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ABSTRACT 

This paper introduces the “Bayesian revolution” that is sweeping across multiple disciplines but 

has yet to gain a foothold in organizational research. The foundations of Bayesian estimation and 

inference are first reviewed. Then, two empirical examples are provided to show how Bayesian 

methods can overcome limitations of frequentist methods: (1) a structural equation model of 

testosterone's effect on status in teams, where a Bayesian approach allows directly testing a 

traditional null hypothesis as a research hypothesis, and allows estimating all possible residual 

covariances in a measurement model, neither of which are possible with frequentist methods; 

and (2) an ANOVA-style model from a true experiment of ego-depletion's effects on 

performance, where Bayesian estimation with informative priors allows results from all previous 

research (via a meta-analysis and other previous studies) to be combined with estimates of study 

effects in a principled manner, yielding support for hypotheses that is not obtained with 

frequentist methods. Data are available from the first author, code for the program Mplus is 

provided, and tables illustrate how to present Bayesian results. In conclusion, the many benefits 

and few hindrances of Bayesian methods are discussed, where the major hindrance has been an 

easily solvable lack of familiarity by organizational researchers. 

Keywords: Bayes; frequentist; structural equation modeling; null hypothesis significance testing
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BAYESIAN ESTIMATION AND INFERENCE: A USER’S GUIDE 

 A Bayesian revolution is underway in social science methods (Kruschke, Aguinis, & Joo, 

2012), bringing many benefits. First, Bayesian methods expand the range of testable hypotheses, 

and results can be interpreted in intuitive ways that do not rely on null hypothesis significance 

testing (NHST; Orlitzky, 2012). Second, Bayesian estimation can combine prior findings with 

new data, yielding results that are automatic meta-analyses. Third, because Bayesian estimation 

can use prior findings, data from small-sample studies is less problematic. Fourth, Bayesian 

methods allow estimating models when traditional estimation fails because of model complexity. 

Although new to organizational research, Bayesian methods exist in many disciplines, 

such as physics (Dose, 2003; von Toussaint, 2011), atmospheric science (Wilks, 2011), geology 

(Curtis & Wood, 2004), biomedicine (Ashby, 2006; Greenland, 2006, 2007), and economics 

(Chib, Griffiths, Koop, & Terrell, 2008). Philosophers of science note that Bayesian methods are 

ideal for scientific inference (Bovens & Hartmann, 2003; Howson, 1997, 2001), and decision 

scientists model rational decision makers as Bayesian (e.g., Tversky & Kahneman, 1974). 

However, quantitative researchers in the social and organizational sciences have 

historically relied on estimation and inference methods such as maximum likelihood, p-values, 

confidence intervals, and NHST, which all have non-Bayesian origins (e.g., Fisher, 1922, 1925, 

1935; Neyman, 1937, Neyman & Pearson, 1933). The drawback is that these methods all rely on 

a theory of probability called frequentist (and its associated inferential methods). Where 

frequentist probability references the probability of observed data, Bayesian probability 

references the probability of parameters that are of true interest to researchers (Hacking, 2001; 

Jaynes, 2003). Indeed, frequentist probability hinders organizational research in many ways: it 

creates confusion when making inferences with p-values and confidence intervals; it inhibits 

small-sample research; and it makes estimating many statistical models difficult or impossible. 
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To overcome these issues, we advocate a Bayesian approach to organizational research. 

We do this by addressing three fundamental questions that researchers may be asking when 

considering a Bayesian approach: “How does Bayesian estimation and inference work?” “Why 

should I bother with it?” and, “Can I publish with it?” We begin by addressing the How Does it 

Work question, explaining Bayesian fundamentals to frame its advantages. With two empirical 

examples, we then address the Why Should I Bother and Can I Publish questions, demonstrating 

Bayesian advantages and illustrating how results can be interpreted and presented. 

Our first example is a structural equation model, where Bayesian methods show evidence 

for one of two competing theories by directly supporting a null hypothesis (versus NHST, which 

only “fails to reject the null”). This example also shows how to analyze relationships that are 

impossible using frequentist methods because of model identification issues. The second 

example shows an ANOVA-style analysis with a true experiment and a small sample, where 

prior information derived from meta-analysis and other work is incorporated into analyses, 

reducing noise in small-sample data and supporting hypotheses that are consistent with the data 

but frequentist methods fail to support. All data are available from the authors and Appendices 

give Mplus program code (although AMOS and R also allow estimating these models). 

PROBABILITY, ESTIMATION, AND INFERENCE 

We explain the difference between Bayesians and frequentists on three dimensions: 

probability, estimation, and inference. We treat these as they relate to Bayesian and frequentist 

logic, with added emphasis on Bayesian logic to describe it for organizational researchers. We 

italicize terms that may be new to readers, but which we define and explain along the way. 

Probability 

No data or results are definitive; they all carry uncertainty. Probability quantifies this 

uncertainty. Bayesian or frequentist probability can be used for this, but they have important 
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differences. Although debate on probability’s meaning has been heated for 150 years (Daston, 

1994, 1995; Galavotti, 2005), Bayesian probability is usually associated with degrees of belief or 

degrees of knowledge. Alternatively, frequentist probability is usually based on features of 

hypothetically observable systems and is associated with the relative frequency of an event “in 

the long run” (e.g., how often something happens in an infinite series of observations).  

Consider the statement, “There is a .50 probability that a fair coin will land heads.” From 

a Bayesian perspective, this means that someone’s belief is evenly divided between the coin 

landing heads or tails, or alternatively, that there is no amount of knowledge favoring heads over 

tails. From a frequentist perspective, however, this statement means that if the coin were flipped 

a hypothetical infinite number of times, heads would be seen half of the time (Hájek, 1997). 

With this fundamental difference in the meaning of probability, Bayesian and frequentist 

probabilities can be applied to different things. Bayesians can apply probability to anything that 

can be the subject of belief or knowledge, such as hypotheses, statistical parameters, and entire 

statistical models. Bayesians can also apply probability to worldly states of affairs, such as past 

or future single events or long-running relative frequencies, which means Bayesian approaches 

can subsume frequentist approaches (see Lewis, 1980). Alternatively, frequentists are limited to 

inference about the relative frequency of events or observations in the long run, even though this 

long run is always unobservable and is disconnected from researchers’ actual interest in single 

events, theories, hypotheses, or statistical parameters and models (Eagle, 2004; Hájek, 2009). 

