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Abstract
Objective
To examine the causal relevance of lifelong differences in low-density lipoprotein cholesterol
(LDL-C) for ischemic stroke (IS) relative to that for coronary heart disease (CHD) using
a Mendelian randomization approach.

Methods
We undertook a 2-sample Mendelian randomization, based on summary data, to estimate the
causal relevance of LDL-C for risk of IS and CHD. Information from 62 independent genetic
variants with genome-wide significant effects on LDL-C levels was used to estimate the causal
effects of LDL-C for IS and IS subtypes (based on 12,389 IS cases from METASTROKE) and
for CHD (based on 60,801 cases from CARDIoGRAMplusC4D). We then assessed the effects
of LDL-C on IS and CHD for heterogeneity.

Results
A 1 mmol/L higher genetically determined LDL-C was associated with a 50% higher risk of
CHD (odds ratio [OR] 1.49, 95% confidence interval [CI] 1.32−1.68, p = 1.1 × 10−8). By
contrast, the causal effect of LDL-C was much weaker for IS (OR 1.12, 95% CI 0.96−1.30,
p = 0.14; p for heterogeneity = 2.6 × 10−3) and, in particular, for cardioembolic stroke (OR 1.06,
95% CI 0.84−1.33, p = 0.64; p for heterogeneity = 8.6 × 10−3) when compared with that for
CHD.

Conclusions
In contrast with the consistent effects of LDL-C-lowering therapies on IS and CHD, genetic
variants that confer lifelong LDL-C differences show a weaker effect on IS than on CHD. The
relevance of etiologically distinct IS subtypes may contribute to the differences observed.
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Stroke is a heterogeneous collection of clinically related but
distinct disorders, with ischemic stroke (IS) representing
70%–90% of all strokes.1,2 Different IS subtypes have distinct
underlying pathologies that likely reflect differences in the
importance of underlying risk factors, such as hypertension
and dyslipidemia, as well as in genetic determinants.3–6

Randomized trials of statin therapy have demonstrated that
lowering low-density lipoprotein cholesterol (LDL-C) by 1
mmol/L reduces the risk of both IS and coronary heart dis-
ease (CHD) by about 20%.7 Other LDL-C-lowering thera-
pies, such as ezetimibe and PCSK9 inhibitors, also yield
comparable reductions in IS and CHD risk.8,9 In contrast,
observational studies have found stronger effects of LDL-C on
CHD than on IS,10 and potential heterogeneity in the effects
of cholesterol on different IS subtypes.6 Therefore, further
evidence is needed to determine whether LDL-C has com-
parable causal consequences for IS and CHD.

Mendelian randomization avoids many of the potential biases
of observational studies, such as reverse causation and con-
founding. Mendelian randomization studies use genetic var-
iants as instrumental variables that reflect lifelong differences
in exposure to a risk factor, in order to examine its causal
relevance for an outcome of interest. However, Mendelian
randomization can be sensitive to pleiotropy, in which genetic
variants are associated with multiple risk factors on different
biological pathways. Mendelian randomization studies have
been widely used to examine risk factors for CHD,11–14 but
studies of IS have been limited.15–17

The present Mendelian randomization study examines the
causal relevance of LDL-C for IS and compares it with that
for CHD.

Methods
Study populations
We obtained genome-wide association estimates for LDL-C,
high-density lipoprotein cholesterol (HDL-C), and trigly-
cerides from the Global Lipids Genetics Consortium
(GLGC), based on up to 188,577 participants of European
ancestry.18 The effects of these genetic variants on CHD
were examined in the CARDIoGRAMPlusC4D Consortium
including up to 60,801 CHD cases and 123,504 controls
from 48 studies of predominantly European ancestry.19

