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We consider a class of branching processes with countably many
types which we refer to as Lower Hessenberg branching processes.
These are multitype Galton-Watson processes with typeset X =
{0, 1, 2, . . . }, in which individuals of type i may give birth to offspring
of type j ≤ i+ 1 only. For this class of processes, we study the set S
of fixed points of the progeny generating function. In particular, we
highlight the existence of a continuum of fixed points whose minimum
is the global extinction probability vector q and whose maximum is
the partial extinction probability vector q̃. In the case where q̃ = 1,
we derive a global extinction criterion which holds under second mo-
ment conditions, and when q̃ < 1 we develop necessary and sufficient
conditions for q = q̃. We also correct a result in the literature on a
sequence of finite extinction probability vectors that converge to the
infinite vector q̃.

1. Introduction. Multitype Galton-Watson branching processes (MGWBPs) describe the evo-
lution of a population of independent individuals who live for a single generation and, at death,
randomly give birth to offspring that may be of various types. Classical reference books on MG-
WBPs include Harris [21], Mode [29], Athreya and Ney [2], and Jagers [24]. MGWBPs have been
used to model populations in several fields, including in molecular biology, ecology, epidemiology,
and evolutionary theory, as well as in particle physics, chemistry, and computer science. Recent
books with a special emphasis on applications are Axelrod and Kimmel [3], and Haccou, Jagers
and Vatutin [20]. Branching processes with an infinite number of types have been used to model
the dynamics of escape mutants [35] and the spread of parasites through a host population [4, 5];
see also [3, Chapter 7] for other biological applications of infinite-type branching processes.

One of the main quantities of interest in a MGWBP is the probability that the population
eventually becomes empty or extinct. Let the vector Zn = (Zn,`)`∈X record the number of type-`
individuals alive in generation n of a population whose members take types that belong to the
countable set X . We let

(1.1) qi = P[ lim
n→∞

∑
`∈X Zn,` = 0 |ϕ0 = i]

be the probability of global extinction given that the population begins with a single individual
of type ϕ0 = i, and we refer to q := (qi)i∈X as the global extinction probability vector. When the
set X contains only finitely many types, many of the fundamental questions concerning q have
been resolved. In particular, it is well known that (i) q is the minimal non-negative solution of the
fixed point equation s = G(s), where G(s) := (Gi(s))i∈X , defined in (2.2), records the probability
generating function associated with the reproduction law of each type, and that (ii) if the process
is irreducible, then the set of fixed point solutions

(1.2) S = {s ∈ [0, 1]X : s = G(s)}
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contains at most two elements, q and 1. In addition, there is a well-established extinction criterion,
namely q = 1 if and only if the Perron-Frobenius eigenvalue of the mean progeny matrix (defined
in (2.3)) is less than or equal to one.

If we allow X to contain countably infinitely many types then this complicates matters consid-
erably. Indeed, even the definition of extinction is no longer unambiguous. We let

(1.3) q̃i = P[ lim
n→∞

Zn,` = 0, ∀` ∈ X |ϕ0 = i],

be the probability of partial extinction given that the population begins with a single individual
of type i, and we refer to q̃ = (q̃i)i∈X as the partial extinction probability vector. While global
extinction implies partial extinction, there may be a positive chance that every type eventually
disappears from the population while the total population size grows without bound; it is then
possible that q < q̃ (see [22, Section 5.1] for an example).

At least partly due to these challenges, the set S is yet to be fully characterised in the infinite-
type setting. There is, however, a number of papers that make progress toward this goal: Moyal
[30] gives general conditions for S to contain at most a single solution s such that supi∈X si < 1;
Spataru [36] gives a stronger results by stating that S contains at most two elements, q and 1;
however, Bertacchi and Zucca [8, 9] prove the inaccuracy of the latter by providing an irreducible
example where S contains uncountably many elements such that supi∈X si = 1. Both q and q̃ are
elements of the set S. It is well known that q is the minimal element, but as yet, there has been no
attempt to identify the precise location of q̃. We observe that due to the existence of irreducible
MGWBPs with q < q̃ < 1, the partial extinction probability vector q̃ may be neither the minimal
element of S, which is q, nor the maximal element of S, which is 1.

Extending the extinction criterion established in the finite-type case to the infinite-type setting
has also proven difficult. To resolve the problem in the infinite-type setting we should give both
a partial and a global extinction criterion. A number of authors have progressed in this direction
[8, 12, 21, 22, 30, 36, 37]. In the infinite-type case, the analogue of the Perron-Frobenius eigenvalue
is the convergence norm ν(M) of M defined in (2.4), which gives a partial extinction criterion:
q̃ = 1 if and only if ν(M) ≤ 1, see [37, Theorem 4.1]. However, when partial extinction is almost
sure we are still lacking general necessary and sufficient conditions for q = 1. It turns out that there
can be no global extinction criterion based solely upon M , as highlighted through [37, Example
4.4], but as pointed out by the author, other moment conditions have not been clearly identified. In
addition, when q̃ < 1, following the terminology in [8], the process can exhibit strong local survival
q = q̃ < 1, or non-strong local survival q < q̃ < 1. It is again challenging to derive a general
criterion separating the two cases.

The main contribution of this paper is to use a unified probabilistic approach to characterise the
set S and to derive a global extinction criterion applicable when q̃ = 1 for a class of branching pro-
cesses with countably infinitely many types called lower Hessenberg branching processes (LHBPs).
In these processes, which have the typeset X = {0, 1, 2, . . . }, the primary constraint is that type-i
individuals can produce offspring of type no larger than i + 1; as a consequence their (infinite)
mean progeny matrices have a lower Hessenberg form. The probabilistic approach we employ re-
lies on a single pathwise argument: we reduce the study of the LHBP to that of a much simpler
Galton-Watson process in a varying environment (GWPVE), embedded in the LHBP. GWPVEs
are single-type Galton-Watson processes whose offspring distributions vary deterministically with
the generation. In our context, the embedded GWPVE is explosive, in the sense that individuals
may have an infinite number of offspring. In particular, we show the equivalence between global
extinction of the LHBP and extinction of the embedded GWPVE, and between partial extinction
of the LHBP and the event that all generations of the embedded GWPVE are finite. Based on this
relationship, we obtain several results for LHBPs:
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(i) We prove that there is a continuum of fixed points solutions s ∈ S, whose componentwise
minimum and maximum are the global and partial extinction probability vectors q and q̃,
respectively (Theorem 4.1).

(ii) We establish a connection between the growth rates of the embedded GWPVE and the
convergence rate of si to 1 as i→∞ for any s ∈ S\{q,1}; this yields a physical interpretation
for the fixed points lying in between q and q̃ (Theorem 4.4).

(iii) In the non-trivial case where q̃ = 1, we provide a necessary and sufficient condition for
global extinction which holds under some second moment conditions (Theorem 5.1). This
is the first extinction criterion for irreducible processes that also applies to cases exhibiting
non exponential growth. We illustrate the broad applicability of the criterion through some
examples.

(iv) Finally, under additional assumptions, we build on the global extinction criterion to derive
necessary and sufficient conditions for strong local survival (Theorem 7.1).

While there is a vast literature on GWPVEs, the explosive case, which has already been studied
for standard Galton-Watson processes [32, 33], is yet to be considered in the context of varying
environment. In order to prove our main theorems, we both apply known results on GWPVEs and
develop new ones. On the way to studying properties of the embedded GWPVE, we also derive
a new partial extinction criterion for LHBPs which is computationally more efficient than other
existing criteria.

The paper is organised as follows. In Section 2 we define LHBPs and introduce the tools we use
to study them. In Section 3 we construct the embedded GWPVE and derive relationships between
it and its corresponding LHBP. In Section 4 we develop (i) and (ii). In Section 5 we deal with (iii).
In Section 6 we illustrate the results of Section 5 through two examples. In Section 7 we address
(iv). Finally, in Section 8 we discuss possible extensions of our results.

A number of our results use a sequence of truncated branching processes, labelled {Z̃(k)
n }n≥0,

which are formed by taking the original process {Zn} and deleting the descendants of each individual
whose type is larger than k. In particular, these results require the extinction probability vectors of

{Z̃(k)
n }, labelled q̃(k), to converge componentwise to q̃ as k →∞. This convergence was established

in Lemma 3.2 of [22] under general conditions, however it turns out that this lemma is incorrect
as it stands. In Appendix A we point out where the lemma and its proof break down, and in
Theorem A.1 we recover its assertion under stricter conditions by using an alternative approach to
prove it.

In this paper, we let 1 and 0 denote the column vectors of 1’s and 0’s, respectively, and we let
ei represent the vector with all entries equal to zero, except entry i which is equal to 1, the size of
these vectors being defined by the context. For any vectors x and y, we write x ≤ y if xi ≤ yi for
all i, and x < y if x ≤ y with xi < yi for at least one entry i.

2. Preliminaries. Consider a MGWBP with the type set X = N0 := {0, 1, 2, . . . }. We assume
that the process initially contains a single individual whose type is denoted by ϕ0. The process
then evolves according to the following rules:

(i) each individual lives for a single generation, and
(ii) at death individuals of type i give birth to r = (r`)`∈{0,1,...,i+1} offspring, that is, r0 individuals

of type 0, r1 individuals of type 1, . . . , and ri+1 individuals of type i+1, where the vector r is
chosen independently of that of all other individuals according to a probability distribution,
pi(·), specific to the parental type i ∈ X .

We refer to this as a lower Hessenberg branching process (LHBP).
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We construct the LHBP on the Ulam-Harris space [21, Ch. VI], labelled (Ω,F ,P), as follows. Let
J =

⋃
n≥0 Jn where Jn describes the virtual n-th generation. That is, J0 = X , where ϕ0 ∈ J0 spec-

ifies the type of the root, and for n ≥ 1, Jn = X×(N×X ×N)n, where (ϕ0; i1, j1, y1; . . . ; in, jn, yn)
denotes the in-th child of type jn born to (ϕ0; i1, j1, y1; . . . ; in−1, jn−1, yn−1) and yn denotes the
individual’s unique identification number. The identification number is not required to define the
branching process with countably many types, however it is necessary to formally define the em-
bedded branching processes considered in the sequel (see [13, Footnote 2] for an illustration). Each
virtual individual I ∈ J is assigned a random offspring vector N(I) = (N`(I))`∈X that takes values
in Rj := {r ∈ (N0)X : r` = 0 ∀ ` > j + 1} when I is of type j and has distribution pj(·), inde-
pendently of all other individuals. The random set of individuals who appear in the population,
X =

⋃
n≥0Xn, is then defined recursively from the values of N(I) as follows

(2.1) X0 = {ϕ0}, Xn = {x = (x̃; in, jn, n) ∈ Jn : x̃ ∈ Xn−1, in ≤ Njn(x̃)}.