These two theories of probability affect how statistical models are interpreted. For 

example, assume linear regression is used to determine the effect of high performance work 

systems (data along x) on organizational performance (along y). The linear regression model can 

be represented by the familiar formula y = α + βx + ε, where the coefficient β captures the effect 

of work systems. Using p-values, the frequentist effectively asks, “assuming the null hypothesis 
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that β = 0 is true, how improbable is the observed effect of work systems or any effect more 

different from 0)?” To do this, frequentists estimate a sampling distribution for the estimated 

effect. This distribution simulates the effects that would be observed if the same study were done 

an infinite number of times, with only sampling error affecting results (Barnard, 1947). 

Thus, for frequentists, the data carry uncertainty (in the form of a sampling distribution) 

while parameters have fixed population values (such as the null that β = 0; see Fisher, 1921, 

1922; Neyman & Pearson, 1933). For statistical inference, NHST is used, even though everyone 

knows the null hypothesis is false before conducting the analysis (the probability that an 

unknown parameter is any single value is always equal to zero). This leaves researchers in the 

strange position of testing a null they never believed in and, regardless of the test’s outcome, 

they cannot say how probable the null (or any effect) is. Indeed, p-values only reflect the 

probability of the estimated effect, assuming the null is true; to get this p-value, frequentists rely 

on hypothetical infinite replications of the study (via sampling distributions) that never occurred. 

Statistical inference would be improved if researchers could forget about the null and 

make probability statements directly about parameters like β. Conveniently, Bayesians do 

exactly this by inverting the assignment of probability. Bayesian probability refers directly to the 

parameter β itself (instead of treating parameters as fixed null hypotheses), and observed data in 

y are treated as fixed (instead of being considered random; Jeffreys, 1939/1998; Savage, 1954). 

As we now describe, uncertainty in the effect β is quantified by estimating its probability across 

a range of values, allowing direct probabilistic statements about β based on observed data.  

To introduce the logic of estimation and how researchers can make inferences with 

Bayesian probability, we now discuss Bayesian estimation and inference. We use notation that 

might be somewhat unfamiliar, but is helpful and is common in the statistical literature. 
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Bayesian Estimation and Inference 

Going beyond linear regression, the symbol θ is often used to represent a parameter or 

parameters for any statistical model (covariances or correlations, the βs in multiple regression or 

structural equation modeling). The notation P(θ|z) symbolizes the probability of parameters in θ 

for any model, given all the observed data, represented by z, which would contain both x and y in 

our regression example. Thus, P(θ|z) is a very useful piece of information that is not provided in 

traditional NHST (Howson & Urbach, 1993). P(θ|z) is also called a posterior probability (or 

Bayesian posterior) because it indicates parameters’ probability after observing the data. 

For example, to describe the probability that high performance work systems have a 

practical impact on organizational performance, Bayesian estimates of θ would contain the 

regression slope β, allowing a statement such as, “given the observed data, there is a high 

probability that high performance work systems have an effect around β = 0.20.” Recalling that 

Bayesian probability is knowledge or belief, this statement indicates that most knowledge or 

belief is centered at β = 0.20, with little variance around this value. This statement is intuitive 

because of its direct focus on the probability of parameters, whereas rejecting the null in NHST 

does not say anything about the probability of the parameter, and only indirectly relates to the 

hypothesis of interest (i.e., the data likely did not come from a world where β = 0, and therefore 

the estimated β value is preferred). By using Bayesian posterior probabilities, Bayesian analysis 

frees researchers to make direct statements of the sort they actually want to make (Gigerenzer, 

1993; Schwab, Abrahamson, Starbuck, & Fidler, 2011; Wagenmakers, Lee, Lodewyckx, & 

Iverson, 2011). These are the kinds of statements that a CEO or PhD student would intuitively 

understand, and they are exactly the kind of statements that are mistakenly used when 

interpreting the traditional frequentist p-value (Gigerenzer, 1993). 
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In Bayesian analysis, probabilities are assigned to the range of values that parameters can 

take (Gill, 2008). In our regression example, θ reflects the full range of values possible for β (a 

theoretically infinite range). Therefore, P(θ|z) is a continuous distribution or probability density 

function, where “density” describes the probability associated with the range of all possible β 

values. In our regression example, any value is a possible value for β, but which values are most 

probable given the data? The probability density function answers this question, where Figure 1 

shows that the probability associated with the effect of work systems on performance is highest 

at β = .20, with 95% of the probability distribution falling inside a credibility interval between β 

= .10 and β = .30. The credibility interval shows the most probable range of values for the 

effect, allowing statements that are impossible with frequentist methods, such as “there is a 95% 

chance that the effect of work systems on performance ranges between .10 and .30.” 

----------------------------------------------------------------- 
INSERT FIGURE 1 ABOUT HERE 

----------------------------------------------------------------- 

As Figure 1 implies, Bayesians treat parameters in θ as random or variable across a 

range of possible values, while the observed data in y are treated as fixed or constant. This is the 

“inverse” of the treatment found in traditional NHST, where the data in z are treated as random 

and the population parameters are assumed to be fixed, so that the null hypothesis must be 

treated as a single value (e.g., β = 0) to compute a p-value for the observed data. 

In summary, Bayesian probability is belief or knowledge. Frequentist probability is the 

relative frequency of an event in a hypothetical infinite series of events. Bayesian probability 

allows making intuitive inferences because it references the parameters of interest to researchers, 

rather than irrelevant null hypotheses. Moving on from probability, we now treat the How Does 

it Work question about Bayesian analysis by describing how posterior probabilities are derived. 
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This is done by combining observed data with prior information using Bayes’ rule—named after 

Thomas Bayes (1763). Although our discussion requires introducing some technical terms, we 

keep it broad and offer a range of accessible references for readers interested in more detail. 

Bayes’ Rule: The Prior, Likelihood, and Posterior. Bayes’ rule estimates P(θ|z), the 

probability of parameters in θ given observed data in z. Bayes’ rule is a way to update initial 

hypotheses with data to arrive at conclusions by combining initial information about parameters 

prior to a study being conducted with the probability of observed data given the parameters 

(Howson & Urbach, 1993). Formally, Bayes’ rule is 

 P(θ|z) ∝ P(z|θ)P(θ).        (1) 

This equation is very important. Describing it technically: Results of a Bayesian analysis are the 

posterior probabilities of parameters given the data, P(θ|z), and these are proportional to (i.e., ∝) 

the probability of the data as informed by the parameters, which is the likelihood, P(z|θ), 

multiplied (i.e., weighted) by the prior probability of the parameters, P(θ), where prior 

probabilities are the probability of parameters before any data are collected (see Figures 2a-2c). 