Similarly, the effects on IS and IS subtypes were examined in
METASTROKE, a collaboration of the International Stroke
Genetics Consortium, which brings together genome-wide

data on a total of 12,389 IS cases and 62,004 controls of
European ancestry from across 15 studies.20 The majority
of IS cases had brain imaging confirmation. Approximately
50% of cases had IS subtype information (2,365 car-
dioembolic, 2,167 large artery, and 1,894 small vessel
stroke cases) based on Trial of Org 10172 in Acute Stroke
Treatment classifications.21 Additional phenotype descrip-
tions and details of individual studies, including data col-
lection and genetic data quality control procedures, are
reported elsewhere.20

Standard protocol approvals, registrations,
and patient consents
Each study included in the consortia was approved by an
institutional review board, and all patients provided informed
consent.

Selection of LDL-C associated genetic variants
We selected genetic variants with genome-wide significant
(p < 5 × 10−8) associations with LDL-C in the GLGC meta-
analysis and that were available in both the CARDIo-
GRAMplusC4D and METASTROKE datasets. Of these 2,243
genetic variants, we identified 99 independent variants (r2 < 0.01
within ± 1,000 kb) using the clumping method implemented
in PLINK1.9 and 1,000 Genomes Project Phase 3 (EUR)
reference population.22,23 Finally, to identify variants with
LDL-C-specific lipid effects (and avoid pleiotropy through
effects on other lipid pathways), we excluded the 37 variants
with significant effects on HDL-C or triglycerides (p < 0.0005
based on Bonferroni correction for 99 variants). Hence, the
primary analyses were restricted to the 62 variants with LDL-
specific effects, with sensitivity analyses performed using all 99
variants that were independently associated with LDL-C
(table e-1; doi.org/10.5061/dryad.8076h3r).18

Statistical analysis
Per-allele effects for LDL-C were extracted from GLGC and
converted from the published SD units to mmol/L (1 SD unit
equating to ;1 mmol/L). Per-allele effects of the variants on
CHD were taken from CARDIoGRAMplusC4D19 and on IS
(and IS subtypes) from METASTROKE.20 To account for
multiple testing, we used a predefined p value threshold of p <
0.0005 to indicate statistically significant associations of in-
dividual variants with risk of disease, and report all effects
with respect to the LDL-C increasing allele unless otherwise
stated. The percentage of variance explained in LDL-C was
estimated by 2 × (effect on LDL-C in SD units)2 ×minor allele
frequency × (1 − minor allele frequency),24 and power cal-
culations for p < 0.01 were estimated from the variance
explained and sample size.25

Glossary
CHD = coronary heart disease;CI = confidence interval;HDL-C = high-density lipoprotein cholesterol;GLGC =Global Lipids
Genetics Consortium; IS = ischemic stroke; LDL-C = low-density lipoprotein cholesterol; MR-Egger = Mendelian
randomization–Egger; MR-PRESSO = Mendelian randomization–Pleiotropy Residual Sum and Outlier; OR = odds ratio.
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Causal effects on disease outcomes per 1 mmol/L genetically
higher LDL-C were estimated using the random-effects
inverse-variance weighted method for summarized data (in
which all genetic variants included are assumed to be valid
instrumental variables).26 To account for the multiple out-
comes tested, a predefined p value threshold of p < 0.01 was
used to indicate statistically significant causal associations.
We conducted methodologic sensitivity analyses27,28 using
the Mendelian randomization–Egger (MR-Egger) method
(in which all genetic variants are permitted to be invalid
instrumental variables, provided that the pleiotropic and
risk factor effects of the variants are independently
distributed—known as the instrument strength independent
of direct effect assumption—and allows assessment of di-
rectional pleiotropic bias)29,30; the weighted median method
(in which 50% of the genetic variants are permitted to be
invalid instrumental variables)31 and the multivariate
method (in which potentially pleiotropic effects on HDL-C
and triglycerides are allowed for by including terms for each
lipid (table e-1; doi.org/10.5061/dryad.8076h3r) in the es-
timation of the causal effects, while fixing the intercept term
as zero).32 The Mendelian randomization–Pleiotropy Re-
sidual Sum and Outlier (MR-PRESSO) method (which
performs a pleiotropy residual sum and outlier test and
allows detection and correction of pleiotropy by outlier re-
moval) was also used to evaluate potential pleiotropy and
identify outlying variants that were then excluded from the
analyses.33 Heterogeneity between the causal effects of in-
dividual variants, as well as comparisons between the causal
effects of LDL-C on CHD vs IS (and IS subtypes), were
tested using the Cochran Q statistic.27 All statistical analyses
were performed in SAS v9.3 or R v3.4.3.