The population in generation n is described by the vector Zn with entries

Zn,j =
∑
I∈Jn

1(I ∈ Xn, jn = j), j ∈ X .

We will often refer to branching processes by their sequence of population vectors {Zn}n≥0.
We define the progeny generating vector G(·) : [0, 1]X → [0, 1]X , where

(2.2) Gi(s) = Gi(s0, s1, . . . , si+1) =
∑
r∈Ri

pi(r)sr =
∑
r∈Ri

pi(r)
i+1∏
k=0

srkk ,

and the mean progeny matrix M = (Mi,j)i,j∈X , where

(2.3) Mi,j =

(
∂Gi(s)

∂sj

)∣∣∣∣
s=1

is the expected number of type-j children born to a parent of type i. By assumption, M is an
infinite lower Hessenberg matrix. To avoid trivialities we assume that Mi,i+1 > 0 for all i ∈ X . To
M , we associate a weighted directed graph, referred to as the mean progeny representation graph.
This graph has vertex set X and contains an edge from i to j of weight Mi,j if and only if Mi,j > 0.
The branching process is said to be irreducible if there is a path between any two vertices in the
mean progeny representation graph on X . We define the convergence norm of M ,

(2.4) ν(M) = lim sup
n

n

√
(Mn)ij ,

which, when the process is irreducible, is independent of i and j.
The global and partial extinction probability vectors q and q̃, defined in (1.1) and (1.3), are

both solutions to the fixed point equation s = G(s), and are thus elements of the set S defined in
(1.2). This can be seen by conditioning on the children of the initial individual and then observing
that the process becomes partially (globally) extinct if and only if the daughter processes of these
children become partially (globally) extinct. Moreover, following the standard arguments, we can
prove that q is the componentwise minimal element of S (see [30, Theorem 3.1]). By the lower
Hessenberg assumption, s = G(s) can be written as si = Gi(s0, . . . , si, si+1) for all i ≥ 0. Thus,
by the monotonicity of Gi(·), each entry si of any s ∈ S is uniquely determined by s0. It is then
natural to consider the one-dimensional projection sets of S,

Si = {x ∈ [0, 1] : ∃ s ∈ S, such that si = x}, i ∈ X .
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Fig 1. The processes {Zn}, {Z̃(1)
n } and {Z(1)

n } for a specific ω ∈ Ω.

We define two sequences of finite-type branching processes on (Ω,F ,P). The first, {Z̃(k)
n }n≥0,k≥−1,

is such that the random offspring vector of any virtual individual I ∈ J is given by

Ñ (k)(ω, I) =

{
N(ω, I), t(I) ≤ k
0, t(I) > k,

for any ω ∈ Ω, where t(I) is the type of virtual individual I. For any k ≥ −1, outcomes of {Z̃(k)
n }

are thus constructed by taking the corresponding outcome of {Zn} and removing the descendants

of all individuals of type i > k. These types are said to be sterile. The second, {Z(k)
n }n≥0,k≥−1, is

such that the random offspring vector of any virtual individual I ∈ J is given by

N (k)(ω, I) =

{
N(ω, I), t(I) ≤ k
et(I), t(I) > k,

for any ω ∈ Ω. For any k ≥ −1, outcomes of {Z(k)
n } are thus constructed by taking the corresponding

outcome of {Zn} and replacing the descendants of all individuals of type i > k with an infinite

string of type-i descendants. These types are said to be immortal. An illustration of {Zn}, {Z̃(1)
n }

and {Z(1)
n } for a specific ω ∈ Ω is given in Figure 1. By construction, for all ω ∈ Ω, (i) for each

fixed value of k, if ϕ0 ≤ k+1 then the sterile and immortal individuals are necessarily of type k+1,
(ii)

(2.5) Z
(k)
n,` (ω) = Z̃

(k)
n,` (ω) for all n ≥ 0 and 0 ≤ ` ≤ k,

and (iii)

(2.6) lim
n→∞

Z
(k)
n,k+1(ω) =

∞∑
n=0

Z̃
(k)
n,k+1(ω).

We denote the progeny generating vector of {Z(k)
n } by G(k)(s), which has entries

(2.7) G
(k)
i (s) =

{
Gi(s), 0 ≤ i ≤ k
sk+1, i = k + 1.

By Equation (2.5), the global extinction probability vectors of {Z(k)
n } and {Z̃(k)

n }, denoted by q̃(k)

and q(k), are given by

q̃(k) = lim
n→∞

G(k,n)(0, . . . , 0, 1) and q(k) = lim
n→∞

G(k,n)(0, . . . , 0, 0),
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Fig 2. An outcome of {Zn} and {Yk} for a specific ω ∈ Ω. The highlighted type-k individuals represent the sterile

individuals in the corresponding realisation of {Z̃(k−1)
n }.

where G(k,n)(·) is the n-fold composition of G(k)(·). As demonstrated in [22, Lemma 3.1], the
sequence {q(k)}k≥−1 increases componentwise to q. In addition, if {Zn} is irreducible and non-
singular (that is, there exists i ∈ X such that

∑
v:|v|=1 pi(v) < 1), then the sequence {q̃(k)}k≥−1

decreases componentwise to q̃ (see Theorem A.1 in Appendix A); recall that [22, Lemma 3.2] is an
incorrect version of the same result. Unless stated otherwise, we assume that {Zn} is non-singular
and irreducible.

3. An embedded GWPVE with explosions. We construct the embedded GWPVE {Yk}
on (Ω,F ,P) from the paths of {Zn} by selecting all individuals whose type is strictly larger than
that of all their ancestors, and connecting each selected individual to their nearest (in generation)
selected ancestor (see Figure 2). More formally, we define a function f(·) : J → J that takes a line
of descent (ϕ0; i1, j1, y1; . . . ; in, jn, yn) and deletes each triple (ik, jk, yk) whose type is not strictly
larger than all its ancestors. For each ω ∈ Ω the family tree of {Yk} is then given by f(X(ω)),
where X(ω) is defined in (2.1). Variants of {Yk} (which do not permit explosion) can be found in
[12] and [19].

We take the convention that {Yk} starts at the generation number corresponding to the initial
type ϕ0 in {Zn}. By construction, for any ω ∈ Ω we then have

(3.1) Yk(ω) =
∞∑
n=0

Z̃
(k−1)
n,k (ω) = lim

n→∞
Z

(k−1)
n,k (ω),

that is, the kth generation of {Yk} is made up every sterile (type-k) individual produced over

the lifetime of {Z̃(k−1)
n }n≥0. By the lower Hessenberg assumption, each sterile type-k individual

that appears in {Z̃(k−1)
n }n≥0 is a descendant of a sterile type-(k − 1) individual that appears in

{Z̃(k−2)
n }n≥0. Thus, because the daughter processes of these type-(k − 1) individuals in {Z̃(k−1)

n }
are i.i.d., Yk satisfies the branching process equation

(3.2) Yk
d
=

Yk−1∑
i=1

ξk,i,

where {ξk,i}i≥1 is a sequence of i.i.d. random variables such that, ξk,i
d
=
∑∞

n=0 Z̃
(k−1)
n,k conditional

on ϕ0 = k − 1. This means {Yk} is indeed a GWPVE; it is however not a classical one because
{Yk} may have a positive chance of explosion, that is, individuals in {Yk} may give birth to an
infinite number of offspring with positive probability. The next lemma states that {Yk} explodes by
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generation k if and only if {Z̃(k−1)
n }n≥0 survives globally, and {Yk} becomes extinct by generation

k if and only if {Z(k−1)
n }n≥0 becomes globally extinct.

Lemma 1. For any k ≥ ϕ0,

(3.3) {ω ∈ Ω : Yk(ω) <∞} a.s.
= {ω ∈ Ω : lim

n→∞
Z̃(k−1)

n (ω) = 0},

and

(3.4) {ω ∈ Ω : Yk(ω) = 0} a.s.
= {ω ∈ Ω : lim

n→∞
Z(k−1)

n (ω) = 0}.

Proof. To prove (3.3), first suppose that ω ∈ {limn Z̃
(k−1)
n = 0}. Then there exists a generation

N <∞ such that Z̃
(k−1)
n (ω) = 0 for all n ≥ N . This means

∑∞
n=0 Z̃

(k−1)
n,k (ω) =

∑N
n=0 Z̃

(k−1)
n,k (ω) <

∞, which implies ω ∈ {Yk < ∞}. It then remains to prove P(Yk < ∞, lim infn |Z̃(k−1)
n | > 0) = 0.

Because Mi,i+1 > 0 for any i ≤ k − 1, we have Pi

(∑k
n=0 Z̃

(k−1)
n,k = 0

)
≤ 1 − εi, for some εi > 0.

Thus, for any z̃
(k−1)
0 ∈ (N0)k+1, we have

P

(
k∑

n=0

Z̃
(k−1)
n,k = 0, |Z̃(k−1)

k | > 0
∣∣∣ Z̃(k−1)

0 = z̃
(k−1)
0

)
≤ 1− ε.

where ε := min0≤i≤k{εi} > 0. By the Markov property, we then have

P(Yk <∞, lim inf
n→∞

|Z̃(k−1)
n | > 0)

≤ P

(
∃N≥ 0 :

∞∑
m=N

Z̃
(k−1)
m,k = 0, |Z̃(k−1)

n | > 0∀n

)

= P

∃N ≥ 0 :

∞⋂
`=0

N+(`+1)k∑
m=N+`k

Z̃
(k−1)
m,k = 0, |Z̃(k−1)

N+(`+1)k| > 0


≤
∞∑

N=0

∏
`≥0

(1− ε) = 0,

leading to (3.3). The same arguments lead to (3.4).