----------------------------------------------------------------- 
INSERT FIGURES 2A – 2C ABOUT HERE 

----------------------------------------------------------------- 
 

To explain, posterior probabilities indicate how probable all parameter values are in θ, 

given the data. These probabilities of parameters are proportional to two pieces of information: 

1) the prior probability distribution P(θ), which is the probability of all parameters prior to any 

data being collected and 2) the probability of the data given the range of possible parameters 

P(z|θ), or the likelihood, which is information that observed data contribute during estimation. 

When drawing conclusions, a Bayesian analyst takes the posterior probability distribution and 

considers the median or the peak to be the best (most probable) estimate of parameters (see 

Figure 1). The more pronounced the peak, the better it serves as an estimate, because the single 



BAYESIAN ESTIMATION AND INFERENCE      10 
 
value is much more probable than other values; when this is the case, the credibility interval 

indicating a 95% range of probable parameter estimates is small; conversely, when this peak is 

shallow, then other estimates are also reasonable, meaning that the credibility interval indicating 

a 95% range of probable parameter estimates is large. In other words, better inferences about a 

specific parameter value are possible when there is a tall peak in the posterior distribution. 

Which Prior Distribution to Specify? Bayesian analysis is liberating because, unlike 

NHST, it allows making direct statements about the probability of parameters of interest. 

However, being able to do this requires that researchers choose a prior probability distribution 

for the parameters before an analysis, and this can be challenging. There has been substantial 

debate on this issue for over two centuries (see Berger, 2006; Browne & Draper, 2006; Casella, 

1985; Efron & Morris, 1972; Howson, 1997; Jeffreys, 1939/1998; Kass & Wasserman, 1996; 

Lewis, 1980; Suppes, 2007). Simplifying these debates, we note that prior distributions can be 1) 

informative priors based on previous findings and theoretical predictions, 2) empirical priors 

based on observed data, or 3) diffuse, non-informative, or uninformative priors based on no prior 

knowledge or belief, or a desire to eliminate the influence of a prior distribution during 

estimation. We discuss each of these three types of priors in turn. 

Informative Priors. Informative priors map previous findings or theory onto parameters 

in θ before conducting a new study (Gill, 2008, Ch. 5; Howson, 1997; Suppes, 2007). For 

example, findings from a meta-analysis of the effect of feedback on performance could be used 

to specify a prior distribution for a standardized regression coefficient. Based on Kluger and 

DeNisi’s (1996) finding, a Cohen’s d of µd = .20  and variance σ d
2 = .97 , the d to r 

transformation leads to a Bayesian prior with a mean effect µβ = .20  and a variance σ β
2 = .44 .  

Informative priors have many advantages. First, researchers do not have to estimate 

parameters from scratch each time they conduct a study; past research can inform the current 
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research, which is aligned with the desire of scientists to synthesize past findings and update 

them with new data (e.g., meta-analysis has been viewed as Bayesian since Schmidt & Hunter, 

1977). Using Bayes’ rule, researchers can use of past findings for informative priors, as is done 

in fields like physics and medicine (see Ashby, 2006; Dose, 2003). This analysis yields results 

that combine all old results as well as the data from a current study—as if all the existing data 

sets were analyzed simultaneously. As such, Bayesian analysis with informed priors from past 

research allows continuously updating findings in organizational research, rather than waiting 

every few years to go through the arduous process of conducting a new meta-analysis. 

Second, informed priors facilitate small-sample research, which involves a lot of 

uncertainty due to sampling error variance. The uncertainty (i.e., variance) in posterior 

distributions that are used for inferences is reduced when informed priors are consistent with the 

likelihood derived from data (see Figure 2b; Gelman & Shalizi, 2012), helping hypothesis tests. 

Third, informed priors allow estimating parameters with information from both observed 

data (likelihoods) that can be supplemented or augmented with prior distributions. Frequentist 

approaches, by contrast, only rely on observed data (likelihoods). Thus, Bayesian analyses with 

informed priors allow estimating parameters even when likelihoods do not offer enough 

information to do so (Garrett & Zeger, 2000) as long as priors offer enough information for 

estimation (Muthén & Asparouhov, 2012). For instance, in our factor analysis example, all factor 

loadings and residual covariances are estimated among all scale items, with “small variance” 

priors that allow the estimation of residual covariances that frequentist estimation does not. 

At this point, readers may be wondering if informative priors are useful, given that 

editors and reviewers seem to demand a constant stream of new theory and models. Although 

informative prior distributions can be based on previously studied effects, they do not have to be. 

Informative priors can formalize different educated guesses about the prior distribution of 
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possible parameter values, to be subjected to revision by Bayes’ rule as the research data come 

in. Also, researchers often extend existing findings with analyses of moderation and mediation. 

Using previous findings for informed priors is useful in such cases because finding effects with 

high probability (or rejecting nulls in NHST) is notoriously difficult. 

Empirical Priors. As the name suggests, empirical priors come from empirical Bayes 

estimation, where prior distributions are estimated from a dataset itself (e.g., with maximum 

likelihood; see Casella, 1985; Efron & Morris, 1972). Empirical priors can have the advantage of 

using all observed data to estimate parameters that are associated with only a subset of the data, 

as in multilevel modeling where all of the data are used to estimate a group’s mean (Raudenbush 

& Bryk, 2002). However, in single-level models, there is the caution that empirical priors use the 

same observed data to estimate priors and likelihoods, thereby making an “undesirable double 

use of the data” (Berger, 2006, p. 399). This is similar to pretending that a sample size is twice as 

large as it actually is, which results in posterior probability distributions that are too narrow (see 

Figures 2a-2c, where priors that are similar to likelihoods lead to narrower posteriors). Though 

arguments can be made for empirical priors in some cases (e.g., Efron, 2010), they are often at 

odds with the point of Bayesian estimation, where priors are to be updated with new data. 

Uninformative Priors. When a study is exploratory, there may be little to no prior 

knowledge that can be used for estimation. Similarly, prior knowledge may be diffuse because of 

contradictory findings or competing theories, leading to prior distributions that are also diffuse. 

