quad 8614 \cdot 12 \\ & (6850 \cdot 32- \\ & 10800 \cdot 69) \end{aligned}$	$\begin{gathered} 7310 \cdot 79 \\ (5917 \cdot 79-9097 \cdot 46) \end{gathered}$	$\begin{aligned} & 9442 \cdot 84 \\ & (7566 \cdot 48- \\ & 11901.06) \end{aligned}$	$\begin{gathered} 339 \cdot 55 \\ (282 \cdot 60-371 \cdot 08) \end{gathered}$	$\begin{gathered} 452 \cdot 78 \\ (352 \cdot 30-577 \cdot 61) \end{gathered}$	$\begin{gathered} 404 \cdot 25 \\ (315 \cdot 08-517 \cdot 36) \end{gathered}$	$\begin{aligned} & 462 \cdot 43 \\ & (358.49- \\ & 594.66) \end{aligned}$
Myocarditis	$\begin{gathered} 1234 \cdot 37 \\ (992 \cdot 16-1358 \cdot 33) \end{gathered}$	$\begin{gathered} 1241 \cdot 71 \\ (1008 \cdot 54-1434 \cdot 20) \end{gathered}$	$\begin{gathered} 1236 \cdot 63 \\ (994.83-1431 \cdot 20) \end{gathered}$	$\begin{gathered} 1255 \cdot 94 \\ (1018 \cdot 42-1451 \cdot 88) \end{gathered}$	$\begin{gathered} 46.54 \\ (35.84-51.06) \end{gathered}$	$\begin{gathered} 73.06 \\ (56 \cdot 59-83 \cdot 12) \end{gathered}$	$\begin{gathered} 78.48 \\ (61.04-89 \cdot 37) \end{gathered}$	$\begin{gathered} 66 \cdot 25 \\ (51 \cdot 67-76 \cdot 34) \end{gathered}$
Alcoholic cardiomyopathy	$\begin{gathered} 2494 \cdot 33 \\ (1967 \cdot 43-3151 \cdot 60) \end{gathered}$	$\begin{gathered} 2202 \cdot 89 \\ (1597 \cdot 63-3202 \cdot 28) \end{gathered}$	$\begin{gathered} 1780 \cdot 37 \\ (1293 \cdot 12-2561 \cdot 52) \end{gathered}$	$\begin{gathered} 2678 \cdot 03 \\ (1931 \cdot 36-3885 \cdot 10) \end{gathered}$	$\begin{gathered} 83 \cdot 34 \\ (67 \cdot 20-102 \cdot 92) \end{gathered}$	$\begin{gathered} 84 \cdot 18 \\ (65 \cdot 30-111 \cdot 05) \end{gathered}$	$\begin{gathered} 72.09 \\ (55 \cdot 34-94 \cdot 26) \end{gathered}$	$\begin{gathered} 98.06 \\ (75 \cdot 50-129.91) \end{gathered}$
Other cardiomyopathy	$\begin{gathered} 4430 \cdot 35 \\ (3771 \cdot 63-4730 \cdot 05) \end{gathered}$	$\begin{gathered} 5169 \cdot 52 \\ (3845 \cdot 95-6907 \cdot 49) \end{gathered}$	$\begin{gathered} 4293 \cdot 79 \\ (3269 \cdot 70-5686 \cdot 91) \end{gathered}$	$\begin{aligned} & 5508.87 \\ & (4068 \cdot 99- \\ & 7592.64) \end{aligned}$	$\begin{gathered} 209 \cdot 67 \\ (170 \cdot 27-224 \cdot 67) \end{gathered}$	$\begin{gathered} 295 \cdot 54 \\ (212 \cdot 19-416 \cdot 30) \end{gathered}$	$\begin{gathered} 253 \cdot 67 \\ (184 \cdot 66-365 \cdot 95) \end{gathered}$	$\begin{gathered} 298 \cdot 12 \\ (214 \cdot 33-429 \cdot 93) \end{gathered}$
Atrial fibrillation and flutter	$\begin{gathered} 2336 \cdot 89 \\ (1890 \cdot 44-2827 \cdot 80) \end{gathered}$	$\begin{gathered} 4956.87 \\ (3608.07-6594 \cdot 66) \end{gathered}$	$\begin{gathered} 4662 \cdot 91 \\ (3404 \cdot 45-6170 \cdot 78) \end{gathered}$	$\begin{gathered} 5075 \cdot 29 \\ (3730 \cdot 04-6687 \cdot 38) \end{gathered}$	$\begin{gathered} 239 \cdot 23 \\ (188 \cdot 69-293 \cdot 59) \end{gathered}$	$\begin{gathered} 542 \cdot 14 \\ (390 \cdot 42-725 \cdot 27) \end{gathered}$	$\begin{gathered} 530 \cdot 02 \\ (381 \cdot 69-706 \cdot 25) \end{gathered}$	$\begin{gathered} 526 \cdot 74 \\ (381 \cdot 17-709 \cdot 83) \end{gathered}$
Aortic aneurysm	$\begin{gathered} 2881.76 \\ (2800.85-2975 \cdot 54) \end{gathered}$	$\begin{gathered} 3800.68 \\ (2921.69-4850.64) \end{gathered}$	$\begin{gathered} 3627 \cdot 32 \\ (2763 \cdot 99-4659 \cdot 23) \end{gathered}$	$\begin{gathered} 3926 \cdot 29 \\ (2981 \cdot 58-5043 \cdot 96) \end{gathered}$	$\begin{gathered} 166.57 \\ (162.05-171.56) \end{gathered}$	$\begin{gathered} 256 \cdot 06 \\ (190 \cdot 18-331 \cdot 65) \end{gathered}$	$\begin{gathered} 257 \cdot 61 \\ (189 \cdot 72-333 \cdot 44) \end{gathered}$	$\begin{gathered} 246 \cdot 83 \\ (185 \cdot 38-323 \cdot 21) \end{gathered}$
Peripheral artery disease	$\begin{gathered} 715 \cdot 52 \\ (544 \cdot 36-1007 \cdot 02) \end{gathered}$	$\begin{gathered} 1611.91 \\ (1148.64-2428.73) \end{gathered}$	$\begin{gathered} 1618 \cdot 04 \\ (1147 \cdot 83-2471 \cdot 70) \end{gathered}$	$\begin{gathered} 1630 \cdot 97 \\ (1147 \cdot 44-2510 \cdot 47) \end{gathered}$	$\begin{gathered} 60 \cdot 70 \\ (45 \cdot 37-89 \cdot 48) \end{gathered}$	$\begin{gathered} 155 \cdot 90 \\ (105 \cdot 29-254 \cdot 65) \end{gathered}$	$\begin{gathered} 165 \cdot 48 \\ (110 \cdot 97-263 \cdot 68) \end{gathered}$	$\begin{gathered} 147 \cdot 97 \\ (100 \cdot 12-244 \cdot 75) \end{gathered}$
Endocarditis	$\begin{gathered} 2329.06 \\ (2067.07-2756 \cdot 07) \end{gathered}$	$\begin{gathered} 3633 \cdot 34 \\ (2855 \cdot 29-4676 \cdot 19) \end{gathered}$	$\begin{gathered} 3451.77 \\ (2717 \cdot 91-4385 \cdot 23) \end{gathered}$	$\begin{gathered} 3777 \cdot 87 \\ (2954 \cdot 52-4894 \cdot 36) \end{gathered}$	$\begin{gathered} 95 \cdot 97 \\ (82 \cdot 15-112 \cdot 83) \end{gathered}$	$\begin{gathered} 189.64 \\ (143 \cdot 97-258.83) \end{gathered}$	$\begin{gathered} 190.00 \\ (146.75-261 \cdot 54) \end{gathered}$	$\begin{gathered} 182 \cdot 88 \\ (138 \cdot 11-247 \cdot 39) \end{gathered}$
Other cardiovascular and circulatory diseases	$\begin{aligned} & 10225.83 \\ & (9436.43- \\ & 12584.08) \end{aligned}$	$\begin{aligned} & 16913 \cdot 00 \\ & (13669 \cdot 80- \\ & 22174 \cdot 90) \end{aligned}$	$\begin{aligned} & 14038.53 \\ & (11315 \cdot 88- \\ & 18481.55) \end{aligned}$	$\begin{aligned} & \quad 20000 \cdot 42 \\ & (15920 \cdot 54- \\ & 26315 \cdot 57) \end{aligned}$	$\begin{gathered} 527 \cdot 48 \\ (493 \cdot 07-627 \cdot 50) \end{gathered}$	$\begin{gathered} 1068 \cdot 93 \\ (848 \cdot 16-1388 \cdot 61) \end{gathered}$	$\begin{gathered} 952 \cdot 02 \\ (753 \cdot 79-1226 \cdot 29) \end{gathered}$	$\begin{aligned} & 1162 \cdot 99 \\ & (911 \cdot 78- \\ & 1523 \cdot 15) \end{aligned}$
Chronic respiratory diseases	$\begin{aligned} & 61574 \cdot 64 \\ & (59099 \cdot 41- \\ & 65209 \cdot 15) \end{aligned}$	$\begin{gathered} 77269.92 \\ (55458 \cdot 89- \\ 109434 \cdot 21) \end{gathered}$	$\begin{aligned} & 59493 \cdot 91 \\ & (44169 \cdot 75- \\ & 80335 \cdot 34) \end{aligned}$	$\begin{aligned} & 113915 \cdot 65 \\ & (76580.63- \\ & 174658.72) \end{aligned}$	$\begin{aligned} & 3542 \cdot 29 \\ & (3403 \cdot 60- \\ & 3739 \cdot 61) \end{aligned}$	$\begin{aligned} & 5206.46 \\ & \text { (3728.95- } \\ & 7593.43) \end{aligned}$	$\begin{aligned} & 4196 \cdot 66 \\ & (3135 \cdot 38- \\ & 5700 \cdot 53) \end{aligned}$	$\begin{gathered} 7266.43 \\ (4938.98- \\ 11328.65) \end{gathered}$
Chronic obstructive pulmonary disease	$\begin{aligned} & \quad 47146 \cdot 20 \\ & (44992 \cdot 80- \\ & 50032 \cdot 34) \end{aligned}$	$\begin{aligned} & 62276 \cdot 02 \\ & (40821 \cdot 37- \\ & 94079 \cdot 98) \end{aligned}$	$\begin{aligned} & 45326.76 \\ & (30730.78- \\ & 64371.81) \end{aligned}$	$\begin{aligned} & 97677 \cdot 17 \\ & (60875 \cdot 40- \\ & 158519 \cdot 41) \end{aligned}$	$\begin{aligned} & 2934 \cdot 33 \\ & (2817 \cdot 24- \\ & 3120 \cdot 35) \end{aligned}$	$\begin{aligned} & 4410.06 \\ & (2958.18- \\ & 6769.66) \end{aligned}$	$\begin{array}{r} 3397.30 \\ (2371 \cdot 11- \\ 4891 \cdot 82) \end{array}$	$\begin{gathered} 6469 \cdot 10 \\ (4129.74- \\ 10458 \cdot 76) \end{gathered}$
Pneumoconiosis	$\begin{gathered} 414.94 \\ (391 \cdot 48-450 \cdot 21) \end{gathered}$	$\begin{gathered} 338.53 \\ (293.04-401.80) \end{gathered}$	$\begin{gathered} 324 \cdot 33 \\ (280 \cdot 26-376 \cdot 64) \end{gathered}$	$\begin{gathered} 375 \cdot 43 \\ (334 \cdot 06-423 \cdot 21) \end{gathered}$	$\begin{gathered} 21.49 \\ (20.45-23.05) \end{gathered}$	$\begin{gathered} 22 \cdot 21 \\ (19 \cdot 62-25 \cdot 48) \end{gathered}$	$\begin{gathered} 22 \cdot 20 \\ (19 \cdot 58-25 \cdot 28) \end{gathered}$	$\begin{gathered} 22 \cdot 98 \\ (20 \cdot 92-25 \cdot 75) \end{gathered}$
Silicosis	$\begin{gathered} 210 \cdot 16 \\ (194 \cdot 31-230 \cdot 82) \end{gathered}$	$\begin{gathered} 99.85 \\ (74 \cdot 75-140 \cdot 02) \end{gathered}$	$\begin{gathered} 85 \cdot 97 \\ (65 \cdot 01-111 \cdot 39) \end{gathered}$	$\begin{gathered} 134 \cdot 27 \\ (107 \cdot 93-161 \cdot 44) \end{gathered}$	$\begin{gathered} 10 \cdot 40 \\ (9.57-11 \cdot 68) \end{gathered}$	$\begin{gathered} 5.93 \\ (4.51-8.02) \end{gathered}$	$\begin{gathered} 5.24 \\ (3.9-6.76) \end{gathered}$	$\begin{gathered} 7 \cdot 46 \\ (6 \cdot 14-9 \cdot 03) \end{gathered}$
Asbestosis	$\begin{array}{r} 60 \cdot 96 \\ (46.29-71.87) \end{array}$	$\begin{gathered} 101 \cdot 51 \\ (81 \cdot 69-121.61) \end{gathered}$	$\begin{gathered} 113 \cdot 27 \\ (92 \cdot 28-135 \cdot 58) \end{gathered}$	$\begin{gathered} 90 \cdot 59 \\ (72 \cdot 16-107 \cdot 24) \end{gathered}$	$\begin{array}{r} 3.50 \\ (2.43-4.06) \end{array}$	$\begin{gathered} 7.04 \\ (5.60-8.29) \end{gathered}$	$\begin{gathered} 8.14 \\ (6 \cdot 64-9 \cdot 59) \end{gathered}$	$\begin{gathered} 5.99 \\ (4 \cdot 64-7 \cdot 00) \end{gathered}$
Coal workers' pneumoconiosis	$\begin{array}{r} 46 \cdot 60 \\ (30 \cdot 38-54 \cdot 24) \end{array}$	$\begin{array}{r} 36.53 \\ (25.86-47.59) \end{array}$	$\begin{array}{r} 30 \cdot 78 \\ (21 \cdot 20-39 \cdot 66) \end{array}$	$\begin{gathered} 47 \cdot 29 \\ (32 \cdot 79-59 \cdot 58) \end{gathered}$	$\begin{array}{r} 2.68 \\ (1.79-3.07) \end{array}$	$\begin{array}{r} 2.62 \\ (1.93-3.41) \end{array}$	$\begin{gathered} 2.30 \\ (1.64-2.97) \end{gathered}$	$\begin{gathered} 3 \cdot 15 \\ (2 \cdot 28-3 \cdot 92) \end{gathered}$
Other pneumoconiosis	$\begin{gathered} 97 \cdot 22 \\ (81 \cdot 95-127 \cdot 89) \end{gathered}$	$\begin{gathered} 100 \cdot 64 \\ (79 \cdot 37-132 \cdot 32) \end{gathered}$	$\begin{gathered} 94 \cdot 31 \\ (72 \cdot 67-125 \cdot 15) \end{gathered}$	$\begin{gathered} 103 \cdot 27 \\ (83 \cdot 58-133 \cdot 79) \end{gathered}$	$\begin{array}{r} 4.91 \\ (4 \cdot 17-6 \cdot 57) \end{array}$	$\begin{gathered} 6.63 \\ (5.37-8.68) \end{gathered}$	$\begin{gathered} 6 \cdot 51 \\ (5 \cdot 21-8 \cdot 57) \end{gathered}$	$\begin{gathered} 6.37 \\ (5 \cdot 25-8 \cdot 27) \end{gathered}$
Asthma	$\begin{aligned} & 10499 \cdot 32 \\ & (8643 \cdot 21- \\ & 12621 \cdot 19) \end{aligned}$	$\begin{aligned} & \quad 7978.51 \\ & (5430 \cdot 34- \\ & 11457.49) \end{aligned}$	$\begin{aligned} & \quad 6466 \cdot 43 \\ & \text { (4496.48- } \\ & 9044 \cdot 98) \end{aligned}$	$\begin{aligned} & \quad 9829 \cdot 21 \\ & (6670 \cdot 20- \\ & 14144 \cdot 67) \end{aligned}$	$\begin{gathered} 420 \cdot 02 \\ (338.81-517.69) \end{gathered}$	$\begin{gathered} 393 \cdot 43 \\ (275 \cdot 35-548 \cdot 69) \end{gathered}$	$\begin{gathered} 333 \cdot 80 \\ (236 \cdot 22-454 \cdot 72) \end{gathered}$	$\begin{gathered} 451 \cdot 88 \\ (315 \cdot 32-637 \cdot 62) \end{gathered}$
Interstitial lung disease and pulmonary sarcoidosis	$\begin{gathered} 2305 \cdot 43 \\ (1695 \cdot 61-2717 \cdot 00) \end{gathered}$	$\begin{gathered} 4983 \cdot 86 \\ (3623 \cdot 74-6161 \cdot 02) \end{gathered}$	$\begin{gathered} 5765 \cdot 80 \\ (4253 \cdot 26-7037 \cdot 41) \end{gathered}$	$\begin{gathered} 4211 \cdot 19 \\ (3004 \cdot 43-5145 \cdot 31) \end{gathered}$	$\begin{gathered} 127 \cdot 47 \\ (90.82-147 \cdot 69) \end{gathered}$	$\begin{gathered} 311 \cdot 25 \\ (224 \cdot 70-373 \cdot 04) \end{gathered}$	$\begin{gathered} 372 \cdot 93 \\ (275 \cdot 84-442 \cdot 95) \end{gathered}$	$\begin{gathered} 253 \cdot 24 \\ (179 \cdot 66-301 \cdot 52) \end{gathered}$
Other chronic respiratory diseases	$\begin{gathered} 1208.75 \\ (847 \cdot 40-1438.67) \end{gathered}$	$\begin{gathered} 1693 \cdot 01 \\ (1182 \cdot 15-2087 \cdot 79) \end{gathered}$	$\begin{gathered} 1610 \cdot 58 \\ (1141.58-1982 \cdot 74) \end{gathered}$	$\begin{gathered} 1822 \cdot 66 \\ (1244 \cdot 05-2260.81) \end{gathered}$	$\begin{gathered} 38.98 \\ (27 \cdot 29-45 \cdot 65) \end{gathered}$	$\begin{gathered} 69.51 \\ (47.95-84.09) \end{gathered}$	$\begin{gathered} 70 \cdot 43 \\ (48 \cdot 99-85 \cdot 25) \end{gathered}$	$\begin{gathered} 69.23 \\ (47.58-84.08) \end{gathered}$
Cirrhosis and other chronic liver diseases	$\begin{gathered} 37283 \cdot 07 \\ (35413 \cdot 31- \\ 41442.98) \end{gathered}$	$\begin{aligned} & \quad 48324 \cdot 15 \\ & (43655 \cdot 69- \\ & 54757 \cdot 85) \end{aligned}$	$\begin{aligned} & 44158.29 \\ & (39536.81- \\ & 50452 \cdot 38) \end{aligned}$	$\begin{aligned} & 53144.00 \\ & (48394.75- \\ & 60100 \cdot 36) \end{aligned}$	$\begin{aligned} & 1256.85 \\ & (1197.09- \\ & 1376.86) \end{aligned}$	$\begin{aligned} & 1903.64 \\ & (1760 \cdot 57- \\ & 2097.77) \end{aligned}$	$\begin{aligned} & 1787.20 \\ & (1637.35- \\ & 1979.96) \\ & \quad \text { (Table contir } \end{aligned}$	$\begin{aligned} & 2014 \cdot 49 \\ & (1881 \cdot 85- \\ & 2228.68) \end{aligned}$ ves on next page)