Since
{ω ∈ Ω : lim inf

n
Z̃(k−1)

n (ω) > 0} ⊆ {ω ∈ Ω : lim inf
n

Z̃(k)
n (ω) > 0},

and
{ω ∈ Ω : lim

n
Z(k−1)

n (ω) = 0} ⊆ {ω ∈ Ω : lim
n

Z(k)
n (ω) = 0},

the process {Yk} has two absorbing states, 0 and ∞. The next corollary formalises the equivalence
between the following events:

{Zn} experiences: {Yk} reaches:
both partial and global extinction ≡ the absorbing state 0

neither partial nor global extinction ≡ the absorbing state ∞
partial extinction but not global extinction ≡ neither 0 nor ∞.
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Corollary 1. The global extinction event Eg
a.s.
= {ω ∈ Ω : limk→∞ Yk(ω) = 0}, and the partial

extinction event Ep
a.s.
= {ω ∈ Ω : Yk(ω) <∞, ∀k ≥ ϕ0}.

Proof. The result follows from Lemma 1 and the arguments in the proofs of [22, Lemmas 3.1]
and Theorem A.1 respectively.

By Corollary 1 we can express any question about the extinction probability vectors q and q̃ in
terms of the process {Yk}. In the sequel we use the shorthand notation Pi(·) for P(·|Yi = 1) and
Ei(·) for E(·|Yi = 1).

Corollary 2. For any k ≥ 0 and 0 ≤ i ≤ k,

q
(k)
i = Pi (Yk+1 = 0) and q̃

(k)
i = Pi (Yk+1 <∞) ,

and for any i ≥ 0,

qi = Pi( lim
k→∞

Yk = 0) and q̃i = Pi (∀ k ≥ i, Yk <∞) .

Proof. The results are immediate consequences of Lemma 1 and Corollary 1.

To take advantage of Corollary 2 we require the progeny generating function of each generation
of the embedded GWPVE. For k ≥ 0, we let

(3.5) gk(s) := Ek(sYk+1 1{Yk+1 <∞}) =
∑
`≥0

P

( ∞∑
n=1

Z̃
(k)
n,k+1 = `

∣∣∣ϕ0 = k

)
s`,

where s ∈ [0, 1]. Due to the possibility of explosion we may have 1 > gk(1) = Pk(Yk+1 <∞) = q̃
(k)
k .

By (3.2), the generating function of Yk+1, conditional on Yi = 1 for i ≤ k, is given by

gi→k(s) := gi ◦ gi+1 ◦ · · · ◦ gk(s), s ∈ [0, 1].

Consequently, by Corollary 2, we have q
(k)
i = gi→k(0), q̃

(k)
i = gi→k(1), qi = limk→∞ gi→k(0), and

q̃i = limk→∞ gi→k(1).
The next two lemmas provide respectively an explicit and an implicit relation between the

sequence of progeny generating functions {gk(·)} and the progeny generating vector G(·). The first
requires the following technical assumption:

Assumption 1. For all k ≥ 0,

(3.6) Pk

(
lim
n→∞

k∑
i=0

Z
(k)
n,i → 0

)
+ Pk

(
lim
n→∞

k∑
i=0

Z
(k)
n,i →∞

)
= 1.

Lemma 2. If Assumption 1 holds, then for all k ≥ ϕ0, the progeny generating function of {Yk}
at generation k is given by

gk(s) = lim
n→∞

G
(k,n)
k (s0, s1, . . . , sk, s), s ∈ [0, 1],

where (s0, s1, . . . , sk) ∈ [0, 1)k+1.
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Proof. By (3.1) and (3.5),

gk(s) = Ek

(
slimn→∞ Z

(k)
n,k+1 1

{
lim
n→∞

Z
(k)
n,k+1 <∞

})
.(3.7)

By Assumption 1 and the fact that (s0, . . . , sk) ∈ [0, 1)k+1,

Pk

(
lim
n→∞

k∏
i=0

s
Z

(k)
n,i

i = 0

)
+ Pk

(
lim
n→∞

k∏
i=0

s
Z

(k)
n,i

i = 1

)
= 1,

that is, limn→∞
∏k

i=0 s
Z

(k)
n,i

i is an indicator function. In addition, Lemma 1 implies {limn→∞ Z
(k)
n,k+1 <

∞} a.s.
= {limn→∞ Z̃

(k)
n = 0} = {limn→∞

∏k
i=0 s

Z̃
(k)
n,i

i = 1} = {limn→∞
∏k

i=0 s
Z

(k)
n,i

i = 1}. Thus, (3.7)
can be rewritten as

gk(s) = Ek

(
lim
n→∞

sZ
(k)
n,k+1

k∏
i=0

s
Z

(k)
n,i

i

)
= lim

n→∞
G

(k,n)
k (s0, s1, . . . , sk, s),

where the last equality follows from the dominated convergence theorem.

Lemma 3. For any k ≥ 0, the progeny generating function gk(·) satisfies

(3.8) gk(s) = Gk (g0→k(s), g1→k(s), . . . , gk(s), s) .

Proof. By conditioning on the offspring of a type-k individual in {Z̃(k)
n },

gk(s)

= E
[
s
∑∞

n=1 Z̃
(k)
n,k+1 1

{∑∞
n=1 Z̃

(k)
n,k+1<∞

} ∣∣∣ϕ0 = k
]

=
∑
z≥0

E
[
s
∑∞

n=1 Z̃
(k)
n,k+1 1

{∑∞
n=1 Z̃

(k)
n,k+1<∞

} ∣∣∣ϕ0 = k, Z̃
(k)
1 = z

]
P[Z̃

(k)
1 = z |ϕ0 = k].

Then, by the Markov property and the independence between the daughter processes of individuals
from the same generation,

E

[
s
∑∞

n=1 Z̃
(k)
n,k+1 1

{∑∞
n=1 Z̃

(k)
n,k+1<∞

} ∣∣∣ϕ0 = k, Z̃
(k)
1 = (z0, . . . , zk, zk+1)

]
= szk+1

k∏
i=0

E

[
s
∑∞

n=1 Z̃
(k)
n,k+1 1

{∑∞
n=1 Z̃

(k)
n,k+1<∞

} ∣∣∣ϕ0 = i

]zi
= szk+1

k∏
i=0

gi→k(s)zi ,(3.9)

where (3.9) follows from (3.2). This leads to

gk(s) =
∑
z≥0

k∏
i=0

gi→k(s)zi szk+1 P[Z̃
(k)
1 = z |ϕ0 = k],

which completes the proof.
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4. Fixed points and extinction probabilities. We now characterise the set S defined in
(1.2). The main results in this section rely on the relation between S and the set

S[e] = {s ∈ [0, 1]X : sk = gk(sk+1)∀ k ≥ 0},

which corresponds to the set of fixed points of the embedded GWPVE. Because each gk(·) is a
monotone increasing function, like S, the set S[e] is one-dimensional. In this section we assume that
Assumption 1 holds. For any vector s ∈ S, we write s̄(k) := (s0, s1, . . . , sk) for the restriction of s
to its first k + 1 entries.

The next lemma establishes a relationship between S and S[e].

Lemma 4. S = S[e] ∪ {1}.

Proof. Suppose s ∈ S and s 6= 1. For any k, n ≥ 0, s̄(k+1) satisfies s̄(k+1) = G(k,n)(s̄(k+1)).
Because {Zn} is irreducible and s 6= 1 we have si < 1 for all i ∈ X (see [36, Theorem 2]). Thus,

using Lemma 2, gk(sk+1) = limn→∞G
(k,n)
k (s̄(k+1)) = sk for all k ≥ 0, leading to s ∈ S[e]. Now

suppose s ∈ S[e]. Then, by Lemma 3, for all k ≥ 0,

sk = gk(sk+1) = Gk (g0→k(sk+1), g1→k(sk+1), . . . , gk(sk+1), sk+1) = Gk(s),

therefore s ∈ S.

We now characterise the one-dimensional projection sets Si and identify which elements of S
correspond to the global and partial extinction probability vectors.

Theorem 4.1. If S = {1} then q = q̃ = 1; otherwise

q = minS and q̃ = supS\{1}.

In particular, Si = [qi, q̃i] ∪ 1 for all i ≥ 0.

Proof. We show that

(4.1) q = minS[e] and q̃ = maxS[e],

and for any i ≥ 0, S
[e]
i = [qi, q̃i], where

S
[e]
i = {x ∈ [0, 1] : ∃ s ∈ S[e], such that si = x}.

These results follow from the fact that gi(·) and g−1
i (·) are monotone increasing functions, and

therefore so are gi→j(·) and g−1
i→j−1(·) := g−1

j−1 ◦ · · · ◦ g
−1
i (·) for j > i. Let s ∈ S[e], then for all

0 ≤ i < k,

q
(k−1)
i =gi→k−1(0) ≤ si = gi→k−1(sk) ≤ gi→k−1(1) = q̃

(k−1)
i .

Taking the limit as k → ∞ we obtain qi ≤ si ≤ q̃i for all i ≥ 0, which shows (4.1). Now suppose
qi ≤ si ≤ q̃i. For any j < i, define sj := gj→i−1(si); then

qj = gj→i−1(qi) ≤ sj ≤ gj→i−1(q̃i) = q̃j .

Similarly, for any j > i, define sj := g−1
i→j−1(si); then

qj = g−1
i→j−1(qi) ≤ sj ≤ g−1

i→j−1(q̃i) = q̃j .

This shows that for any i ≥ 0 and for any si ∈ [qi, q̃i], it is possible to construct a vector s belonging
to S[e].
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qi = q̃i < 1 :

qi = q̃i = 1 :

qi < q̃i = 1 :

qi < q̃i < 1 :

0

0

0

0

qi = q̃i 1

qi = q̃i = 1

q̃i = 1qi

1qi q̃i

Fig 3. A visual representation of possible sets Si in the irreducible case.

Theorem 4.1 implies that S contains one, two, or uncountably many elements. More specifically,
it shows that q is the minimal element of S which is the beginning of a continuum of elements
whose supremum is q̃, as illustrated in Figure 3.

Remark 1. In the reducible case there may be an additional countable number of fixed points
s such that q̃ ≤ s ≤ 1. We refer to [11, Section 4.4] for the details.

With the goal of giving a probabilistic interpretation to the intermediate fixed points s ∈ S such
that q < s < q̃, we now derive properties of the infinite-dimensional set S. We begin by deriving a
sufficient condition for

(4.2) lim
i→∞

si = 1, for all s ∈ S\{q},

that is, for S to contain at most a single element (corresponding to q) whose entries do not converge
to 1. In a more general setting, sufficient conditions for (4.2) can be found in Moyal [30, Lemmas
3.3 and 3.4], the most notable being ‘inf qi > 0’. The same author also conjectures a more general
condition:

sup
i
p

(1)
i < 1, where p

(1)
i :=

∑
v:|v|=1

pi(v).

In the case of LHBPs we now provide a stronger result.