Alternatively, researchers may decide to eliminate the importance of priors in the estimation 

process to rely as much as possible on the likelihood (i.e., rely primarily on the data). In these 

cases, it is common to specify prior probabilities that allow the data (the likelihood) to dominate, 

such as by specifying a uniform (flat) prior distribution. This distribution specifies that, before 

any data are collected, no parameter values are more probable than others. A distribution that 
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serves a similar purpose is a prior distribution with a huge variance, such as a normal distribution 

for an effect β with a mean µβ = 0  and variance σ β
2 = 1010 . This variance makes the prior 

probability distribution of the parameter values nearly flat, which is the default setting in some 

statistics programs (see Asparouhov & Muthén, 2010a; Muthén, 2010). Such distributions are so 

uninformative that they allow the data to dominate the estimation of posteriors through the 

likelihood (Gill, 2008; Kass & Wasserman, 1996). This is shown in Figure 2c, where the prior is 

less informative (i.e., more flat) compared with the priors from the other figures. Using 

uninformative priors in this manner has a long history (e.g., Bayes, 1763; Keynes, 1921/2008; 

Laplace, 1825/1995). Recent approaches with formalized rules for specifying uninformative 

priors for different types of distributions have been termed objective priors (see Ghosh, 2011). 

However, the word objective here simply means “with standardized rules.” 

As we describe below, uninformative priors allow Bayesian estimation to mimic 

frequentist estimation, because prior information does not influence results (see Gill, 2008). 

However, it remains fundamentally different from frequentist estimation because the “inverse” 

Bayesian interpretation is still expressed in terms of the probability of the parameters given the 

data, thus still facilitating intuitive inferences about model parameters. 

In conclusion, although prior distributions can be categorized into three types, and 

although the choice of a prior distribution can be debated, the impact of the prior in determining 

posteriors is important for smaller sample sizes and diminished as sample sizes increase. Thus, 

“in problems with large sample sizes we need not work especially hard to formulate a prior 

distribution that accurately reflects all available information.” (Gelman, Carlin, Stern, & Rubin, 

2004, p. 108). Therefore, even in cases where empirical or informative priors are used, results 

from Bayesian analysis will converge with frequentist estimation as sample sizes increase (see 

Wasserman, 2004, p. 181), yet still provide the advantage of the probabilistic interpretation of 
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parameters. In any case, researchers can study the sensitivity of posterior distribution results to 

priors by using different priors for the same analysis and examining differences in posteriors—a 

study of prior dependence (Asparouhov & Muthén, 2010b; Muthén, 2010). 

Bayesian Estimation. Assuming a prior has been specified, Bayesian methods for 

computing posterior distributions has generated much discussion (see initial work by Bayes, 

1763; Laplace, 1774/1986; see modern work by Gelman et al., 2004; Gill, 2008). Historically, 

computing the posterior probability of parameters has been very difficult. This severely limited 

the usefulness of Bayesian methods when they were popularized in the late 1700s and 1800s 

(Stigler, 1986). However, in recent decades, conceptual and computational advances now allow 

researchers to estimate posterior probability distributions for many models. 

We offer a simple example of a coin being flipped to introduce the general statistical 

logic behind Bayesian estimation. Consider two hypotheses that are in θ, H1: “a coin is 

unbiased”, and H2: “a coin is biased and will always show heads.” This can be shown as the set: 

θ = H1: A coin is unbiased                                        
H2: A coin is biased and will always show heads

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

Before observing the data of observed flips, a person might presume that the probabilities that 

H1 and H2 are true are equal to .99 and .01, respectively. These priors in P(θ) reflect experience 

and knowledge, namely that coins almost always seem fair and are not designed to be unfair. 

Using Bayes’ rule, it is possible to update the probability of the hypotheses in θ with data that 

are collected in z, where z is a series of flips, recording whether the coin showed heads or tails. 

This updating requires working with the likelihood P(z|θ), which is the probability of the data 

given the hypotheses. To derive posteriors, priors are multiplied by likelihoods, as in Equation 1. 

For example, if the coin is flipped twice, each time landing heads, the difference in the 

prior probabilities for H1 and H2 will not change much, because if the coin is fair, the 
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probability of two heads is relatively high, with the likelihood: P(2 heads|H1) = .502 = .25. 

Given the prior is P(H1) = .99, then the posterior is P(H1|2 heads)  .99×.25, which is .2475. 

Likewise, the posterior probability of H2 is P(2 heads|H2) = 12 = 1, because H2 stipulates that 

the coin will always land heads. Because the prior is P(H2) = .01, the posterior is P(H2|2 heads) 

 .01 × 1, which is .01 and therefore still exceptionally small. However, to interpret these 

posteriors for H1 and H2 as probability, this requires that we normalize them. To do this, all 

posteriors must sum to 1, because total probability is always equal to 1. To do this, we sum 

.2475 and .01, and divide each by the sum. This results in the following posterior probabilities: 

P(H1|2 heads) = .2475/.2575 = .961 

P(H2|2 heads) = .01/.2575 = .039 

Thus, observing two heads leads to revising the prior probabilities towards H2, the hypothesis 

that the coin always shows heads, but the hypothesis of a fair coin dominates because observing 

only two heads still has a high probability if the coin is fair (as does observing any outcome). 

However, assume the coin lands heads 10 times in a row… then 20 times… and then 50 

times! These new data would substantially revise the prior probability of the hypotheses because 

the probability of observing 50 heads in a row with a fair coin is minuscule, with the likelihood: 

P(50 heads|H1) = .5050 = .000000000000000888. However, the probability of observing 50 

heads under the assumption that the coin always shows heads is always 1, with likelihood: P(50 

heads|H2) = 150 = 1. Using Bayes’ rule, the posterior probabilities would become P(H1|50 heads) 

 .99 ×.000000000000000888 = .000000000000000879. However, P(H2|50 heads)  .01 × 

1 = .01. To normalize these values and obtain posterior probability, again, requires dividing them 

by their sum, which is .010000000000000879. The resulting posterior probabilities, then, are 

P(H1|2 heads) = .00000000000000879/.010000000000000879 = .000000000000879 (nearly 0) 

P(H2|2 heads) = .01/.010000000000000879 = 0.999999999999920 (nearly 1) 

∝

∝

∝ ∝
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As additional heads are observed, the probability of the coin being biased (H2) would increase 

(even though the prior probability absent any data was very small), whereas the probability that 

the coin was fair would decrease (even though its prior probability absent any data was very 

large). Eventually, with more data, the likelihood dominates the posterior, and prior probabilities 

become almost entirely irrelevant when considering the probability of H1 and H2. Further, we 

can categorically falsify H2 by observing just one outcome of tails. If this occurs, then the 

posterior probability of H1 will be 1, because all of the probability will be associated with it.  

But what if the coin is biased in a way not captured by H1 and H2, such as if it produced 

60% heads and 40% tails? In this case, neither hypothesis would have a high probability, 

indicating that additional hypotheses should be included. This highlights the need for good 

statistical model specification in θ, which is still an issue for Bayesian methods. 