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Cirrhosis and other chronic liver diseases due to hepatitis B	$\begin{aligned} & 10846 \cdot 50 \\ & (9787.89- \\ & 12777 \cdot 41) \end{aligned}$	$\begin{aligned} & 14880 \cdot 49 \\ & (12899 \cdot 14- \\ & 17732 \cdot 38) \end{aligned}$	$\begin{aligned} & 14308.72 \\ & (12368 \cdot 22- \\ & 16964.03) \end{aligned}$	$\begin{aligned} & 15697.63 \\ & (13716 \cdot 23- \\ & 18707.04) \end{aligned}$	$\begin{gathered} 365 \cdot 57 \\ (330 \cdot 81-422 \cdot 57) \end{gathered}$	$\begin{gathered} 582 \cdot 17 \\ (514 \cdot 27-683 \cdot 44) \end{gathered}$	$\begin{gathered} 572 \cdot 65 \\ (502 \cdot 98-670 \cdot 06) \end{gathered}$	$\begin{gathered} 593 \cdot 64 \\ (530 \cdot 13-690 \cdot 12) \end{gathered}$
Cirrhosis and other chronic liver diseases due to hepatitis C	$\begin{aligned} & 9455 \cdot 51 \\ & (8516 \cdot 28- \\ & 10668 \cdot 97) \end{aligned}$	$\begin{aligned} & 13019 \cdot 27 \\ & (11343 \cdot 29- \\ & 15066 \cdot 04) \end{aligned}$	$\begin{aligned} & 12246 \cdot 93 \\ & (10638 \cdot 70- \\ & 14290 \cdot 60) \end{aligned}$	$\begin{aligned} & 13577 \cdot 82 \\ & (11819 \cdot 56- \\ & 15676 \cdot 92) \end{aligned}$	$\begin{gathered} 326 \cdot 75 \\ (295 \cdot 07-364 \cdot 97) \end{gathered}$	$\begin{gathered} 509 \cdot 03 \\ (451 \cdot 45-576 \cdot 73) \end{gathered}$	$\begin{gathered} 489 \cdot 43 \\ (430 \cdot 09-562 \cdot 00) \end{gathered}$	$\begin{gathered} 513 \cdot 82 \\ (455 \cdot 72-580 \cdot 25) \end{gathered}$
Cirrhosis and other chronic liver diseases due to alcohol use	$\begin{aligned} & \quad 9440 \cdot 30 \\ & (8601 \cdot 03- \\ & 10523.64) \end{aligned}$	$\begin{aligned} & \quad 11865 \cdot 9 \\ & (10478.07- \\ & 13782.63) \end{aligned}$	$\begin{aligned} & 9622 \cdot 07 \\ & (8405 \cdot 28- \\ & 11257 \cdot 27) \end{aligned}$	$\begin{aligned} & 14624.74 \\ & (13037.75- \\ & 16860.82) \end{aligned}$	$\begin{gathered} 334 \cdot 89 \\ (306 \cdot 46-371 \cdot 88) \end{gathered}$	$\begin{gathered} 477 \cdot 23 \\ (429 \cdot 65-541 \cdot 53) \end{gathered}$	$\begin{gathered} 401 \cdot 16 \\ (355 \cdot 94-457 \cdot 45) \end{gathered}$	$\begin{gathered} 564 \cdot 56 \\ (512 \cdot 48-638 \cdot 30) \end{gathered}$
Cirrhosis and other chronic liver diseases due to other causes	$\begin{gathered} 7540 \cdot 75 \\ (6769 \cdot 21-8562 \cdot 42) \end{gathered}$	$\begin{gathered} 8558 \cdot 40 \\ (7470 \cdot 52-9881 \cdot 86) \end{gathered}$	$\begin{gathered} 7980 \cdot 57 \\ (6959 \cdot 23-9248 \cdot 83) \end{gathered}$	$\begin{aligned} & 9243 \cdot 82 \\ & (8098.78- \\ & 10702 \cdot 46) \end{aligned}$	$\begin{gathered} 229 \cdot 64 \\ (206 \cdot 21-258 \cdot 15) \end{gathered}$	$\begin{gathered} 335 \cdot 21 \\ (296.04-381 \cdot 00) \end{gathered}$	$\begin{gathered} 323 \cdot 96 \\ (285 \cdot 34-370 \cdot 05) \end{gathered}$	$\begin{gathered} 342 \cdot 46 \\ (303 \cdot 34-389 \cdot 80) \end{gathered}$
Digestive diseases	$\begin{aligned} & 27082.09 \\ & (25735 \cdot 97- \\ & 29026 \cdot 39) \end{aligned}$	$\begin{aligned} & 32690 \cdot 58 \\ & (28907 \cdot 29- \\ & 37113 \cdot 89) \end{aligned}$	$\begin{aligned} & 29897 \cdot 69 \\ & (26279 \cdot 42- \\ & 33903 \cdot 59) \end{aligned}$	$\begin{aligned} & 36401 \cdot 28 \\ & (31908.83- \\ & 41640 \cdot 92) \end{aligned}$	$\begin{aligned} & 1092.33 \\ & (1042.78- \\ & 1177.81) \end{aligned}$	$\begin{aligned} & 1729.74 \\ & (1570 \cdot 00- \\ & 1943 \cdot 26) \end{aligned}$	$\begin{aligned} & 1663 \cdot 32 \\ & (1507.42- \\ & 1872.67) \end{aligned}$	$\begin{gathered} 1784 \cdot 75 \\ (1610 \cdot 69- \\ 2026 \cdot 13) \end{gathered}$
Peptic ulcer disease	$\begin{gathered} 5742 \cdot 34 \\ (5308 \cdot 86-6470 \cdot 00) \end{gathered}$	$\begin{gathered} 4833 \cdot 97 \\ (3951 \cdot 60-6115 \cdot 02) \end{gathered}$	$\begin{gathered} 4103 \cdot 13 \\ (3341 \cdot 54-5179 \cdot 42) \end{gathered}$	$\begin{gathered} 6057 \cdot 19 \\ (4913 \cdot 18-7741 \cdot 88) \end{gathered}$	$\begin{gathered} 246 \cdot 72 \\ (230 \cdot 08-272 \cdot 70) \end{gathered}$	$\begin{gathered} 265 \cdot 44 \\ (222 \cdot 70-325 \cdot 05) \end{gathered}$	$\begin{gathered} 234.64 \\ (196.86-288.79) \end{gathered}$	$\begin{gathered} 311 \cdot 59 \\ (260 \cdot 83-383 \cdot 63) \end{gathered}$
Gastritis and duodenitis	$\begin{gathered} 1017 \cdot 42 \\ (930 \cdot 59-1148 \cdot 36) \end{gathered}$	$\begin{gathered} 1557.50 \\ (1342.73-1828.51) \end{gathered}$	$\begin{gathered} 1473 \cdot 11 \\ (1261 \cdot 60-1736 \cdot 97) \end{gathered}$	$\begin{gathered} 1695 \cdot 38 \\ (1476 \cdot 53-1980 \cdot 21) \end{gathered}$	$\begin{gathered} 42 \cdot 99 \\ (39 \cdot 34-47 \cdot 75) \end{gathered}$	$\begin{gathered} 83.70 \\ (73.76-96 \cdot 59) \end{gathered}$	$\begin{gathered} 82 \cdot 66 \\ (72 \cdot 25-95 \cdot 77) \end{gathered}$	$\begin{gathered} 85 \cdot 74 \\ (75 \cdot 37-97 \cdot 94) \end{gathered}$
Appendicitis	$\begin{gathered} 1886 \cdot 62 \\ (1684 \cdot 29-2200 \cdot 23) \end{gathered}$	$\begin{gathered} 1718 \cdot 04 \\ (1448 \cdot 39-2104 \cdot 71) \end{gathered}$	$\begin{gathered} 1528 \cdot 72 \\ (1270 \cdot 13-1907 \cdot 15) \end{gathered}$	$\begin{gathered} 2065 \cdot 74 \\ (1744 \cdot 32-2496 \cdot 12) \end{gathered}$	$\begin{gathered} 50 \cdot 19 \\ (44 \cdot 99-57 \cdot 43) \end{gathered}$	$\begin{gathered} 63.09 \\ (55 \cdot 25-76 \cdot 05) \end{gathered}$	$\begin{gathered} 58.74 \\ (50 \cdot 52-71.41) \end{gathered}$	$\begin{gathered} 70 \cdot 14 \\ (61 \cdot 89-83 \cdot 92) \end{gathered}$
Paralytic ileus and intestinal obstruction	$\begin{gathered} 7572 \cdot 53 \\ (6329 \cdot 25-8263 \cdot 90) \end{gathered}$	$\begin{aligned} & 9730 \cdot 92 \\ & (8188 \cdot 10- \\ & 11223.00) \end{aligned}$	$\begin{aligned} & 9618 \cdot 87 \\ & (8084 \cdot 78- \\ & 11195 \cdot 22) \end{aligned}$	$\begin{aligned} & 10156.62 \\ & (8513 \cdot 88- \\ & 11592 \cdot 13) \end{aligned}$	$\begin{gathered} 254 \cdot 61 \\ (213 \cdot 31-280 \cdot 85) \end{gathered}$	$\begin{gathered} 461 \cdot 91 \\ (395 \cdot 14-522 \cdot 54) \end{gathered}$	$\begin{gathered} 483 \cdot 94 \\ (413 \cdot 18-546 \cdot 22) \end{gathered}$	$\begin{gathered} 437 \cdot 59 \\ (372 \cdot 25-495 \cdot 13) \end{gathered}$
Inguinal, femoral, and abdominal hernia	$\begin{gathered} 954 \cdot 58 \\ (739 \cdot 84-1139 \cdot 71) \end{gathered}$	$\begin{gathered} 1032 \cdot 91 \\ (779 \cdot 14-1236 \cdot 49) \end{gathered}$	$\begin{gathered} 990 \cdot 40 \\ (744 \cdot 72-1191 \cdot 70) \end{gathered}$	$\begin{gathered} 1093 \cdot 43 \\ (812 \cdot 53-1305 \cdot 62) \end{gathered}$	$\begin{gathered} 43 \cdot 73 \\ (35 \cdot 57-52 \cdot 14) \end{gathered}$	$\begin{gathered} 58 \cdot 61 \\ (45 \cdot 48-70 \cdot 29) \end{gathered}$	$\begin{gathered} 58.92 \\ (45 \cdot 44-71 \cdot 95) \end{gathered}$	$\begin{gathered} 56 \cdot 78 \\ (43 \cdot 53-67 \cdot 25) \end{gathered}$
Inflammatory bowel disease	$\begin{gathered} 981 \cdot 64 \\ (819 \cdot 41-1144 \cdot 74) \end{gathered}$	$\begin{gathered} 1362 \cdot 40 \\ (1164 \cdot 24-1592 \cdot 17) \end{gathered}$	$\begin{gathered} 1380 \cdot 50 \\ (1172 \cdot 15-1617 \cdot 74) \end{gathered}$	$\begin{gathered} 1324 \cdot 61 \\ (1120 \cdot 29-1557 \cdot 37) \end{gathered}$	$\begin{gathered} 41 \cdot 61 \\ (34 \cdot 54-45 \cdot 10) \end{gathered}$	$\begin{gathered} 74 \cdot 52 \\ (64 \cdot 31-83 \cdot 09) \end{gathered}$	$\begin{gathered} 78.95 \\ (68.17-88.01) \end{gathered}$	$\begin{gathered} 67.52 \\ (58 \cdot 13-74.87) \end{gathered}$
Vascular intestinal disorders	$\begin{gathered} 1671 \cdot 00 \\ (1536 \cdot 99-1908 \cdot 24) \end{gathered}$	$\begin{gathered} 2663 \cdot 15 \\ (2380 \cdot 93-3092 \cdot 93) \end{gathered}$	$\begin{gathered} 2633 \cdot 01 \\ (2335 \cdot 43-3083 \cdot 41) \end{gathered}$	$\begin{gathered} 2605 \cdot 71 \\ (2356 \cdot 03-3009 \cdot 89) \end{gathered}$	$\begin{gathered} 100 \cdot 91 \\ (92 \cdot 87-113 \cdot 67) \end{gathered}$	$\begin{gathered} 189 \cdot 61 \\ (172 \cdot 47-217 \cdot 30) \end{gathered}$	$\begin{gathered} 194.02 \\ (175 \cdot 99-223.05) \end{gathered}$	$\begin{gathered} 176 \cdot 08 \\ (159 \cdot 46-203 \cdot 29) \end{gathered}$
Gallbladder and biliary diseases	$\begin{gathered} 1866 \cdot 75 \\ (1758 \cdot 57-2184 \cdot 15) \end{gathered}$	$\begin{gathered} 2746 \cdot 42 \\ (1825 \cdot 84-4401 \cdot 30) \end{gathered}$	$\begin{gathered} 2149 \cdot 61 \\ (1499 \cdot 63-3388 \cdot 95) \end{gathered}$	$\begin{gathered} 3362 \cdot 05 \\ (2212 \cdot 26-5489 \cdot 47) \end{gathered}$	$\begin{gathered} 101 \cdot 83 \\ (96 \cdot 11-118 \cdot 08) \end{gathered}$	$\begin{gathered} 185 \cdot 22 \\ (126 \cdot 84-294 \cdot 36) \end{gathered}$	$\begin{gathered} 153 \cdot 34 \\ (108 \cdot 60-241 \cdot 00) \end{gathered}$	$\begin{gathered} 211 \cdot 69 \\ (144.05-344 \cdot 52) \end{gathered}$
Pancreatitis	$\begin{gathered} 3274 \cdot 24 \\ (2832 \cdot 81-3650 \cdot 57) \end{gathered}$	$\begin{gathered} 4186 \cdot 34 \\ (3122 \cdot 88-5783 \cdot 48) \end{gathered}$	$\begin{gathered} 3346 \cdot 45 \\ (2592 \cdot 70-4423 \cdot 28) \end{gathered}$	$\begin{gathered} 5001 \cdot 22 \\ (3687 \cdot 57-7144 \cdot 00) \end{gathered}$	$\begin{gathered} 112.05 \\ (97.41-124 \cdot 60) \end{gathered}$	$\begin{gathered} 173 \cdot 19 \\ (135 \cdot 22-230 \cdot 31) \end{gathered}$	$\begin{gathered} 144 \cdot 27 \\ (115 \cdot 71-183 \cdot 01) \end{gathered}$	$\begin{gathered} 197 \cdot 20 \\ (149 \cdot 84-273 \cdot 04) \end{gathered}$
Other digestive diseases	$\begin{gathered} 2114 \cdot 97 \\ (1937 \cdot 50-2386 \cdot 83) \end{gathered}$	$\begin{gathered} 2858 \cdot 93 \\ (2539 \cdot 42-3237 \cdot 82) \end{gathered}$	$\begin{gathered} 2673 \cdot 88 \\ (2367 \cdot 18-3048 \cdot 49) \end{gathered}$	$\begin{gathered} 3039 \cdot 34 \\ (2718 \cdot 42-3436 \cdot 44) \end{gathered}$	$\begin{gathered} 97.69 \\ (88.88-108 \cdot 10) \end{gathered}$	$\begin{gathered} 174 \cdot 45 \\ (158 \cdot 26-193 \cdot 47) \end{gathered}$	$\begin{gathered} 173 \cdot 84 \\ (156 \cdot 77-193 \cdot 47) \end{gathered}$	$\begin{gathered} 170 \cdot 41 \\ (154 \cdot 27-189 \cdot 98) \end{gathered}$
Neurological disorders	$\begin{aligned} & 34154 \cdot 45 \\ & (30976 \cdot 21- \\ & 38350 \cdot 74) \end{aligned}$	$\begin{aligned} & 68735 \cdot 01 \\ & (56418 \cdot 37- \\ & 85594 \cdot 30) \end{aligned}$	$\begin{aligned} & 69096 \cdot 55 \\ & (57167 \cdot 21- \\ & 84437 \cdot 23) \end{aligned}$	$\begin{aligned} & 66280 \cdot 32 \\ & (53588.93- \\ & 84323.67) \end{aligned}$	$\begin{aligned} & 2825 \cdot 82 \\ & (2497 \cdot 00- \\ & 3217.57) \end{aligned}$	$\begin{aligned} & 6700.00 \\ & (5371.09- \\ & 8457.63) \end{aligned}$	$\begin{aligned} & 7028.33 \\ & (5770 \cdot 39- \\ & 8611.84) \end{aligned}$	$\begin{array}{r} 6065.76 \\ (4737.03- \\ 7895.84) \end{array}$
Alzheimer's disease and other dementias	$\begin{aligned} & \quad 22348.78 \\ & (19381.82- \\ & 26349.20) \end{aligned}$	$\begin{aligned} & 51671 \cdot 92 \\ & (39669 \cdot 40- \\ & 67824 \cdot 33) \end{aligned}$	$\begin{aligned} & 52240 \cdot 08 \\ & (40873.50- \\ & 66836.46) \end{aligned}$	$\begin{aligned} & \quad 48821.61 \\ & (36399.57- \\ & 66567 \cdot 64) \end{aligned}$	$\begin{aligned} & 2382.13 \\ & (2060 \cdot 41- \\ & 2777.61) \end{aligned}$	$\begin{aligned} & 5799 \cdot 48 \\ & (4501 \cdot 54- \\ & 7517 \cdot 70) \end{aligned}$	$\begin{aligned} & 6061.58 \\ & (4818 \cdot 44- \\ & 7635 \cdot 42) \end{aligned}$	$\begin{aligned} & 5255 \cdot 59 \\ & (3939 \cdot 26- \\ & 7016.09) \end{aligned}$
Parkinson's disease	$\begin{gathered} 2528 \cdot 14 \\ (1992 \cdot 32-3147 \cdot 38) \end{gathered}$	$\begin{gathered} 6183 \cdot 54 \\ (4879 \cdot 29-7762 \cdot 12) \end{gathered}$	$\begin{gathered} 6899.94 \\ (5430 \cdot 51-8660 \cdot 22) \end{gathered}$	$\begin{gathered} 5148 \cdot 20 \\ (4020 \cdot 79-6444 \cdot 72) \end{gathered}$	$\begin{gathered} 211 \cdot 30 \\ (167 \cdot 77-265 \cdot 16) \end{gathered}$	$\begin{gathered} 556 \cdot 39 \\ (434 \cdot 37-700 \cdot 10) \end{gathered}$	$\begin{gathered} 635 \cdot 63 \\ (504 \cdot 85-800 \cdot 38) \end{gathered}$	$\begin{gathered} 448 \cdot 04 \\ (348 \cdot 35-566 \cdot 86) \end{gathered}$
Epilepsy	$\begin{gathered} 5945 \cdot 43 \\ (5555 \cdot 08-6409 \cdot 61) \end{gathered}$	$\begin{gathered} 6485 \cdot 40 \\ (5297 \cdot 65-8012 \cdot 26) \end{gathered}$	$\begin{gathered} 5485 \cdot 80 \\ (4500 \cdot 93-6728 \cdot 04) \end{gathered}$	$\begin{gathered} 8031 \cdot 19 \\ (6557 \cdot 79-9917 \cdot 97) \end{gathered}$	$\begin{gathered} 126 \cdot 05 \\ (118 \cdot 63-135 \cdot 52) \end{gathered}$	$\begin{gathered} 173 \cdot 82 \\ (142 \cdot 29-207 \cdot 87) \end{gathered}$	$\begin{gathered} 153 \cdot 18 \\ (126 \cdot 19-183 \cdot 03) \end{gathered}$	$\begin{gathered} 203 \cdot 13 \\ (168 \cdot 25-244 \cdot 83) \end{gathered}$
Multiple sclerosis	$\begin{gathered} 567 \cdot 35 \\ (517 \cdot 29-646.89) \end{gathered}$	$\begin{gathered} 697 \cdot 25 \\ (573 \cdot 73-836 \cdot 26) \end{gathered}$	$\begin{gathered} 708 \cdot 26 \\ (584.01-847 \cdot 78) \end{gathered}$	$\begin{gathered} 690 \cdot 80 \\ (564 \cdot 23-833 \cdot 25) \end{gathered}$	$\begin{gathered} 18.93 \\ (16.58-21.03) \end{gathered}$	$\begin{gathered} 25 \cdot 68 \\ (21 \cdot 46-29 \cdot 73) \end{gathered}$	$\begin{gathered} 26 \cdot 57 \\ (22 \cdot 24-30 \cdot 75) \end{gathered}$	$\begin{gathered} 24.88 \\ (20.64-28.99) \end{gathered}$
Motor neuron disease	$\begin{gathered} 855 \cdot 92 \\ (819 \cdot 37-883 \cdot 29) \end{gathered}$	$\begin{gathered} 1251 \cdot 64 \\ (1138 \cdot 92-1371 \cdot 90) \end{gathered}$	$\begin{gathered} 1273 \cdot 70 \\ (1150 \cdot 47-1408 \cdot 77) \end{gathered}$	$\begin{gathered} 1197.81 \\ (1100 \cdot 77-1307 \cdot 33) \end{gathered}$	$\begin{gathered} 34 \cdot 33 \\ (33 \cdot 05-35 \cdot 36) \end{gathered}$	$\begin{gathered} 57.81 \\ (53.42-61 \cdot 99) \end{gathered}$	$\begin{gathered} 59 \cdot 68 \\ (54 \cdot 64-64 \cdot 87) \end{gathered}$	$\begin{gathered} 54 \cdot 11 \\ (50 \cdot 71-57 \cdot 80) \end{gathered}$
Other neurological disorders	$\begin{gathered} 1908 \cdot 83 \\ (1775 \cdot 71-2020 \cdot 32) \end{gathered}$	$\begin{gathered} 2445 \cdot 26 \\ (2193 \cdot 37-2717 \cdot 74) \end{gathered}$	$\begin{gathered} 2488.76 \\ (2226 \cdot 16-2777 \cdot 72) \end{gathered}$	$\begin{aligned} & 2390 \cdot 72 \\ & (2145 \cdot 26- \\ & 2642 \cdot 88) \end{aligned}$	$\begin{gathered} 53 \cdot 08 \\ (50 \cdot 93-55 \cdot 37) \end{gathered}$	$\begin{gathered} 86.82 \\ (80 \cdot 33-93 \cdot 07) \end{gathered}$	$\begin{gathered} 91 \cdot 69 \\ (84 \cdot 07-99 \cdot 15) \end{gathered}$	$\begin{gathered} 80.03 \\ (74 \cdot 93-85 \cdot 44) \end{gathered}$
Mental and substance use disorders	$\begin{aligned} & 12033 \cdot 73 \\ & (10748 \cdot 31- \\ & 13076 \cdot 40) \end{aligned}$	$\begin{aligned} & 18167 \cdot 84 \\ & (15641 \cdot 39- \\ & 20933 \cdot 89) \end{aligned}$	$\begin{aligned} & 19534 \cdot 61 \\ & (16734 \cdot 02- \\ & 22703 \cdot 24) \end{aligned}$	$\begin{aligned} & 17593 \cdot 95 \\ & (15172 \cdot 11- \\ & 20256 \cdot 13) \end{aligned}$	$\begin{gathered} 318 \cdot 28 \\ (283 \cdot 23-343 \cdot 69) \end{gathered}$	$\begin{gathered} 558 \cdot 24 \\ (484 \cdot 16-628.50) \end{gathered}$	$\begin{aligned} & 614.77 \\ & (532.65- \\ & 696.87) \\ & \quad \text { (Table contin } \end{aligned}$	$\begin{aligned} & 518 \cdot 51 \\ & (457 \cdot 41- \\ & 582.18) \end{aligned}$ ues on next page)