Data availability
The data included in the reported analyses have been made
publicly available (also see Acknowledgement for additional
details on data access).

Results
Effects of LDL-C genetic variants on CHD, IS,
and IS subtypes
The effects of the 62 individual genetic variants on LDL-C levels
varied by 5-fold, ranging from 0.02mmol/L to 0.10mmol/L per
allele (table e-1; doi.org/10.5061/dryad.8076h3r), and in com-
bination explained about 4% of the variance in LDL-C. Despite
limited power to detect risk associations with individual variants,
8 variants were associated with CHD and 2 with IS (p < 0.0005;
table e-2; doi.org/10.5061/dryad.8076h3r). The effects of the 62
variants on IS and IS subtypes were consistently weaker than
their effects on CHD (figure 1 and table e-3 and figures e-1 and
e-2; doi.org/10.5061/dryad.8076h3r).

Causal effects of LDL-C on CHD, IS, and
IS subtypes
Genetically determined LDL-C was associated with about
a 50% higher risk of CHD per 1 mmol/L (odds ratio [OR]
1.49, 95% confidence interval [CI] 1.32 to 1.68; p = 1.1 ×
10−8) but, by contrast, had no effect on IS (OR 1.12, 95% CI
0.96 to 1.30; p = 0.14). There were also no effects of genet-
ically determined LDL-C on any of the individual subtypes of
IS (figure 2).

The effect of LDL-C on IS was weaker than that on CHD
(p for heterogeneity = 2.6 × 10−3), and in particular on

Figure 1 Effects of genetic variants on coronary heart disease and ischemic stroke risk vs low-density lipoprotein cho-
lesterol (LDL-C) levels

Figures are shown separately for (A) coronary heart disease and (B) ischemic stroke. Effects of the 62 individual genetic variants in the primary analysis are
shown per LDL-C increasing allele.
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cardioembolic stroke (p for heterogeneity = 8.6 × 10−3),
whereas the effects of LDL-C on large artery stroke and small
vessel stroke were compatible with the magnitude of the effect
observed for CHD (p for heterogeneity = 0.05 and 0.06, re-
spectively; figure 2). Furthermore, given >99% power to detect
a 30% increase in risk of IS at p < 0.01 (equivalent to the lower
limit of the CI for CHD), these analyses can exclude a causal
effect of LDL-C on total IS of the same magnitude as on CHD.
However, given comparatively little power (<50%) to detect
30% causal effects for separate IS subtypes, comparable effects
of LDL-C on CHD and particular IS subtypes cannot be
excluded.

Sensitivity analyses
Sensitivity analyses were undertaken based on an instrument
including 99 LDL-C-associated variants (of which 37 were
also associated with HDL-C or triglycerides). This genetic
instrument explained 11% of the variance in LDL-C, and was
strongly influenced by the TOMM40/APOE locus, which
represented;2% of the variance in LDL-C. The estimates of
the LDL-C causal effects on disease outcomes did not differ
meaningfully from the primary analysis involving 62 variants
with LDL-C-specific effects (figure e-3; doi.org/10.5061/
dryad.8076h3r). However, they were slightly weaker, 1.05
(95% CI 0.96 to 1.15) vs 1.12 (95% CI 0.96 to 1.30) for IS
per 1 mmol/L higher LDL-C, and showed greater

heterogeneity between individual variant causal effects than
the primary analysis instrument (p = 1.0 × 10−5 vs p = 2.5 ×
10−3). A similar pattern was also observed when comparing
the causal effects of the different genetic instruments
for CHD.