Our coin-flipping example indicates that the prior probability distribution P(θ) is where 

researchers can formally incorporate theory and previous findings into analyses (Howson & 

Urbach, 1993). Looking at Figures 2a-2c, note that the final parameter estimate (which could be 

the peak of the posterior probability distribution) lies between the peak of the prior distribution 

and the peak of the likelihood. This demonstrates how a posterior distribution is a weighted 

combination of the prior distribution and likelihood, and how Bayesian results relying on priors 

from previous research would combine them with new data to obtain updated results. 

Markov Chain Monte Carlo. The most common method for Bayesian estimation in 

applied problems involves Markov Chain Monte Carlo (MCMC) estimation (Gelman et al., 

2004; Gill, 2008), which is “the great success story of modern-day Bayesian statistics” (Efron, 

2011, p. 1052). The point of MCMC is that it allows specifying many types of priors. For 

MCMC, there are multiple methods (e.g., Casella & George, 1992; Chib & Greenberg, 1995) 

that can be implemented in popular software (e.g., Asparouhov & Muthén, 2010a, 2010b). 
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Because multiple introductory discussions of MCMC exist (e.g., Muthén, 2010; Muthén & 

Asparouhov, 2012), we direct the reader to these discussions and offer only a few brief points. 

MCMC is an iterative process, where a prior distribution is specified, and posterior 

values for each parameter are estimated in many iterations (estimates form a “chain”). Posterior 

values are estimated to build up and define the posterior distribution. MCMC is carried out from 

at least two starting points (i.e., at least two “chains”), to ensure the convergence of the iteration 

process on a stable estimate of posteriors. Convergence can be evaluated by calculating the 

potential scale reduction (PSR; Asparouhov & Muthén, 2010a; see also Gill, 2008). PSR is 

complementary (opposite and inverse) to an intraclass correlation. Formally the PSR is the ratio 

of (Total Variance across chains/Pooled variance within chain); once this ratio reflects very little 

variance between chains when compared to within-chain variance (i.e., a PSR < 1.05), estimation 

is halted because different iterative processes (i.e., different chains) yield equivalent results. The 

Kolomogorov-Smirnov test is a recent test for equal posterior distributions across chains; it is 

stricter than PSR in supporting convergence, and it helps identify where a model is not properly 

identified (this test can be conducted in Mplus 7; Muthén & Muthén, 1998-2012). 

Conveniently, MCMC generates many independent posterior estimates, gracefully 

handling non-normal and skewed posterior distributions, such as those that arise when testing 

indirect or mediated effects (Yuan & MacKinnon, 2009). Thus, in relation to traditional 

methods, MCMC may sound like other forms of simulation called bootstrapping, which may be 

a helpful analogy to draw (see Efron, 2011; Newton & Raftery, 1994; Rubin, 1981). 

Bayesian Inference. Examining posteriors allows drawing statistical conclusions in 

many powerful and intuitive ways (e.g., Casella & Berger, 2002; Edwards, Lindman, & Savage, 

1963; Gill, 2008; Hoijtink, Klugkist, & Boelen, 2010; Kadane, 2011; see foundations in 

Edwards, 1954; Jeffreys, 1939/1998; Savage, 1954; Wald, 1950). Two useful ways for making 
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Bayesian inferences are described here, with a focus on the distribution of posterior probabilities 

for parameters of interest (see Gill, 2008). 

One way to make inferences is to examine the range of parameter estimates that captures 

95% or 99% of the posterior probability distribution. This is called a credible or credibility 

interval (Gelman et al., 2004; Gill, 2008), which allows testing hypotheses in multiple ways 

(Muthén, 2010). For example, Bayesians can perform a type of NHST by seeing if a 95% or 

99% credibility interval contains a null value; if not, the null can be rejected as improbable 

(Berger, 2003; for initial work see Jeffreys, 1939/1998). This is in contrast with traditional 

confidence intervals, which are based on the idea of an infinite number of replications of a study, 

and do not directly reference the probability of the null. Further, a Bayesian p-value can be 

reported by taking the peak of the posterior distribution as the Bayesian estimate of a parameter, 

then reporting the proportion of the distribution that exists on the other side of a null value  

(Muthén, 2010). For example, the Bayesian p-value associated with an effect β = 0.50 is the 

proportion of the posterior at or below β = 0 (Jeffreys, 1939/1998). With a low probability (e.g., 

p < .05), researchers might reject the idea that the population effect is at or below zero. 

However, with the ability to reference the probability of parameters directly, focusing on 

an irrelevant null value is not very helpful. Bayesians can seek support for hypotheses in a more 

confirmatory manner (Bovens & Hartmann, 2003; Edwards et al., 1963; Howson, 2001; Howson 

& Urbach, 1993). With information on the posterior probability of a parameter, researchers can 

focus on where a parameter can be credibly described to exist. Based on credibility intervals, this 

approach is stronger than the many recommendations for using confidence intervals (e.g., APA 

Publication Manual, 6th Ed., 2010; Cumming & Finch, 2005). For example, if a null effect β = 0 

was a legitimate research hypothesis, the proportion of the posterior distribution that existed 

between standardized values of -.10 and .10 could be determined. This proportion indicates the 
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probability that the effect is within a range of values associated with what might be considered 

practically irrelevant, and if this proportion were large, it would support the hypothesis of no 

practically meaningful effect (similar to Example 2 below). Being able to make direct inferences 

regarding the probability of no practically meaningful effect is a powerful new addition to the 

repertoire of organizational research methods, one that is difficult in a frequentist framework. 

Another way to make Bayesian inferences is by evaluating an entire model or by 

comparing different models (for methods alternative to ours, see work on Bayes factors in Gill, 

2008, p. 243; Kass & Raftery, 1995; Raftery, 1992). This can be done with what is called 

posterior predictive checking (Asparouhov & Muthén, 2010a, 2010b; Gill, 2008; Muthén, 2010; 

Muthén & Asparouhov, 2012), which answers the question, “Do the estimated parameters in the 

model produce data that look like the observed data?” Posterior predictive checking samples 

posterior estimates of model parameters and uses them to generate a dataset that is the same size 

as the observed dataset. The probability of the observed data and the probability of the generated 

data are then each estimated with χ2 values, and the latter χ2 value is subtracted from the former. 