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Alcohol use disorders	$\begin{gathered} 6213 \cdot 98 \\ (5164 \cdot 12-6877 \cdot 78) \end{gathered}$	$\begin{gathered} 6599 \cdot 22 \\ (5424 \cdot 07-7869 \cdot 17) \end{gathered}$	$\begin{gathered} 6556 \cdot 62 \\ (5368 \cdot 97-7877 \cdot 25) \end{gathered}$	$\begin{gathered} 6845 \cdot 26 \\ (5642 \cdot 19-8103 \cdot 96) \end{gathered}$	$\begin{gathered} 173 \cdot 89 \\ (145 \cdot 53-190 \cdot 90) \end{gathered}$	$\begin{gathered} 209 \cdot 16 \\ (171 \cdot 47-246 \cdot 13) \end{gathered}$	$\begin{gathered} 212 \cdot 23 \\ (174 \cdot 20-251 \cdot 02) \end{gathered}$	$\begin{gathered} 211 \cdot 37 \\ (175 \cdot 46-247 \cdot 60) \end{gathered}$
Drug use disorders	$\begin{gathered} 5787 \cdot 35 \\ (5264 \cdot 51-6426 \cdot 74) \end{gathered}$	$\begin{aligned} & 11533 \cdot 11 \\ & (9885 \cdot 26- \\ & 13320 \cdot 20) \end{aligned}$	$\begin{aligned} & 12941 \cdot 35 \\ & (11109 \cdot 60- \\ & 15113 \cdot 55) \end{aligned}$	$\begin{aligned} & 10713.54 \\ & (9246.05- \\ & 12353.23) \end{aligned}$	$\begin{gathered} 143 \cdot 77 \\ (130 \cdot 28-158 \cdot 78) \end{gathered}$	$\begin{gathered} 348 \cdot 40 \\ (302 \cdot 88-393 \cdot 12) \end{gathered}$	$\begin{gathered} 401 \cdot 83 \\ (348 \cdot 54-458 \cdot 57) \end{gathered}$	$\begin{gathered} 306 \cdot 46 \\ (268 \cdot 71-345 \cdot 20) \end{gathered}$
Opioid use disorders	$\begin{aligned} & \quad 3656 \cdot 92 \\ & (3098 \cdot 22- \\ & 4048 \cdot 42) \end{aligned}$	$\begin{gathered} 5683 \cdot 35 \\ (4438 \cdot 29-6659 \cdot 70) \end{gathered}$	$\begin{aligned} & 5921.06 \\ & (4684.93- \\ & 6998.92) \end{aligned}$	$\begin{aligned} & 5504 \cdot 28 \\ & (4289 \cdot 26- \\ & 6404 \cdot 01) \end{aligned}$	$\begin{gathered} 86 \cdot 22 \\ (72 \cdot 67-94 \cdot 68) \end{gathered}$	$\begin{gathered} 157 \cdot 36 \\ (123 \cdot 55-181 \cdot 52) \end{gathered}$	$\begin{gathered} 167 \cdot 83 \\ (132 \cdot 77-194 \cdot 58) \end{gathered}$	$\begin{gathered} 146 \cdot 72 \\ (116 \cdot 21-167 \cdot 61) \end{gathered}$
Cocaine use disorders	$\begin{gathered} 356.97 \\ (288.96-463.85) \end{gathered}$	$\begin{gathered} 953 \cdot 71 \\ (720 \cdot 69-1215 \cdot 78) \end{gathered}$	$\begin{gathered} 1091 \cdot 78 \\ (824 \cdot 50-1385 \cdot 89) \end{gathered}$	$\begin{gathered} 890 \cdot 12 \\ (663 \cdot 37-1127 \cdot 87) \end{gathered}$	$\begin{gathered} 8.80 \\ (7.06-11.27) \end{gathered}$	$\begin{gathered} 25 \cdot 84 \\ (19 \cdot 49-32 \cdot 37) \end{gathered}$	$\begin{gathered} 29 \cdot 83 \\ (22 \cdot 47-37 \cdot 40) \end{gathered}$	$\begin{gathered} 23 \cdot 54 \\ (17 \cdot 66-29 \cdot 29) \end{gathered}$
Amphetamine use disorders	$\begin{gathered} 224 \cdot 23 \\ (185 \cdot 18-300 \cdot 34) \end{gathered}$	$\begin{gathered} 855 \cdot 00 \\ (648 \cdot 42-1090 \cdot 67) \end{gathered}$	$\begin{gathered} 1052 \cdot 37 \\ (789.42-1325 \cdot 00) \end{gathered}$	$\begin{gathered} 773 \cdot 21 \\ (569 \cdot 90-987 \cdot 33) \end{gathered}$	$\begin{gathered} 5 \cdot 22 \\ (4 \cdot 30-6.85) \end{gathered}$	$\begin{gathered} 21 \cdot 39 \\ (16 \cdot 58-27 \cdot 16) \end{gathered}$	$\begin{gathered} 26 \cdot 51 \\ (20 \cdot 41-33 \cdot 16) \end{gathered}$	$\begin{gathered} 18.92 \\ (14 \cdot 28-23 \cdot 57) \end{gathered}$
Other drug use disorders	$\begin{gathered} 1549 \cdot 23 \\ (1395 \cdot 62-1961 \cdot 50) \end{gathered}$	$\begin{gathered} 4041 \cdot 05 \\ (3369 \cdot 16-4829 \cdot 62) \end{gathered}$	$\begin{gathered} 4876 \cdot 15 \\ (4096 \cdot 69-5867 \cdot 03) \end{gathered}$	$\begin{gathered} 3545 \cdot 94 \\ (3026 \cdot 08-4235 \cdot 72) \end{gathered}$	$\begin{gathered} 43 \cdot 53 \\ (39 \cdot 37-52 \cdot 89) \end{gathered}$	$\begin{gathered} 143 \cdot 81 \\ (121 \cdot 40-167 \cdot 46) \end{gathered}$	$\begin{gathered} 177 \cdot 66 \\ (153 \cdot 46-208 \cdot 10) \end{gathered}$	$\begin{gathered} 117 \cdot 29 \\ (102 \cdot 55-133 \cdot 97) \end{gathered}$
Eating disorders	$\begin{array}{r} 32 \cdot 40 \\ (28.77-36.08) \end{array}$	$\begin{gathered} 35.52 \\ (29.42-42 \cdot 49) \end{gathered}$	$\begin{array}{r} 36 \cdot 64 \\ (30 \cdot 35-44 \cdot 14) \end{array}$	$\begin{array}{r} 35 \cdot 14 \\ (29 \cdot 23-41.83) \end{array}$	$\begin{gathered} 0.61 \\ (0.54-0.68) \end{gathered}$	$\begin{array}{r} 0.68 \\ (0.57-0.81) \end{array}$	$\begin{gathered} 0.71 \\ (0.59-0.85) \end{gathered}$	$\begin{gathered} 0.67 \\ (0.56-0.80) \end{gathered}$
Diabetes, urogenital, blood, and endocrine diseases	$\begin{aligned} & 71460.46 \\ & \text { (} 69628.99- \\ & 73928.81) \end{aligned}$	$\begin{aligned} & 125981 \cdot 86 \\ & (84913 \cdot 74- \\ & 194272 \cdot 53) \end{aligned}$	$\begin{aligned} & 89084 \cdot 12 \\ & (63040 \cdot 21- \\ & 133824 \cdot 31) \end{aligned}$	$\begin{gathered} 174390 \cdot 14 \\ (116474 \cdot 41- \\ 274353 \cdot 73) \end{gathered}$	$\begin{aligned} & 3191 \cdot 13 \\ & (3112.85- \\ & 3271.85) \end{aligned}$	$\begin{gathered} 7211.23 \\ (5017.51- \\ 10906 \cdot 78) \end{gathered}$	$\begin{aligned} & 5469 \cdot 17 \\ & (3964 \cdot 00- \\ & 8218 \cdot 74) \end{aligned}$	$\begin{gathered} 9279.91 \\ (6459.64- \\ 14223.71) \end{gathered}$
Diabetes mellitus	$\begin{aligned} & 28650 \cdot 00 \\ & (27998 \cdot 10- \\ & 29279 \cdot 38) \end{aligned}$	$\begin{aligned} & \quad 50614 \cdot 49 \\ & (31560 \cdot 43- \\ & 94467 \cdot 30) \end{aligned}$	$\begin{aligned} & \quad 31971 \cdot 13 \\ & (20869 \cdot 92- \\ & 57343 \cdot 38) \end{aligned}$	$\begin{gathered} 77138.84 \\ (47788.43- \\ 142699.07) \end{gathered}$	$\begin{aligned} & 1437.71 \\ & (1402.66- \\ & 1471.02) \end{aligned}$	$\begin{aligned} & 2971 \cdot 28 \\ & (1888.03- \\ & 5073.60) \end{aligned}$	$\begin{aligned} & 2080 \cdot 67 \\ & (1431 \cdot 20- \\ & 3320 \cdot 51) \end{aligned}$	$\begin{aligned} & 4137 \cdot 34 \\ & (2580 \cdot 99- \\ & 7112 \cdot 27) \end{aligned}$
Acute glomerulonephritis	$\begin{gathered} 320 \cdot 39 \\ (305 \cdot 40-337 \cdot 79) \end{gathered}$	$\begin{gathered} 388.09 \\ (336 \cdot 31-439 \cdot 55) \end{gathered}$	$\begin{gathered} 364 \cdot 92 \\ (320.81-418 \cdot 14) \end{gathered}$	$\begin{gathered} 440 \cdot 13 \\ (384 \cdot 97-497 \cdot 41) \end{gathered}$	$\begin{gathered} 11 \cdot 02 \\ (10 \cdot 54-11 \cdot 52) \end{gathered}$	$\begin{gathered} 18.20 \\ (15.67-21.02) \end{gathered}$	$\begin{gathered} 17.88 \\ (15.65-20.48) \end{gathered}$	$\begin{gathered} 19 \cdot 33 \\ (16 \cdot 76-22 \cdot 29) \end{gathered}$
Chronic kidney disease	$\begin{aligned} & \quad 26260 \cdot 54 \\ & (25370 \cdot 98- \\ & 27674 \cdot 31) \end{aligned}$	$\begin{aligned} & 52597.49 \\ & (28451.46- \\ & 104731 \cdot 93) \end{aligned}$	$\begin{aligned} & \quad 35567 \cdot 28 \\ & (19594 \cdot 69- \\ & 71079.85) \end{aligned}$	$\begin{gathered} 73173 \cdot 78 \\ (39848 \cdot 19- \\ 146920 \cdot 38) \end{gathered}$	$\begin{aligned} & \quad 1186.56 \\ & (1150.74- \\ & 1236.56) \end{aligned}$	$\begin{aligned} & 3087 \cdot 91 \\ & (1525 \cdot 45- \\ & 5957 \cdot 18) \end{aligned}$	$\begin{aligned} & 2228 \cdot 97 \\ & (1123 \cdot 50- \\ & 4332 \cdot 23) \end{aligned}$	$\begin{aligned} & 4045 \cdot 89 \\ & (1959.75- \\ & 7733 \cdot 47) \end{aligned}$
Chronic kidney disease due to diabetes mellitus	$\begin{aligned} & 10965 \cdot 18 \\ & (9948.04- \\ & 11927.79) \end{aligned}$	$\begin{aligned} & 24917 \cdot 34 \\ & (11799 \cdot 44- \\ & 48620 \cdot 72) \end{aligned}$	$\begin{aligned} & \quad 16709 \cdot 19 \\ & (8038 \cdot 31- \\ & 32885 \cdot 79) \end{aligned}$	$\begin{aligned} & 34533.86 \\ & (16526 \cdot 18- \\ & 68545 \cdot 28) \end{aligned}$	$\begin{gathered} 500 \cdot 76 \\ (452 \cdot 44-543 \cdot 96) \end{gathered}$	$\begin{aligned} & 1380 \cdot 79 \\ & (639 \cdot 60-2950 \cdot 79) \end{aligned}$	$\begin{aligned} & 988 \cdot 38 \\ & (469 \cdot 96- \\ & 2168 \cdot 93) \end{aligned}$	$\begin{aligned} & 1822 \cdot 18 \\ & (846 \cdot 77- \\ & 3821 \cdot 40) \end{aligned}$
Chronic kidney disease due to hypertension	$\begin{gathered} 4927 \cdot 08 \\ (4406 \cdot 71-5548 \cdot 10) \end{gathered}$	$\begin{aligned} & 11581 \cdot 49 \\ & (5442 \cdot 77- \\ & 23307 \cdot 25) \end{aligned}$	$\begin{aligned} & 7927.64 \\ & (3937.83- \\ & 16374.03) \end{aligned}$	$\begin{aligned} & 15979 \cdot 13 \\ & (7308 \cdot 61- \\ & 31613 \cdot 59) \end{aligned}$	$\begin{gathered} 299 \cdot 69 \\ (268 \cdot 21-335 \cdot 50) \end{gathered}$	$\begin{gathered} 881 \cdot 05 \\ (389 \cdot 42-1805 \cdot 31) \end{gathered}$	$\begin{aligned} & 651 \cdot 09 \\ & (305 \cdot 37- \\ & 1436 \cdot 38) \end{aligned}$	$\begin{aligned} & 1133 \cdot 53 \\ & (494 \cdot 50- \\ & 2192 \cdot 35) \end{aligned}$
Chronic kidney disease due to glomerulonephritis	$\begin{gathered} 4453 \cdot 76 \\ (3958 \cdot 42-5035 \cdot 20) \end{gathered}$	$\begin{aligned} & \quad 6424 \cdot 18 \\ & (3363 \cdot 38- \\ & 13140 \cdot 59) \end{aligned}$	$\begin{gathered} 4283 \cdot 78 \\ (2396 \cdot 00-8308.05) \end{gathered}$	$\begin{aligned} & 9039 \cdot 62 \\ & (4680 \cdot 69- \\ & 18355 \cdot 20) \end{aligned}$	$\begin{gathered} 150 \cdot 13 \\ (133 \cdot 20-168 \cdot 89) \end{gathered}$	$\begin{gathered} 297 \cdot 47 \\ (138 \cdot 24-582 \cdot 85) \end{gathered}$	$\begin{gathered} 206 \cdot 01 \\ (98 \cdot 19-397 \cdot 97) \end{gathered}$	$\begin{gathered} 395 \cdot 29 \\ (187 \cdot 68-772 \cdot 38) \end{gathered}$
Chronic kidney disease due to other and unspecified causes	$\begin{gathered} 5914 \cdot 52 \\ (5263 \cdot 11-6715 \cdot 11) \end{gathered}$	$\begin{aligned} & \quad 9674 \cdot 47 \\ & (4510 \cdot 04- \\ & 19424 \cdot 46) \end{aligned}$	$\begin{aligned} & \quad 6646 \cdot 67 \\ & (3303 \cdot 54- \\ & 12497 \cdot 23) \end{aligned}$	$\begin{aligned} & 13621 \cdot 17 \\ & (6283 \cdot 42- \\ & 27021 \cdot 38) \end{aligned}$	$\begin{gathered} 235 \cdot 98 \\ (206 \cdot 97-266 \cdot 43) \end{gathered}$	$\begin{gathered} 528.60 \\ (215 \cdot 11-1022 \cdot 62) \end{gathered}$	$\begin{gathered} 383 \cdot 49 \\ (162 \cdot 50-743 \cdot 55) \end{gathered}$	$\begin{aligned} & \quad 694.89 \\ & (280.07- \\ & 1357.59) \end{aligned}$
Urinary diseases and male infertility	$\begin{gathered} 5825 \cdot 72 \\ (5620 \cdot 25-6028 \cdot 46) \end{gathered}$	$\begin{aligned} & 10426 \cdot 34 \\ & (9402.77- \\ & 11382.93) \end{aligned}$	$\begin{aligned} & 10095 \cdot 27 \\ & (8957.65- \\ & 11229.62) \end{aligned}$	$\begin{aligned} & 10399 \cdot 37 \\ & (9547 \cdot 44- \\ & 11184.80) \end{aligned}$	$\begin{gathered} 275 \cdot 21 \\ (267 \cdot 02-284 \cdot 13) \end{gathered}$	$\begin{gathered} 669 \cdot 43 \\ (617 \cdot 85-710 \cdot 49) \end{gathered}$	$\begin{gathered} 675 \cdot 32 \\ (613.87-724.71) \end{gathered}$	$\begin{aligned} & 615 \cdot 15 \\ & (570 \cdot 59- \\ & 656.79) \end{aligned}$
Urinary tract infections	$\begin{gathered} 4040 \cdot 91 \\ (3794 \cdot 05-4296 \cdot 03) \end{gathered}$	$\begin{gathered} 8146 \cdot 94 \\ (7318.69-8878.02) \end{gathered}$	$\begin{gathered} 7944 \cdot 33 \\ (7044 \cdot 95-8800 \cdot 16) \end{gathered}$	$\begin{gathered} 7911 \cdot 05 \\ (7243 \cdot 12-8480 \cdot 18) \end{gathered}$	$\begin{gathered} 203 \cdot 55 \\ (193 \cdot 71-213 \cdot 94) \end{gathered}$	$\begin{gathered} 547 \cdot 69 \\ (504 \cdot 11-586 \cdot 18) \end{gathered}$	$\begin{gathered} 555 \cdot 37 \\ (506 \cdot 70-600 \cdot 12) \end{gathered}$	$\begin{gathered} 493 \cdot 84 \\ (454 \cdot 14-530 \cdot 40) \end{gathered}$
Urolithiasis	$\begin{gathered} 415 \cdot 06 \\ (351 \cdot 37-568 \cdot 25) \end{gathered}$	$\begin{gathered} 811 \cdot 84 \\ (646 \cdot 14-1124 \cdot 64) \end{gathered}$	$\begin{gathered} 790 \cdot 08 \\ (621 \cdot 17-1105 \cdot 64) \end{gathered}$	$\begin{gathered} 818 \cdot 57 \\ (666 \cdot 73-1135 \cdot 25) \end{gathered}$	$\begin{gathered} 18.71 \\ (15 \cdot 94-25 \cdot 76) \end{gathered}$	$\begin{gathered} 44 \cdot 93 \\ (36 \cdot 53-61 \cdot 39) \end{gathered}$	$\begin{gathered} 44 \cdot 98 \\ (36 \cdot 60-61 \cdot 70) \end{gathered}$	$\begin{gathered} 42 \cdot 32 \\ (35 \cdot 15-57 \cdot 36) \end{gathered}$
Other urinary diseases	$\begin{gathered} 1369.76 \\ (1187 \cdot 74-1559 \cdot 01) \end{gathered}$	$\begin{gathered} 1467 \cdot 56 \\ (1201 \cdot 55-1761 \cdot 18) \end{gathered}$	$\begin{gathered} 1360 \cdot 85 \\ (1098 \cdot 17-1660 \cdot 59) \end{gathered}$	$\begin{gathered} 1669 \cdot 75 \\ (1377 \cdot 57-2003 \cdot 92) \end{gathered}$	$\begin{gathered} 52 \cdot 94 \\ (45 \cdot 28-59 \cdot 29) \end{gathered}$	$\begin{gathered} 76.81 \\ (63.74-89.97) \end{gathered}$	$\begin{gathered} 74 \cdot 97 \\ (62 \cdot 38-88 \cdot 48) \end{gathered}$	$\begin{gathered} 78.98 \\ (65 \cdot 12-92 \cdot 63) \end{gathered}$
Gynaecological diseases	$\begin{gathered} 265 \cdot 48 \\ (239 \cdot 09-289 \cdot 12) \end{gathered}$	$\begin{gathered} 279 \cdot 12 \\ (230.81-331 \cdot 93) \end{gathered}$	$\begin{gathered} 241 \cdot 06 \\ (197 \cdot 72-290 \cdot 31) \end{gathered}$	$\begin{gathered} 334 \cdot 72 \\ (279 \cdot 66-393 \cdot 50) \end{gathered}$	$\begin{array}{r} 8.34 \\ (7.45-9.05) \end{array}$	$\begin{gathered} 10 \cdot 40 \\ (8.85-12.00) \end{gathered}$	$\begin{gathered} 9.54 \\ (8 \cdot 01-11 \cdot 12) \end{gathered}$	$\begin{gathered} 11 \cdot 56 \\ (9 \cdot 98-13 \cdot 15) \end{gathered}$
Uterine fibroids	$\begin{gathered} 87.93 \\ (59.02-109.92) \end{gathered}$	$\begin{gathered} 74.58 \\ (42 \cdot 95-102 \cdot 54) \end{gathered}$	$\begin{array}{r} 65 \cdot 28 \\ (36 \cdot 53-92 \cdot 17) \end{array}$	$\begin{gathered} 92 \cdot 50 \\ (54 \cdot 16-127 \cdot 57) \end{gathered}$	$\begin{array}{r} 2.91 \\ (1.97-3.64) \end{array}$	$\begin{array}{r} 2.83 \\ (1.62-3.87) \end{array}$	$\begin{array}{r} 2.59 \\ (1.41-3.65) \end{array}$	$\begin{gathered} 3 \cdot 34 \\ (1 \cdot 99-4 \cdot 48) \end{gathered}$
Polycystic ovarian syndrome	$\begin{array}{r} 18.70 \\ (7.00-35 \cdot 78) \end{array}$	$\begin{array}{r} 13 \cdot 36 \\ (3 \cdot 70-28 \cdot 97) \end{array}$	$\begin{array}{r} 10 \cdot 40 \\ (2.76-23 \cdot 20) \end{array}$	$\begin{array}{r} 19.06 \\ (5 \cdot 30-41 \cdot 01) \end{array}$	$\begin{array}{r} 0.42 \\ (0.16-0.79) \end{array}$	$\begin{gathered} 0.31 \\ (0.09-0.66) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.06-0.53) \end{gathered}$	$\begin{gathered} 0.44 \\ (0.12-0.92) \end{gathered}$
(Table continues on next page)								

Global Health Metrics

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Endometriosis	$\begin{array}{r} 3.05 \\ (1.19-4.51) \end{array}$	$\begin{array}{r} 3.27 \\ (1.63-5 \cdot 38) \end{array}$	${ }_{(1 \cdot 27-4 \cdot 38)^{2.58}}$	$\begin{array}{r} 3.88 \\ (1.86-6.40) \end{array}$	$\begin{gathered} 0.07 \\ (0.03-0 \cdot 10) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.04-0.12) \end{gathered}$	$\begin{array}{r} 0.06 \\ (0.03-0.10) \end{array}$	$\begin{gathered} 0.09 \\ (0.04-0.14) \end{gathered}$
Genital prolapse	$\begin{array}{r} 14.40 \\ (7.54-20.69) \end{array}$	$\begin{gathered} 15 \cdot 46 \\ (7 \cdot 51-24 \cdot 26) \end{gathered}$	$\underset{(6 \cdot 48-22 \cdot 57)}{13 \cdot 97}$	$\begin{array}{r} 18 \cdot 34 \\ (9.01-28 \cdot 39) \end{array}$	$\begin{array}{r} 0.90 \\ (0.45-1 \cdot 31) \end{array}$	$\begin{gathered} 1.03 \\ (0.47-1.64) \end{gathered}$	$\begin{array}{r} 0.99 \\ (0.42-1.61) \end{array}$	$\begin{gathered} 1 \cdot 12 \\ (0.52-1 \cdot 78) \end{gathered}$
Other gynaecological diseases	$\begin{gathered} 141 \cdot 39 \\ (101 \cdot 36-171 \cdot 88) \end{gathered}$	$\begin{gathered} 172 \cdot 45 \\ (125 \cdot 49-218 \cdot 70) \end{gathered}$	$\begin{gathered} 148 \cdot 84 \\ (104 \cdot 43-194 \cdot 13) \end{gathered}$	$\begin{gathered} 200 \cdot 95 \\ (144 \cdot 22-255 \cdot 59) \end{gathered}$	$\begin{array}{r} 4.04 \\ (2.89-5.01) \end{array}$	$\begin{array}{r} 6.16 \\ (4 \cdot 44-7 \cdot 72) \end{array}$	$\begin{gathered} 5 \cdot 67 \\ (3 \cdot 9-7 \cdot 26) \end{gathered}$	$\begin{gathered} 6.58 \\ (4.74-8.32) \end{gathered}$
Haemoglobinopathies and haemolytic anaemias	$\begin{gathered} 5749 \cdot 22 \\ (5096 \cdot 81-6685 \cdot 28) \end{gathered}$	$\begin{gathered} 5779 \cdot 97 \\ (4823 \cdot 26-6949 \cdot 86) \end{gathered}$	$\begin{gathered} 5004 \cdot 71 \\ (4189 \cdot 87-6082 \cdot 30) \end{gathered}$	$\begin{gathered} 6876 \cdot 12 \\ (5737 \cdot 17-8265 \cdot 52) \end{gathered}$	$\begin{gathered} 127 \cdot 99 \\ (113 \cdot 11-149 \cdot 07) \end{gathered}$	$\begin{gathered} 180 \cdot 40 \\ (157 \cdot 09-214 \cdot 26) \end{gathered}$	$\begin{gathered} 168 \cdot 20 \\ (145 \cdot 21-201 \cdot 63) \end{gathered}$	$\begin{gathered} 194.08 \\ (169 \cdot 72-231 \cdot 51) \end{gathered}$
Thalassaemias	$\begin{gathered} 493 \cdot 34 \\ (422.79-608.87) \end{gathered}$	$\begin{gathered} 185.08 \\ (141.61-241.57) \end{gathered}$	$\begin{gathered} 183.01 \\ (138.72-240 \cdot 97) \end{gathered}$	$\begin{gathered} 213 \cdot 10 \\ (156 \cdot 39-290 \cdot 44) \end{gathered}$	$\begin{array}{r} 6 \cdot 26 \\ (5 \cdot 43-7 \cdot 66) \end{array}$	$\begin{array}{r} 2.50 \\ (1.97-3.23) \end{array}$	$\begin{array}{r} 2.48 \\ (1.93-3.22) \end{array}$	$\begin{gathered} 2.82 \\ (2.14-3.78) \end{gathered}$
Sickle cell disorders	$\begin{gathered} 3800 \cdot 55 \\ (3296 \cdot 48-4494 \cdot 70) \end{gathered}$	$\begin{gathered} 3670 \cdot 21 \\ (2937 \cdot 01-4540 \cdot 83) \end{gathered}$	$\begin{gathered} 3065 \cdot 67 \\ (2453 \cdot 93-3794 \cdot 43) \end{gathered}$	$\begin{gathered} 4500 \cdot 56 \\ (3614 \cdot 07-5564 \cdot 63) \end{gathered}$	$\begin{gathered} 55 \cdot 30 \\ (48 \cdot 14-65 \cdot 79) \end{gathered}$	$\begin{gathered} 62 \cdot 36 \\ (50 \cdot 24-77 \cdot 18) \end{gathered}$	$\begin{gathered} 53 \cdot 61 \\ (43 \cdot 24-66 \cdot 72) \end{gathered}$	$\begin{gathered} 74 \cdot 28 \\ (60 \cdot 14-91 \cdot 35) \end{gathered}$
G6PD deficiency	$\begin{gathered} 711 \cdot 78 \\ (610 \cdot 56-850 \cdot 22) \end{gathered}$	$\begin{gathered} 1022 \cdot 63 \\ (848 \cdot 34-1292 \cdot 34) \end{gathered}$	$\begin{gathered} 892 \cdot 99 \\ (735 \cdot 34-1136 \cdot 16) \end{gathered}$	$\begin{gathered} 1229 \cdot 30 \\ (1027 \cdot 20-1539 \cdot 85) \end{gathered}$	$\begin{gathered} 17.86 \\ (15.35-21.64) \end{gathered}$	$\begin{gathered} 35 \cdot 32 \\ (29 \cdot 59-43 \cdot 86) \end{gathered}$	$\begin{gathered} 31 \cdot 86 \\ (26 \cdot 54-40 \cdot 36) \end{gathered}$	$\begin{gathered} 40 \cdot 40 \\ (34 \cdot 27-50 \cdot 55) \end{gathered}$
Other haemoglobinopathies and haemolytic anaemias	$\begin{gathered} 743 \cdot 55 \\ (651 \cdot 51-875 \cdot 17) \end{gathered}$	$\begin{gathered} 902 \cdot 05 \\ (779 \cdot 71-1080 \cdot 70) \end{gathered}$	$\begin{gathered} 863.04 \\ (732.23-1036.06) \end{gathered}$	$\begin{gathered} 933 \cdot 16 \\ (804 \cdot 81-1123 \cdot 60) \end{gathered}$	$\begin{gathered} 48 \cdot 58 \\ (42 \cdot 73-56 \cdot 86) \end{gathered}$	$\begin{gathered} 80 \cdot 23 \\ (68 \cdot 35-94.83) \end{gathered}$	$\begin{gathered} 80 \cdot 25 \\ (68 \cdot 58-95 \cdot 62) \end{gathered}$	$\begin{gathered} 76.58 \\ (63 \cdot 51-91 \cdot 93) \end{gathered}$
Endocrine, metabolic, blood, and immune disorders	$\begin{gathered} 4389 \cdot 11 \\ (3902 \cdot 73-4910 \cdot 93) \end{gathered}$	$\begin{gathered} 5896 \cdot 37 \\ (5053 \cdot 29-6903 \cdot 26) \end{gathered}$	$\begin{gathered} 5839 \cdot 74 \\ (4967 \cdot 77-6882 \cdot 23) \end{gathered}$	$\begin{gathered} 6027 \cdot 18 \\ (5178 \cdot 03-6990 \cdot 48) \end{gathered}$	$\begin{gathered} 144 \cdot 30 \\ (122 \cdot 64-153 \cdot 63) \end{gathered}$	$\begin{gathered} 273 \cdot 62 \\ (230 \cdot 68-300 \cdot 51) \end{gathered}$	$\begin{gathered} 288 \cdot 59 \\ (243 \cdot 68-319.95) \end{gathered}$	$\begin{gathered} 256 \cdot 55 \\ (217 \cdot 00-282 \cdot 38) \end{gathered}$
Musculoskeletal disorders	$\begin{aligned} & 2198 \cdot 24 \\ & (1965 \cdot 60- \\ & 2494 \cdot 14) \end{aligned}$	$\begin{aligned} & \quad 3530.99 \\ & (3061.48- \\ & 4042.74) \end{aligned}$	$\begin{aligned} & 3408.06 \\ & (2966.03- \\ & 3917.00) \end{aligned}$	$\begin{aligned} & \quad 3601.89 \\ & (3142.03- \\ & 4088.87) \end{aligned}$	$\begin{gathered} 89 \cdot 23 \\ (78.89-98 \cdot 13) \end{gathered}$	$\begin{gathered} 187 \cdot 74 \\ (163 \cdot 59-208 \cdot 10) \end{gathered}$	$\begin{gathered} 185 \cdot 07 \\ (160 \cdot 86-204 \cdot 38) \end{gathered}$	$\begin{aligned} & 185 \cdot 36 \\ & (160.87- \\ & 205 \cdot 67) \end{aligned}$
Rheumatoid arthritis	$\begin{gathered} 574 \cdot 17 \\ (487.59-668 \cdot 99) \end{gathered}$	$\begin{gathered} 1069.42 \\ (867.59-1312.76) \end{gathered}$	$\begin{gathered} 936 \cdot 38 \\ (760 \cdot 24-1127.82) \end{gathered}$	$\begin{gathered} 1242 \cdot 46 \\ (1030 \cdot 94-1471 \cdot 88) \end{gathered}$	$\begin{gathered} 31 \cdot 00 \\ (26 \cdot 47-35 \cdot 76) \end{gathered}$	$\begin{gathered} 71 \cdot 92 \\ (59 \cdot 20-86 \cdot 61) \end{gathered}$	$\begin{gathered} 64.97 \\ (52.70-76.69) \end{gathered}$	$\begin{gathered} 79.85 \\ (66.62-93.00) \end{gathered}$
Other musculoskeletal disorders	$\begin{gathered} 1624.07 \\ (1432.71-1864 \cdot 54) \end{gathered}$	$\begin{gathered} 2461 \cdot 56 \\ (2126 \cdot 77-2827 \cdot 39) \end{gathered}$	$\begin{gathered} 2471 \cdot 68 \\ (2124 \cdot 41-2861 \cdot 18) \end{gathered}$	$\begin{gathered} 2359 \cdot 43 \\ (2049 \cdot 62-2718 \cdot 35) \end{gathered}$	$\begin{gathered} 58.23 \\ (51.06-64.61) \end{gathered}$	$\begin{gathered} 115 \cdot 82 \\ (98.63-128 \cdot 38) \end{gathered}$	$\begin{gathered} 120 \cdot 10 \\ (102 \cdot 88-134 \cdot 24) \end{gathered}$	$\begin{gathered} 105 \cdot 51 \\ (89.55-117.51) \end{gathered}$
Other non-communicable diseases	$\begin{aligned} & 45970.60 \\ & \text { (40880.95- } \\ & 50868 \cdot 23) \end{aligned}$	$\begin{aligned} & 32706 \cdot 96 \\ & (26818 \cdot 36- \\ & 39441 \cdot 15) \end{aligned}$	$\begin{aligned} & 26202 \cdot 54 \\ & (21720.48- \\ & 30811 \cdot 16) \end{aligned}$	$\quad 44215 \cdot 51$ $(35429 \cdot 20-$ $53711.68)$	$\begin{gathered} 639 \cdot 68 \\ (576 \cdot 40-703 \cdot 63) \end{gathered}$	$\begin{gathered} 726 \cdot 74 \\ (585 \cdot 19-863 \cdot 19) \end{gathered}$	$\begin{gathered} 661 \cdot 41 \\ (515 \cdot 67-787 \cdot 88) \end{gathered}$	$\begin{aligned} & 834 \cdot 47 \\ & (683 \cdot 19- \\ & 989.65) \end{aligned}$
Congenital birth defects	$\begin{aligned} & \quad 40707 \cdot 17 \\ & (35761 \cdot 86- \\ & 45627 \cdot 57) \end{aligned}$	$\begin{aligned} & 24074 \cdot 01 \\ & (18539 \cdot 18- \\ & 30075 \cdot 57) \end{aligned}$	$\begin{aligned} & 18002 \cdot 10 \\ & (14297.67- \\ & 21909 \cdot 94) \end{aligned}$	$\begin{aligned} & 34762 \cdot 99 \\ & (26442 \cdot 21- \\ & 43727.31) \end{aligned}$	$\begin{gathered} 498 \cdot 93 \\ (440 \cdot 16-556 \cdot 55) \end{gathered}$	$\begin{gathered} 314 \cdot 56 \\ (249 \cdot 48-385 \cdot 20) \end{gathered}$	$\begin{gathered} 240 \cdot 53 \\ (195 \cdot 24-289 \cdot 37) \end{gathered}$	$\begin{gathered} 442 \cdot 92 \\ (343.85-548 \cdot 45) \end{gathered}$
Neural-tube defects	$\begin{gathered} 3407 \cdot 47 \\ (2362 \cdot 11-5150 \cdot 35) \end{gathered}$	$\begin{gathered} 1061 \cdot 15 \\ (624.88-1861 \cdot 94) \end{gathered}$	$\begin{gathered} 657.99 \\ (390 \cdot 69-1118 \cdot 30) \end{gathered}$	$\begin{gathered} 1781 \cdot 49 \\ (1060 \cdot 23-3037 \cdot 03) \end{gathered}$	$\begin{gathered} 40 \cdot 07 \\ (27 \cdot 87-60 \cdot 47) \end{gathered}$	$\begin{gathered} 12 \cdot 82 \\ (7.66-22 \cdot 25) \end{gathered}$	$\begin{gathered} 8.03 \\ (4.88-13.63) \end{gathered}$	$\begin{gathered} 21 \cdot 32 \\ (12 \cdot 86-36 \cdot 16) \end{gathered}$
Congenital heart anomalies	$\begin{aligned} & 17809 \cdot 17 \\ & (15807 \cdot 17- \\ & 20444 \cdot 43) \end{aligned}$	$\begin{aligned} & \quad 9582 \cdot 98 \\ & (7610.01- \\ & 12056.60) \end{aligned}$	$\begin{gathered} 7261 \cdot 75 \\ (5737 \cdot 97-9101 \cdot 39) \end{gathered}$	$\begin{aligned} & \quad 13714.66 \\ & (10706 \cdot 45- \\ & 17536.79) \end{aligned}$	$\begin{gathered} 221 \cdot 28 \\ (197 \cdot 71-253 \cdot 82) \end{gathered}$	$\begin{gathered} 127 \cdot 29 \\ (102 \cdot 76-158 \cdot 05) \end{gathered}$	$\begin{gathered} 98.09 \\ (78.47-121.70) \end{gathered}$	$\begin{gathered} 177 \cdot 95 \\ (141 \cdot 68-224 \cdot 40) \end{gathered}$
Orofacial clefts	$\begin{gathered} 192 \cdot 20 \\ (107 \cdot 02-316 \cdot 42) \end{gathered}$	$\begin{gathered} 92.07 \\ (38 \cdot 93-179 \cdot 68) \end{gathered}$	$\begin{gathered} 55 \cdot 87 \\ (23 \cdot 43-107 \cdot 87) \end{gathered}$	$\begin{gathered} 160 \cdot 23 \\ (65 \cdot 07-318 \cdot 93) \end{gathered}$	$\begin{array}{r} 2.23 \\ (1.24-3.67) \end{array}$	$\begin{gathered} 1.07 \\ (0.45-2.08) \end{gathered}$	$\begin{array}{r} 0.65 \\ (0.27-1 \cdot 25) \end{array}$	$\begin{gathered} 1.86 \\ (0.76-3 \cdot 70) \end{gathered}$
Down's syndrome	$\begin{gathered} 981 \cdot 25 \\ (850 \cdot 19-1274 \cdot 58) \end{gathered}$	$\begin{gathered} 905 \cdot 44 \\ (740 \cdot 93-1209 \cdot 68) \end{gathered}$	$\begin{gathered} 803 \cdot 19 \\ (668 \cdot 14-1024 \cdot 98) \end{gathered}$	$\begin{gathered} 1122 \cdot 56 \\ (897 \cdot 15-1619 \cdot 83) \end{gathered}$	$\begin{gathered} 14.84 \\ (12.82-18 \cdot 42) \end{gathered}$	$\begin{gathered} 16 \cdot 46 \\ (13 \cdot 77-20 \cdot 42) \end{gathered}$	$\begin{gathered} 15 \cdot 30 \\ (13 \cdot 02-18 \cdot 44) \end{gathered}$	$\begin{gathered} 19 \cdot 20 \\ (15 \cdot 91-25 \cdot 33) \end{gathered}$
Other chromosomal abnormalities	$\begin{gathered} 1457.92 \\ (1090 \cdot 95-2066 \cdot 93) \end{gathered}$	$\begin{gathered} 1572 \cdot 56 \\ (1062 \cdot 32-2306 \cdot 94) \end{gathered}$	$\begin{gathered} 1159 \cdot 56 \\ (820.03-1636 \cdot 12) \end{gathered}$	$\begin{gathered} 2129 \cdot 18 \\ (1388 \cdot 96-3207 \cdot 18) \end{gathered}$	$\begin{gathered} 17.49 \\ (13 \cdot 20-24.55) \end{gathered}$	$\begin{gathered} 19 \cdot 37 \\ (13 \cdot 33-27 \cdot 96) \end{gathered}$	$\begin{gathered} 14 \cdot 46 \\ (10 \cdot 31-20 \cdot 13) \end{gathered}$	$\begin{gathered} 25 \cdot 90 \\ (17 \cdot 10-38 \cdot 36) \end{gathered}$
Congenital musculoskeletal and limb anomalies	$\begin{gathered} 722.00 \\ (519.66-1318 \cdot 57) \end{gathered}$	$\begin{gathered} 464 \cdot 76 \\ (307 \cdot 64-918 \cdot 58) \end{gathered}$	$\begin{gathered} 368 \cdot 00 \\ (235 \cdot 38-747 \cdot 07) \end{gathered}$	$\begin{gathered} 671 \cdot 80 \\ (421 \cdot 81-1392 \cdot 47) \end{gathered}$	$\begin{gathered} 8.75 \\ (6 \cdot 35-15 \cdot 70) \end{gathered}$	$\begin{gathered} 5 \cdot 90 \\ (3 \cdot 97-11 \cdot 32) \end{gathered}$	$\begin{gathered} 4.70 \\ (3 \cdot 08-9 \cdot 26) \end{gathered}$	$\begin{gathered} 8 \cdot 35 \\ (5 \cdot 35-16 \cdot 88) \end{gathered}$
Urogenital congenital anomalies	$\begin{gathered} 896 \cdot 51 \\ (698 \cdot 38-1105 \cdot 03) \end{gathered}$	$\begin{gathered} 595 \cdot 48 \\ (447 \cdot 91-756 \cdot 97) \end{gathered}$	$\begin{gathered} 483 \cdot 71 \\ (358 \cdot 35-614 \cdot 73) \end{gathered}$	$\begin{gathered} 819 \cdot 17 \\ (589 \cdot 84-1058 \cdot 92) \end{gathered}$	$\begin{gathered} 12.05 \\ (9.56-14.75) \end{gathered}$	$\begin{gathered} 9.75 \\ (7.62-12 \cdot 22) \end{gathered}$	$\begin{gathered} 8 \cdot 27 \\ (6 \cdot 36-10 \cdot 39) \end{gathered}$	$\begin{gathered} 12.51 \\ (9 \cdot 47-15 \cdot 61) \end{gathered}$
Digestive congenital anomalies	$\begin{gathered} 2915 \cdot 74 \\ (2252 \cdot 55-4540 \cdot 70) \end{gathered}$	$\begin{gathered} 1647 \cdot 12 \\ (1145 \cdot 54-2631 \cdot 98) \end{gathered}$	$\begin{gathered} 1178 \cdot 35 \\ (811 \cdot 76-1918 \cdot 20) \end{gathered}$	$\begin{gathered} 2451 \cdot 30 \\ (1682 \cdot 28-4057 \cdot 15) \end{gathered}$	$\begin{gathered} 34 \cdot 29 \\ (26 \cdot 49-53 \cdot 18) \end{gathered}$	$\begin{gathered} 19 \cdot 79 \\ (13 \cdot 83-31 \cdot 39) \end{gathered}$	$\begin{gathered} 14 \cdot 24 \\ (9.87-22 \cdot 88) \end{gathered}$	$\begin{gathered} 29 \cdot 20 \\ (20 \cdot 18-47 \cdot 96) \end{gathered}$
Other congenital birth defects	$\begin{aligned} & 12324 \cdot 90 \\ & (8589 \cdot 29- \\ & 17181 \cdot 30) \end{aligned}$	$\begin{aligned} & 8152.45 \\ & (4878.04- \\ & 12787.23) \end{aligned}$	$\begin{gathered} 6033 \cdot 69 \\ (3792 \cdot 40-9057 \cdot 01) \end{gathered}$	$\begin{aligned} & 11912 \cdot 59 \\ & (6943 \cdot 72- \\ & 18797.61) \end{aligned}$	$\begin{gathered} 147 \cdot 93 \\ (104 \cdot 12-204 \cdot 96) \end{gathered}$	$\begin{gathered} 102 \cdot 11 \\ (63 \cdot 06-157 \cdot 32) \end{gathered}$	$\begin{gathered} 76 \cdot 79 \\ (49 \cdot 97-112 \cdot 97) \end{gathered}$	$\begin{gathered} 146.63 \\ (87 \cdot 76-228 \cdot 24) \end{gathered}$
Skin and subcutaneous diseases	$\begin{gathered} 2759 \cdot 24 \\ (1738 \cdot 63-3611 \cdot 70) \end{gathered}$	$\begin{gathered} 7355 \cdot 32 \\ (4732 \cdot 72-9613 \cdot 55) \end{gathered}$	$\begin{gathered} 7203 \cdot 46 \\ (4600 \cdot 65-9363 \cdot 05) \end{gathered}$	$\begin{gathered} 7546 \cdot 98 \\ (4863 \cdot 56-9910 \cdot 67) \end{gathered}$	$\begin{gathered} 111.69 \\ (71.83-144 \cdot 41) \end{gathered}$	$\begin{gathered} 397 \cdot 36 \\ (258 \cdot 31-507 \cdot 56) \end{gathered}$	$\begin{gathered} 409 \cdot 31 \\ (263 \cdot 56-525 \cdot 96) \end{gathered}$	$\begin{gathered} 369 \cdot 44 \\ (241 \cdot 80-474 \cdot 25) \end{gathered}$
(Table continues on next page)								