Theorem 4.2. If

(4.3)
∞∑
i=0

(1− p(1)
i ) =∞

then (4.2) holds.

The proof of Theorem 4.2 uses the following lemma which we state separately because, for
LHBPs, it generalises the conditions of [12, Theorem 1].

Lemma 5. If (4.3) holds then P(Yk → 0) + P(Yk →∞) = 1.

Proof. Following Lindvall [26], we have P(Yk → 0) + P(Yk →∞) = 1 if and only if

(4.4)
∞∑
k=0

(1− g′k(0)) =∞.
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Suppose (4.3) holds without (4.4), that is, assume (4.3) and

(4.5)
∞∑
k=0

(1− g′k(0)) <∞.

In this case, there can be only finitely many k such that g′k(0) = 0. Thus, (4.5) holds if and only if
there exists ` ≥ 0 such that

(4.6)

∞∏
k=`

g′k(0) ≡ P`(Yk = 1, ∀k ≥ `) > 0.

In addition, because Mi,i+1 > 0 for all i ≥ 0, in every generation of the embedded process (including
any for which g′k(0) = 0) individuals have a positive chance of giving birth to at least one offspring.
In combination with (4.6) this implies that there exists c > 0 such that for any l ≥ 0, Pl(Yk ≥
1, ∀k ≥ l) ≥ c. Recall that each individual in {Yk} corresponds to an individual in {Zn}. If the
corresponding individual in {Zn} has no offspring then neither does the individual in {Yk}, whereas
if the corresponding individual in {Zn} has two or more offspring then the individual in {Yk} must
have at least two offspring with probability greater than or equal to c2. Thus, for all k ≥ 0,

1 − g′k(0) ≥ c2(1 − p(1)
k ), which implies

∑∞
k=0(1 − g′k(0)) ≥ c2

∑∞
k=0(1 − p(1)

k ) = ∞, contradicting
(4.5). Therefore, if (4.3) holds, we must have (4.4).

Proof of Theorem 4.2. By Lemma 4, we may assume s ∈ S[e]. Thus, for all k ≥ 0,

(4.7) s0 = g0→k−1(sk) = E0

(
sYk
k 1{Yk <∞}

)
= q

(k−1)
0 + E0

(
sYk
k 1{0 < Yk <∞}

)
.

Suppose lim infk sk < 1. In this case there exists an infinite sequence {ki}i≥1 such that ski < 1− ε
for all i ≥ 1 and some ε > 0. For each i ≥ 1 and K ≥ 1,

E0

(
s
Yki
ki

1{0 < Yk <∞}
)
≤ P0(0 < Yki < K) + (1− ε)K .

By Lemma 5, for any K ≥ 1, we have P0(0 < Yki < K) → 0 as i → ∞. Letting K be arbitrarily

large, we obtain lim infk E0(sYk
k 1{0 < Yk < ∞}) = 0. Because q

(k)
0 → q0 as k → ∞, from (4.7) we

then obtain s0 = q0. The only element s ∈ S[e] such that lim infk sk < 1 is therefore s = q.

Now that we have general sufficient conditions for 1 − si → 0, we investigate properties of this
convergence. The next two theorems use the following lemma.

Lemma 6. If {an}n≥0 and {bn}n≥0 are sequences of non-negative real numbers such that an ∈
(0, 1) for all n ≥ 0, and bn →∞, then

lim sup
n

abnn = exp{− lim inf
n

bn(1− an)},(4.8)

lim inf
n

abnn = exp{− lim sup
n

bn(1− an)}.(4.9)

Proof. For any n ≥ 0 we have

abnn =

(
1− bn(1− an)

bn

)bn

.

The result then follows from limn→∞(1− c/n)n = e−c for any c ∈ R.
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The next result shows that if the entries of q converge to 1, then they converge slower than
those of any other s ∈ S\{q}, whereas the entries of q̃ converge to 1 faster than those of any other
s ∈ S\{q̃,1}.

Theorem 4.3. If (4.3) holds then, for any s ∈ S\{q, q̃,1},

lim
k→∞

1− qi
1− si

=∞ and lim
k→∞

1− q̃i
1− si

= 0.

Proof. Suppose s ∈ S\{q, q̃,1}. In that case, by Theorem 4.1, q < s < q̃. In addition, by
Lemma 4, for all k ≥ 0,

s0 = E0(sYk
k 1{Yk <∞})

= q
(k−1)
0 + E0

(
sYk
k 1{0 < Yk <∞}

)
(4.10)

= q̃
(k−1)
0 + E0

(
(sYk

k − 1)1{0 < Yk <∞}
)
.(4.11)

Without loss of generality we assume that q < q̃, which by Corollary 2 is equivalent to P0 (0 < Yk <∞, ∀ k ≥ 0, ) >

0. In this case, by (4.10) and the fact that q
(k)
0 → q0, we have

s0 = q0 ⇔ lim
k→∞

E0

(
sYk
k

∣∣∣ 0 < Yk <∞
)

= 0.

Because sYk
k is nonnegative and uniformly bounded by 1, we can write

s0 = q0 ⇔ P0

(
sYk
k → 0

∣∣∣ ∀ k ≥ 0, 0 < Yk <∞
)

= 1.

By Lemma 5 we may then apply Lemma 6 to obtain

s0 = q0 ⇔ P0 (Yk(1− sk)→∞| ∀ k ≥ 0, 0 < Yk <∞) = 1,

hence limk→∞(1− qi)/(1− si) =∞. Using (4.11), a similar argument yields

s0 = q̃0 ⇔ P0 (Yk(1− sk)→ 0 | ∀ k ≥ 0, 0 < Yk <∞) = 1,

and limk→∞(1− q̃i)/(1− si) = 0.

The next theorem demonstrates that the rate at which 1 − si decays is closely linked to the
asymptotic growth of {Yk}. In this context, we define a growth rate to be a sequence of real
numbers {Ck}k≥0 such that

lim
k→∞

Yk
Ck

= W ({Ck}) exists a.s.,

where W ({Ck}) is a non-negative, potentially defective, random variable with P(0 < W ({Ck}) <
∞) > 0. We let

gW ({Ck})(z) = E0

(
zW ({Ck})1 {W ({Ck}) <∞}

)
.

Growth rates of non-defective GWPVEs (q̃ = 1) have been studied by a number of authors.
Although it is natural to assume that {E0[Yk+1]}k≥0 is a growth rate, it may not always be the
case. Sufficient conditions for {E0[Yk+1]} to be a growth rate are given in [23], and conditions for
it to be the only distinct growth rate are discussed in [15, 16, 25]. Examples of GWPVEs with
multiple growth rates can be found in [17, 27].
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Theorem 4.4. Suppose (4.3) holds. If s ∈ S\{1} and there exists some growth rate {Ck} such
that gW ({Ck})(0) < s0 < gW ({Ck})(1), then

lim
k→∞

(1− sk)Ck = c ∈ (0,∞),

where c is such that s0 = gW ({Ck})(e
−c).

Proof. By the arguments in the proof of Lemma 4, any s ∈ S\{1} is such that si < 1 for all
i ∈ X , and s ∈ S[e]. Therefore, for all k ≥ 1,

(4.12) s0 = E0

(
sYk
k 1{Yk <∞}

)
= E0

(
sYk
k

)
,

which can be rewritten as

(4.13) s0 = E0

((
sCk

k

)Yk/Ck

1{W ({Ck}) = 0}
)

+ E0

((
sCk

k

)Yk/Ck

1{0 < W ({Ck}) <∞}
)

+E0

((
sCk

k

)Yk/Ck

1{W ({Ck}) =∞}
)
.

By assumption we have

(4.14) gW ({Ck})(0) = P0 (W ({Ck}) = 0) < s0 < gW ({Ck})(1) = P0 (W ({Ck}) <∞) .

If lim infk(sk)Ck = 0, then taking lim infk in (4.13) gives s0 ≤ P0(W ({Ck}) = 0), which contradicts
(4.14). A Similar argument applies to the limit superior, leading to

(4.15) 0 < lim inf
k

sCk
k ≤ lim sup

k
sCk
k < 1.

By (4.12) we then have

s0 = lim sup
k→∞

E0

((
sCk
k

)Yk/Ck
)

= E0

(
lim sup
k→∞

(
sCk
k

)Yk/Ck
)

(4.16)

= E0

((
lim sup
k→∞

sCk
k

)W ({Ck})
)
,(4.17)

where (4.16) follows from the dominated convergence theorem, and (4.17) requires (4.15). If we
repeat the same argument with lim sup replaced by lim inf, we finally obtain

s0 = gW ({Ck})(lim sup
k

sCk
k ) = gW ({Ck})(lim inf

k
sCk
k ).

By (4.3) and Theorem 4.2 we have sk → 1 and thus through (4.15) we obtain Ck →∞. Lemma 6
then gives limk→∞(sk)Ck = e−c, where c = limk→∞(1− sk)Ck. This means s0 = E0

(
e−cW ({Ck})

)
=

gW ({Ck})(e
−c).

We conclude this section with a summary of our findings on the set S. The set S is made up
of a continuum of elements whose minimum is q and whose maximum is q̃, with the additional
fixed point 1. Under Condition (4.3), for any s ∈ S, with the possible exception of q, we have
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1 − si → 0 as i → ∞. The decay rates of 1 − qi and 1 − q̃i are unique, whereas the intermediate
elements q < s < q̃ may share one or several decay rates, which have a one-to-one correspondence
with the growth rates of {Yk}. Furthermore, these intermediate elements completely specify the
generating functions gW ({Ck})(·) and thereby the distributions of W ({Ck}). This gives a physical
meaning to the intermediate elements: in short, they describe the evolution of {Yk} when there is
partial extinction without global extinction. While this physical interpretation is in terms of the
growth of {Yk}, we expect that it is closely related to the growth of {|Zn|}.

5. Extinction Criteria. While there exist several well-established partial extinction criteria,
determining a global extinction criterion when q̃ = 1 remains an open question. When q̃ = 1, the
embedded GWPVE {Yk} is non-explosive, and we can directly apply known extinction criteria for
GWPVEs. These criteria are generally expressed in terms of the first and second factorial moments

µk := g′k(1) and ak := g′′k(1), k ≥ 0.