This is done over many iterations, which creates a distribution of the χ2 differences. Positive 

average differences in χ2 values indicate poor model fit, because it means the observed data tend 

to have larger χ2 values than generated data. However, when the model conforms to the data, the 

observed and generated data are equally likely; when this is the case, the average χ2 difference 

between observed and generated datasets equals zero. Thus, posterior predictive checking 

involves two sources of uncertainty: uncertainty in sample data (by comparing observed versus 

generated data), and uncertainty in parameters themselves (by sampling parameters from the 

posterior distribution). Frequentist approaches to assessing model fit assume fixed parameters 

and do not incorporate this latter source of uncertainty, giving Bayesian analysis an advantage. 
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In posterior predictive checking, the χ2 difference values allow computing posterior 

predictive p-values (PPP), which reflect the proportion of times that the observed data are more 

probable than the generated data (i.e., the proportion of times observed data have a smaller χ2 

than the generated data). Thus, PPP-values of .50 indicate that, on average, the observed data are 

just as probable as the generated data, implying good model fit (Asparouhov & Muthén, 2010b). 

However, small PPP-values (e.g., < .05) indicate poor model fit because this means that the 

observed data fit better than generated data very infrequently (e.g., less than 5% of the time), 

prompting model respecification (Lynch & Western, 2004). 

Another index for comparing models uses the deviance information criterion (DIC; 

Muthén, 2010). As with Akaike’s and Bayesian information criteria (AIC and BIC) that are often 

reported in structural equation modeling output, the DIC rewards models that strike a balance 

between parsimony and fit (see Gill, 2008, p. 260). Models can be compared using the DIC even 

when they are not nested, and smaller DIC values indicate better models. 

Summary. Bayes’ rule allows working with priors and likelihoods to derive posterior 

probabilities. Priors can be empirical, uninformative, or informed by previous findings. A range 

of posterior distributions are estimated with MCMC, and checks for convergence of posteriors 

done with PSR statistica. Hypotheses associated with parameters can be tested with credibility 

intervals and Bayesian p-values, and model fit and model comparisons can be made by 

comparing observed versus generated data (where positive χ2 values indicate poor fit), PPP-

values (where values < .05 indicate poor fit), and DIC (for model comparisons). 

Frequentist Estimation and Inference 

We make three points about frequentist methods to remind the reader of the stark contrast 

between frequentist and Bayesian methods. First, frequentist probability is applied to random 

events or observations z and not to parameters in θ (Fisher, 1921). Populations are defined by 
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fixed parameters in θ (Fisher, 1922), so that parameters are unknowable but take on singular 

values with a probability of 1.0 (e.g., the null hypothesis β = 0). Whenever frequentist model 

comparisons are made, probabilities refer to the data given the fixed parameters under one model 

versus another. Models with higher likelihoods receive greater support, but without considering 

the prior probability of the model parameters (all parameters are equally likely a priori). 

Indeed, frequentists have no priors (Howson & Urbach, 1993). Frequentist probability 

refers to the probability of the data given a parameter (e.g., the null) and computing this requires 

assuming that all data are sampled from the same fixed-but-unknown underlying population 

distribution (i.e., they are identically distributed). This is why Bayesian and frequentist estimates 

converge when priors are uninformative: likelihoods dominate posteriors (Berger, 2006).  

Third, because probability is accorded to data and not parameters, uncertainty in sample 

estimates is reduced as a function of increasing sample sizes. With small sample sizes, this 

means that there can be so much uncertainty that even massive effects result in p-values and 

confidence intervals that are too large to reject null hypotheses (Neyman, 1937). This means that 

even if researchers found exactly what they predicted they could not support their hypotheses. In 

contrast, Bayesian analysis incorporates priors to assist or qualify the informativeness of small 

samples, so that the data do not have to stand on their own every time a new study is conducted. 

EMPIRICAL EXAMPLES 

We now provide two empirical examples that demonstrate Bayesian estimation and 

inference. In the first, Bayesian estimation gives evidence against one of two competing theories 

in the form of support for a null effect, which cannot be accomplished with frequentist methods. 

The second example is a true experiment with a small sample and informative priors, where the 

results support hypotheses that frequentist methods fail to support. Each example is a study from 

published research that originally relied on a frequentist approach. 
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Example 1: Structural Equation Modeling 

 This example is based on Zyphur, Narayanan, Koh, and Koh’s (2009) investigation of 

testosterone’s effect on social status. In brief, Mazur’s dominance theory proposes a positive 

testosterone-status link because of testosterone’s effect on engagement and persistence in 

dominance contests (Mazur, 1985). Alternatively, status characteristics theory indicates that 

status is conferred to individuals based on their ability to engage in and complete socially 

relevant tasks rather than dominance contests (Berger, Cohen, & Zelditch, 1972). If dominance 

theory is correct the testosterone-status effect should be positive, but if status characteristics 

theory is correct then testosterone will probably be unrelated to status.  

Zyphur et al. (2009) addressed this question by randomly assigning 579 students to 92 

project teams and measured their testosterone by salivary assay (in pg/ml). At the conclusion of 

the semester, each member of the team rated other members along a 5-item status scale, and 

responses were aggregated across raters. To remove an effect of gender, both status and 

testosterone were centered around gender. Also, both testosterone and status (peer rating) were 

within-group centered to test the hypothesis of a testosterone-status effect within groups.  

 Frequentist Analysis. In Zyphur et al. (2009) a structural equation model was specified 

to estimate a latent status factor. The five observed status variables indicated a single latent 

variable, and no residual covariances were specified. To examine the testosterone-status effect, 

the status factor was regressed on levels of testosterone (see results in Table 1 and Figure 3a). 

This model showed a poor fit to the data in NHST terms ( χ(14)
2 = 114.85, p < .01), and 

modification indices indicated this misfit came from the non-zero residual covariances among 

the observed items. However, standardized fit indices were acceptable enough to interpret the 

testosterone effect (CFI = .96, TLI = .95, SRMR = .01, RMSEA = .11). The testosterone-status 

effect was effectively 0 and not statistically significant, where β = -0.001 (SE = .002, p = .71). 
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----------------------------------------------------------------- 
INSERT TABLE 1 AND FIGURE 3 ABOUT HERE 
----------------------------------------------------------------- 

Zyphur et al. (2009) note that this result lends more support for status characteristics 

theory than dominance theory. Yet, the p-value of .71 does not directly support the null; it 

merely fails to indicate that the observed data are unlikely if the parameter value in the null 

hypothesis is true. Thus, p-values do not directly inform the probability of a null or a research 

hypothesis (Berger & Sellke, 1987; Cohen, 1994). In any case, because of the focus on rejecting 

nulls with frequentist methods, theorizing null effects is almost never done, even though 

hypothesizing nulls can be useful (Greenwald, 1975; Kruschke, 2011; Schwab et al., 2011). 