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Cellulitis	$\begin{gathered} 437 \cdot 34 \\ (235 \cdot 60-565 \cdot 93) \end{gathered}$	$\begin{gathered} 1443 \cdot 55 \\ (794 \cdot 66-1843 \cdot 83) \end{gathered}$	$\begin{gathered} 1492 \cdot 39 \\ (821 \cdot 12-1925 \cdot 33) \end{gathered}$	$\begin{gathered} 1333 \cdot 98 \\ (734 \cdot 32-1710 \cdot 25) \end{gathered}$	$\begin{gathered} 18.92 \\ (10.44-25 \cdot 50) \end{gathered}$	$\begin{gathered} 76 \cdot 51 \\ (41 \cdot 72-98 \cdot 15) \end{gathered}$	$\begin{gathered} 82 \cdot 21 \\ (45 \cdot 30-104 \cdot 36) \end{gathered}$	$\begin{gathered} 66 \cdot 33 \\ (36 \cdot 60-86 \cdot 90) \end{gathered}$
Pyoderma	$\begin{gathered} 1827 \cdot 47 \\ (1139 \cdot 86-2485 \cdot 19) \end{gathered}$	$\begin{gathered} 4818 \cdot 78 \\ (3123 \cdot 23-6557 \cdot 09) \end{gathered}$	$\begin{gathered} 4641 \cdot 40 \\ (2960 \cdot 92-6219 \cdot 43) \end{gathered}$	$\begin{gathered} 5145 \cdot 51 \\ (3331 \cdot 93-6981 \cdot 72) \end{gathered}$	$\begin{gathered} 62.02 \\ (38.96-83 \cdot 22) \end{gathered}$	$\begin{gathered} 237 \cdot 18 \\ (155 \cdot 02-317 \cdot 07) \end{gathered}$	$\begin{gathered} 242 \cdot 04 \\ (155 \cdot 95-320 \cdot 59) \end{gathered}$	$\begin{gathered} 226 \cdot 46 \\ (145 \cdot 99-305 \cdot 96) \end{gathered}$
Decubitus ulcer	$\begin{gathered} 380.63 \\ (245.03-516.80) \end{gathered}$	$\begin{gathered} 880.85 \\ (567.08-1172.62) \end{gathered}$	$\begin{gathered} 861 \cdot 72 \\ (554 \cdot 45-1152 \cdot 73) \end{gathered}$	$\begin{gathered} 853 \cdot 56 \\ (547 \cdot 76-1148 \cdot 56) \end{gathered}$	$\begin{gathered} 26 \cdot 44 \\ (16 \cdot 90-35 \cdot 99) \end{gathered}$	$\begin{gathered} 73 \cdot 88 \\ (46 \cdot 79-98 \cdot 32) \end{gathered}$	$\begin{gathered} 74 \cdot 98 \\ (47 \cdot 77-100 \cdot 00) \end{gathered}$	$\begin{gathered} 67.68 \\ (42.88-91 \cdot 36) \end{gathered}$
Other skin and subcutaneous diseases	$\begin{gathered} 113.80 \\ (77.82-160 \cdot 51) \end{gathered}$	$\begin{gathered} 212 \cdot 14 \\ (144 \cdot 62-301 \cdot 59) \end{gathered}$	$\begin{gathered} 207 \cdot 94 \\ (142 \cdot 28-292 \cdot 44) \end{gathered}$	$\begin{gathered} 213 \cdot 94 \\ (144 \cdot 26-305 \cdot 15) \end{gathered}$	$\begin{gathered} 4 \cdot 31 \\ (3 \cdot 04-6 \cdot 30) \end{gathered}$	$\begin{gathered} 9.80 \\ (6 \cdot 93-14 \cdot 21) \end{gathered}$	$\begin{gathered} 10.09 \\ (7.06-14 \cdot 58) \end{gathered}$	$\begin{gathered} 8.98 \\ (6 \cdot 34-12 \cdot 91) \end{gathered}$
Sudden infant death syndrome	$\begin{gathered} 2504 \cdot 19 \\ (2015 \cdot 23-3003 \cdot 09) \end{gathered}$	$\begin{gathered} 1277 \cdot 63 \\ (893 \cdot 51-1703 \cdot 86) \end{gathered}$	$\begin{gathered} 996 \cdot 98 \\ (692 \cdot 00-1345 \cdot 10) \end{gathered}$	$\begin{gathered} 1905 \cdot 55 \\ (1279 \cdot 76-2579 \cdot 13) \end{gathered}$	$\begin{gathered} 29 \cdot 06 \\ (23 \cdot 39-34 \cdot 85) \end{gathered}$	$\begin{gathered} 14 \cdot 82 \\ (10 \cdot 36-19 \cdot 77) \end{gathered}$	$\begin{gathered} 11 \cdot 57 \\ (8 \cdot 03-15 \cdot 61) \end{gathered}$	$\begin{gathered} 22 \cdot 11 \\ (14.85-29 \cdot 92) \end{gathered}$
Injuries	$\begin{array}{r} 200076 \cdot 35 \\ (191347 \cdot 73- \\ 207066 \cdot 54) \end{array}$	$\begin{aligned} & 172041 \cdot 16 \\ & (149434 \cdot 07- \\ & 202184 \cdot 44) \end{aligned}$	$\begin{aligned} & 145447 \cdot 98 \\ & (126628.42- \\ & 168892 \cdot 35) \end{aligned}$	$\begin{aligned} & 215156.64 \\ & (185789.15- \\ & 253836.82) \end{aligned}$	$\begin{aligned} & 4610.99 \\ & (4364.81- \\ & 4768.86) \end{aligned}$	$\begin{aligned} & 5224.86 \\ & (4646.81- \\ & 5933.12) \end{aligned}$	$\begin{aligned} & 4702.53 \\ & (4203.74- \\ & 5283.76) \end{aligned}$	$\begin{array}{r} 6028 \cdot 45 \\ (5314 \cdot 34- \\ 6887.16) \end{array}$
Transport injuries	$\begin{aligned} & 65706.86 \\ & (63870.89- \\ & 68591 \cdot 16) \end{aligned}$	$\begin{aligned} & 55363 \cdot 63 \\ & (45921 \cdot 31- \\ & 74345 \cdot 12) \end{aligned}$	$\begin{aligned} & 41190 \cdot 60 \\ & \text { (34986.46- } \\ & 53622 \cdot 33) \end{aligned}$	$\begin{aligned} & 84357 \cdot 62 \\ & (69341 \cdot 11- \\ & 112401.83) \end{aligned}$	$\begin{aligned} & 1437.29 \\ & (1400.00- \\ & 1492 \cdot 45) \end{aligned}$	$\begin{aligned} & 1407 \cdot 24 \\ & (1178 \cdot 42- \\ & 1823 \cdot 59) \end{aligned}$	$\begin{aligned} & 1092 \cdot 32 \\ & (939 \cdot 13- \\ & 1379 \cdot 13) \end{aligned}$	$\begin{aligned} & 2062.94 \\ & (1711 \cdot 24- \\ & 2674.50) \end{aligned}$
Road injuries	$\begin{aligned} & \quad 61412 \cdot 07 \\ & (59638.88- \\ & 64244.07) \end{aligned}$	$\begin{aligned} & 50143 \cdot 95 \\ & (41534.85- \\ & 67394 \cdot 49) \end{aligned}$	$\begin{aligned} & \quad 36745.08 \\ & (31189.62- \\ & 47577.65) \end{aligned}$	$\begin{aligned} & 78200 \cdot 45 \\ & (64175 \cdot 36- \\ & 104302 \cdot 36) \end{aligned}$	$\begin{aligned} & 1342 \cdot 28 \\ & (1307 \cdot 57- \\ & 1393 \cdot 72) \end{aligned}$	$\begin{aligned} & 1267.79 \\ & (1061.78- \\ & 1646.84) \end{aligned}$	$\begin{gathered} 970 \cdot 37 \\ (832 \cdot 19-1226 \cdot 79) \end{gathered}$	$\begin{aligned} & 1904 \cdot 67 \\ & (1580 \cdot 70- \\ & 2472 \cdot 57) \end{aligned}$
Pedestrian road injuries	$\begin{aligned} & \quad 21740 \cdot 97 \\ & (20466 \cdot 35- \\ & 23243 \cdot 54) \end{aligned}$	$\begin{aligned} & 14641 \cdot 13 \\ & (12077 \cdot 54- \\ & 18853.88) \end{aligned}$	$\begin{aligned} & 10428.09 \\ & (8725.63- \\ & 13212.33) \end{aligned}$	$\begin{aligned} & 24532.64 \\ & (20113.74- \\ & 32068.06) \end{aligned}$	$\begin{gathered} 514 \cdot 33 \\ (485 \cdot 76-546 \cdot 68) \end{gathered}$	$\begin{gathered} 427 \cdot 09 \\ (358 \cdot 39-542 \cdot 63) \end{gathered}$	$\begin{gathered} 318 \cdot 17 \\ (272 \cdot 73-393 \cdot 38) \end{gathered}$	$\begin{gathered} 691 \cdot 18 \\ (574 \cdot 20-890 \cdot 17) \end{gathered}$
Cyclist road injuries	$\begin{gathered} 3095 \cdot 55 \\ (2811 \cdot 61-3487.67) \end{gathered}$	$\begin{gathered} 2619 \cdot 38 \\ (2050 \cdot 34-3592 \cdot 08) \end{gathered}$	$\begin{gathered} 2082 \cdot 28 \\ (1660 \cdot 42-2754 \cdot 55) \end{gathered}$	$\begin{gathered} 3976 \cdot 06 \\ (3118 \cdot 63-5499 \cdot 38) \end{gathered}$	$\begin{gathered} 74 \cdot 75 \\ (68 \cdot 50-83 \cdot 50) \end{gathered}$	$\begin{gathered} 77.86 \\ (61 \cdot 50-106 \cdot 74) \end{gathered}$	$\begin{gathered} 65 \cdot 31 \\ (52 \cdot 54-85 \cdot 99) \end{gathered}$	$\begin{gathered} 108 \cdot 33 \\ (84.87-148.09) \end{gathered}$
Motorcyclist road injuries	$\begin{aligned} & 12601 \cdot 43 \\ & (11425 \cdot 94- \\ & 13642 \cdot 74) \end{aligned}$	$\begin{aligned} & 10798.59 \\ & (8472.97- \\ & 15147.80) \end{aligned}$	$\begin{aligned} & \quad 8968.98 \\ & (7194 \cdot 41- \\ & 12180 \cdot 29) \end{aligned}$	$\begin{aligned} & 15356 \cdot 65 \\ & (11927 \cdot 50- \\ & 21427.53) \end{aligned}$	$\begin{gathered} 251 \cdot 26 \\ (227 \cdot 03-269 \cdot 91) \end{gathered}$	$\begin{gathered} 240 \cdot 60 \\ (190 \cdot 32-333 \cdot 86) \end{gathered}$	$\begin{gathered} 205 \cdot 37 \\ (167 \cdot 23-276 \cdot 61) \end{gathered}$	$\begin{gathered} 326 \cdot 89 \\ (255 \cdot 62-455 \cdot 63) \end{gathered}$
Motor vehicle road injuries	$\begin{aligned} & \quad 23391 \cdot 19 \\ & (21813 \cdot 46- \\ & 26453 \cdot 91) \end{aligned}$	$\begin{aligned} & \quad 21571.93 \\ & (17414 \cdot 29- \\ & 29312 \cdot 78) \end{aligned}$	$\begin{aligned} & 14886 \cdot 66 \\ & (12229 \cdot 66- \\ & 19217 \cdot 44) \end{aligned}$	$\begin{aligned} & 33511 \cdot 39 \\ & (26815 \cdot 96- \\ & 45300 \cdot 46) \end{aligned}$	$\begin{gathered} 488.71 \\ (454 \cdot 63-549 \cdot 39) \end{gathered}$	$\begin{gathered} 507 \cdot 47 \\ (415 \cdot 00-676 \cdot 83) \end{gathered}$	$\begin{gathered} 369.59 \\ (305 \cdot 97-466 \cdot 16) \end{gathered}$	$\begin{aligned} & 756 \cdot 49 \\ & (612 \cdot 72- \\ & 1007.09) \end{aligned}$
Other road injuries	$\begin{gathered} 582 \cdot 93 \\ (535 \cdot 13-725 \cdot 78) \end{gathered}$	$\begin{gathered} 512 \cdot 91 \\ (402 \cdot 35-700 \cdot 93) \end{gathered}$	$\begin{gathered} 379.07 \\ (305 \cdot 29-506 \cdot 08) \end{gathered}$	$\begin{gathered} 823 \cdot 71 \\ (641.88-1143 \cdot 58) \end{gathered}$	$\begin{gathered} 13 \cdot 23 \\ (12 \cdot 19-16 \cdot 38) \end{gathered}$	$\begin{gathered} 14 \cdot 78 \\ (11.86-19 \cdot 93) \end{gathered}$	$\begin{gathered} 11 \cdot 92 \\ (9 \cdot 76-15 \cdot 85) \end{gathered}$	$\begin{gathered} 21 \cdot 78 \\ (17 \cdot 16-29 \cdot 97) \end{gathered}$
Other transport injuries	$\begin{gathered} 4294 \cdot 79 \\ (3991 \cdot 27-4796 \cdot 07) \end{gathered}$	$\begin{gathered} 5219 \cdot 68 \\ (4163 \cdot 90-7034 \cdot 05) \end{gathered}$	$\begin{gathered} 4445 \cdot 53 \\ (3632 \cdot 09-5901 \cdot 24) \end{gathered}$	$\begin{gathered} 6157 \cdot 18 \\ (4902 \cdot 16-8421 \cdot 01) \end{gathered}$	$\begin{gathered} 95.01 \\ (88.78-106.62) \end{gathered}$	$\begin{gathered} 139 \cdot 45 \\ (112 \cdot 94-181 \cdot 35) \end{gathered}$	$\begin{gathered} 121 \cdot 95 \\ (101 \cdot 38-158 \cdot 92) \end{gathered}$	$\begin{gathered} 158 \cdot 27 \\ (126 \cdot 41-209 \cdot 19) \end{gathered}$
Unintentional injuries	$\begin{aligned} & 69727 \cdot 11 \\ & (62737.61- \\ & 73048 \cdot 22) \end{aligned}$	$\begin{aligned} & 58163.98 \\ & (50912.78- \\ & 65392 \cdot 90) \end{aligned}$	$\begin{aligned} & 52780 \cdot 22 \\ & (45978.25- \\ & 59385.05) \end{aligned}$	$\begin{aligned} & 66745 \cdot 65 \\ & \text { (57994.95- } \\ & 74882.82) \end{aligned}$	$\begin{aligned} & 1803.86 \\ & (1587.98- \\ & 1889.28) \end{aligned}$	$\begin{aligned} & 2341.06 \\ & (2008.65- \\ & 2571.77) \end{aligned}$	$\begin{aligned} & 2290.08 \\ & (1959.00- \\ & 2503.37) \end{aligned}$	$\begin{gathered} 2387.32 \\ (2046.80- \\ 2600.93) \end{gathered}$
Falls	$\begin{aligned} & 16827 \cdot 42 \\ & (14324 \cdot 96- \\ & 17828 \cdot 35) \end{aligned}$	$\begin{aligned} & \quad 20886 \cdot 11 \\ & (17449 \cdot 72- \\ & 22846 \cdot 15) \end{aligned}$	$\begin{aligned} & 20493 \cdot 11 \\ & (17182 \cdot 95- \\ & 22697.00) \end{aligned}$	$\begin{aligned} & 21544 \cdot 24 \\ & (17931 \cdot 81- \\ & 23369 \cdot 17) \end{aligned}$	$\begin{gathered} 678 \cdot 46 \\ (559 \cdot 21-719 \cdot 32) \end{gathered}$	$\begin{aligned} & 1251.79 \\ & (1011.31- \\ & 1387.09) \end{aligned}$	$\begin{aligned} & 1287.01 \\ & (1038.06- \\ & 1422.97) \end{aligned}$	$\begin{gathered} 1175 \cdot 69 \\ (936 \cdot 15- \\ 1302 \cdot 65) \end{gathered}$
Drowning	$\begin{aligned} & \quad 16575 \cdot 72 \\ & (15016 \cdot 39- \\ & 17803 \cdot 41) \end{aligned}$	$\begin{gathered} 9540 \cdot 30 \\ (7961 \cdot 64-11517 \cdot 74) \end{gathered}$	$\begin{gathered} 8197 \cdot 61 \\ (6876 \cdot 39-9774 \cdot 78) \end{gathered}$	$\begin{aligned} & 11628.32 \\ & (9529.95- \\ & 13961 \cdot 00) \end{aligned}$	$\begin{gathered} 302 \cdot 93 \\ (272 \cdot 75-322 \cdot 39) \end{gathered}$	$\begin{gathered} 237 \cdot 03 \\ (202 \cdot 09-281 \cdot 10) \end{gathered}$	$\begin{gathered} 213 \cdot 21 \\ (181 \cdot 29-248 \cdot 72) \end{gathered}$	$\begin{gathered} 269 \cdot 91 \\ (225 \cdot 17-317 \cdot 83) \end{gathered}$
Fire, heat, and hot substances	$\begin{gathered} 5696.05 \\ (4651 \cdot 71-6188 \cdot 51) \end{gathered}$	$\begin{gathered} 3883 \cdot 45 \\ (3084 \cdot 15-4685 \cdot 24) \end{gathered}$	$\begin{gathered} 3223 \cdot 27 \\ (2531 \cdot 66-3863 \cdot 78) \end{gathered}$	$\begin{gathered} 4792 \cdot 54 \\ (3770 \cdot 80-5808 \cdot 24) \end{gathered}$	$\begin{gathered} 132.08 \\ (110 \cdot 13-141 \cdot 63) \end{gathered}$	$\begin{gathered} 125 \cdot 56 \\ (103 \cdot 54-148 \cdot 38) \end{gathered}$	$\begin{gathered} 110 \cdot 45 \\ (91 \cdot 12-128.06) \end{gathered}$	$\begin{gathered} 141 \cdot 28 \\ (114 \cdot 58-167 \cdot 81) \end{gathered}$
Poisonings	$\begin{gathered} 2851 \cdot 04 \\ (2118 \cdot 58-3240 \cdot 46) \end{gathered}$	$\begin{gathered} 1296 \cdot 74 \\ (959 \cdot 52-1620 \cdot 92) \end{gathered}$	$\begin{gathered} 983 \cdot 17 \\ (727 \cdot 91-1188 \cdot 11) \end{gathered}$	$\begin{gathered} 1792 \cdot 95 \\ (1276 \cdot 11-2222 \cdot 46) \end{gathered}$	$\begin{gathered} 57 \cdot 08 \\ (42 \cdot 42-63 \cdot 58) \end{gathered}$	$\begin{gathered} 32 \cdot 68 \\ (24.53-40.83) \end{gathered}$	$\begin{gathered} 26 \cdot 23 \\ (19 \cdot 55-30 \cdot 96) \end{gathered}$	$\begin{gathered} 42 \cdot 21 \\ (30 \cdot 47-50 \cdot 81) \end{gathered}$
Exposure to mechanical forces	$\begin{gathered} 7509 \cdot 63 \\ (6132 \cdot 22-8051 \cdot 89) \end{gathered}$	$\begin{gathered} 5290 \cdot 23 \\ (4319 \cdot 19-6044 \cdot 82) \end{gathered}$	$\begin{gathered} 4498 \cdot 37 \\ (3618 \cdot 64-5133 \cdot 86) \end{gathered}$	$\begin{gathered} 6471 \cdot 13 \\ (5207 \cdot 72-7369 \cdot 41) \end{gathered}$	$\begin{gathered} 154 \cdot 84 \\ (123 \cdot 96-165 \cdot 14) \end{gathered}$	$\begin{gathered} 139 \cdot 52 \\ (112 \cdot 67-155 \cdot 15) \end{gathered}$	$\begin{gathered} 125 \cdot 45 \\ (100 \cdot 76-140 \cdot 08) \end{gathered}$	$\begin{gathered} 159 \cdot 20 \\ (126 \cdot 92-175 \cdot 93) \end{gathered}$
Unintentional firearm injuries	$\begin{gathered} 1123 \cdot 71 \\ (881 \cdot 70-1233 \cdot 13) \end{gathered}$	$\begin{gathered} 846 \cdot 50 \\ (646 \cdot 14-1001 \cdot 76) \end{gathered}$	$\begin{gathered} 696 \cdot 33 \\ (534 \cdot 86-825 \cdot 31) \end{gathered}$	$\begin{gathered} 1006 \cdot 04 \\ (755 \cdot 92-1184 \cdot 61) \end{gathered}$	$\begin{gathered} 22.95 \\ (18.24-24.76) \end{gathered}$	$\begin{gathered} 21 \cdot 19 \\ (16 \cdot 67-24 \cdot 00) \end{gathered}$	$\begin{gathered} 18.54 \\ (14.73-20.97) \end{gathered}$	$\begin{gathered} 23 \cdot 61 \\ (18 \cdot 34-26 \cdot 70) \end{gathered}$
Unintentional suffocation	$\begin{gathered} 1474 \cdot 69 \\ (1151 \cdot 64-1717 \cdot 10) \end{gathered}$	$\begin{gathered} 814 \cdot 68 \\ (636 \cdot 24-1018 \cdot 58) \end{gathered}$	$\begin{gathered} 641 \cdot 16 \\ (502 \cdot 76-781 \cdot 24) \end{gathered}$	$\begin{gathered} 1074 \cdot 87 \\ (836 \cdot 49-1351 \cdot 88) \end{gathered}$	$\begin{gathered} 22.63 \\ (17.38-26 \cdot 00) \end{gathered}$	$\begin{gathered} 16 \cdot 37 \\ (12 \cdot 54-19 \cdot 40) \end{gathered}$	$\begin{gathered} 14.09 \\ (10 \cdot 53-16 \cdot 57) \end{gathered}$	$\begin{gathered} 19 \cdot 40 \\ (14 \cdot 90-23 \cdot 15) \end{gathered}$
Other exposure to mechanical forces	$\begin{gathered} 4911 \cdot 23 \\ (3856 \cdot 75-5218 \cdot 17) \end{gathered}$	$\begin{gathered} 3629 \cdot 05 \\ (2894 \cdot 26-4145 \cdot 74) \end{gathered}$	$\begin{gathered} 3160 \cdot 89 \\ (2479 \cdot 92-3612 \cdot 37) \end{gathered}$	$\begin{gathered} 4390 \cdot 21 \\ (3457 \cdot 01-4999 \cdot 36) \end{gathered}$	$\begin{gathered} 109 \cdot 26 \\ (84 \cdot 20-115 \cdot 90) \end{gathered}$	$\begin{gathered} 101 \cdot 96 \\ (80 \cdot 43-113 \cdot 90) \end{gathered}$	$\begin{gathered} 92 \cdot 82 \\ (72 \cdot 82-104 \cdot 27) \end{gathered}$	$\begin{gathered} 116 \cdot 19 \\ (90 \cdot 15-128 \cdot 57) \end{gathered}$
(Table continues on next page)								