In the primary analyses, the LDL-C causal effect estimates
for CHD and IS across genetic variants obtained by the
inverse-variance weighted approach were consistent with
those obtained by the weighted median and multivariate
Mendelian randomization methods (table 1). There was no
evidence of directional pleiotropy for either CHD (bias =
-0.012, p = 0.07) or IS (bias = -0.014, p = 0.08). The causal
estimates from the MR-Egger analysis were greater than
those obtained by other methods. However, MR-Egger
results should be interpreted with caution due to potential
bias from outlying variants. The exclusion of outlying var-
iants identified by MR-PRESSO reduced the causal esti-
mates fromMR-Egger, as well as the estimates of pleiotropic
bias (bias = -0.006, p = 0.23 for CHD and bias = -0.008, p =
0.26 for IS). The heterogeneity between variants was also
attenuated after making these exclusions (p = 1.7 × 10−9 vs
1.2 × 10−5 for CHD and p = 2.5 × 10−3 vs 0.18 for IS). Based
on the 99-variant instrument, estimates were consistent
across all the methods explored and there was no evidence of
directional pleiotropy.

Figure 2 Effects of genetically determined low-density lipoprotein cholesterol (LDL-C) on vascular disease and ischemic
stroke subtypes

Causal estimates are based on 62 variants associated with LDL-C in the primary analysis. Odds ratio and 95% confidence intervals (95% CIs) are provided for
vascular disease (coronary heart disease and ischemic stroke) and ischemic stroke subtypes per 1 mmol/L higher genetically determined LDL-C.
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Evidence of heterogeneity between the causal effects of LDL-
C on CHD vs IS was consistent for all analysis approaches,
with the exception of MR-Egger in the primary analyses and
without exception for the 99-variant sensitivity analysis
demonstrating weaker effects of genetically determined LDL-
C on IS than on CHD (table 1).

Comparing observational, randomized, and
genetic evidence
The effects of genetically determined LDL-C (per 1 mmol/L
higher) on CHD and IS in the present study were similar to
the corresponding effects reported for equivalent LDL-C
changes in observational studies (figure 3).7,10 As observed in
the genetic data, the observational associations of LDL-C with
stroke were weaker than those with CHD (p = 3.2 × 10−8). In
contrast, there was no such heterogeneity between the effects
observed in the statin trials (p = 0.20).

Discussion
This Mendelian randomization study provides a large-scale
comparison of the lifelong effects of LDL-C on risk of vas-
cular disease, and demonstrates that genetically determined
LDL-C has a weaker effect on IS than on CHD. Further-
more, these results were robust to the selection of LDL-C
genetic variants used to estimate the causal effect as well as to
different statistical approaches to Mendelian randomization
analyses.

Observational evidence suggests that in addition to a dif-
ferential effect of cholesterol on IS and hemorrhagic stroke,
the effect of cholesterol on IS varies by subtype.6,34 In
contrast, the Stroke Prevention by Aggressive Reduction in
Cholesterol Levels (SPARCL)35 trial reported that ator-
vastatin effectively prevented recurrent stroke (independently of

Table 1 Sensitivity analyses estimating the causal effects of low-density lipoprotein cholesterol (LDL-C) on coronary heart
disease and ischemic stroke

Primaryanalyses (62 variants explaining 4%
of the variance in LDL-C)

Sensitivity analyses (99 variants explaining
11% of the variance in LDL-C)

OR (95% CI) per
1 mmol/L higher
LDL-C p

OR (95% CI) per
1 mmol/L higher
LDL-C p

CHD

Inverse-variance weighted Mendelian
randomization

1.49 (1.32, 1.68) 1.1 × 10−8 1.47 (1.37, 1.59) 4.5 × 10−17

Inverse-variance weighted MR-PRESSOa 1.48 (1.35, 1.63) 4.8 × 10−11 1.57 (1.48, 1.66) 8.8 × 10−27