Also, the frequentist analysis has a shortcoming that causes misfit. The measurement 

model specifies independence of the observed items, meaning no residual correlations among 

items. Thus, the latent variable must account for all observed covariance among the items. While 

this is a typical specification for a general factor model, the χ2 value indicates that this is not 

justified and, indeed, under the strict NHST approach, the model is rejected. Unfortunately, 

using frequentist methods, it is not possible to estimate factor loadings and all possible residual 

covariances among observed variables simultaneously because there is not enough information 

in the data alone to estimate all of these parameters (i.e., the model is not identified; Bollen, 

1989). This is unfortunate because even with a unidimensional scale there is no reason to assume 

exactly zero covariance among residuals because the content between items might covary to 

some small degree beyond the trait being measured. In other words, measurement models are too 

strict. Conveniently, a Bayesian analysis can deal with this by relying on information data and 

priors that reflect a strong assumption of no residual correlation. 

Bayesian Analysis. The data from Zyphur et al. (2009) were re-analyzed with a Bayesian 

estimator. Given the possibility of observing different testosterone-status effects, a normally 
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distributed uninformative prior was used for the effect. Default priors were used in Mplus, where 

variances and covariances and regression effects have very uninformative priors. Priors for 

regression effects are normal with µβ = 0  and a very flat prior distribution by specifying a huge 

variance of σ β
2 = 1010  (see Muthén & Asparouhov, 2012). Two chains were estimated and in 100 

iterations reached an appropriate convergence criterion of PSR = 1.05 (near 1.0). 

The first step in examining Bayesian estimation results is to evaluate the quality of the 

model. Checking the quality of a model is done with posterior predictive checking (recall the 

PPP-value is how often the observed data are more probable than the model-generated data). 

Consistent with the large χ2 from the frequentist analysis, the PPP-value is less than .01, which 

is not desirable because it means the observed data are improbable given the model. Also, the 

95% confidence interval of the difference between observed and generated data χ2 values ranged 

between 69.12 and 102.82, indicating a large χ2 and, therefore, poor model fit—desirable values 

would have a range centered at zero. Given the model specification, one of the causes for model 

misfit is partly due to unmodeled residual covariances among the observed variables. 

These covariances often exist, but in factor analysis they cannot be estimated without 

creating identification problems because there is not enough information in the data to estimate 

them. A solution to this is possible in Bayesian analysis by specifying normally-distributed 

priors for these covariances with a mean of 0.0 and a small variance of .01 to allow estimating a 

posterior distribution for these parameters even though the mean estimate is set to 0.0. This 

creative solution is described in Muthén and Asparouhov (2012) and can be applied to 

underidentified cross-loadings in models with multiple latent factors (see Muthén, 2010) as well 

as underidentified direct effects. In the case of factor analysis, such a prior specification is a 
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principled way to indicate that, a priori, observed variables are assumed independent conditional 

on a latent variable, but the possibility exists of small residual covariances. 

The model from Zyphur et al. (2009) was re-estimated by setting priors for all residual 

covariances with a mean of 0.0 and a variance of .01 (see Method 3 in Muthén & Asparouhov, 

2012; see Appendix A for program code). The model converged after 27,100 iterations when a 

PSR < 1.05 was reached. Model fit was substantially improved through this respecification, with 

a PPP-value of .70 and a 95% confidence interval of the difference between observed and 

generated data χ2 between -24.21 and 12.91, indicating good fit. Also, the DIC was 3723.73, 

while the DIC for the above model was 3811.13, meaning a reduction of 87.4, indicating 

improved fit. As Table 1 shows, the estimated standardized residual covariances are small, and 

their credibility intervals cover zero, but they are clearly large enough to impact model fit—

standardized values are reported to assist in interpreting their magnitude. 

Given these results, we proceed and interpret model output, focusing on the testosterone-

status effect (for results see Table 1 and Figure 3b). The median of the posterior distribution for 

this effect is < .001, and the 95% credibility interval ranges between -.003 and .002, meaning 

there is a 95% chance that the testosterone-status effect is between -.003 and .002 (see Figure 4). 

Notice that this last statement is a direct probabilistic interpretation of the parameter, and 

the finding directly supports a hypothesized null (not possible with frequentist p-values). We 

conclude from this analysis that there is virtually no empirical evidence favoring a positive 

testosterone-status effect, thus providing more support for status characteristics theory than for a 

dominance theory. This highlights a benefit of Bayesian estimation and inference: Hypothesizing 

a traditional null as a research hypothesis is straightforward, and posterior probability estimates 

can provide evidence in support of or against such a hypothesis (Kruschke, 2011). 
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Turning back to the Bayesian analysis, despite the support for no effect, we can go 

further by examining the probability that the parameter lies in a region supporting a dominance 

theory, where the testosterone-status effect should be positive. To do this, the probability that the 

standardized testosterone-status effect (i.e., the correlation) ranges between +.10 and +1.0 was 

examined by saving the posterior estimates and computing the proportion of values in this range 

(see Appendix A, which shows the SAVEDATA option in the Mplus language to save posterior 

estimates). Approximately 0.35% of the parameter’s distribution fell between +.10 and +1.0, 

meaning the probability that the testosterone-status effect is positive and in a range supporting a 

dominance theory is very low, at .0035. This speaks strongly against a testosterone-oriented 

theory of dominance. This analysis is helpful because it allows for an intuitive statement about 

the probability of the parameter existing in a region that is mapped directly onto hypotheses and 

theory (Berger & Delampady, 1987). Indeed, the finding speaks against a dominance theory 

much more strongly than did the original frequentist (NHST) results from Zyphur et al. (2009). 

Summary. A Bayesian method of estimation has multiple advantages. First, parameters 

such as residual covariances that are not identified in a frequentist approach can be estimated to 

represent a more realistic expectation of the measurement characteristics of a scale, improving 

model fit (Muthén & Asparouhov, 2012, Muthén, 2010). Second, the probability of parameters 

taking on null values at and around the traditional null value of β = 0 can be directly investigated 

to test theories of weak or nil effects, which cannot done with a frequentist (NHST) approach. 

Further, our Table 1 shows how to present Bayesian results, including priors, median posterior 

estimates for parameters, and credibility intervals (as well as PSR, PPP, and DIC values). 