Global Health Metrics

	YLLs (thousands)				Deaths (thousands)			
	2016	2040 forecast	2040 better health scenario	2040 worse health scenario	2016	2040 forecast	2040 better health scenario	2040 worse health scenario
(Continued from previous page)								
Adverse effects of medical treatment	$\begin{gathered} 4601 \cdot 97 \\ (3861 \cdot 10-5157 \cdot 12) \end{gathered}$	$\begin{gathered} 4614 \cdot 89 \\ (3822 \cdot 40-5301 \cdot 78) \end{gathered}$	$\begin{gathered} 4228 \cdot 26 \\ (3506 \cdot 22-4839 \cdot 86) \end{gathered}$	$\begin{gathered} 5268 \cdot 64 \\ (4314 \cdot 89-6074 \cdot 53) \end{gathered}$	$\begin{gathered} 126 \cdot 73 \\ (109 \cdot 32-140 \cdot 49) \end{gathered}$	$\begin{gathered} 177 \cdot 37 \\ (152 \cdot 27-197 \cdot 86) \end{gathered}$	$\begin{gathered} 173 \cdot 99 \\ (149 \cdot 25-194 \cdot 59) \end{gathered}$	$\begin{gathered} 182 \cdot 22 \\ (156 \cdot 41-203 \cdot 24) \end{gathered}$
Animal contact	$\begin{gathered} 4268 \cdot 95 \\ (3176 \cdot 54-4791 \cdot 49) \end{gathered}$	$\begin{gathered} 3868 \cdot 17 \\ (2924 \cdot 74-4701 \cdot 03) \end{gathered}$	$\begin{gathered} 3481 \cdot 14 \\ (2581 \cdot 51-4244 \cdot 26) \end{gathered}$	$\begin{gathered} 5061 \cdot 15 \\ (3746 \cdot 62-6145 \cdot 44) \end{gathered}$	$\begin{gathered} 91 \cdot 59 \\ (68 \cdot 84-102 \cdot 20) \end{gathered}$	$\begin{gathered} 109 \cdot 83 \\ (82 \cdot 41-130 \cdot 84) \end{gathered}$	$\begin{gathered} 103 \cdot 55 \\ (77 \cdot 42-124 \cdot 56) \end{gathered}$	$\begin{gathered} 132 \cdot 25 \\ (97 \cdot 55-156 \cdot 60) \end{gathered}$
Venomous animal contact	$\begin{gathered} 3662 \cdot 04 \\ (2606 \cdot 92-4190 \cdot 13) \end{gathered}$	$\begin{gathered} 3159 \cdot 01 \\ (2276 \cdot 37-3908 \cdot 85) \end{gathered}$	$\begin{gathered} 2884 \cdot 63 \\ (2046 \cdot 92-3609 \cdot 19) \end{gathered}$	$\begin{gathered} 4166 \cdot 84 \\ (2929 \cdot 13-5179 \cdot 51) \end{gathered}$	$\begin{gathered} 78.81 \\ (56.81-89 \cdot 39) \end{gathered}$	$\begin{gathered} 90 \cdot 76 \\ (65 \cdot 91-111 \cdot 03) \end{gathered}$	$\begin{gathered} 86.45 \\ (62.09-106 \cdot 23) \end{gathered}$	$\begin{gathered} 110 \cdot 12 \\ (77 \cdot 74-133 \cdot 59) \end{gathered}$
Non-venomous animal contact	$\begin{gathered} 606.90 \\ (479.70-841.74) \end{gathered}$	$\begin{gathered} 709 \cdot 15 \\ (533 \cdot 11-986 \cdot 40) \end{gathered}$	$\begin{gathered} 596 \cdot 51 \\ (448 \cdot 58-831 \cdot 88) \end{gathered}$	$\begin{gathered} 894 \cdot 31 \\ (666 \cdot 54-1252 \cdot 16) \end{gathered}$	$\begin{gathered} 12 \cdot 78 \\ (10 \cdot 32-17 \cdot 37) \end{gathered}$	$\begin{gathered} 19.07 \\ (14.95-25.83) \end{gathered}$	$\begin{gathered} 17.09 \\ (13 \cdot 24-23 \cdot 55) \end{gathered}$	$\begin{gathered} 22 \cdot 13 \\ (17 \cdot 29-30 \cdot 26) \end{gathered}$
Foreign body	$\begin{gathered} 4703 \cdot 00 \\ (4114 \cdot 40-5317 \cdot 87) \end{gathered}$	$\begin{gathered} 4174 \cdot 11 \\ (3501 \cdot 47-4912 \cdot 46) \end{gathered}$	$\begin{gathered} 3811 \cdot 67 \\ (3223 \cdot 49-4415 \cdot 19) \end{gathered}$	$\begin{gathered} 4567 \cdot 32 \\ (3771 \cdot 24-5483 \cdot 96) \end{gathered}$	$\begin{gathered} 106 \cdot 27 \\ (92 \cdot 49-114 \cdot 91) \end{gathered}$	$\begin{gathered} 134 \cdot 38 \\ (112 \cdot 31-149 \cdot 53) \end{gathered}$	$\begin{gathered} 134 \cdot 00 \\ (110 \cdot 79-149 \cdot 04) \end{gathered}$	$\begin{gathered} 130 \cdot 68 \\ (108 \cdot 40-145 \cdot 76) \end{gathered}$
Pulmonary aspiration and foreign body in airway	$\begin{aligned} & \quad 4203 \cdot 16 \\ & (3638.86- \\ & 4809.69) \end{aligned}$	$\begin{gathered} 3706 \cdot 49 \\ (3094 \cdot 59-4409 \cdot 35) \end{gathered}$	$\begin{gathered} 3369 \cdot 33 \\ (2832 \cdot 09-3920 \cdot 11) \end{gathered}$	$\begin{gathered} 4045 \cdot 38 \\ (3323 \cdot 02-4900 \cdot 60) \end{gathered}$	$\begin{gathered} 95 \cdot 92 \\ (82 \cdot 50-104 \cdot 51) \end{gathered}$	$\begin{gathered} 120 \cdot 87 \\ (99 \cdot 54-134 \cdot 29) \end{gathered}$	$\begin{gathered} 120 \cdot 22 \\ (98 \cdot 94-133 \cdot 91) \end{gathered}$	$\begin{gathered} 117 \cdot 12 \\ (96 \cdot 82-130 \cdot 45) \end{gathered}$
Foreign body in other body part	$\begin{gathered} 499 \cdot 84 \\ (372 \cdot 99-586 \cdot 34) \end{gathered}$	$\begin{gathered} 467 \cdot 62 \\ (321 \cdot 20-592 \cdot 42) \end{gathered}$	$\begin{gathered} 442 \cdot 34 \\ (310 \cdot 26-559 \cdot 55) \end{gathered}$	$\begin{gathered} 521 \cdot 94 \\ (349 \cdot 92-664 \cdot 03) \end{gathered}$	$\begin{gathered} 10 \cdot 34 \\ (7.86-12 \cdot 04) \end{gathered}$	$\begin{gathered} 13 \cdot 51 \\ (9 \cdot 82-16 \cdot 18) \end{gathered}$	$\begin{gathered} 13 \cdot 79 \\ (10 \cdot 21-16 \cdot 37) \end{gathered}$	$\begin{gathered} 13 \cdot 56 \\ (9.66-16 \cdot 29) \end{gathered}$
Environmental heat and cold exposure	$\begin{gathered} 1920 \cdot 96 \\ (1216 \cdot 20-2408 \cdot 60) \end{gathered}$	$\begin{gathered} 1728 \cdot 59 \\ (1113 \cdot 49-2228 \cdot 05) \end{gathered}$	$\begin{gathered} 1400 \cdot 07 \\ (871 \cdot 24-1775 \cdot 05) \end{gathered}$	$\begin{gathered} 2095 \cdot 87 \\ (1321 \cdot 65-2627 \cdot 11) \end{gathered}$	$\begin{gathered} 55 \cdot 60 \\ (36 \cdot 43-71 \cdot 46) \end{gathered}$	$\begin{gathered} 62 \cdot 92 \\ (41 \cdot 44-79.06) \end{gathered}$	$\begin{gathered} 54.70 \\ (34.98-67.01) \end{gathered}$	$\begin{gathered} 71 \cdot 23 \\ (45 \cdot 59-87.55) \end{gathered}$
Other unintentional injuries	$\begin{gathered} 4772 \cdot 37 \\ (4186 \cdot 14-5000 \cdot 09) \end{gathered}$	$\begin{gathered} 2881 \cdot 41 \\ (2502 \cdot 77-3292 \cdot 95) \end{gathered}$	$\begin{gathered} 2463 \cdot 55 \\ (2108 \cdot 62-2852 \cdot 29) \end{gathered}$	$\begin{gathered} 3523 \cdot 50 \\ (3043 \cdot 77-4015 \cdot 07) \end{gathered}$	$\begin{gathered} 98 \cdot 29 \\ (84 \cdot 22-102 \cdot 79) \end{gathered}$	$\begin{gathered} 69.99 \\ (60 \cdot 80-78 \cdot 49) \end{gathered}$	$\begin{gathered} 61 \cdot 51 \\ (52 \cdot 07-69 \cdot 39) \end{gathered}$	$\begin{gathered} 82 \cdot 64 \\ (71 \cdot 27-91 \cdot 63) \end{gathered}$
Self-harm and interpersonal violence	$\begin{aligned} & 54833 \cdot 93 \\ & (50105 \cdot 60- \\ & 58459 \cdot 47) \end{aligned}$	$\begin{aligned} & 54502 \cdot 13 \\ & (44319.70- \\ & 69140 \cdot 81) \end{aligned}$	$\begin{aligned} & 47539.51 \\ & (39342 \cdot 84- \\ & 59955 \cdot 82) \end{aligned}$	$\begin{aligned} & 59901 \cdot 26 \\ & (47778 \cdot 17- \\ & 77176 \cdot 33) \end{aligned}$	$\begin{aligned} & 1207.94 \\ & (1108.85- \\ & 1290.98) \end{aligned}$	$\begin{aligned} & 1393.66 \\ & (1126.40- \\ & 1749.81) \end{aligned}$	$\begin{aligned} & 1236 \cdot 80 \\ & (1023.74- \\ & 1523 \cdot 52) \end{aligned}$	$\begin{aligned} & 1494 \cdot 83 \\ & (1186 \cdot 81- \\ & 1911 \cdot 21) \end{aligned}$
Self-harm	$\begin{aligned} & 34621.42 \\ & \text { (32412.04- } \\ & 37408.58) \end{aligned}$	$\begin{aligned} & 37320 \cdot 20 \\ & (28815.99- \\ & 49427.27) \end{aligned}$	$\begin{aligned} & 32600 \cdot 62 \\ & (26039 \cdot 66- \\ & 41920 \cdot 43) \end{aligned}$	$\begin{aligned} & 41608 \cdot 85 \\ & (31743 \cdot 20- \\ & 55659 \cdot 49) \end{aligned}$	$\begin{gathered} 817 \cdot 15 \\ (762 \cdot 05-883 \cdot 74) \end{gathered}$	$\begin{gathered} 1031 \cdot 34 \\ (801 \cdot 35-1342 \cdot 58) \end{gathered}$	$\begin{gathered} 917.97 \\ (736 \cdot 10-1152 \cdot 60) \end{gathered}$	$\begin{aligned} & 1115 \cdot 17 \\ & (850.45- \\ & 1478.85) \end{aligned}$
Self-harm by firearm	$\begin{gathered} 2840 \cdot 07 \\ (2373.75-3578 \cdot 95) \end{gathered}$	$\begin{gathered} 2486 \cdot 62 \\ (1649 \cdot 94-3699 \cdot 28) \end{gathered}$	$\begin{gathered} 2049 \cdot 23 \\ (1398 \cdot 06-2944 \cdot 41) \end{gathered}$	$\begin{aligned} & 2847.55 \\ & (1849 \cdot 47- \\ & 4298.88) \end{aligned}$	$\begin{gathered} 67 \cdot 52 \\ (55 \cdot 39-84 \cdot 13) \end{gathered}$	$\begin{gathered} 66 \cdot 42 \\ (45 \cdot 43-97 \cdot 31) \end{gathered}$	$\begin{gathered} 55 \cdot 67 \\ (39 \cdot 55-79 \cdot 18) \end{gathered}$	$\begin{gathered} 73 \cdot 87 \\ (48 \cdot 79-110 \cdot 93) \end{gathered}$
Self-harm by other specified means	$\begin{aligned} & 31781 \cdot 35 \\ & (29699 \cdot 54- \\ & 34445 \cdot 40) \end{aligned}$	$\begin{aligned} & 34833 \cdot 59 \\ & (26961 \cdot 13- \\ & 45891 \cdot 30) \end{aligned}$	$\begin{aligned} & 30551 \cdot 39 \\ & (24446 \cdot 50- \\ & 39200 \cdot 07) \end{aligned}$	$\begin{aligned} & \quad 38761 \cdot 30 \\ & (29680.83- \\ & 51796.56) \end{aligned}$	$\begin{gathered} 749 \cdot 63 \\ (700 \cdot 93-812 \cdot 55) \end{gathered}$	$\begin{gathered} 964 \cdot 92 \\ (750 \cdot 23-1250 \cdot 29) \end{gathered}$	$\begin{aligned} & 862 \cdot 30 \\ & (690 \cdot 38- \\ & 1083 \cdot 26) \end{aligned}$	$\begin{aligned} & 1041 \cdot 30 \\ & (794 \cdot 94- \\ & 1377.72) \end{aligned}$
Interpersonal violence	$\begin{aligned} & \quad 20212 \cdot 52 \\ & (16632 \cdot 13- \\ & 23093 \cdot 86) \end{aligned}$	$\begin{aligned} & 17181 \cdot 92 \\ & (13451 \cdot 18- \\ & 21891 \cdot 19) \end{aligned}$	$\begin{aligned} & 14938 \cdot 89 \\ & (11670 \cdot 64- \\ & 18893 \cdot 94) \end{aligned}$	$\begin{aligned} & 18292 \cdot 41 \\ & (14228 \cdot 41- \\ & 22914 \cdot 68) \end{aligned}$	$\begin{gathered} 390 \cdot 79 \\ (320 \cdot 78-453 \cdot 71) \end{gathered}$	$\begin{gathered} 362 \cdot 31 \\ (286 \cdot 16-452 \cdot 80) \end{gathered}$	$\begin{gathered} 318 \cdot 83 \\ (254 \cdot 60-397 \cdot 78) \end{gathered}$	$\begin{gathered} 379 \cdot 66 \\ (298 \cdot 02-472 \cdot 54) \end{gathered}$
Physical violence by firearm	$\begin{gathered} 8615 \cdot 86 \\ (5744 \cdot 46-9727 \cdot 92) \end{gathered}$	$\begin{gathered} 6973 \cdot 53 \\ (4648 \cdot 78-8926 \cdot 42) \end{gathered}$	$\begin{gathered} 5820 \cdot 85 \\ (3953 \cdot 91-7402 \cdot 88) \end{gathered}$	$\begin{gathered} 7424 \cdot 86 \\ (4855 \cdot 17-9440 \cdot 71) \end{gathered}$	$\begin{gathered} 160 \cdot 98 \\ (107 \cdot 16-182 \cdot 48) \end{gathered}$	$\begin{gathered} 138 \cdot 98 \\ (93 \cdot 71-174 \cdot 07) \end{gathered}$	$\begin{gathered} 117 \cdot 43 \\ (80 \cdot 51-146 \cdot 03) \end{gathered}$	$\begin{gathered} 146 \cdot 43 \\ (96 \cdot 48-182 \cdot 33) \end{gathered}$
Physical violence by sharp object	$\begin{gathered} 4876 \cdot 53 \\ (3900 \cdot 91-6470 \cdot 22) \end{gathered}$	$\begin{gathered} 4467 \cdot 67 \\ (3255 \cdot 02-6114 \cdot 85) \end{gathered}$	$\begin{gathered} 3992 \cdot 53 \\ (2915 \cdot 38-5434 \cdot 44) \end{gathered}$	$\begin{gathered} 4536 \cdot 38 \\ (3302 \cdot 32-6189 \cdot 05) \end{gathered}$	$\begin{gathered} 97.39 \\ (78.14-128 \cdot 54) \end{gathered}$	$\begin{gathered} 96.80 \\ (71.79-129.75) \end{gathered}$	$\begin{gathered} 87 \cdot 37 \\ (63 \cdot 93-116 \cdot 33) \end{gathered}$	$\begin{gathered} 97 \cdot 10 \\ (72 \cdot 28-129 \cdot 61) \end{gathered}$
Physical violence by other means	$\begin{gathered} 6720 \cdot 13 \\ (5734 \cdot 01-8489 \cdot 35) \end{gathered}$	$\begin{gathered} 5740 \cdot 72 \\ (4418 \cdot 98-7707 \cdot 19) \end{gathered}$	$\begin{gathered} 5125 \cdot 50 \\ (3984 \cdot 58-6895 \cdot 60) \end{gathered}$	$\begin{gathered} 6331 \cdot 17 \\ (4851 \cdot 24-8556 \cdot 87) \end{gathered}$	$\begin{gathered} 132 \cdot 43 \\ (111 \cdot 32-168 \cdot 39) \end{gathered}$	$\begin{gathered} 126 \cdot 53 \\ (98 \cdot 32-170 \cdot 19) \end{gathered}$	$\begin{gathered} 114 \cdot 03 \\ (89 \cdot 49-151 \cdot 37) \end{gathered}$	$\begin{gathered} 136 \cdot 13 \\ (105 \cdot 19-184 \cdot 51) \end{gathered}$
Forces of nature, conflict and terrorism, and executions and police conflict	$\begin{aligned} & 9808.44 \\ & (6797.54- \\ & 13037.71) \end{aligned}$	$\begin{aligned} & \quad 4011 \cdot 42 \\ & (708 \cdot 58- \\ & 18585 \cdot 61) \end{aligned}$	$\begin{aligned} & 3937.66 \\ & (690.63- \\ & 18633.79) \end{aligned}$	$\begin{aligned} & 4152 \cdot 10 \\ & (749 \cdot 22- \\ & 18680 \cdot 14) \end{aligned}$	$\begin{gathered} 161 \cdot 89 \\ (112 \cdot 58-215 \cdot 06) \end{gathered}$	$\begin{gathered} 82 \cdot 90 \\ (13 \cdot 20-397 \cdot 46) \end{gathered}$	$\begin{gathered} 83 \cdot 32 \\ (13 \cdot 14-412 \cdot 86) \end{gathered}$	$\begin{gathered} 83 \cdot 36 \\ (13 \cdot 53-390 \cdot 38) \end{gathered}$
Exposure to forces of nature	$\begin{gathered} 357 \cdot 59 \\ (217 \cdot 91-507 \cdot 75) \end{gathered}$	$\begin{gathered} 1386 \cdot 15 \\ (117.93-9787.90) \end{gathered}$	$\begin{gathered} 1357 \cdot 70 \\ (117 \cdot 14-9343 \cdot 07) \end{gathered}$	$\begin{gathered} 1440 \cdot 21 \\ (120 \cdot 24-10113 \cdot 39) \end{gathered}$	$\begin{gathered} 7.06 \\ (4 \cdot 22-10 \cdot 13) \end{gathered}$	$\begin{gathered} 31 \cdot 67 \\ (2 \cdot 86-199 \cdot 16) \end{gathered}$	$\begin{gathered} 31 \cdot 91 \\ (2 \cdot 87-200 \cdot 20) \end{gathered}$	$\begin{gathered} 31 \cdot 65 \\ (2 \cdot 94-198 \cdot 20) \end{gathered}$
Conflict and terrorism	$\begin{aligned} & \quad 9226 \cdot 02 \\ & (6241 \cdot 21- \\ & 12407 \cdot 43) \end{aligned}$	$\begin{gathered} 1756 \cdot 66 \\ (207 \cdot 67-12381 \cdot 20) \end{gathered}$	$\begin{gathered} 1722 \cdot 46 \\ (204 \cdot 80-12441 \cdot 55) \end{gathered}$	$\begin{gathered} 1835 \cdot 04 \\ (210 \cdot 54-12401 \cdot 08) \end{gathered}$	$\begin{gathered} 150 \cdot 46 \\ (101 \cdot 46-202 \cdot 67) \end{gathered}$	$\begin{gathered} 33 \cdot 50 \\ (4 \cdot 12-267 \cdot 40) \end{gathered}$	$\begin{gathered} 33 \cdot 70 \\ (4 \cdot 14-278 \cdot 34) \end{gathered}$	$\begin{gathered} 34 \cdot 03 \\ (4 \cdot 10-262 \cdot 88) \end{gathered}$
Executions and police conflict	$\begin{gathered} 224 \cdot 83 \\ (119 \cdot 67-261 \cdot 63) \end{gathered}$	$\begin{gathered} 868.60 \\ (0.00-5251 \cdot 96) \end{gathered}$	$\begin{gathered} 857 \cdot 49 \\ (0.00-5157 \cdot 42) \end{gathered}$	$\begin{gathered} 876.84 \\ (0.00-5336 \cdot 91) \end{gathered}$	$\begin{array}{r} 4.38 \\ (2.28-5.04) \end{array}$	$\begin{gathered} 17.72 \\ (0.00-103 \cdot 92) \end{gathered}$	$\begin{gathered} 17 \cdot 71 \\ (0.00-103 \cdot 30) \end{gathered}$	$\begin{gathered} 17.68 \\ (0.00-104 \cdot 24) \end{gathered}$