The next lemma provides recursive expressions for these moments in terms of those of the offspring
distributions of {Zn}. We let

(5.1) mi→k := Ei[Yk+1] = g′i→k(1) =
k∏

j=i

µj ,

G′k,i(s) :=
∂Gk(u)

∂ui

∣∣∣∣
u=s

, G′′k,ij(s) :=
∂2Gk(u)

∂ui∂uj

∣∣∣∣
u=s

, Ak,ij := G′′k,ij(1),

and we take the convention that
∏k−1

i=k · = 1 and gk+1→k(s) = s.

Lemma 7. Suppose q̃ = 1, then

(5.2) µ0 =
M0,1

1−M0,0
and a0 =

µ2
0A0,00 +A0,11 + 2µ0A0,01

1−M0,0
,

and for k ≥ 1,

(5.3) µk =
Mk,k+1

1−
∑k

i=0Mk,imi→k−1

,

and

(5.4) ak =

∑k
i=0Mk,i

∑k−1
j=i aj mi→j−1

(∏k
`=j+1 µ

2
`

)
+
∑k+1

i=0

∑k+1
j=0 mi→kmj→k Ak,ij

1−
∑k

i=0Mk,imi→k−1

.

Proof. By Lemma 3, for any k ≥ 0,

g′k(s) =
d

ds
[Gk(g0→k(s), . . . , gk+1→k(s))]

=

k+1∑
i=0

g′i→k(s)G′k,i(g0→k(s), . . . , gk+1→k(s)),(5.5)

where g′i→k(s) =
∏k

j=i g
′
j(gj+1→k(s)). The assumption q̃ = 1 implies gi→k(1) = 1 for all i, k, and

therefore µk = g′k(1) =
∑k

i=0Mk,imi→k + Mk,k+1, which leads to the expression for µ0 and the
recursive Equation (5.3).
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Next, by differentiating (5.5) with respect to s, we obtain

g′′k(s) =
k+1∑
i=0

g′′i→k(s)G′k,i(g0→k(s), . . . , gk+1→k(s))

+

k+1∑
i=0

g′i→k(s)

k+1∑
j=0

g′j→k(s)G′′k,ij(g0→k(s), . . . , gk+1→k(s)),

where, for 0 ≤ i ≤ k,

g′′i→k(s) =
k∑

j=i

(
j−1∏
`=i

g′`(g`+1→k(s))

)
g′′j (gj+1→k(s))

 k∏
`=j+1

g′`(g`+1→k(s))

2

.

This implies

ak = g′′k (1) =

k∑
i=0

Mk,i

k∑
j=i

aj mi→j−1

 k∏
`=j+1

µ2
`

+

k+1∑
i=0

k+1∑
j=0

mi→kmj→k Ak,ij ,

which gives,

ak

(
1−

k∑
i=0

Mk,imi→k−1

)
=

k∑
i=0

Mk,i

k−1∑
j=i

aj mi→j−1

 k∏
`=j+1

µ2
`

+
k+1∑
i=0

k+1∑
j=0

mi→kmj→k Ak,ij ,

leading to the expression for a0 and the recursive Equation (5.4).

When q̃ = 1 is not assumed, the recursive expressions (5.2)–(5.4) can still be used to compute
two sequences, which may not correspond to the first and second factorial moments of the progeny
distributions of {Yk}, but which we shall even so denote by {µk} and {ak}. For these sequences to
correspond to well defined moments, their elements must be non-negative and finite, that is, the
denominator common to (5.3) and (5.4) must be strictly greater than 0 for all k ≥ 0. Thus, if we
let

xk :=

k∑
i=0

Mk,imi→k−1,

we require

(5.6) 0 ≤ xk < 1 for all k ≥ 0.

By giving a physical interpretation to xk, we now show that, in the irreducible case, (5.6) holds if
and only if q̃ = 1. Note that, if there exists k such that xk = 1, then q̃ < 1, as justified in the proof
of the lemma.

Lemma 8. If {Zn} is irreducible then q̃ = 1 if and only if 0 ≤ xk < 1 for all k ≥ 0.
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Proof. For any k ≥ 0 we embed a process {E(k)
n (Z̃

(k)
n )} in {Z̃(k)

n : ϕ0 = k} by taking all type-k

individuals that appear in {Z̃(k)
n } and defining the direct descendants of these individuals as the

closest (in generation) type-k descendants in {Z̃(k)
n }; the process {E(k)

n (Z̃
(k)
n )} evolves as a single-

type Galton-Watson process that becomes extinct if and only if type k becomes extinct in {Z̃(k)
n }.

Because Mi,i+1 > 0 for all i ≥ 0, the extinction of type k in {Z̃(k)
n } is almost surely equivalent to

the extinction of the whole process {Z̃(k)
n }. Hence, for any k ≥ 0,

q̃(k) < 1 if and only if m
E

(k)
n (Z̃

(k)
n )

> 1,

where m
E

(k)
n (Z̃

(k)
n )

is the mean number of offspring born to an individual in {E(k)
n (Z̃(k))}. The value

of m
E

(k)
n (Z̃

(k)
n )

is obtained by taking the weighted sum of all first return paths to k in the mean

progeny representation graph of {Z̃(k)
n }. By conditioning on the progeny of an individual of type k

in {Z̃(k)
n }, the lower-Hessenberg structure then leads to

m
E

(k)
n (Z̃

(k)
n )

= Mk,0m0→k−1 +Mk,1m1→k−1 + · · ·+Mk,k = xk.

Thus, if 0 < xk < 1 for all k ≥ 0 then q̃(k) = 1 for all k, and therefore by Theorem A.1,
q̃ = limk→∞ q̃(k) = 1. Similarly, if there exists k such that xk > 1, then q̃ ≤ q̃(k) < 1. Now suppose
there exists k such that xk = 1. Then by the irreducibility of {Zn} there exists k∗ > k such that
there is a first return path with strictly positive weight of the form k → k+1→ · · · → k∗ → · · · → k

in the mean progeny representation graph of {Z̃(k∗)
n }. This implies

m
E

(k)
n (Z̃

(k∗)
n )

> m
E

(k)
n (Z̃

(k)
n )

= 1,

and hence q̃ ≤ q̃(k∗) < 1.

Combining Lemmas 7 and 8 with [25, Theorem 1], which to the authors’ knowledge is the most
general extinction criterion currently available for GWPVEs, we obtain for an irreducible LHBP:

Theorem 5.1. If {µk} and {ak} are given by (5.2)–(5.4), then

(5.7) 0 < µk <∞ ∀ k ≥ 0 ⇔ q̃ = 1,

and when q̃ = 1, if supk ak/µk <∞ and infk
∑
{v:vk+1≥2} pk(v) > 0, then

(5.8)
∞∑
k=0

1

m0→k
=∞ ⇔ q = 1,

where m0→k is defined in (5.1).

Proof. The global extinction criterion (5.8) follows from (i)⇔ (iv) in [25, Theorem 1]. Indeed,
our assumptions imply Condition (A) of that theorem, as well as infk ak/µk > 0.

Remark 2. Theorem 5.1 demonstrates that by computing the sequence {µk} required for (5.8)
we are implementing a partial extinction criterion. We note that it is more efficient to compute
{µk} through Lemma 7 than to evaluate the convergence norm of M as the limit of the sequence of
spectral radii of the north-west truncations of the mean progeny matrix M (see [34, Theorem 6.8]).



18 P. BRAUNSTEINS AND S. HAUTPHENNE

Remark 3. If lim infkm0→k = 0 then, through the Markov inequality, we obtain q = 1. Thus,
in this case the conditions of Theorem 5.1 do not need to be verified.

When the conditions of Theorem 5.1 do not hold, one may still be able to apply [25, Theorem 1]
directly. Condition (A) in that theorem holds under an assumption on the third factorial moments
g′′′k (1) ([25, Condition (C)]), which can also be shown to satisfy recursive equations. Alternatively,
it may be possible to apply the next theorem, which corresponds to [1, Theorem 1] (see for example
the proof of Proposition 1).

Theorem 5.2. If q̃ = 1 and Ak,ij <∞ for all k, i, j ≥ 0, then for any 1 ≤ i < k,

1−

 1

mi→(k−1)
+

1

2

k−1∑
j=i

g′′j (0)

µj mi→j

−1

≤ q(k)
i ≤ 1−

 1

mi→(k−1)
+

k−1∑
j=i

aj
µj mi→j

−1

.

Roughly speaking, Theorem 5.1 states that the boundary between almost sure global extinction
and potential global survival is the expected linear growth of {Yk}, that is, E0(Yk) = m0→k−1 = Ck,
for some constant C > 0. It is however not immediately clear how to interpret this criteria in terms
of the expected growth of the original LHBP {Zn}. The next theorem develops a link between
the expected growth of {Yk} and the exponential growth rate of the mean total population size in
{Zn},

(5.9) ξ(M) := lim inf
n

n
√

Ei|Zn| = lim inf
n

n
√

(Mn1)i,

which, when M is irreducible, is independent of i. We note that in an irreducible MGWBP with
finitely many types ξ(M) = ν(M), whereas when there are infinitely many types it is possible that
ν(M) < ξ(M).

Theorem 5.3. Assume ν(M) ≤ 1. If ξ(M) > 1, then

(5.10) lim sup
n

n
√
m0→n ≥ ξ(M),

and if ξ(M) < 1, then

(5.11) lim inf
n

n
√
m0→n ≤ lim sup

n
(E0|Zn|)1/n .

Proof. We have m0→(n−1) =
∑n

k=0 E0(Zn,k)mk→(n−1), where mn→(n−1) := 1, which gives

(5.12) E0|Zn| inf
0≤k≤n

mk→(n−1) ≤ m0→(n−1) ≤ E0|Zn| sup
0≤k≤n

mk→(n−1).

Now suppose ξ(M) > 1. In order to prove (5.10) we need to show that

(5.13) @n0 <∞ such that inf
0≤k≤n

mk→(n−1) < 1 ∀n > n0.

Indeed, if (5.13) holds, because mn→(n−1) := 1 we have
lim supn inf0≤k≤nmk→(n−1) = 1, and thus by (5.12),

lim sup
n

n
√
m0→(n−1) ≥ lim sup

n

(
E0|Zn| inf

0≤k≤n
mk→(n−1)

)1/n

≥ lim inf
n

(E0|Zn|)1/n lim sup
n

(
inf

0≤k≤n
mk→(n−1)

)1/n

= ξ(M).
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To show (5.13) assume there exists n0 := sup
{
n : inf0≤k≤nmk→(n−1) = 1

}
<∞, and observe that

for any n ≥ 0 the recursion

inf
0≤k≤n

mk→(n−1) = min

{(
inf

0≤k≤n−1
mk→(n−2)

)
µn−1, µn−1, 1

}
holds. This implies that for all n > n0,

inf
0≤k≤n

mk→(n−1) =

(
inf

0≤k≤n−1
mk→(n−2)

)
µn−1,

and inf0≤k≤nmk→(n−1) = mn0→(n−1), which gives

m0→n

(
inf

0≤k≤n
mk→n

)−1

= m0→(n0−1), for all n > n0.