Weighted median Mendelian randomization 1.58 (1.41, 1.77) 6.1 × 10−11 1.50 (1.38, 1.63) 4.4 × 10−16

Multivariate Mendelian randomization 1.53 (1.34, 1.76) 5.0 × 10−8 1.45 (1.34, 1.58) 6.2 × 10−15

MR-Egger 1.88 (1.42, 2.50) 3.1 × 10−5 1.51 (1.33, 1.71) 2.2 × 10−9

MR-Egger MR-PRESSOa 1.68 (1.34, 2.13) 3.3 × 10−5 1.70 (1.53, 1.89) 4.4 × 10−16

Ischemic stroke

Inverse-variance weighted Mendelian
randomization

1.12 (0.96, 1.30) 0.14 1.05 (0.96, 1.15) 0.28

Inverse-variance weighted MR-PRESSOa 1.09 (0.84, 1.33) 0.17 1.05 (0.98, 1.12) 0.18

Weighted median Mendelian randomization 1.08 (0.89, 1.31) 0.42 1.01 (0.91, 1.13) 0.85

Multivariate Mendelian randomization 1.16 (0.98, 1.38) 0.09 1.06 (0.96, 1.16) 0.24

MR-Egger 1.48 (1.05, 2.10) 0.03 1.10 (0.96, 1.27) 0.17

MR-Egger MR-PRESSOa 1.28 (0.94, 1.74) 0.11 1.06 (0.94, 1.19) 0.34

Abbreviations: CHD = coronary heart disease; CI = confidence interval; MR-Egger = Mendelian randomization–Egger; MR-PRESSO = Mendelian
randomization–Pleiotropy Residual Sum and Outlier; OR = odds ratio.
a MR-PRESSO analyses were based on 10,000 simulations and a significance threshold of p < 0.05. In primary analyses, MR-PRESSO identified 5 outliers
(rs1250229, rs4530754, rs579459, rs7770628, and rs7953150) for CHD and 2 (rs579459 and rs795310) for ischemic stroke. The exclusion of these variants
reduced the horizontal pleiotropy (global test p value [observed residual sumof squares] from p < 0.0001 [211.82] to p = 0.0001 [117.60] for CHD and from p =
0.003 [100.26] to p = 0.175 [71.37] for ischemic stroke). The resulting instrumental variables continued to explain ;4% of the variance in LDL-C levels. In
sensitivity analyses, MR-PRESSO identified 10 outliers (rs1250229, rs1531517, rs3125055, rs3184504, rs4530754, rs579459, rs7254892, rs7770628,
rs7953150, and rs4970712) for CHD and 3 (rs3184504, rs579459, and rs795310) for ischemic stroke. The exclusion of these variants reduced the horizontal
pleiotropy (global test p value [observed residual sum of squares] from p < 0.0001 [369.16] to p < 0.0001 [151.81] for CHD and from p < 0.0001 [173.36] to p =
0.062 [119.55] for ischemic stroke). The resulting instrumental variables for CHD and stroke explained ;9% and 11% of the variance in LDL-C levels,
respectively. Tests for heterogeneity between causal estimates for CHD and ischemic stroke: inverse-variance weighted Mendelian randomization (p = 2.6 ×
10−3), inverse-variance weighted MR-PRESSO (p = 1.8 × 10−4), weighted median Mendelian randomization (p = 5.3 × 10-4), multivariate Mendelian randomi-
zation (p = 0.01), MR-Egger (p = 0.28), and MR-Egger MR-PRESSO (p = 0.15).
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the subtype of the previous stroke), but did not indicate that
statins had differential effects on specific IS subtypes. However,
genetic data from the SiGN study suggested a somewhat
stronger effect of LDL-C on large artery stroke than on other IS
subtypes.15 The present genetic study, which includes ;7,000
independent IS cases not previously reported in the SiGN study,
showed a nonsignificant 12% higher risk on IS per 1 mmol/L
genetically determined LDL-C, and relatively consistent effects
of LDL-C across IS subtypes. However, this analysis had limited
power to assess the causal effects of LDL-C on specific IS sub-
types and on the compatibility with the effect on CHD.
Furthermore, differences in the ethnicity of participants
(SiGN included some non-European participants), in the
instrumental variables used and clumping criteria (in which
the present study was more stringent to avoid over-
weighting), as well as unknown differences in vascular risk
factor distributions may contribute to discrepancies between
the studies. Thus, given the biological plausibility of differ-
ential effects of LDL-C on different IS subtypes (and pre-
vious evidence that genetic determinants of stroke are
commonly subtype-specific20), larger scale Mendelian ran-
domization studies are still needed to clarify the lifelong