[^1]

Figure 4: Leading 20 Level 3 causes of YLLs globally in 2016 and 2040 by rank order
Figure shows percentage changes in the number of years of life lost (YLLs), all-age, and age-standardised rates. Rectangles are colour-coded based on Global Burden of Disease (GBD) Level 1 cause hierarchy: red=communicable, maternal, neonatal, and nutritional diseases; blue=non-communicable causes; green=injuries. Causes are connected by lines between time periods, with solid lines representing increasing relative rank and dashed lines representing decreasing rank. From 2016 to 2040, three measures of change are shown: percentage change in total number of YLLs, percentage change in the all-age YLL rate, and percentage change in the age-standardised YLL rate. Statistically significant changes are in bold. COPD=chronic obstructive pulmonary disease. Neonatal preterm birth=neonatal disorders due to preterm birth complications.
continued progress against these causes in parallel with changing demographic patterns. Two causes of injuriesroad injuries and self-harm—ranked among the leading 20 causes of death in 2016, but showed divergent trends by 2040. Road injuries not only fell in relative rank (from 5th to 8th), but also saw significant decreases in all-age YLL rates and age-standardised YLL rates by 2040. Conversely, self-harm somewhat rose in relative rank (from 14th to 11th), though this was mainly driven by faster projected reductions for several CMNN causes ranked above self-harm in 2016.
Despite marked reductions in the leading causes of under-5 deaths from 1990-2016, our 2040 worse health scenarios suggest that such gains could be undone in the future (figure 5). Based on the reference forecast, $2 \cdot 1$ million (95% UI 1-6-2.7) under-5 deaths were projected to occur in 2040, a $57 \cdot 2 \%(44 \cdot 8-67 \cdot 1)$ decrease from 2016 (ie, $5 \cdot 0$ million $[4 \cdot 7-5 \cdot 2]$). The most pronounced decreases in under-5 deaths were forecasted for LRIs, malaria, and neonatal disorders due to preterm birth complications. Conversely, far less progress was projected for neonatal sepsis and meningitis under the reference forecast. In considering 2040 scenarios, three causes-LRIs, neonatal sepsis, and meningitis-showed the potential for equalling
or exceeding their toll in 2016 under the 2040 worse health scenario. In absolute terms, this was particularly evident for LRIs, with the worse health scenario resulting in 661000 (233000-1173000) under-5 LRI deaths in 2040. Yet, if all countries could meet the pace of progress established by the better health scenario, under-5 deaths from LRIs could decrease to $115000(43100-264000)$ in 2040.
Charting how changes in underlying risks could contribute to higher or lower rates of premature mortality across health scenarios showed the large potential for improving future health outcomes by intervening on modifiable risk factors today (figure 6). In 2040, our reference forecasts pointed to three metabolic riskshigh blood pressure, high BMI, and high FPG-as among the five leading global risk factors for YLLs. Differences between risk-attributable YLLs in the better and worse health scenarios were at least $2 \cdot 6$-times for these leading metabolic factors, a trend driven by massive variation in YLLs from cardiovascular diseases. Tobacco, the fourth-leading risk factor in 2040, showed a similarly large range across scenarios, reflecting the equally variable past trends in smoking across countries. In fact, based on the 2040 worse health scenarios, tobacco could eclipse high BMI and high FPG to become the 2nd

Figure 5: Evolution of leading causes of global under-5 deaths from 1990 to 2016 and in the 2040 reference forecast, 2040 better health scenario, and 2040 worse health scenario
Estimates are reported in millions, with 1990 and 2016 estimates based on Global Burden of Disease Study (GBD) 2016 results. Neonatal preterm birth=neonatal disorders due to preterm birth complications. Congenital=congenital defects. Other neonatal=other neonatal disorders.
leading risk factor behind high blood pressure. Other risks for which the range in risk-attributable YLLs spanned more than 50 million across better and worse health scenarios included high total cholesterol, ambient particulate matter pollution, household air pollution, alcohol use, and several dietary risks. Short gestational age, ranked as the 9th leading risk factor for attributable YLLs in 2040, was the only risk among the leading ten that mainly affected CMNN diseases. Note that differences in risk-attributable YLLs between reference and scenarios for each risk must be interpreted with the shift of all risk factors and drivers of mortality set to better or worse health, not just the risk in question.

Super-region and regional findings

Figure 7 shows the evolution of YLLs, as categorised by CMNN, NCDs, and injuries, in the past and across 2040 projections globally and regionally. While the shift from CMNN to NCD YLLs was evident across GBD superregions, the magnitude by which such epidemiological transitions varied. The most pronounced changes were forecasted in south Asia, as well in much of Latin America and southeast Asia, east Asia and Oceania, and North Africa and the Middle East. By contrast, high-income countries had comparatively smaller
shifts, because such transitions occurred before these periods. By 2040, despite some forecasted changes in burden composition, sub-Saharan Africa still had a greater share of YLLs from CMNN causes than NCDs.
By GBD region, how forecasted changes in causespecific mortality affected life expectancy varied by the reference (figure 8 A), better health scenario (8 B), and worse health scenario (8C). For the reference, western sub-Saharan Africa, central sub-Saharan Africa, and eastern sub-Saharan Africa recorded the largest projected gains by 2040, whereas as higher-income regions-which already achieved relatively high life expectancies in 2016-were forecast to have the smallest improvements. Although some regional convergence occurred, by 2040, an 18 -year gap in life expectancy remained between Oceania and high-income Asia Pacific. Under the better health scenario, a greater chance for global convergence on life expectancy emerged, with the gap between the highest and lowest regional life expectancies decreasing to $13 \cdot 2$ years (95% UI $10 \cdot 8-15 \cdot 5$). Larger declines in cardiovascular diseases across regions, faster reductions in many CMNN causes, and minimal increases in causes like diabetes underpinned the regional differences in forecasted life expectancies in the reference and better health scenario. Conversely, the combination of

Figure 6: Leading 20 risk factors contributing to the global difference in risk-attributable YLLs between the 2040 reference forecast, 2040 better health scenario, and 2040 worse health scenario
The differences between reference and better and worse health scenarios are grouped by Global Burden of Disease Study (GBD) Level 2 causes attributable to risks, which are colour coded to correspond with the causes contributing to the change in years of life lost (YLLs) between scenarios for each risk factor. Black solid vertical lines represent all-cause attributable YLLs in the 2040 reference forecast, red dashed vertical lines represent all-cause attributable YLLs in the 2040 worse health scenario, and green dashed vertical lines all-cause attributable YLLs in the 2040 better health scenario.
worsening risk trends and slowed gains in economic growth, education, and reductions in total fertility rate under 25 years could culminate in reversals in life expectancy improvements and widen regional gaps to $28 \cdot 2$ years ($22 \cdot 5-36 \cdot 3$). This potential was particularly striking in southern sub-Saharan Africa, where the rebound of HIV under the worse health scenario would lead to sizeable declines in life expectancy. Elsewhere, minimal progress against cardiovascular diseases contributed to slowed or negligible life expectancy gains.

Country-level findings

Based on the 2040 reference forecast, life expectancy for both sexes combined ranged from 57.3 years (95% UI $48 \cdot 7-65 \cdot 3$) in Lesotho to $85 \cdot 8$ years ($83 \cdot 6-87 \cdot 4$) in Spain (figure 9). By 2040, 59 countries were projected to meet or exceed a life expectancy of 80 years. Beyond most highincome countries, such locations included those in Latin America (eg, Cuba, Peru, Colombia, and Chile), southeast Asia (eg, Thailand and Sri Lanka), and China. China surpassed a life expectancy of 80 years by 2040 ($81 \cdot 9$ years [78.6-84.2]), and also recorded higher levels than the USA (79•8 years [76•3-82•9]). Russia, Tajikistan,

Kazakhstan, and other central Asian countries all had forecasted life expectancy between 75 and 80 years by 2040 while India and Pakistan were just below 75 years. Further, reference forecasts put several countries in sub-Saharan Africa on the trajectory to reach similar levels of life expectancy, including Rwanda (74.8 years [$66 \cdot 2-81 \cdot 1]$), Nigeria ($74 \cdot 8$ years [$71 \cdot 5-78 \cdot 3]$), and Kenya ($73 \cdot 9$ years [67•2-78•1]). In 2040, four countries in subSaharan Africa were projected to have life expectancies less than 65 years (Central African Republic, Lesotho, Somalia, and Zimbabwe).
In terms of projected changes in life expectancy, reference forecasts unveiled striking geographic heterogeneities in much of the world by 2040 (figure 10). The largest absolute gains were primarily found in sub-Saharan Africa, with several countries recording projected gains of 9 years or higher (eg, Equatorial Guinea, Nigeria, Mali, and Mozambique). Some countries in south, southeast, and east Asia also saw substantive gains forecasted (eg, China, Indonesia, Laos), nearing or exceeding a gain of 5 years in 2040. Some countries in North Africa and the Middle East saw potential gains in forecasted lifespans; however, for a

Figure 7: Global and GBD super-region life expectancy and relative contribution of Level 1 GBD cause groups to total YLLs, 1980-2040, for the reference forecast scenario Each ternary plot represents the relative contribution of years of life lost (YLLs) by Level 1 Global Burden of Disease Study (GBD) cause group in a given year and changes in life expectancy over time as depicted by colour-coded circles sized relative to life expectancy. The closer each circle is to a given corner of the ternary plot-communicable, maternal, neonatal, and nutritional (CMNN), non-communicable diseases (NCDs), and injuries-the greater is the proportion of YLLs due to that Level 1 GBD cause. If CMNN, NCDs, and injuries contributed equally to YLLs (ie, each a third), the circle would be positioned in the middle of the ternary plot. LE=life expectancy.
subset of them, such as Syria, this was likely a reflection of marked life expectancy declines in the recent past due to its civil war and difficulties with accurately forecasting the effects of war in the future. Bolivia, Dominican Republic, Brazil, and Panama had among the highest forecasted life expectancy gains in Latin America and the Caribbean, each increasing average lifespans by at least 3 years by 2040. Among highincome countries, most saw forecasted increases of 1 to 3 years in life expectancy by 2040; an exception was Portugal, which had a projected gain of 3.5 years $(0 \cdot 5-6 \cdot 0)$ in the reference scenario. A map showing differences in country-level life expectancy across 2040 scenarios is in appendix 2 (p 81).
Reference forecasts showed distinct geographic patterns for the leading causes of YLLs in 2040, stressing the importance of charting country-level trajectories. Figure 11 presents global and regional findings, while country-level results can be found in appendix 2
(pp 82-90). In 2040, 105 of 195 locations had ischaemic heart disease as the leading cause of YLLs, while stroke (in six countries) and diabetes (in 20 countries) were also among the leading NCDs for YLLs. Sub-Saharan Africa was the primary exception, where HIV/AIDS, diarrhoeal diseases, and LRIs were projected to remain the main leading causes of YLLs in 2040. Nonetheless, ischaemic heart disease, stroke, and diabetes emerged as some of the leading ten causes of YLLs in western, southern, and eastern sub-Saharan Africa by 2040, portending a rise in the double burden of disease. Notably, Alzheimer's disease also was among the leading three causes of YLLs for 39 locations in 2040, reflecting the effects of population ageing.
In southeast Asia, east Asia, and Oceania, the projected toll of CMNN diseases generally receded as NCDs were forecasted to become the leading cause of YLLs by 2040. COPD surfaced as a leading cause of YLLs in most south Asian countries, generally out-ranking diabetes and
chronic kidney disease by 2040. Beyond the burden of ischaemic heart disease (IHD) and stroke projected for central Europe, eastern Europe, and central Asia, lung and colon cancers frequently ranked among the leading five causes of YLLs in 2040. For high-income countries, Alzheimer's disease was the first-leading or second-
leading cause of YLLs in 24 locations by 2040. Within Latin America and the Caribbean, diabetes and chronic kidney disease were forecasted to rank alongside IHD as the leading causes of YLLs in 2040, followed by interpersonal violence as the 4th-leading cause of YLLs. In North Africa and the Middle East, road injuries were

Figure 8: Life expectancy changes from 2016 to 2040, by the 21 GBD Level 2 causes of death and for each GBD region, for the (A) reference forecast, (B) better health scenario, and (C) worse health scenario
Regions are based on Global Burden of Disease Study (GBD) 2016 location hierarchy. Blue vertical lines represent the estimated life expectancy in 2040 for both sexes, and orange vertical lines represent GBD 2016 estimated life expectancy in 2016 for both sexes. Horizontal rectangles are colour-coded by GBD Level 2 causes contributing to the difference in life expectancy between 2016 and 2040, with causes to the left of the orange line contributing to a reduction in life expectancy and causes to the right of the orange line contributing to an increase in life expectancy.
forecasted to remain-or rise-as a leading cause of YLLs in many countries by 2040, ranking at least third in 11 of 21 countries. Reference forecasts suggest that conflict and terrorism were likely to still incur high levels of YLLs in North Africa and the Middle East in 2040. Although CMNN diseases were forecasted to remain leading causes of YLLs in most sub-Saharan African countries, all 45 countries included IHD as among the ten causes with the greatest toll in 2040. The reference forecast showed that diabetes could rank between the 2nd and 4th leading cause of YLLs in four countries in this region, although LRIs, HIV/AIDS, and diarrhoeal diseases were projected to remain as the leading cause of premature mortality throughout southern sub-Saharan Africa in 2040.
By measuring gaps between reference forecasts and 2040 better health scenarios for risk-attributable YLLs (figure 12), we could identify which modifiable risk factors offer the greatest opportunity for averting premature mortality in the future-if each country can move their health trajectories toward the better health scenario. Global and regional results are presented in figure 12, and country-level results are in appendix 2 (pp 58-68). Risk factors are ranked in accordance with the largest differences in attributable YLLs between the reference and better health scenarios, signalling which risks may
be the best targets for investment today to have the largest impact on avoidable YLLs in the future. Out of 195 countries and territories, 76 had high BMI as the leading risk for potentially avoidable YLLs by 2040, followed by 48 for tobacco, and 25 for high systolic blood pressure. For most locations, at least one of these risks ranked among the leading three priority targets; subSaharan Africa was the main exception, where short gestational age, household air pollution, and child wasting were forecasted to have the among largest gaps between the reference and better health scenarios by 2040.
Overall, a combination of metabolic risk factors amenable to health care (ie, high blood pressure, high FPG, and high total cholesterol) and risks better addressed by public health policies and intersectoral action (ie, tobacco and high BMI) comprised the risk factors with the largest disparities in the reference and better health scenarios by 2040. Divergent patterns emerged for some regions, demonstrating the need to account for country-level risk profiles when planning for long-term intervention and policy. For instance, in southeast Asia, east Asia, and Oceania, ambient particulate matter pollution also had large gaps between reference forecast and 2040 better health scenarios, highlighting the importance of environmental initiatives alongside mitigating leading metabolic

Figure 9: Map of life expectancy for both sexes in 2040 based on the reference forecast
Key shown in years. ATG=Antigua and Barbuda. FSM=Federated States of Micronesia. LCA=Saint Lucia. TLS=Timor-Leste. TTO=Trinidad and Tobago. VCT=Saint Vincent and the Grenadines.
and behavioural risks. Alcohol use was consistently among the leading risks on this measure in central Europe, eastern Europe, and central Asia, as well as many high-income countries. Metabolic risk factors, particularly high FPG, dominated Latin America and the Caribbean, while ambient particulate matter pollution and tobacco ranked among the leading risks for redress in North Africa and the Middle East. Among south Asian countries, ambient particulate matter pollution and tobacco also were among the leading ten risks for the gap between reference and better health scenarios. The risk profile for avoidable YLLs differed substantially for most sub-Saharan African countries, with many countries showing large potential for closing reference and better health scenario forecasts for unsafe water, sanitation, and hygiene; child wasting; and household air pollution. Metabolic risks like high FPG or high BMI did not rank among the five leading risks in many subSaharan African countries, underscoring an unfinished agenda for risk factors associated with poverty and lower levels of SDI. In appendix 2 (pp 58-79), we report the country-level results for this analysis for both the gaps between the reference and better health scenario, and the equivalent gaps between the reference and worse health scenarios for risk-attributable YLLs, highlighting
some of the largest threats for countries if they are unable to maintain their current trajectories. Countrylevel forecasts by cause, as well as better and worse health scenarios through 2040, are in appendix 2 (pp 91-2554).

Discussion

This was the first study to forecast a comprehensive set of cause-specific and all-cause mortality and associated indicators using a framework that allows for exploring different scenarios for many risk factors and other independent drivers. In our reference scenario, life expectancy was forecasted to continue increasing globally, and 116 of 195 countries and territories were projected to have significant advances in life expectancy by 2040. Gains were projected to be faster among many low-tomiddle SDI countries, indicating that inequalities in life expectancy could narrow by 2040; nonetheless, reference forecasts still had life expectancy ranging from more than 85 years in four countries (Japan, Singapore, Spain, and Switzerland) to less than 60 years in the Central African Republic and Lesotho. Global and regional shifts in the proportion of YLLs caused by CMNN diseases toward NCDs were projected to continue into the future, the main exception being sub-Saharan Africa. For many

Figure 10: Map of the differences in life expectancy for both sexes from 2016 to 2040 based on the reference forecast
Key shown in years. Legend shown in years. ATG=Antigua and Barbuda. FSM=Federated States of Micronesia. LCA=Saint Lucia. TLS=Timor-Leste. TTO=Trinidad and Tobago. VCT=Saint Vincent and the Grenadines.
countries, the gaps between better and worse health scenarios for projected cause-specific mortality and riskattributable YLLs were massive, representing an equally wide range of future trajectories by 2040 with the potential for tremendous progress or alarming regression in health outcomes.
In the reference scenario, the global shift towards NCDs masks heterogeneous trends for different diseases. Globally, six of the leading ten causes of YLLs were CMNN diseases in 2016; four of these-HIV/ AIDS, neonatal disorders due to preterm birth complications, malaria, and neonatal encephalopathywere projected to fall below the leading 10 causes by 2040. Total LRI YLLs conceal the marked shift projected to occur across age groups, particularly among older populations. Our forecasts of the rapid rise for several NCDs, including COPD, diabetes, chronic kidney disease, Alzheimer's disease, and lung cancer, portend serious health system implications. To the extent that increasing YLLs signal rising disease occurrence and increased demand for health care, these shifts could have significant ramifications on the volume and type of health expenditure in many health systems. The changing nature of premature mortality also has
implications for the curricula and specialties for healthcare professionals. These shifts evident at the global level are even more striking in some regions and countries such as India or Indonesia.
Our reference forecast was driven to an important extent by trends in the risk factors currently included in our model. We showed how selected risk factor forecasts and scenario selection play out in a single country in appendix 1 (p22) and point to how the position of the forecast relative to scenarios varies among the risks. Globally, 43 drivers were forecasted to improve under the reference scenario and 36 were projected to worsen. Future trajectories were driven by the balance of these negative and positive forces. In nearly all locations BMI is worsening, and other drivers such as ambient air pollution, FPG, cholesterol, and some components of diet also were forecast to worsen in many places. Each

Figure 11: Ten leading causes of YLLs in 2040, globally and by GBD region, based on the reference forecast
Values are reported in thousands. Causes are listed at the Global Burden of Disease Study (GBD) Level 3 cause hierarchy from GBD 2016, and are colour coded in accordance with their Level 2 categorisation (shading represents GBD Level 2 cause hierarchy). YLLs=years of life lost.