By Equation (5.12) we then have E0|Zn| ≤ m0→(n0−1), for all n > n0, which contradicts the fact
that ξ(M) > 1 and shows (5.13). When ξ(M) < 1 a similar argument can be used to obtain
(5.11).

By Theorem 5.3, if both limn
n
√
m0→n and limn (E0|Zn|)1/n exist (which is the case in our illus-

trative examples), then by the root test for convergence,

ξ(M) > 1⇒
∞∑
j=0

1

m0→j
<∞ and ξ(M) < 1⇒

∞∑
j=0

1

m0→j
=∞.

Thus, if ξ(M) 6= 1 then in Theorem 5.1
∑∞

j=0 1/m0→j = ∞ may be replaced by ξ(M) < 1. One
contribution of Theorem 5.1, which is motivated by the examples in [7], is to provide an extinction
criterion applicable even when ξ(M) = 1, as we demonstrate in Example 2.

6. Illustrative Examples. We now illustrate the results of the previous section through two
examples. Example 1 demonstrates that the mean progeny matrix M is not sufficient to determine
whether q < 1 or q = 1. This fact was highlighted in [37, Example 4.4], however, in that example,
the process behaves asymptotically as a GWPVE because

∑
j 6=i+1Mi,j → 0 as i→∞. In addition,

the proof relies on an explicit expression of the progeny generating vector. Through Example 1 we
provide a streamlined proof which applies to a significantly broader class of branching processes.

In Example 2 we apply Theorem 5.1 to a LHBP with ξ(M) = 1. This example also motivates
Section 7 on strong and non-strong local survival.

The proofs related to the examples are collected in Appendix B.

Example 1. Consider a LHBP {Zn} with mean progeny matrix

(6.1) M =


b c 0 0 0 . . .
a b c 0 0
0 a b c 0
0 0 a b c
...

. . .
. . .

. . .

 ,

and progeny generating vector G(·). We assume that a, c > 0 and that there exists a constant
B <∞ such that

(6.2) Ak,ij =
∂2Gk(s)

∂si∂sj

∣∣∣∣
s=1

≤ B for all k, i, j ≥ 0.
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Apart from these assumptions, we impose no other condition on {Zn}. We now consider a modifi-

cation of {Zn}, which we denote by {Z〈u〉n } for some parameter u ≥ 1, whose progeny generating
vector, G〈u〉(s), is given by

(6.3) G
〈u〉
i (si−1, si, si+1) =

1

duie
Gi(si−1, si, s

duie
i+1 ) +

(
1− 1

duie

)
Gi(si−1, si, 1), i ≥ 0.

This modification decreases the probability that a type-i individual has any type-(i + 1) offspring
by a factor of 1/duie, but when the type-i individual does have type-(i+ 1) offspring, their number
is increased by a factor of duie, which causes the mean progeny matrix to remain unchanged. Before

providing results on the extinction of {Z〈u〉n } we require the following lemma on branching processes
with the tridiagonal mean progeny matrix (6.1).

Lemma 9. Suppose {Zn} has a mean progeny matrix given by (6.1), then q̃ = 1 if and only if

(6.4) b < 1 and (1− b)2 − 4ac ≥ 0,

and when (6.4) holds,

(6.5) µk ↗ µ :=
1− b−

√
(1− b)2 − 4ac

2a
as k →∞.

Note that the partial extinction criterion (6.4) was given previously in [22] and is implied by [10,

Theorem 1]. We are now in a position to characterise the global extinction probability of {Z〈u〉n }.

Proposition 1. Consider the branching processes {Z〈u〉n } defined in Example 1, and suppose
b < 1 and (1− b)2 − 4ac > 0. If µ < 1 then q = 1, whereas if µ ≥ 1, then

u > µ ⇒ q = 1 and u < µ ⇒ q < 1,

where µ is given in (6.5).

An important sub-case of Example 1 is u = 1, the set of unmodified branching processes. Note
that this is the only case where the second moments of the offspring distributions are uniformly
bounded. For this subclass of processes, when combined with Lemma 5, Proposition 1 yields

Corollary 3. If u = 1 and (4.3) holds then q = 1 if and only if µ ≤ 1.

Example 2. Let {Zn} have a mean progeny matrix M such that M0,1 = 1, and for i ≥ 1,

(6.6) Mi,i−1 = γ
i+ 1

i
and Mi,i+1 = (1− γ)

i+ 1

i
, 0 ≤ γ ≤ 1,

with all remaining entries being 0. The mean progeny representation graph corresponding to this
process is illustrated in Figure 4. We assume that there exists B < ∞ such that Ak,ij ≤ B for all
i, j, k ≥ 0 and that infk

∑
v:vk+1≥2 pk(v) > 0.

For this example, it is not difficult to show that ξ(M) = 1 if and only if ν(M) ≤ 1, which is the
case for a range of values of γ, as we shall see.

Proposition 2. For the set of branching processes described in Example 2, q = 1 if and only
if γ = 0.
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Fig 4. The mean progeny representation graph corresponding to Example 2.

Proposition 2 states that the process experiences almost sure global extinction if and only if type-
i individuals can only have type-(i+ 1) offspring, that is, if it coincides exactly with the embedded
GWPVE.

We choose

Gk(s) =

{
1
4s

4
1 + 1

4 , k = 0
k+1
4k (γsk−1 + (1− γ)sk+1)4 + 3k−1

4k , k ≥ 1,

which satisfies (6.6), and in Figure 5 we plot q
(8000)
0 ≈ q0 and q̃

(8000)
0 ≈ q̃0 for γ ∈ [0, 1]. Although we

proved that q0 = 1 when γ = 0, we observe that q
(8000)
0 ≈ 0.95 for this value of γ. This is because,

when γ = 0, Theorem 5.2 implies

q0 − q(k)
0 ∼

(
k∑

`=0

1

`

)−1

∼ log−1(k),

so the convergence of q(k) to q = 1 is slow. For GWPVEs with q < 1, little attention has been paid
to this convergence rate in the literature, so for this example not much can be said when γ > 0.
Using Lemmas 7 and 8 we numerically determine that q̃ = 1 if and only if γ ≤ γ∗ where

(6.7) γ∗ = max{γ : 0 < µk <∞∀k ≥ 0} ≈ 0.1625.

Note that in this particular example a sufficient condition for q̃ = 1 is the existence of some k such
that µk < µk−1 (see the proof of Proposition 2). Thus, γ∗ can be evaluated particularly efficiently.

Given q
(8000)
0 ≤ q0 ≤ q̃0 ≤ q̃(8000), by visual inspection, the curves of partial and global extinction

seem to merge from some value of γ, however the cut-off is not clear and further analysis is required
to pinpoint the precise value. We are also interested in understanding whether this value depends
only on the mean progeny matrix or whether other offspring distributions lead to different values.
We address these questions in the next section.

7. Strong local survival. Each irreducible infinite-type branching process falls into one of
the four categories q = q̃ = 1, q < q̃ = 1, q < q̃ < 1 or q = q̃ < 1. The results in the previous
section deal with the classification of LHBPs with q̃ = 1. In the present section we build on these
results to establish a method for determining whether LHBPs with q̃ < 1 experience strong local
survival (q = q̃ < 1), or non-strong local survival (q < q̃ < 1). Other attempts at distinguishing
between these two cases can be found, for instance, in [8, 9] and [28].

For any k ≥ 0, we partition M into four components,

M =

[
M̃ (k) M̄12

M̄21
(k)M̃

]
,
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Fig 5. The extinction probabilities q
(8000)
0 (solid) and q̃

(8000)
0 (dashed) for γ ∈ [0, 1].

where M̃ (k) is of dimension(k + 1)× (k + 1) and the other three submatrices are infinite. We then
construct a LHBP branching processes on (Ω,F ,P), denoted as {(k)Z̃n}, with mean progeny matrix
(k)M̃ , and global and partial extinction probability vectors (k)q and (k)q̃, respectively. Sample paths
of {(k)Z̃n} are constructed from those of {Zn} by immediately killing all offspring of type i ≤ k,
and relabelling the types so that type i ≥ k+ 1 becomes i− k− 1. We now use {(k)Z̃n} to derive a
criterion for strong local survival. In the next theorem we let sp(·) denote the spectral radius.

Theorem 7.1. Assume that q̃ > 0, that there exists k ∈ N such that

(7.1) sp
(
M̃ (k)

)
> 1 and ν

(
(k)M̃

)
≤ 1,

and that M̄21 contains a finite number of strictly positive entries. Then there is strong local survival
in {Zn} if and only if {(k)Z̃n} becomes globally extinct, that is,

(7.2) q = q̃ < 1 if and only if (k)q = (k)q̃ = 1.

Proof. We use [9, Theorem 4.2] which we restate using our notation: let {Z(G)
n } and {Z(G∗)

n }
be two branching processes on the countable type set X with respective probability generating
functions G(·) and G∗(·), and global extinction probability vectors q and q∗. Let A ⊆ X be a
non-empty subset of types and denote by q(A) and q∗(A) the respective vectors of probability of

local extinction in A. If {Z(G)
n } and {Z(G∗)

n } differ on A only, that is, if Gi(s) = G∗i (s) for all
i ∈ X \A and Gi(s) 6= G∗i (s) for all i ∈ A, then

(7.3) q = q(A) ⇔ q∗ = q∗(A).

We apply this result with A = {0, 1, . . . , k}, {Z(G)
n } = {Zn}, and {Z(G∗)

n } being such that G∗i (s) = 1
for all i ∈ A, that is, all types in A are sterile. We need to show that (7.3) is equivalent to (7.2).

We first observe that q(A) = q̃ since, by (7.1), in {Zn}, types in X \A are only able to survive

through the presence of types in A. Next, since types in A are sterile in {Z(G∗)
n }, q∗ = q∗(A) if

and only if q∗i = q∗i (A) for all i ≥ k + 1. It is clear that (q∗k+1, q
∗
k+2, . . .) = (k)q by construction.