effects of LDL-C on etiologically distinct IS subtypes. In
addition, IS subtype information is needed in large-scale
randomized trials of LDL-modifying therapies to directly
assess their effects on different subtypes of IS.

The analogy between Mendelian randomization and ran-
domized clinical trials is commonly used. However, Mende-
lian randomization studies examine the lifelong cumulative
effects of a risk factor, while clinical trials examine the short-
term effect of a therapy. Consequently, the effect estimates
from Mendelian randomization studies and randomized trials
are not expected to be directly comparable. Mendelian ran-
domization can assess the causal relevance of risk factors and
help to anticipate relative effects of therapies on different
disease outcomes, by studying genetic variants that have direct
effects on a risk factor or that mimic therapeutic interventions,
and by exploring the effects for one outcome relative to an-
other, as in the present study.36

Genetic variants that affect LDL-C levels via various bi-
ological pathways were combined in the analyses described
to provide a strong instrument for LDL-C, under the

Figure 3 Effects of low-density lipoprotein cholesterol (LDL-C) on vascular disease in prospective studies, randomized
statin trials, and genetic studies

Genetic effect of LDL-C on disease was estimated based on 62 variants associated with LDL-C (see primary analysis methods). Estimates from prospective
studies are shown for usual levels of non-high-density lipoprotein cholesterol.10 Estimates from randomized statin trial for coronary heart disease are based
onmajor coronary events (coronary death or nonfatalmyocardial infarction).7 Estimates fromgenetic studies are taken from figure 2. CI = confidence interval.
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assumption that LDL-C has consistent effects across all
these mechanisms. However, genetic studies examining the
effects of specific therapeutic targets that affect LDL-C and
other biomarkers are also important for drug target evalu-
ation. Recent studies examining instruments based on
specific genes that mimic the effects of lipid-modifying
therapies, such as PCSK9, HMGCR, and NPC1L1, have
shown weaker effects on IS than on CHD, but also suggest
that the different pathways involved may affect stroke sub-
types differentially.15,37,38 A study of the combined effects of
CETP and HMGCR has also suggested that the benefits
of lowering LDL-C may depend on the reduction in apoB-
containing lipoprotein particles.39

The effects of LDL-C on IS were comparable to those on
CHD in randomized trials of statin therapy, but were
smaller for IS than for CHD in this genetic study (figure 3).
Clinical trials of lipid-modifying therapies have typically
recruited a high proportion of participants with, or at high
risk of, coronary heart disease, and hence such patients are
likely to have high levels of atherosclerosis. In the Choles-
terol Treatment Trialists’ meta-analysis of randomized
statin trials, over 50% of participants had established CHD,
and 70% had ≥10% 5-year risk of a major vascular event.40