	1	2	3	4	5	6	7	8	9	10
Global	$\begin{aligned} & \text { Ischaemic heart } \\ & \text { disease } \\ & 161798.52 \end{aligned}$	$\begin{gathered} \text { Stroke } \\ 91119 \cdot 84 \end{gathered}$	Lower respiratory infections 68720.42	$\begin{array}{\|c} \text { Chronic obstructive } \\ \text { pulmonary } \begin{array}{c} \text { a } \\ 62319 \cdot 37 \end{array} \\ \hline \end{array}$	Chronic kidney disease 52687.42	$\begin{array}{\|c} \text { Alzheimer's disease } \\ \text { and other dementias } \\ 516933 \cdot 50 \end{array}$	Diabetes mellitus 50703.71	Road injuries $50157 \cdot 72$	Tracheal, bronchus, and lung cance 43422.46	Diarrhoeal diseases 40591.86
Andean Latin America	$\begin{gathered} \text { Lower respiratory } \\ \text { infettions } \\ 721.35 \end{gathered}$	Ischaemic heart disease $659: 16$	Chronickidney disease 618.79	Road injuries $439 \cdot 47$	Diabetes mellitus 368.50	$\begin{aligned} & \text { Stroke } \\ & 320 \cdot 20 \end{aligned}$	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 265.37 \end{aligned}$	$\begin{gathered} \text { Congenital birth } \\ \text { defects } \\ 23447 \end{gathered}$	Stomach cancer 230.83	Interpersonal violence 173.63
Australasia	$\left\lvert\, \begin{gathered}\text { Ischaemic heart disease } \\ 384.19\end{gathered}\right.$	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 280.56 \end{aligned}$	Tracheal, bronchus, and lung cancer 31.9	$\begin{gathered} \text { Colon and rectum } \\ \text { cancer } \\ 172.51 \\ \hline \end{gathered}$	Chronic obstructive pulmonary disease 164.01	Stroke 145.28	Self-harm $136 \cdot 18$	$\begin{array}{\|c} \text { Chronic kidney disease } \\ 125 \cdot 91 \end{array}$	Drug use disorders 106.16	Breast cancer 103.11
Caribbean	Ischaemic heart disease 1162.30	Diabetes mellitus 660.88	$\begin{aligned} & \text { Stroke } \\ & 650.61 \end{aligned}$	Chronickidney disease 419.28	$\begin{gathered} \text { Road injuries } \\ 326-24 \end{gathered}$	$\begin{gathered} \text { Lower respiratory } \\ \text { infections } \\ 318.48 \end{gathered}$	Tracheal, bronchus, and lung cancer 253.09	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 249 \cdot 98 \end{aligned}$	$\begin{aligned} & \text { Hypertensive heart } \\ & \text { disease } \\ & 217 \cdot 97 \end{aligned}$	Exposure to forces of nature 206.19
Central Asia	$\left\|\begin{array}{c} \text { Ischaemic heart disease } \\ 4227.80 \end{array}\right\|$	Stroke 1758.09	Hypertensive heart disease 1002.50	Lower respiratory infections $868: 20$	Self.harm 690.36	Road injuries 604.66	Diabetes mellitus 58177	$\begin{aligned} & \text { Chronic kidney disease } \\ & 538.94 \end{aligned}$	Chronic obstructive pulmonary disease 461.68	Tracheal, bronchus, and lung cancer 431.99
Central Europe	Ischaemic heart disease 2985.64	Stroke 1351.59	Tracheal, bronchus, and lung cancer 1223.78	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 931.51 \end{aligned}$	Colon and rectum cancerer 728.83	Hypertensive heart disesase 61400	Cardiomyopathy and myocarditis $526-48$	Chronic obstructive pulmonary dicease 494.31 49431	Self-harm 448.91	$\begin{gathered} \text { Other cardiovascular } \\ \text { and iciutatory } \\ \text { diseases } \\ 4239 \end{gathered}$
Central Latin America	$\begin{gathered} \text { Chronic kidney disease } \\ 4384 \cdot 34 \end{gathered}$	$\underset{425 \cdot 65}{\substack{\text { Ischaemic heart disease } \\ 4259}}$	Diabetes mellitus 3840.33	Interpersonal violence 2871.77	Alzheimer's disease and other dementias $1610 \cdot 63$	$\begin{gathered} \text { Stroke } \\ 1468.91 \end{gathered}$	Road injuries 1301.24	Cirrhosis and othe chronic liver diseases due to hepatit 1224.19	$\underset{\substack{\text { Lower respiratory } \\ \text { infetitions } \\ 1214.98}}{ }$ 121498	$\begin{aligned} & \text { Congenital birth } \\ & \text { defects } \\ & 1002 \cdot 10 \end{aligned}$
Central sub-Saharan Africa	$\substack{\text { Lower respinatory } \\ \text { infertions } \\ \text { 3015.22 }}$	Tuberculosis 2993.25	$\underset{2666.21}{H}$	$\underset{\substack{\text { Road injuines } \\ 2529.95}}{ }$	Diarthoeal diseases $2347 \cdot 41$	$\begin{gathered} \text { Malaria } \\ 2235 \cdot 78 \end{gathered}$	Ischaemic heart disease $1682 \cdot 42$	(1588.61	$\begin{aligned} & \text { Neonatal sepsis and } \\ & \text { other neenatal } \\ & \text { infections } \\ & 1192.32 \end{aligned}$	Congenital birth defects 100235
East Asia	$\begin{gathered} \text { Stroke } \\ \text { S3653-39 } \end{gathered}$	Ischaemic heart disease 20958.90	Liver cancer 18814.04	$\begin{aligned} & \text { Chronic obstructive } \\ & \text { pulmonay disease } \\ & 18385.55 \end{aligned}$	Tracheal, bronchus, and lung cancer 15598.64	Alzheimer's disease and other dementias 14774.57	Esophageal cancer 7638.60	$\begin{gathered} \text { Hypertensive heart } \\ \text { disesese } \\ 721120 \end{gathered}$	Stomach cancer 6974.59	$\begin{gathered} \text { Colon and rectum } \\ \text { cancer } \\ 5807.65 \end{gathered}$
Eastern Europe	Ischaemic heart disease 11258.69	$\begin{aligned} & \text { Stroke } \\ & 5173.68 \end{aligned}$	Self-harm $2536-75$	Tracheal, bronchus and lung cancer 1620.74	Cardiomyopathy and 1568.05 568.05	Alcohol use disorders 1447.09	$\underset{\substack{\text { Drug use disorders } \\ 136318}}{ }$	$\begin{gathered} \text { Colon and rectum } \\ \text { cancerer } \\ 138.56 \end{gathered}$	Alzheimer's disease and other dementias 1284.57	$\begin{gathered} \text { Lower respiratory } \\ \text { infections } \\ 1067.56 \end{gathered}$
Eastern sub-Saharan Africa	HIV/AIDS 12605.91	Lower respiratory infections 12256.60	Diarrhoeal diseases $9825 \cdot 93$	Ischaemic heart disease 5210.56	Road injuries 4785.06	Stroke $4389 \cdot 14$	Neonatal encephalopathy due to birth asphyxia and 4098.53	Tuberculosis 4064.44	Neonatal preterm birth 3907.53	Neonatal sepsis and other neonatal infections 3486.63
High-income Asia Pacific	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 2641 \cdot 27 \end{aligned}$	Tracheal, bronchus, and lung cancer 1470.95	Ischaemic heart disease 1448.35	Liver cancer $1344-22$	$\begin{aligned} & \text { Lower respiratory } \\ & \text { infetions } \\ & 1268.31 \end{aligned}$	$\begin{gathered} \text { Stroke } \\ 1250.06 \end{gathered}$	$\begin{gathered} \text { Self.harm } \\ 945 \cdot 43 \end{gathered}$	Chronic kidney disease 911.00 911.00	$\begin{gathered} \text { Colon and rectum } \\ \text { cancer } \\ 902 \cdot 42 \\ \hline \end{gathered}$	Stomach cancer 743.01
High-income North America	Ischaemic heart disease 6902.24	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 4070.61 \end{aligned}$	Tracheal, bronchus and lung cancer 3709.83	Drug use disorders $3327: 30$	Chronic kidney disease 2901.67	$\begin{gathered} \text { Colon and rectum } \\ \text { cancer } \\ 2220253 \end{gathered}$	$\underset{\substack{\text { Road injuries } \\ 2176.85}}{ }$	$\begin{aligned} & \text { Chronic obstructive } \\ & \text { pulmonary disease } \\ & 2139.76 \end{aligned}$	$\begin{gathered} \text { Lower respiratory } \\ \text { infeetions } \\ 1952.28 \end{gathered}$	Diabetes mellitus 1904005
North Africa and Middle East	Ischaemic heart disease 18493.35	Road injuries $8609 \cdot 23$	Stroke 6345.04	Chronickidney disease 6152.76	Diabetes mellitus $5040 \cdot 30$	$\begin{gathered} \text { Lowever respiratory } \\ \text { infections } \\ 4551.04 \end{gathered}$	Congenital birth defects 4424.81	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 3973 \cdot 84 \end{aligned}$	Neonatal preterm birth $3112 \cdot 90$	Tracheal, bronchus, and lung cancer 2481.87
Oceania	$\underset{476 \cdot 74}{\substack{\text { Ischaemic heart disease } \\ \hline}}$	Diabetes mellitus 338.23	$\begin{aligned} & \text { Stroke } \\ & 330 \cdot 28 \end{aligned}$	$\begin{gathered} \text { Lower respiatoryy } \\ \text { infetions } \\ 270.90 \end{gathered}$	$\begin{aligned} & \text { Chronic obstructive } \\ & \text { pulmonary risease } \\ & 243.99 \end{aligned}$	Road injuries 214.73	Chronic kidney disease 210.08	$\begin{gathered} \text { Congenital bith } \\ \text { defects } \\ 14576 \end{gathered}$	Neonatal preterm bith 12507	$\begin{gathered} \text { Self.harm } \\ 120 \cdot 41 \end{gathered}$
South Asia	Ischaemic heart disease 50671.01	Chronic obstructive pulmonary disease 25119.31	$\begin{gathered} \text { Stroke } \\ 20852 \cdot 37 \end{gathered}$	Chronick kidney disease 14356.91	Self-harm 14149.85	Diabetes mellitus $13500 \cdot 12$	Diarthoeal diseases $11870 \cdot 72$	Road injuries 11569.79	$\begin{gathered} \text { Lower respiratory } \\ \text { infections } \\ 11348.81 \end{gathered}$	$\begin{gathered} \text { Falls } \\ 834757 \end{gathered}$
Southeast Asia	Ischaemic heart disease 13820.19	Stroke 10602.01	Chronic kidney disease 7713.72	Diabetes mellitus 7286.63	Alzheimer's disease and other dementias 5181.73 5181.73	$\substack{\text { Lower respiratory } \\ \text { infetions } \\ \text { 50933.46 }}$	Tracheal, bronchus, and lung cancer $3646 \cdot 49$	Tuberculosis 3349.77	Chronic obstructive pulmonary tisease 3301.28 $3301 \cdot 28$	Road injuries 3106.53
Southern Latin America	Ischaemic heart disease 1097.89	Lower respiratory infections 604.05 604.05	Stroke 513.84	Chronic kidney disease 50978	Diabetes mellitus 404.50	Tracheal, bronchus and lung cancer 396-97	$\begin{gathered} \text { Colon and rectum } \\ \text { cancer } \\ 362.94 \end{gathered}$	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 337 \cdot 45 \end{aligned}$	Chronic obstructive pulmonary disease 327.69	$\begin{gathered} \text { Selff.harm } \\ 325 \cdot 93 \end{gathered}$
Southern sub-Saharan Africa	HVIAIDS 331476	Lower respiatory infections 2409.28	Road injuries 2022.71	Diabetes mellitus $1965 \cdot 41$	Tuberculosis 1602.69	Diarthoeal diseases 1410.74	Interpersonal violence 1348.85	Ischaemic heart disease 1278.74	Stroke $1016-71$	$\begin{gathered} \text { Self-harm } \\ 91437 \\ \hline \end{gathered}$
Tropical Latin America	$\left\lvert\, \begin{gathered}\text { Ischaemic heart disease } \\ 3719.09\end{gathered}\right.$	Diabetes mellitus 244128^{2}	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 2233.07 \end{aligned}$	Interpersonal violence 2092.80	$\begin{aligned} & \text { Stroke } \\ & 2075 \cdot 97 \end{aligned}$	Chronic kidney disease 1855.84	Lower respiratory infections 1844.43	Chronic obstructive 1337.64	$\begin{aligned} & \text { Hypertensive heart } \\ & \text { disease } \\ & 987.56 \end{aligned}$	Tracheal, bronchus, and lung cancer 841.81
Western Europe	$\left\lvert\, \begin{gathered}\text { Ischaemic heart disease } \\ 5872.07\end{gathered}\right.$	$\begin{aligned} & \text { Alzheimer's disease } \\ & \text { and other dementias } \\ & 5066.62 \end{aligned}$	Tracheal, bronchus, andlongangarer 3771.63	Colon and rectum cancer $2338-28$	Chronic obstructive pulmonary 2274.08 ase	Stroke 2181.42	$\substack{\text { Lower respinatory } \\ \text { infection } \\ 1668.37}$	Chronic kidney disease 1577.32	Breast cancer 1465.61	Other cardiovascular and circulatory diseases diseases $1452 \cdot 37$
Western sub-Saharan Africa	$\substack{\text { Lower respiratory } \\ \text { infertions } \\ 14646.92}$	Malaria $12963-28$	HIV/AIDS $11234 \cdot 72$	Diarthoeal diseases $10719 \cdot 91$	$\begin{array}{\|c\|} \hline \text { Neonatal } \\ \text { encephalopathy tue to } \\ \text { birth asphyxia and } \\ \text { trauma } \\ 8064 \cdot 96 \\ \hline \end{array}$	$\begin{gathered} \text { Congenital birth } \\ \text { difects } \\ 6539.65 \end{gathered}$	Neonatal preterm birth 6189.65	Neonatal sepsis and other neonatal 6001.53	Ischaemic heart disease $5344-28$	$\underset{4663-24}{\text { Meningitis }}$
\square Non-communicable diseases			\square Communicable, maternal, neonatal, and nutritional diseases \square Injuries							

Global Health Metrics

	1	2	3	4	5	6	7	8	9	10
Global	High body-mass index 79866.8	High blood pressure $75434 \cdot 1$	Tobacco 67143.0	$\begin{gathered} \text { High fasting plasma } \\ \text { glucose } \\ 62254.5 \end{gathered}$	$\begin{gathered} \text { Ambient particiclate } \\ 40 \text { matter } \\ 4043 \cdot 2 \end{gathered}$	Alcohol use 38862.7	Hightotal cholesterol $30042 \cdot 1$	Impaired kidney function 27168.2	Low whole grains 22484 -5	Short gestation 21850.8
Andean Latin America	High body-mass index 512.5	$\begin{gathered} \text { High fasting plasma } \\ \text { glucose } \\ 397.4 \end{gathered}$	High blood pressure $388 \cdot 4$	Impaired kidney function $270 \cdot 0$	$\begin{aligned} & \text { Alcohol use } \\ & 219: 2 \end{aligned}$	Tobacco 197.6	$\begin{gathered} \text { Ambient particulate } \\ \text { matter } \\ 150.5 \end{gathered}$	High total cholesterol $141 \cdot 0$	Short gestation 121.2	High sodium 112.9
Australasia	$\underset{\substack{\text { Tobacco } \\ \text { 227. }}}{ }$	High body-mass index $185 \cdot 7$	$\begin{aligned} & \text { Alcohol Use } \\ & 1466 \cdot 1 \end{aligned}$	$\begin{aligned} & \text { High blood pressure } \\ & \text { 123:2 } \end{aligned}$	High fasting plasma glucosese 94.0	$\begin{aligned} & \text { Low fruit } \\ & 65.4 \end{aligned}$	High total cholesterol 64.7	Impaired kidney function $45 \cdot 9$	Low whole grains 39.5	Lowvegetables 37.4
Caribbean	High body-mass index 727.9	$\begin{gathered} \text { High fasting plasma } \\ \text { glucose } \\ 727.6 \end{gathered}$	High blood presure $716-1$	$\begin{gathered} \text { Tobacco } \\ 395 \cdot 5 \end{gathered}$	$\begin{gathered} \text { Alcohol use } \\ 336.6 \end{gathered}$	High total cholesterol $293 \cdot 4$	$\begin{aligned} & \text { Impaired kidney } \\ & \text { function } \\ & 253.4 \end{aligned}$	Low nuts and seeds 216.4	$\begin{gathered} \text { Ambient paticiclate } \\ \text { matter } \\ 197.5 \end{gathered}$	$\begin{gathered} \text { Low friut } \\ 1833 \\ \hline \end{gathered}$
Central Asia	$\begin{aligned} & \text { High blood pressure } \\ & 2185 \cdot 2 \end{aligned}$	High body-mass index 1870.5	$\begin{aligned} & \text { Tobacco } \\ & 1326.0 \end{aligned}$	$\begin{aligned} & \text { Alcohol use } \\ & 1179 \cdot 9 \end{aligned}$	High fasting plasma glucse. 1064.2	High total cholesterol 976.0	$\begin{gathered} \text { Ambient particulate } \\ \text { matter } \\ 70.6 \end{gathered}$	$\underset{\substack{\text { Low whole grains } \\ 719.8}}{ }$	Impaired kidney function 542.1	$\underbrace{}_{\substack{\text { High Sodium } \\ 514.6}}$
Central Europe	Tobacco 14270	High blood pressure $1292 \cdot 3$	High body-mass index $1,033.0$	$\begin{aligned} & \text { Alkohol use } \\ & 866.6 \end{aligned}$	$\begin{gathered} \text { High fasting plasma } \\ \text { glucose } \\ 644.5 \end{gathered}$	High total cholesterol 526.0	High sodium 369.6	$\substack{\text { Low whole grains } \\ 3571}$	$\underset{\substack{\text { Low fruit } \\ 2894}}{ }$	$\begin{gathered} \text { Ambient particulate } \\ \text { matter } \\ 2809 \end{gathered}$
Central Latin America	$\begin{aligned} & \text { High fasting plasma } \\ & \text { glucose } \\ & 4447.6 \end{aligned}$	High body-mass index 4444.8	High lood pressure 3202:	Impaired kidney function $2431-2$	$\begin{aligned} & \text { Alcohol use } \\ & 1463 \cdot 6 \end{aligned}$	Tobacco 1200.5	High total cholesterol $1085 \cdot 5$	Low nuts and seeds 898.8	High sodium 692.5	$\underset{\substack{\text { Low fuit } \\ 6847}}{ }$
Central sub-Saharan Africa	Alcohol use $1644 \cdot 1$	Household air pollution 1491.1	$\begin{gathered} \text { High blood presure } \\ 1351-4 \end{gathered}$	Short gestation $1115 \cdot 2$	Tobacco 1094.7	$\begin{gathered} \text { Ambient particulate } \\ \text { matter } \\ 1043.8 \end{gathered}$	$\begin{gathered} \text { High fasting plasma } \\ \text { glucose } \\ 950.9 \end{gathered}$	High body-mass index $853 \cdot 7$	$\begin{aligned} & \text { Child wasting } \\ & 761.6 \end{aligned}$	Unsafe water 647.2
East Asia	$\begin{aligned} & \text { Tobacco } \\ & 136505 \end{aligned}$	$\left\lvert\, \begin{gathered} \text { High body-mass index } \\ 10456.5 \end{gathered}\right.$	$\begin{gathered} \text { High blood pressure } \\ 9693 \cdot 1 \end{gathered}$	$\begin{aligned} & \text { Alcohol use } \\ & 8422 \cdot 3 \end{aligned}$	Ambient particulate matter 672.0	$\begin{aligned} & \text { High sodium } \\ & 5706 \cdot 4 \end{aligned}$	$\begin{gathered} \text { High fasting plasma } \\ \text { guvose } \\ 4360.3 \end{gathered}$	$\begin{aligned} & \text { Low whole grains } \\ & \text { 2971-7 } \end{aligned}$	High total cholesterol 2663.2	Impaired kidney funcion 2755^{8}
Eastern Europe	High blood pressure 5513.5	Tobacco $3855-1$	Alcohol use $3527 \cdot 4$	High body-mass index $3494 \cdot 4$	$\begin{aligned} & \text { High total cholesterol } \\ & 3075 \cdot 2 \end{aligned}$		Low whole grains $1735-2$	Low fruit 1483.7	Low nuts and seeds $1270 \cdot 6$	$\begin{gathered} \text { Ambient particulate } \\ \text { matere. } \\ 1038-4 \end{gathered}$
Eastern sub-Saharan Africa	$\left\|\begin{array}{c} \text { Household air pollution } \\ 5437.5 \end{array}\right\|$	$\begin{gathered} \text { Short gestation } \\ 4170.0 \end{gathered}$	$\begin{aligned} & \text { High blood pressure } \\ & 3539 \cdot 2 \end{aligned}$	$\begin{gathered} \text { Child wasting } \\ 3332 \cdot 6 \end{gathered}$	Ambient particulate matter 2947.5	$\begin{aligned} & \text { Unsafe water } \\ & 28543 \end{aligned}$	Tobacco 24945	$\begin{gathered} \text { Unsafe sanitation } \\ \text { 2417-7 } \end{gathered}$	$\begin{aligned} & \text { Handwashing } \\ & 2363 \cdot 9 \end{aligned}$	$\begin{aligned} & \text { High body-mass index } \\ & 2269 \cdot 4 \end{aligned}$
High-income Asia Pacific	Tobacco	High hlood pressure $542 \cdot 2$	High body-mass index $485 \cdot 1$	$\begin{gathered} \text { High fasting plasma } \\ \text { glucoses. } \\ 426.0 \\ \hline \end{gathered}$	$\begin{gathered} \text { Alcohol use } \\ 390-2 \end{gathered}$	$\begin{gathered} \text { Low fruit } \\ 350 \cdot 1 \end{gathered}$	High sodium 288-2	Ambient patiticulate	High total cholesterol 208.2	Impaired kidney function 188.2
High-income North America	High body-mass index 3.950 .0	$\begin{aligned} & \text { High blood pressure } \\ & 2442 \cdot 8 \end{aligned}$	$\begin{gathered} \text { High fasting plasma } \\ \text { glucose } \\ 2285.7 \end{gathered}$	Tobacco $2196-1$	Alcohol use 1872.5	$\begin{aligned} & \text { High sodium } \\ & 1246 \cdot 6 \end{aligned}$	Impaired kidnney function 1178.6	$\begin{aligned} & \text { High total cholesterol } \\ & 1095-1 \end{aligned}$	Low fruit 991.3	$\begin{aligned} & \text { Low whole grains } \\ & 803.7 \text { r } \end{aligned}$
North Africa and Middle East	High body-mass index $9475 \cdot 4$	High fasting plasma glucose 8332.0	$\begin{aligned} & \text { High blood presure } \\ & 7719.0 \end{aligned}$	Tobacco $5531 \cdot 6$	$\begin{aligned} & \text { High total cholesterol } \\ & 3970 \cdot 2 \end{aligned}$	Ambient particulate mater 3797.6	Impaired kidney function $3,187.7$	$\begin{aligned} & \text { Low whole grains } \\ & 2603-2 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { High sodium } \\ & 2501.3 \end{aligned}$	$\begin{aligned} & \text { Low nuts and seeds } \\ & 2069 \cdot 1 \end{aligned}$
Oceania	Tobacco 427.8	$\begin{aligned} & \text { High fasting plasma } \\ & \text { glucose } \\ & 395-9 \end{aligned}$	High body-mass index $318 \cdot 3$	High blood pressure $285 \cdot 6$	$\underset{\substack{\text { Household air pollution } \\ 235 \cdot 6}}{\substack{ \\\hline}}$	$\underset{1641}{\substack{\text { Low whole grains } \\ 164}}$	Short gestation 152.7	$\begin{aligned} & \text { High total cholesterol } \\ & 129: 3 \end{aligned}$	$\begin{aligned} & \text { Impaired kidney } \\ & \text { function } \\ & 118.0 \end{aligned}$	Lowf fuit 106.6
South Asia	High body-mass index 18317.8	High blood pressure $17552-2$	$\begin{gathered} \text { High fasting plasma } \\ \text { glucoses } \\ 16103.8 \end{gathered}$	Tobacco $15511 \cdot 9$	$\begin{gathered} \text { Ambient particulate } \\ \text { matter } \\ 13383 \cdot 4 \end{gathered}$	High total cholesterol 8671.9	Impaired kidney function 6932.2	Alcohol use 6813.6	$\underbrace{\text { cem }}_{\substack{\text { High sodium } \\ 5816.8}}$	${ }_{\text {L }}^{\substack{\text { Lowfruit } \\ 52000}}$
Southeast Asia	$\begin{gathered} \text { High fasting plasma } \\ \text { glucose } \\ 9596.6 \end{gathered}$	High body-mass index $9263: 2$	High blood pressure $8653-4$	Tobacco 7878.4	$\begin{gathered} \text { Impaired didney } \\ \text { funtion } \\ 3710.1 \end{gathered}$	Low whole grains $3240 \cdot 3$	Alcohol use $2960 \cdot 6$	$\begin{gathered} \text { Ambient patiticulate } \\ \text { maste.-9 } \end{gathered}$	High total cholesterol $2365 \cdot 2$	Low nuts and seeds 1621.6
Southern Latin America	High body-mass index $930 \cdot 4$	$\begin{aligned} & \text { High blood pressure } \\ & 840 \cdot 7 \end{aligned}$	$\begin{gathered} \text { Tobacco } \\ 639 \cdot 4 \end{gathered}$	$\begin{aligned} & \text { High fasting plasma } \\ & \text { glucose } \\ & 556.0 \end{aligned}$	Alcohol use 444.5	High total cholesterol $311 / 1$	$\begin{aligned} & \text { Impaired kidney } \\ & \text { function } \\ & 309.8 \end{aligned}$	$\underset{\substack{\text { Low whole grains } \\ 270 \cdot 2}}{\substack{\text { and }}}$	Lownuts and seeds 189.6	$\text { Ambient patiticuate } \begin{gathered} \text { Aater } \\ 183.5 \\ \hline \end{gathered}$
Southern sub-Saharan Africa	High body-mass index 1826.5	$\begin{aligned} & \text { High fasting plasma } \\ & \text { glucose } \\ & 1784 \cdot 9 \end{aligned}$	Alcohol use 1,606.6		Tobacco 915.8	Ambient patiticulate	$\underset{\substack{\text { Low whole grains } \\ 5547}}{ }$	Low fruit $533 \cdot 4$	Short gestation 506.0	$\begin{aligned} & \text { Impaired kidney } \\ & \text { function } \\ & 479.3 \end{aligned}$
Tropical Latin America	$\begin{gathered} \text { High body-mass index } \\ 4219.8 \end{gathered}$	$\begin{aligned} & \text { High blood presure } \\ & 2830 \cdot 9 \end{aligned}$	$\begin{gathered} \text { High fasting plasma } \\ \text { guvose } \\ 2566.8 \end{gathered}$	$\begin{aligned} & \text { Alcobol use } \\ & \text { 1368.0 } \end{aligned}$	Impaired cidney funtion 1170.6	Tobacco 1164.9	High total cholesterol $1065 \cdot 7$	Lownuts and seds $706 \cdot 4$	High sodium $660 \cdot 2$	$\begin{gathered} \text { Ambient particulate } \\ \text { matter } \\ 576.9 \end{gathered}$
Western Europe	$\begin{gathered} \text { Tobacco } \\ 3637 \cdot 9 \end{gathered}$	High body-mass index $2192 \cdot 6$	High blood presure 20793	$\begin{aligned} & \text { Alconol luse } \\ & 1530 \cdot 2 \end{aligned}$	$\begin{aligned} & \text { High fasting plasma } \\ & \text { glucose } \\ & 1260 \cdot 3 \end{aligned}$	High total cholesterol 967.9	$\begin{aligned} & \text { Low fruit } \\ & 797 \cdot 2 \end{aligned}$	High sodium 629.5	Low whole grains $585-0$	Low nuts and seeds 569.0
Western sub-Saharan Africa	$\underset{\substack{\text { Short gestation } \\ 9344.1}}{ }$	$\begin{aligned} & \text { Child wasting } \\ & 5925 \cdot 4 \end{aligned}$	$\begin{aligned} & \text { Household air pollution } \\ & 4727.5 \end{aligned}$	Low birth weight $4390 \cdot 6$	Ambient particulate mate $4050: 1$	Unsafe water 3820.8	$\begin{aligned} & \text { High blood pressure } \\ & 3184 \cdot 6 \end{aligned}$	Handwashing $3114 \cdot 4$	High body-mass index $3109 \cdot 9$	Unsafe sanitation 2207.6

location's trends hinge upon whether progress in reducing risk for drivers such as tobacco or some dietary risks can counteract projected adverse trends, particularly for high BMI. When these trends were translated into attributable mortality in 2040, we found that four risks accounted for more than 100 million YLLs: three metabolic risk factors (high blood pressure, high BMI, and high FPG) and tobacco. In addition to these drivers' effects in the reference scenario, a very wide range of attributable YLLs emerged between their better and worse health scenarios. Both the size of each risk's attributable YLLs and range suggest that these factors should be the focus of policy attention and health-care prioritisation. For instance, there is an important role for expanding access to primary care and risk management for high blood pressure, FPG, and cholesterol; subsequently, efforts to scale up universal health coverage may be one avenue for reducing the contribution of these risks in the future. High BMI, the second-leading future risk in the reference scenario, poses a more complex challenge; while policy options are available, their effect was less clear given that even the better health scenario showed rising burden attributable to high BMI. As demonstrated by the wide range in attributable YLLs due to tobacco and ambient particulate matter air pollution across 2040 scenarios, it is crucial to intensify and strengthen initiatives targeting tobacco and air pollution.