It remains to show that (q∗k+1(A), q∗k+2(A), . . .) = 1. We couple the process {(k)Z̃n : ϕ0 = ` − 1}
and the process {Z(G∗)

n : ϕ0 = k + `}, ` ≥ 1. Let k + ¯̀ be the largest type in {Z(G∗)
n } able to
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generate offspring in A. Then since ν((k)M̃) ≤ 1, with probability one there exists a generation
N such that (k)Z̃n,0 + . . . + (k)Z̃n,¯̀ = 0 for all n ≥ N . This implies that with probability one,

Z
(G∗)
n,k+1 + . . .+ Z

(G∗)

n,k+¯̀ = 0 for all n ≥ N , which shows (q∗k+1(A), q∗k+2(A), . . .) = 1.

When ν
(

(k)M̃
)
≤ 1, we may apply Theorem 5.1 to determine whether (k)q = 1. We are now

in a position to answer the questions posed at the end of the previous section. The next result is
proved in Appendix B.

Proposition 3. For the branching processes described in Example 2,

γ = 0 ⇒ q = q̃ = 1

γ ∈ (0, γ∗] ⇒ q < q̃ = 1

γ ∈ (γ∗, 1/2) ⇒ q < q̃ < 1

γ ∈ (1/2, 1] ⇒ q = q̃ < 1,

where γ∗ is given in (6.7).

Proposition 3 demonstrates that the curves for partial and global extinction represented in Figure
5 merge at γ = 1/2 and that this value is independent of the particular offspring distributions. At
the critical value γ = 1/2 there exists no k satisfying (7.1), causing this case to remain untreated.

8. Conclusion. Besides exploring the set of fixed-points for LHBPs, we have introduced a
method of classifying LHBPs into one of the categories q = q̃ = 1, q < q̃ = 1, q < q̃ < 1
or q = q̃ < 1.Through Examples 1 and 2 we showed that our results can be used to rigorously
determine which category the process falls in; however, in practical situations where rigorous proofs
may not be possible, our results can still be applied computationally as a first step in classifying
the process.

The inherent assumption in LHBPs is the constraint that individuals of type i cannot give birth
to offspring whose type is larger than i+m for m = 1. The approach of embedding a GWPVE in the
original LHBP can be extended to the case where m takes any finite integer value. The resulting
embedded GWPVE then becomes multitype with m types. Results of Section 3 then naturally
generalise, but those of Section 4 rely on the characterisation of the m-dimensional projection sets
of S, which is more difficult in this case. The global extinction criterion discussed in Section 5
would now build upon extinction criteria for multitype GWPVE, which are less developed in the
literature. These questions are the topic of a subsequent paper [13].

APPENDIX A: PARTIAL EXTINCTION PROBABILITY

In this appendix we point out an error in Lemma 3.2 of [22] and reprove its assertion under
additional assumptions (Theorem A.1). Our arguments hold not only for LHBPs but for more
general MGWBPs with countably many types. Recall that a process is singular if and only if∑

v:|v|=1 pi(v) = 1 for all i ∈ X .

Theorem A.1. If {Zn} is irreducible and non-singular then q̃(k) ↘ q̃ componentwise as k →
∞.

Before proving Theorem A.1 we briefly review Lemma 3.2 of [22]. This lemma states that q̃(k) ↘ q̃
without the additional assumptions that the process is irreducible and non-singular. The key step
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in the proof of [22, Lemma 3.2] is the assertion that

(A.1) {ω ∈ Ω : lim
n→∞

Z̃(k)
n (ω) = 0} ↘ Ep as k →∞,

where Ep denotes the partial extinction event. If true, then by the monotone convergence theorem,
we may conclude that q̃(k) ↘ q̃. To understand why Equation (A.1) is incorrect, consider an
outcome ω where a single infinite line of descent appears in the population1 (for instance, the total
population size is 1 in all generations) whose type jn in successive generations n ≥ 0 follows the
sequence 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, . . . . For this outcome, the single infinite line of descent
returns to type 0 infinitely often so ω /∈ Ep, and its largest type is unbounded so ω ∈ {ω ∈ Ω :

limn→∞ Z̃
(k)
n (ω) = 0} for all k ∈ N. Thus

lim
k→∞
{ω ∈ Ω : lim

n→∞
Z̃(k)

n (ω) = 0} 6= Ep.

Instead, the left-hand side of Equation (A.1) converges down to

A :=
{
ω ∈ Ω : @ (ϕ0; i1, j1, y1; . . . ) ∈ X(ω) such that lim sup

n
jn <∞

}
,

which is the set of outcomes such that no infinite line of descent with a finite maximum type appears
in the population. If ω ∈ Ep then ω ∈ A, however, due to outcomes such as the one described above,
the converse is not true, therefore

q̃
(k)
i ↘ Pi(A) = q̃i + Pi(A\Ep).

Thus q̃(k) converges to q̃ if and only if the measure of the (non-empty) set A\Ep is zero for all
Pi, i ∈ X . One subclass of infinite-type processes where this does not hold is the class of singular
branching processes that correspond to recurrent irreducible Markov chains with state space X .
Indeed, as these processes are recurrent, P(Ep) = 0. As they are also irreducible, with probability
one, every state i ∈ X is visited infinitely often; this means that with probability one, the single
infinite line of descent which appears in the population does not have finite maximum type, leading
to P(A) = 1. We thus have P(A\Ep) = 1.

Theorem A.1 implies that the only irreducible branching processes for which P(A\Ep) > 0 are
those that correspond to Markov chains on X (singular branching processes). Below we do note
make use of the set A defined above, and instead prove Theorem A.1 via a different method.

Proof. Fix some initial type i ∈ X . By construction, for every n ≥ 0 and ω ∈ Ω, Z̃
(k)
n (ω) is

increasing in k, which implies q̃
(k)
i is decreasing in k. Similarly, if {Z̃(k)

n } survives globally, then at

least one type j ∈ {1, . . . , k} must survive in {Zn}, which implies q̃
(k)
i ≥ q̃i for all k. We may then

assume q̃i < 1.
Because {Zn} is irreducible, [13, Corollary 1] implies that q̃i is equal to the probability that

type i eventually disappears from the population. We define a function f (i) : J → J that takes
lines of descent (ϕ0; i1, j1, y1; . . . ; in, jn, yn) and deletes each triple whose type j(·) is not equal to i,

and we define the processes {V (i)
` }`≥0 and {Ṽ (i,k)

` }`≥0, whose family trees are given by f (i)(X) and

f (i)(X̃(k)), respectively. These are single-type Galton-Watson processes that become extinct if and

only if type i becomes extinct in {Zn} and {Z̃(k)
n }. Thus, given ϕ0 = i the probability that {V (i)

` }
1We say that the infinite line of descent x = (ϕ0; i1, j1, y1; i2, j2, y2; . . . ) appears in the population in outcome ω

(i.e. x ∈ X(ω)) if and only if (ϕ0; i1, j1, y1; . . . ; in, jn, yn) ∈ X(ω) for every n ∈ N.
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becomes extinct is q̃i, and the probability that {Ṽ (i,k)
` } becomes extinct is greater than or equal

to q̃
(k)
i (if {Z̃(k)

n } is reducible there may be a positive chance type i dies out but {Z̃(k)
n } survives

globally). Note that {V (i)
` }`≥0 and {Ṽ (i,k)

` }`≥0 are subject to explosion, however this makes no
difference in the sequel.

Because {Zn} is irreducible and non-singular, {V (i)
` } is non-singular, that is, there is positive

chance that individuals in {V (i)
` } have a total number of offspring different from 1. Thus, with

probability 1, {V (i)
` } experiences extinction or unbounded growth [21, Chapter I, Theorem 6.2]. For

any K > 0 we then have

(A.2) lim
`→∞

Pi(V
(i)
` ≥ K) = 1− q̃i.

Observe that, for any fixed h ∈ N and K > 0,

{ω ∈ Ω : Ṽ
(i,1)
h (ω) ≥ K} ⊆ {ω ∈ Ω : Ṽ

(i,2)
h (ω) ≥ K} ⊆ {ω ∈ Ω : Ṽ

(i,3)
h (ω) ≥ K} ⊆ . . .

and

(A.3) lim
k→∞
{ω ∈ Ω : Ṽ

(i,k)
h (ω) ≥ K} = {ω ∈ Ω : V

(i)
h (ω) ≥ K}.

To understand (A.3) observe that if ω ∈ {ω ∈ Ω : V
(i)
h (ω) ≥ K}, then there exists at least K lines of

descent (ϕ0; i1, j1, y1; . . . ; in, jn, yn) ∈ X(ω) such that the type jn = i is the hth return to i (where n
is not necessarily the same for each of these K lines of descent). By construction, the maximum type
on each of these lines of descent is finite. Thus letting km denote the maximum of the maximum

type on K arbitrarily selected such lines of descent, we see that ω ∈ {ω ∈ Ω : Ṽ
(i,km)
h (ω) ≥ K}. We

may now apply the monotone convergence theorem to obtain, for any h ∈ N,

(A.4) lim
k→∞

Pi(Ṽ
(i,k)
h ≥ K) = Pi(V

(i)
h ≥ K).

The probability that {Ṽ (i,k)
` }`≥0 becomes extinct is equal to that of {Ṽ (i,k)

h` }`≥0, which is less

than or equal the probability of extinction q̃
(k,h,K)
i of the Galton-Watson branching process with

progeny generating function

G(s) = 1−Pi(Ṽ
(i,k)
h ≥ K) + sKPi(Ṽ

(i,k)
h ≥ K).

Therefore q̃
(k)
i ≤ q̃

(k,h,K)
i . Observe that for any fixed p ∈ (0, 1] the probability of extinction in a

Galton-Watson process with progeny generating function G(s) = 1− p+ psK converges monotoni-
cally to 1 − p as K → ∞ (to see why note that for any 0 < η < p there exists K large enough to
ensure G(1− p+ η) = (1− p) + p((1− p) + η)K ≤ 1− p+ η).

We are now in a position to show that for any ε > 0 there exists ki such that q̃
(ki)
i < q̃i +ε. Given

a process with partial extinction probability q̃i < 1 and some 0 < ε < 1− q̃i, we select K by setting
it large enough to ensure that a Galton-Watson branching process with progeny generating function
G(s) = (q̃i+ε/2)+(1−(q̃i+ε/2))sK has extinction probability less than q̃i+ε. By (A.2), for this value

of K, we may select h large enough to ensure |Pi(V
(i)
h ≥ K)− (1− q̃i)| < ε/4. By (A.4), for these

values of K and h we may select ki large enough to ensure |Pi(V
(i)
h ≥ K)−Pi(Ṽ

(i,ki)
h ≥ K)| < ε/4.