By contrast, the majority of METASTROKE IS cases were
recruited through acute stroke services or population
studies and individuals thus are less likely to have compa-
rable levels of atherosclerotic disease and risk. For example,
in a hospital-based cohort of 4,033 stroke patients, only
10% had a history of myocardial infarction.4 Consequently,
the relative contribution of different risk factors and the
resulting distribution of IS subtypes may differ in the
METASTROKE and randomized trial participants. A higher
proportion of stroke cases in the METASTROKE meta-
analysis may be due to non-atherosclerotic risk factors, such
as atrial fibrillation, resulting in more cardioembolic strokes.
By contrast, IS events in trials are more likely to be due to
atherosclerosis resulting in a higher proportion of large ar-
tery strokes, for which therapeutic LDL-C lowering effects
may have greater relevance. Such factors may also explain
the stronger effects of LDL-C in randomized trials than in
observational studies.

Etiologic differences in stroke may mean that even modest
misclassification of IS could attenuate results, particularly
given previous evidence indicating that lower LDL-C levels
are associated with higher risks of hemorrhagic stroke.7

However, differential relevance of risk factors and pathways
for CHD and IS as well as differences in patient charac-
teristics between cohorts may explain some of the differ-
ences between IS and CHD observed in the present study.

Mendelian randomization analyses avoid many of the biases
inherent in observational studies (e.g., confounding and re-
verse causation). However, such analyses rely on underlying
assumptions, for example the validity of the instrument
and the untestable MR-Egger INSIDE assumption, and can

also suffer from weak instrument bias. To explore the ro-
bustness of the analyses, the causal effect of LDL-C on
disease outcomes was estimated by various Mendelian ran-
domization methods that relax the instrumental variable
validity assumption as well as after removal of outlying var-
iants. The analyses conducted showed no meaningful dif-
ferences. Furthermore, the estimates from this Mendelian
randomization study were consistent with recent reports
examining the individual causal effects of LDL-C on IS and
on CHD.13,15,37,41–43

This study suggests that LDL-C has a substantially weaker
causal effect on IS than for CHD, a result that has potential
implications for evaluation and development of therapeutic
approaches. Additional large-scale genetic studies of IS, par-
ticularly with regard to specific IS subtypes and diverse ethnic
populations, are needed to further elucidate these relationships.
In addition, metabolomic studies may offer additional insights
given that different LDL-C subparticles and their comparative
pathogenicity for IS and different IS subtypesmay be important
given previous evidence of differences in the genetic determi-
nants of the different particle sizes.44
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MD, PhD Institute for Experimental Medicine,
University of Kiel, Germany

Gudmar
Thorleifsson

PhD deCODE genetics/AMGEN,
Reykjavik, Iceland

Guido J. Falcone MD, ScD, MPH Division of Neurocritical Care and
Emergency Neurology, Department
of Neurology, Yale University School
of Medicine, New Haven, CT, USA;
and Program in Medical and
Population Genetics, The Broad
Institute of Harvard and MIT,
Cambridge, MA

Guillaume Pare MD, MSc Population Health Research
Institute, McMaster University,
Hamilton, Canada

Helena Schmidt MD, PhD Institute of Molecular Biology and
Biochemistry, Medical University
Graz, Austria

Hossein
Delavaran

MD, PhD Department of Clinical Sciences
Lund, Neurology, Lund University;
and Department of Neurology,
Skåne University Hospital, Lund,
Sweden

Hugh S. Markus FRCP Stroke Research Group, Division of
Clinical Neurosciences, University
of Cambridge, UK

Hugo J. Aparicio MD Department of Neurology, Boston
University School of Medicine; and
NHLBI’s Framingham Heart Study,
MA

Ian Deary PhD Department of Psychology and
Centre for Cognitive Ageing and
Cognitive Epidemiology, University
of Edinburgh, UK

Ioana Cotlarciuc PhD Institute of Cardiovascular
Research, Royal Holloway
University of London, UK

Israel
Fernandez-
Cadenas

PhD Neurovascular Research
Laboratory, Vall d’Hebron Institute
of Research, Neurology and
Medicine Departments, Universitat
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