Based on our reference forecast, a subset of countries were projected to remain as low-income in 2040, and still experience relatively low educational attainment, life expectancy below 65 years, and YLLs dominated by CMNN diseases. Many different thresholds can be used to identify this set of countries which will continue not to enjoy the substantive gains in health outcomes observed in many other parts of the world. The exact thresholds are less important than the recognition that, based on past trends of independent drivers and continued relationships between these drivers and health outcomes, a set of countries, including the Central African Republic, Zimbabwe, and Somalia, will continue to be markedly disadvantaged. This phenomenon of the long tail of the distribution was evident in the better health scenario as well (eg, Lesotho was still projected to have a life expectancy less than 65 years under the better health scenario). Further, under the 2040 worse health scenario, global inequalities would substantially widen, with most of these most disadvantaged countries remaining in central and

[^2]western sub-Saharan Africa and some in Oceania. This long tail has implications for development policy and the need to focus scarce resources toward these countries in an effort to accelerate progress.
Our forecasts suggest continued progress in improving life expectancy. These forecasts, however, do not account for the potential effects of climate change on life expectancy except as mediated through ambient air pollution. Predicted impacts in other studies on extreme weather-related deaths and heat wave deaths are not large enough to have much impact on global life expectancy. WHO estimated that climate change would cause 250000 additional deaths each year by 2040. ${ }^{30,31}$ Climate change, however, might have a much greater effect on survival on populations in some fragile environments mediated through reduced agricultural output and increased food insecurity. The pathway to large health effects could also be through conflicts and migration that might stem from severe food insecurity. These effects are extremely hard to model using statistical models fit to past data and will require other approaches to quantify their potential effect. Another risk for future health gains not incorporated in these forecasts is the potential rise of antimicrobial resistance, with some claims suggesting millions of deaths due to antimicrobial resistance. ${ }^{32,33}$ The validity of these claims, however, is not well established. ${ }^{34,35}$ We also did not forecast the potential effect of a major global influenza pandemic of the magnitude of the one occurring in 1918; such a pandemic would substantially increase mortality in any given year. ${ }^{35}$ Although our forecasts currently do not reflect these potential negative risks, they also do not account for the potential for accelerated technical innovation, which could lead to striking breakthroughs in prevention or medical treatment (eg, HIV vaccine, cure for cancer). For each cause of death, our models capture the global secular trend in the past 27 years and assume this secular trend continues in the future; in other words, we already assumed the disease-specific pace of innovation will continue. Yet breakthroughs for diseases for which minimal innovation has occurred during the pastquarter century are not captured in these forecasts.
Taken together, our forecasts point to a world where most populations are living longer and many health improvements are likely to occur if current trajectories hold; at the same time, such gains are not without potential important social consequences, particularly if long-term planning and policy design are not fully considered today. ${ }^{36}$ Social security, pensions, and programmes specifically targeting the support of older populations have generally been most solvent when a greater proportion of people are contributing to these initiatives or are active in the workforce than the proportion of people who are immediately benefitting from them. Based our modelling framework, the demographic dynamics projected to unfold involve a
decrease in total fertility rate and steady shifts in population toward older ages, which also portends a larger overall volume of disease burden and expansion of morbidity in many places. ${ }^{6,37}$ Countries such as Japan have already experienced the economic toll and stress on social programmes that can occur when demography's balancing act tilts toward older populations and younger cohorts struggle to fill the growing economical and financial gaps left behind as their elders retire. Similar concerns have been recently mounting in China, ${ }^{38,39}$ and in the absence of deliberate action concerning programmes such as social security and pensions, it is likely that more countries will face these very complex demographic challenges in future.
An important finding is that in the reference scenario, we forecasted slower progress in 2040 than that achieved in the past; however, in the better health scenario, global life expectancy improvements exceeded gains that occurred from 1990-2016. This forecasted slowdown in the reference scenario is rooted in a combination of several factors. First, some risks were projected to worsen in the future, most notably high BMI. Second, past progress on other leading risk factors for premature mortality, namely tobacco and ambient particulate matter air pollution, was highly variable ${ }^{40}$ and thus such heterogeneity was projected through 2040. Third, several countries that have already achieved higher levels of life expectancy have also had stagnated gains. ${ }^{41,42}$ Fourth, the relatively new occurrence observed in a number of high-income countries of increases in mortality in younger adults, particularly younger than 50 years, was captured and propagated in our forecasts. ${ }^{43}$ Last, such slowdowns might be related to how we capture the effect of innovation, or the inclusion of global secular trends by age that are supposed to capture changes in health not accounted for by measured risk factors, interventions, or SDI. An important part of this temporal trend might be due to innovations in medical and public health technologies and programmes; however, there might be important interactions between technological innovation and health system capacity to deliver such innovations that are not currently captured in our model.
Gaps between the better and worse health scenarios provide some quantification of the scope for policy impact on future health trajectories. To the extent that we believe the 85 th and 15 th percentile rates of change for each independent driver could occur in each country, even if we do not yet know the policy mix used to achieve this rate of change, then the wide range of outcomes between better and worse means that policy today can have a huge effect on the future. The future is not inevitable; funding of public health and medical care, social policy and multisectoral action for health can have profound effects on both short-term and long-term outcomes. We hope that the quantification of these scenarios will bring more attention to how different
countries have achieved faster progress, and why some countries experience slower gains, for each of the independent drivers. Most importantly, our study shows that the future is highly malleable, but also requires concerted attention and continued priorisation of the key drivers of health.
Our choice of defining the better and worse health scenarios based on the 85th and 15th percentiles of rates of change is arbitrary. We could have selected more ambitious rates of change (ie, the 95th and fifth percentiles), as they also have been used in the past. ${ }^{44}$ We selected the 85th and 15th percentiles to balance the considerations of what is possible and replicable across many contexts, as well as the fact that achieving these percentiles for all drivers at once and consistently for 24 years is quite unlikely by the laws of probability. Furthermore, the fact that annual rates of change for a risk factor or an intervention have been achieved in 15% of countries does not mean that success can be replicated everywhere else. However, rates achieved in 15% of countries are clearly not impossible and can serve as a guide for what is achievable.
These scenarios are meant to define the scope of what is generally possible. However, for specific drivers such as tobacco, there might also be value in analysing the effect of much faster rates of progress (ie, the 99th percentile). The case of tobacco is illustrative, since only 20 countries had rates of change in the tobacco SEV between 1990 and 2016 faster than 2\% (eg, the USA and Canada), so these tobacco policy success stories do not define the more conservative 85 th percentile. We purposefully developed our forecasting models to support more detailed alternative scenarios for specific risks, with the ultimate goal of enabling any user to explore the effect of change on any independent driver at any given rate of change. Computational speed currently precludes such endless possibilities, but our modelling platform supports this future endeavour.
Before this study, most forecasting models of all-cause or cause-specific mortality used only one covariate, namely time. These trend-based models have the advantage of not needing to forecast time into the future and, depending on the formulation, they can produce reasonable out-of-sample predictive validity. The other tradition has been disease-specific or interventionspecific modelling exercises to assess the effect of changing a singular independent driver in some alternative scenario. Such models have focused on capturing the causal connections between the driver and the outcome of concern, such as tobacco and lung cancer, rather than achieving good out-of-sample predictive validity. In this analysis, we captured the causal connections between 79 drivers and outcomes in addition to correlations between SDI and time with outcomes, and also achieved better out-of-sample predictive validity than previous efforts. We believe achieving reasonable out-of-sample predictive validity
and building a modelling framework that allows exploration of myriad combinations of independent drivers is highly useful for policy exploration and dialogue. Balancing these two objectives and producing coherent forecasts for all-cause and cause-specific mortality for a large number of causes has required constructing a complicated and interlocking modelling framework; however, such complexity is necessary to achieve the effective balance provided with this method.
For two causes of death, natural disasters and conflict, developing models with good predictive validity has been challenging. We explored published modelling strategies but they did not provide good out-of-sample predictive validity with our data. ${ }^{45}$ In the absence of more robust modelling strategies, we opted to use an overly simplified approach for the current analysis: sampling for each year in the future the locationspecific distribution of the event rate from 1950-2016. In settings of extreme events, such as the Haiti earthquake of 2010 that effectively means the average for the future in those countries is $1 / 67$ th of the extreme event occurring in each year in the future. The simple nature of our models for these two causes must be considered when interpreting results for locations which have experienced major events from 1950-2016. To date, however, we have not found a model with more predictive power than this relatively simplistic approach. Another important issue to note in our forecasts related to conflict is that migration is not endogenous to the model. We do not, for example, model increased migration in a draw of the future reference scenario that is higher when there is a conflict. Our migration data is based on the UN Population Division forecasts, which are not linked to any particular model of conflict in our simulations. This important limitation can only be addressed by building a model that predicts migration as a function of conflict, economic factors, and other contextual determinants; additionally, modelling migration is known to be particularly challenging. ${ }^{46,47}$
In the reference scenario, our forecasts include underlying mortality rates and global effects of time interacted with each 5 -year age-group. This temporal trend component of the underlying model was meant to capture trends across countries for a given cause that were not captured by risk factors or SDI. Technical innovation is an important component of this temporal trend as are other social policy innovations and trends in risks not currently included in GBD. Although the average pace of technical innovation from 1990-2016 was captured, our model did not explicitly map out the probability of particular technical breakthroughs. For example, our road-injury estimates account for the trends related to SDI, but do not capture the potentially large effects of self-driving or driver-assisted car technology. ${ }^{48,49}$ Any future technical innovations that could contribute to accelerated or abrupt declines in mortality, such as the
advent of ART for HIV in 1996, were not captured in the reference scenario. Simulations of the potential effect of major innovations, whether drugs, vaccines, or broader technical innovation, can use the reference scenario as the comparator against which the effect of these developments can be assessed.
A key aspect of our forecasting model was to capture causal relations between the independent drivers and mortality so that we could explore alternative scenarios from different settings of drivers. The causal relations between risk factors and cause-specific mortality builds on the comparative risk factor assessment in GBD 2016. This evidence synthesis also accounts for mediation of the effect of risks through others (ie, the effect of BMI on mortality from ischaemic heart disease through high systolic blood pressure, cholesterol, and FPG). ${ }^{16}$ For the components of SDI (income per person, educational attainment, and total fertility rate under 25 years), we clearly cannot, with the modelling framework used here, claim that this study has demonstrated causality for these three variables. However, findings from some published studies support causal connections between all three and many health outcomes. ${ }^{50-53}$ Given that the total fertility rate under 25 years in SDI is used a proxy measure of women's empowerment, the question is whether the associations for causes other than maternal and child health outcomes is causal. We clearly cannot prove that they are but believe they are credibly causal given the mechanisms through which women's empowerment might influence many causes.
In this analysis, we developed a modelling framework that produced estimates for all-cause and cause-specific mortality, used 79 covariates as independent drivers, and for risk factors and interventions produced results consistent with evidence on causality from cohort studies and randomised trials. In addition to preserving the causal relationships between independent drivers and their potential effects on future health, our overall results achieved good out-of-sample predictive validity compared with other simpler modelling strategies. There are many opportunities to further refine the modelling strategy. As more time series for intervention coverage are made available, we also can add more interventions as part of the risk factor and interventionattributable component of the model. In the better and worse health scenarios, we did not explicitly preserve the observed covariance between different independent drivers; however, this kind of relationship could be built into our modelling strategy. The costs of moving from reference forecasts to better health scenarios for the independent drivers were not included in the current analysis. Combining forecasts of health expenditures, health system efficiency, and estimates of costs could produce better forecasts of the independent drivers of health and support analyses on the optimum allocation of resources on a dollar per
disability-adjusted life-year basis in the future. Based on the current model, by optimising the computational engine, we could allow users to explore an essentially limitless combination of different trajectories for the risk factors, income per person, educational attainment, and met need for family planning. Such user-driven scenario construction should prove a useful input for policy dialogues in many settings, allowing rapid generation of the effect of changing individual risk factors or combinations of risks with different socioeconomic contexts. In our forecasts we noted larger increases in number of deaths compared to YLLs. This was partly due to how we computed YLLs with the GBD 2016 reference life table, kept constant into the future. In coming forecasting iterations we will consider revision of our current YLL standard to reflect expected progress in the best observed age-specific death rates.

Limitations

Any forecasting study is subject to several limitations. Many factors, which were not included in our models, could change the nature of future health; consequently, any forecasting effort must acknowledge that this task is extremely challenging. Although our model performed well out-of-sample for 2007-16 fit to data for the period 1990-2006, similar model performance is not guaranteed in the future. Second, our models for forecasting independent drivers of health were relatively simple extrapolations of past trends weighted, to some degree, for recency. Our forecasts were limited by the validity of these simple extrapolations, even though they also had reasonable out-of-sample predictive performance. Third, our model deviated from demographic tradition, wherein only past trends were used to extrapolate to the future (ie, time is the sole independent driver). Proponents of this approach and its many variants argue they have better out-of-sample predictive validity than models that incorporate causal connections. With the present study, we achieved comparatively good, out-of-sample predictive performance while incorporating causal relationships where they have been established (eg, for tobacco and ischaemic heart disease). Fourth, our analysis of the components for each cause of death currently unexplained by risk factors was complicated by high co-linearity between the secular trend, income per person, educational attainment, and total fertility rate under 25 years. To address this co-linearity, the regressions used SDI, a reduced form of the three variables. Fifth, our better and worse health scenarios had comparatively small variations in total fertility rate under 25 years for many locations, which resulted from having the effect of better and worse health scenarios operate through changes in female education and met need for family planning. Other unexplained drivers of fertility change were not reflected in these scenarios. Sixth, we did not
model migration related to conflict, natural disasters, or other catastrophic events. More generally, improved modelling of migration and refugees would be an important area of improvement for our population forecasting. Seventh, we modelled each sex separately, a decision informed by issues that arise in many extrapolation models where estimates are modelled for single sex and then the sex ratios for mortality. ${ }^{54}$ We did not impose any relationship regarding male-female differences in age-specific mortality or life expectancy; notably, we did not forecast any reversals where male life expectancy exceeded that of females in 2040. Finally, to capture the causal relations between risks and causespecific mortality it is important that patterns of mediation of risks through other risks are identified and correctly quantified. GBD offers comprehensive and systematic efforts to use mediation adjustments in its risk factor analysis. Since many mediation pathways remain unknown and others poorly quantified, our mediation matrix might not be fully accurate. However, despite limitations with the mediation matrix, our model's performance still exceeds that of methods like Lee-Carter, ${ }^{26}$ which do not incorporate risk factors at all.

Conclusion

With this study, we offer a robust yet flexible forecasting platform from which future health scenarios can be examined across countries and over time; a crucial resource for long-term health planning and investments. Based on our reference forecast, health outcomes were generally predicted to improve through 2040; however, as shown by the 2040 better and worse health scenarios, ample room exists for both substantial progress and the reversal of health gains. The intersection of deliberate policy action, technological innovation, and careful attention to rising environmental, social, and geopolitical risks will likely shape the range of possible health trajectories in the future. The considerable range between better and worse health scenarios, even when accounting for 79 health drivers, shows the important role of policy change in improved health for the next generation. Decision makers in most countries ought to plan for a continued shift towards NCDs and target resources to the leading risk factors sensitive to policy change or health care, such as high blood pressure, high FPG, high BMI, tobacco, ambient air pollution, and diet. In the absence of major medical advances, CMNN causes are likely to remain dominant health challenges among the poorest countries, and there is a real risk that the HIV epidemic could rebound in many countries if progress is not maintained. Continued technical innovation and heightened spending on health, inclusive of development assistance for health, will be necessary to prevent millions of people from living in substantially worse conditions than the rest of the world.

Contributors

KJF, SEV, NF, AES, and CJLM prepared the first draft of the report. AD, KF, MM, MAP, KT, C-WY, JF, JH, KH, MH, and PR did the primary computations for this analysis. KJF, NM, SEV, and CJLM conceived this study and provided overall guidance. KJF, SEV, NF, AES, and CJLM finalised the manuscript based on reviewer feedback. All other authors provided data or developed models, reviewed results, initiated modelling infrastructure, or reviewed and contributed to this manuscript.

Declaration of interests

We declare no competing interests.

Acknowledgments

We thank Yi Xian Chua, Sally Davies, Chor Pharn, and Kristel van der Elst for organising workshops with potential stakeholders and experts in the field during the development of this project.

References

1 Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J 2006; 27: 397-412.
2 Guzman-Castillo M, Ahmadi-Abhari S, Bandosz P, et al. Forecasted trends in disability and life expectancy in England and Wales up to 2025: a modelling study. Lancet Public Health 2017; 2: e307-13.
3 Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 2017; 389: 1323-35.
4 Etkind SN, Bone AE, Gomes B, et al. How many people will need palliative care in 2040? Past trends, future projections and implications for services. BMC Med 2017; 15: 102.
5 Oestergaard MZ, Inoue M, Yoshida S, et al. Neonatal mortality levels for 193 countries in 2009 with trends since 1990: a systematic analysis of progress, projections, and priorities. PLoS Med 2011; 8: e1001080.
6 Wilmoth JR. Mortality projections for Japan: a comparison of four methods. In: Health and mortality among elderly populations. Oxford: Clarendon Press, 1996: 266-87.
7 Quinn MJ, d'Onofrio A, Møller B, et al. Cancer mortality trends in the EU and acceding countries up to 2015. Ann Oncol 2003; 14: 1148-52.
8 Peltonen M, Asplund K. Age-period-cohort effects on stroke mortality in Sweden 1969-1993 and forecasts up to the year 2003. Stroke 1996; 27: 1981-85.
9 UN. World population prospects: the 2017 revision, key findings and advance tables. New York, NY: United Nations, Department of Economic and Social Affairs, Population Division, 2017.
10 Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997; 349: 1498-504.
11 Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3: e442.
12 Hughes BB, Kuhn R, Peterson CM, et al. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model. Bull World Health Organ 2011; 89: 478-86.
13 Stewart ST, Cutler DM, Rosen AB. Forecasting the effects of obesity and smoking on US life expectancy. N Engl J Med 2009; 361: 2252-60.
14 Murray CJL, Lopez AD. Measuring the global burden of disease. N Engl J Med 2013; 369: 448-57.
15 Murray CJL, Lopez AD. Measuring global health: motivation and evolution of the Global Burden of Disease Study. Lancet 2017; 390: 1460-64.
16 Gakidou E, Afshin A, Abajobir AA, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1345-422.
17 Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1151-210.
18 GBD Collaborator Network. Population and fertility by age and sex for 195 countries and territories 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (in press).

19 WHO. Transaction prices for antiretroviral medicines from 2010 to 2013: WHO AIDS medicines and diagnostics services: global price reporting mechanism. Geneva: World Health Organization, 2013. http://www.who.int/hiv/pub/amds/amds_globalpricereport/en/ (accessed April 21, 2018).
20 Cori A, Ayles H, Beyers N, et al. HPTN 071 (PopART): a cluster-randomized trial of the population impact of an HIV combination prevention intervention including universal testing and treatment: mathematical model. PLoS One 2014; 9: e84511.
21 Lima VD, Johnston K, Hogg RS, et al. Expanded access to highly active antiretroviral therapy: a potentially powerful strategy to curb the growth of the HIV epidemic. J Infect Dis 2008; 198: 59-67.
22 Stover J. Updates to the spectrum model to estimate key HIV indicators for adults and children. AIDS 2014; 28 (suppl 4): S427-34.
23 Dieleman JL, Sadat N, Chang AY, et al. Trends in future health financing and coverage: future health spending and universal health coverage in 188 countries, 2016-40. Lancet 2018; 391: 1783-98.
24 Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659-724.
25 Fullman N, Barber RM, Abajobir AA, et al. Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet 2017; 390: 1423-59.
26 Lee RD, Carter LR. Modeling and forecasting US mortality. J Am Stat Assoc 1992; 87: 659-71.
27 Reitsma MB, Fullman N, Ng M, et al. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017; 389: 1885-906.
28 Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017; 389: 1907-18.
29 Health Effects Institute. The state of global air 2018: a special report on global exposure to air pollution and its disease burden. Boston: Health Effects Institute, 2018. https://www.stateofglobalair. org/sites/default/files/soga-2018-report.pdf.
30 WHO. Climate change and health. Geneva: World Health Organization, 2018. http://www.who.int/mediacentre/factsheets/ fs266/en/ (accessed April 20, 2018).
31 Honda Y, Kondo M, McGregor G, et al. Heat-related mortality risk model for climate change impact projection. Environ Health Prev Med 2014; 19: 56-63.
32 O'Neill J. Review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations, 2016. https://amr-review.org/sites/default/files/160525_Final\ paper_ with\%20cover.pdf (accessed April 21, 2018).
33 O'Neill J. Review on antimicrobial resistance. Antimicrobial resistance: tackling a crisis for the health and wealth of nations, 2014. https://amr-review.org/sites/default/files/160525_Final\ paper_with\%20cover.pdf (accessed April 21, 2018).
34 de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 2016; 13: e1002184.
35 Murray CJ, Lopez AD, Chin B, Feehan D, Hill KH. Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918-20 pandemic: a quantitative analysis. Lancet 2006; 368: 2211-18.
36 Harper S. Economic and social implications of aging societies. Science 2014; 346: 587-91.
37 Takayama N. The greying of Japan: an economic perspective on public pensions. Tokyo: Oxford University Press, 1993.
38 McCarthy FD, Zheng K. Population aging and pension systems: reform options for China. The World Bank, 1996. https://ideas. repec.org/p/wbk/wbrwps/1607.html (accessed June 29, 2018).
39 Banister J, Bloom DE, Rosenberg L. Population aging and economic growth in China. In: the Chinese economy. London: Palgrave Macmillan, 2012: 114-49.

40 Preston SH, Stokes A, Mehta NK, Cao B. Projecting the effect of changes in smoking and obesity on future life expectancy in the United States. Demography 2014; 51: 27-49.
41 Cardona C, Bishai D. The slowing pace of life expectancy gains since 1950. BMC Public Health 2018; 18: 151.
42 Fransham M, Dorling D. Have mortality improvements stalled in England? BMJ 2017; 357: j1946.
43 Case A, Deaton A. Rising morbidity and mortality in midlife among white non-Hispanic Americans in the 21st century. Proc Natl Acad Sci USA 2015; 112: 15078-83.
44 Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Prioritizing climate change adaptation needs for food security in 2030. Science 2008; 319: 607-10.
45 Hegre H, Karlsen J, Nygård HM, Strand H, Urdal H. Predicting armed conflict, 2010-2050. Int Stud Q 2013; 57: 250-70.
46 Keilman N, Pham DQ. Empirical errors and predicted errors in fertility, mortality and migration forecasts in the European economic area. Statistics Norway, Research Department, 2004. https://ideas. repec.org/p/ssb/dispap/386.html (accessed April 21, 2018).
47 De Beer J. The effect of uncertainty of migration on national population forecasts: the case of the Netherlands. Stockholm: Journal of Official Statistics, 1997; 13: 227.
48 Bertoncello M, Wee D. Ten ways autonomous driving could redefine the automotive world. Milan: McKinsey \& Company. https://www. mckinsey.com/industries/automotive-and-assembly/our-insights/ ten-ways-autonomous-driving-could-redefine-the-automotive-world (accessed April 21, 2018).

49 Fagnant DJ, Kockelman K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice 2015; 77: 167-81.
50 Chetty R, Stepner M, Abraham S, et al. The association between income and life expectancy in the United States, 2001-2014. JAMA 2016; 315: 1750-66.
51 Lager ACJ, Torssander J. Causal effect of education on mortality in a quasi-experiment on 1-2 million Swedes. PNAS 2012; 109: 8461-66.
52 Baker DP, Leon J, Smith Greenaway EG, Collins J, Movit M. The education effect on population health: a reassessment. Popul Dev Rev 2011; 37: 307-32.
53 Rutstein SO. Effects of preceding birth intervals on neonatal, infant and under-five years mortality and nutritional status in developing countries: evidence from the demographic and health surveys. Int J Gynaecol Obstet 2005; 89 (suppl 1): S7-24.
54 Raftery AE, Chunn JL, Gerland P, Ševčíková H. Bayesian probabilistic projections of life expectancy for all countries. Demography 2013; 50: 777-801.

University Library

- MINERVA A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Foreman, KJ; Marquez, N; Dolgert, A; Fukutaki, K; Fullman, N; McGaughey, M; Pletcher, MA; Smith, AE; Tang, K; Yuan, C-W; Brown, JC; Friedman, J; He, J; Heuton, KP; Holmberg, M; Patel, DJ; Reidy, P; Carter, A; Cercy, K; Capin, A; Douwes-Schultz, D; Frank, T;
Goettsch, F; Liu, PY; Nandakumar, V; Reitsma, MB; Reuter, V; Sadat, N; Sorensen, RJD; Srinivasan, V; Updike, RL; York, H; Lopez, AD; Lozano, R; Lim, SS; Mokdad, AH; Vollset, SE; Murray, CJL

Title:

Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories

Date:

2018-11-10

Citation:

Foreman, K. J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., Pletcher, M. A., Smith, A. E., Tang, K., Yuan, C. -W., Brown, J. C., Friedman, J., He, J., Heuton, K. P., Holmberg, M., Patel, D. J., Reidy, P., Carter, A., Cercy, K. ,... Murray, C. J. L. (2018). Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. LANCET, 392 (10159), pp.2052-2090.
https://doi.org/10.1016/S0140-6736(18)31694-5.

Persistent Link:

http://hdl.handle.net/11343/249630

File Description:
published version
License:
CC BY

[^0]: Figure 1: Global distribution across countries of the most influential drivers of health
 Figure shows: (A) lag-distributed income, (B) educational attainment, (C) total fertility rate under 25 years, (D) Socio-demographic Index, (E) met need for contraception, (F) diphtheria, tetanus, pertussis dose 3 vaccination, (G) Haemophilus influenzae type B vaccination, (H) measles vaccination, (I) pneumococcal conjugate vaccination, and (J) rotavirus vaccination. Colours show distinction between year estimates in the past and scenarios in the future. Data are the 1990 Global Burden of Disease Study (GBD) estimate, the 2016 GBD estimate, the 2040 forecast, the 2040 better health scenario, and the 2040 worse health scenario. Shown are the top 20 risks ranked from 1-20 by the number of risk-attributable years of life lost in 2016, and ordered horizontally, across rows. The estimate for each country is the age-standardised mean value across both sexes, and a Gaussian kernel density estimator produced a distribution from the estimates for all countries. Vertical lines represent the global population-weighted average, whereas the density distribution gives each of the 195 countries equal weight. FPG=fasting plasma glucose. SIR=smoking impact ratio.

[^1]: Because of differences in population and Socio-demographic Index across the scenarios, forecasts of numbers might result in reference values outside the better and worse estimates. Values are reported in thousands ($95 \% \mathrm{UI}$). Rows in bold type indicate Level 1 and Level 2 causes from the Global Burden of Disease Study (GBD) cause hierarchy. G6PH=glucose-6-phosphate dehydrogenase
 Table: Number of global deaths and years of life lost (YLLs) in GBD 2016, and in the 2040 forecast, better health, and worse health scenarios for all causes

[^2]: Figure 12: Ten leading risk factors contributing to the largest differences in risk-attributable YLLs between the 2040 reference forecast and 2040 better health scenario, globally and by GBD region
 Values are reported in thousands. Risks are listed at the Global Burden of Disease Study (GBD) Level 3 risk hierarchy from GBD 2016, and are colour coded in accordance with their Level 1 categorisation (shading represents GBD Level 2 cause hierarchy). YLLs=years of life lost.