By the triangle inequality and the preceding discussion, for these values of ki, h, and K, we have

q̃i ≤ q̃(ki)
i ≤ q̃(ki,h,K)

i < q̃i + ε. The result then follows from the fact q̃
(k)
i is decreasing in k.
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APPENDIX B: PROOFS RELATED TO THE EXAMPLES

Proof of Lemma 9. Because (6.4) holds, Lemma 7 gives

(A.5) µ0 =
c

1− b
, and µk =

c

1− b− aµk−1
for all k ≥ 0.

Because µ1 > µ0 and

µk − µk−1 =
c

1− b− aµk−1
− c

1− b− aµk−2
,

by induction the sequence {µk}k≥0 is strictly positive and increasing. Therefore, since a > 0, q̃ = 1
implies that {µk} converges to a finite limit µ, where µ satisfies the equation ax2− (1− b)x+ c = 0,
which has real solutions

x± =
1− b±

√
(1− b)2 − 4ac

2a
,

since (6.4) holds. When (6.4) holds we have µ0 ≤ x− which, combined with (A.5) and the fact that
x− = c/(1− b− ax−), implies µk ≤ x− for all k ≥ 0, hence µk ↗ µ = x−.

Proof of Propostion 1. Let ∆ = (1 − b)2 − 4ac > 0. First, suppose u > µ. In this case we
have

1− q(k)
0 =

E0(Yk)

E0(Yk|Yk > 0)
≤ µk

uk−1
,

where E0(Yk) ≤ µk follows from Lemma 9 and E0(Yk|Yk > 0) ≥ uk−1 follows from the fact that the
minimum number of type-k offspring born to a type-(k − 1) parent is duk−1e. This then implies

1− q0 = 1− lim
k→∞

q
(k)
0 ≤ lim

k→∞

µk

uk−1
= 0,

and therefore q = 1 by irreducibility.

Now suppose 1 ≤ u < µ. Note that A
〈u〉
k,ij = Ak,ij for all i, j with the exception of A

〈u〉
k,(k+1)(k+1) =

dukeAk,(k+1)(k+1) + c(duke − 1). Then, by Lemma 7,

ak =
aµ2

kak−1 + dukeAk,(k+1)(k+1) +O(1)

1− b− aµk−1

≤ aµ2ak−1 +Bduke+O(1)

1− b− aµ

= ak−1µ
a1−b−∆1/2

2a

1− b− a1−b−∆1/2

2a

+B∗uk +O(1)

= ak−1µ
1− b−∆1/2

1− b+ ∆1/2
+B∗uk +O(1),

for all k ≥ 0 and some B∗ <∞, which implies

ak = O

([
max

{
u, µ(1− b−∆1/2)/(1− b+ ∆1/2)

}]k)
.

By assumption, ∆ > 0 and u < µ, thus max
{
u, µ1−b−∆1/2

1−b+∆1/2

}
< µ. Using the fact that µk ↗ µ and

the root test, we then obtain
∞∑
k=0

ak
µkm0→k

<∞,
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which, by the upper bound in Theorem 5.2, gives q0 < 1.

Proof of Corollary 3. It remains to show q = 1 when µ = 1. Lemma 5 implies P0(Yk → 0)+
P0(Yk →∞) = 1 and Lemma 9 implies E0(Yk) =

∏k−1
i=0 µi ≤ 1 for all k, leading to P0(Yk →∞) = 0

and the result.

Proof of Proposition 2. If γ = 0 then µ0 = M0,1 = 1, and for k ≥ 1, µk = (k + 1)/k. This
gives m0→k = k + 1, and therefore

∞∑
k=0

1

m0→k
=

∞∑
k=1

1

k
=∞.

By assumption, when γ = 0 the conditions Theorem 5.1 are satisfied, which then implies q = 1.
Now suppose γ > 0. By Lemma 7, for k ≥ 1,

(A.6) µk = fk(µk−1) :=
k+1
k (1− γ)

1− k+1
k γµk−1

.

If there exists k such that µk > 1/γ, then by Lemma 8 we have q ≤ q̃ < 1. Assume from now on
that q̃ = 1, which implies that 0 ≤ µk ≤ 1/γ < ∞ for all k, and γ < 1/2. Since µ0 = M0,1 = 1,
using Equation (A.6) we can inductively show that µk ≥ 1 for all k ≥ 0. We then have, for any
k ≥ 1,

(A.7) µk ≥
k+1
k (1− γ)

1− k+1
k γ

≥ 1 +
1

k(1− γ)
.

The Raabe-Duhamel test for convergence ensures that
∑∞

k=0(1/m0→k) <∞, since for k ≥ 1,

k

(
(1/m0→(k−1))

(1/m0→k)
− 1

)
= k(µk − 1) ≥ 1

1− γ
> 1.

To complete the proof, it remains to show that the condition supk ak/µk < ∞ in Theorem 5.1
holds. By Lemma 7, for all k ≥ 1,

ak =
ak−1 γ

k+1
k µ2

k

1− γ k+1
k µk−1

+
Ak,(k−1)(k−1)µ

2
k−1µ

2
k + 2Ak,(k−1)(k+1)µk−1µk +Ak,(k+1)(k+1)

1− γ k+1
k µk−1

.

Since q̃ = 1, the denominator is uniformly bounded away from 0; in addition, by assumption,
Ak,ij ≤ B < ∞ for all i, j, k ≥ 0, therefore there exists some constant K < ∞ independent of k
such that

ak ≤
ak−1γ

k+1
k µ2

k

1− k+1
k γµk−1

+K.

If µk → 1 (which we show below), then for large k,

ak ≤
(

γ

1− γ
+ o(1)

)
ak−1 +K.
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Since γ < 1/2, we have γ/(1 − γ) < 1, which means that {ak} is a uniformly bounded sequence.
Combining this with the fact that µk ≥ 1 for all k implies sup ak/µk <∞, and q < 1 by Theorem
5.1.

Finally, we prove that µk → 1. Observe that (A.6) implies that if µk < µk−1 for some k, then
µk+1 < µk, and thus µ = limk→∞ µk exists since 1≤µk ≤ 1/γ for all k. Taking k →∞ in (A.6) we
obtain that µ satisfies

µ =
1− γ

1− γµ
:= f(µ),

which means µ is either 1 or (1 − γ)/γ > 1. The function f(x) is convex, thus f(x) > x for all
x > (1−γ)/γ; in addition, by (A.6), µk+1 > f(µk) for all k ≥ 0. These imply that if µk > (1−γ)/γ
for some k, then µk+` becomes negative for some ` > 1, which is a contradiction. So the sequence
{µk} lives in the open interval (1, (1− γ)/γ). Let

v
(k)
± =

1

2γ

 k

k + 1
±

√(
k

k + 1

)2

− 4γ(1− γ)


be the solutions of the equation x = fk(x). By the convexity of fk(x) for all k, if there exists

K ≥ 1 such that v
(K+1)
− < µK < v

(K+1)
+ then {µk}k≥K is a decreasing sequence which converges

to 1. Suppose µ = (1 − γ)/γ. Then µK ≥ v
(K+1)
+ for some K. We can then construct a LHBP,

{Z∗n}, stochastically smaller than {Zn} by selecting a sufficiently large type K and independently
killing each type-(K + 1) child born to a type-K parent with a probability carefully chosen to

ensure v
∗(K+1)
− < µ∗K < v

∗(K+1)
+ . For this modified process we have µ∗ = 1, and repeating previous

arguments, we obtain q < q∗ < 1.

Proof of Proposition 3. Given Proposition 2 and Lemmas 7 and 8, it remains to show
that q < q̃ for γ ∈ (γ∗, 1/2) and q = q̃ for γ ∈ (1/2, 1]. Note that, in either case, since q̃ < 1,
∃K1 such that sp(M̃ (k)) > 1 ∀k ≥ K1. In addition,

∀x > 1, ∃K(x) s.t. Mk,k+1 < x(1− γ) and Mk,k−1 < xγ ∀k ≥ K(x).

Since γ 6= 1/2, we may choose x̄ > 1 small enough so that 1− 4x̄2(1− γ)γ > 0. By Lemma 9, this
implies that ν((k)M̃) < 1 for all k ≥ K̄ := K(x̄), and

(K̄)µk ≤
1−

√
1− 4x̄2(1− γ)γ

2x̄γ

for all k ≥ 0, where {(K̄)µk}k≥0 is computed using (K̄)M̃ .
Assume first that γ ∈ (1/2, 1]. Then, (1−

√
1− 4(1− γ)γ)/(2γ) < 1, so we may choose x∗ ≤ x̄

small enough, corresponding to K∗ := K(x∗) ≥ K̄, so that (K∗)µk < 1 − ε for all k ≥ 0 and some
ε > 0. Hence there exists K = max{K1,K

∗} < ∞ satisfying the conditions of Theorem 7.1 with
(K)q = (K)q̃ = 1.

Now suppose γ ∈ (c, 1/2). If for any K > K̄ there exists k1 ≥ 0 such that (K)µk1 ≥ 1, then
by the recursion (A.6) we have (K)µk ≥ 1 + 1/(k(1 − γ)), for all k > k1, and the result is derived
by repeating the steps that follow Equation (A.7) in the proof of Proposition 2. Suppose instead
that there exists K > K̄ such that (K)µk < 1 for all k ≥ 0. Then by Equation (A.6) we have
(K)µk−1 < 1− 1/(γ(k + 1)), which implies

(A.8)
∞∏
i=0

(K)µi = 0.
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To show that this leads to a contradiction, we compare M to a matrix M∗ with strictly smaller
entries than M : M∗ is such that M∗0,1 = 1−γ, and for all k ≥ 1, M∗k,k−1 = γ and M∗k,k+1 = 1−γ, with
all other entries 0. The value of

∏∞
i=0 µ

∗
i , with {µ∗i }i≥0 computed using M∗, then has a probabilistic

interpretation: it is the probability that a simple random walk on the integers, with transition
probabilities p+ = 1 − γ > p− = γ, whose initial value is 0, never hits −1. When 1 − γ > γ it is
well known that this value is non-zero. By the fact that (K)M > M∗ we then have (K)µi > µ∗i for
all i ≥ 0, which implies

∏∞
i=0

(K)µi >
∏∞

i=0 µ
∗
i > 0, contradicting (A.8).
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