Example 2: ANOVA Model and a True Experiment 

This experiment comes from Zyphur, Warren, Landis, and Thoresen (2007, see Study 2), 

who investigated the effect of prior self-regulation (i.e., self control) on future performance. 
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Theory on ego depletion characterizes self-regulatory capacity as a limited resource that takes 

time to regenerate after use, like a muscle (see Baumeister, 2002). To test this, participants were 

80 undergraduate students randomly assigned to a self-regulation condition (n = 40) or a control 

condition (n = 40). In both conditions, half of the participants watched a movie clip that was 

either funny (n = 38) or sad (n = 42), and those in the ego depletion condition were instructed to 

self-regulate by suppressing their emotional reactions to whichever movie they were assigned 

(see Baumeister, Bratslavsky, Muraven, & Tice, 1998; Muraven, Tice, & Baumeister, 1998). 

Subsequently, students participated in a naval combat simulation (see Hollenbeck et al., 

1995), where they made decisions about how to respond to incoming targets. There was a 

training scenario and then 15 additional scenarios. Dependent variables were an overall score 

representing the number of correct decisions (on a 7-point scale), the amount of time spent on 

the task (in seconds), and the average number of target attributes measured (between 0 and 9). 

Frequentist Analysis. Data from Zyphur et al. (2007) were re-analyzed using OLS 

regression, which has good small-sample properties for estimating standard errors (Fisher, 

1922). The dependent variables (overall score, time taken, and number of attributes measured) 

were regressed on variables that dummy coded for condition, video type, and their interaction. 

Results are in Table 2. There was no main effect of video type or the interaction on the 

three dependent variables. However, there was a statistically significant effect of condition on 

score (β = .12, p < .01), with lower scores for those engaging in self-regulation. The effect of 

condition on the number of attributes measured neared statistical significance, with fewer 

attributes measured for those engaging in self-regulation (β = .01, p = .08). Because score was 

the most important outcome variable, these results offer support for the research hypothesis.  

However, these findings highlight a shortcoming of frequentist analyses: theory and prior 

findings exist, but they are not formally incorporated into the analyses themselves. Although 
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Zyphur et al. (2007) hypothesized that those who engaged in self-regulation in the happy or sad 

film would tend to have shorter times (i.e., less persistence) and measure fewer attributes in the 

simulation, these hypotheses are not incorporated into the analyses conducted except by rejecting 

the null hypothesis; yet the small sample size makes rejecting the null difficult, even though all 

effects are in the predicted direction. This makes a point about frequentist methods: because they 

cannot incorporate information from past studies, small-sample research is made difficult. 

Also, OLS estimates were computed instead of model-wide maximum likelihood 

estimates because the asymptotic properties and benefits of maximum likelihood are not present 

in small samples. The question of what sample size is “large enough” to provide the benefits of 

such estimation is a topic in many papers (e.g., Anderson & Gerbing, 1984; MacCallum, 

Browne, & Sugawara, 1996). Relying on OLS estimation here results in little more than having 

to estimate three regression equations instead of a single multivariate path analysis. However, in 

other cases, a small sample presents difficulties when researchers want to estimate complex 

models. Alternatively, Bayesian estimation generally does not suffer the same dilemmas when 

working with informed prior distributions (Gill, 2008; Howson & Urbach, 1993). 

Bayesian Analysis. A meta-analysis by Hagger, Wood, Stiff, and Chatzisarantis (2010) 

shows that ego depletion has a negative effect on performance. They found an effect size of ego-

depletion on effort-related dependent variables of d = 0.64, with σ d
2 = .0256 . Also, this finding 

was consistent, with little variance in the effect of self-regulation across different types of tasks 

(e.g, persistence in menial tasks as well as difficult exams). Thus, meta-analytic evidence from 

prior work offers strong empirical justification that past self-regulation has a consistent negative 

effect on the future ability to self-regulate—enough evidence to create an informative prior. 

To illustrate using informative priors and examine experimental effects with a Bayesian 

estimator, data from Zyphur et al. (2007) are re-analyzed with a path model in Mplus. Prior 
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distributions for the residual variances of the dependent variables were chosen from previous 

literature. (See Appendix B for how to parameterize priors for variances.) 

Next, the prior distribution of effects of the independent variables and the interaction 

were specified. Normal distributions for these effects were specified as β ~ N(µβ ,  σ β
2 )  where 

“~” means “distributed as” and “N” means “normal.” Prior work with the same manipulations as 

Zyphur et al. (2007) shows no effect of video or the interaction between video and condition (see 

Baumeister et al., 1998; Muraven et al., 1998). Therefore, the priors for video and the interaction 

term were estimated with a mean of 0, but with a variance of .01 to express some uncertainty in 

the effects. An interesting feature of this prior is that it is a principled way for researchers to 

specify and test for a null relationship when they believe that an effect is actually zero (see 

Edwards et al., 1963). If researchers truly believe in a null, then the observed data (i.e., 

likelihood) can fight this belief and pull the effect’s posterior distribution away from the prior. 

Priors for the effect of condition were taken from Hagger et al.’s meta-analysis (2010) 

and were converted from d = 0.64 and σ d
2 = .0256—of course, the results from Zyphur et al. 

(2007) are included in this meta-analysis, but it is still useful as an example for our discussion. 

These values translate into an unconditional standardized regression coefficient (i.e., correlation) 

of β = 0.30 with σ β
2 = .0128  (for d-to-r transformations see Rosenthal, Rosnow, & Rubin, 2000). 

The estimates are correlations because with random assignment to condition and no expected 

effect of video or the interaction on the dependent variable this d is expected to translate directly 

to a standardized coefficient. To work with the standardized effect of .30 and its variance .0256 

in Mplus requires that these be unstandardized, such as with 

βunstandardized = βstandardized
SDy

SDx

,       (2) 
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where variables’ variances are described in Appendix B. This conversion leads to specifying the 

prior distribution as normal with a mean effect of condition on score of µβ = .06  with σ β
2 = .005

, a mean effect on time of µβ = −4.5  with σ β
2 = .384 , and a mean effect on number of attributes 

measured of µβ = .03  with σ β
2 = .00256  (see MODEL PRIORS in Appendix C). 

The model was estimated with 10,000 iterations and two chains. PSR values below 1.05 

indicated good convergence. The high PPP-value of .48 indicates adequate model fit (expected 

because the model is saturated, with covariance allowed among dependent variables). Recalling 

this PPP value indicates the proportion of χ2 values indicating better fit to observed versus 

generated data, it is not surprising that the 95% confidence interval for the difference in these χ2 

values ranged between -17.00 and 16.36 (centered almost exactly at zero, indicating good fit). 

Parameter estimates and credibility intervals are in Table 2. Contrasting the Bayes 

estimates with those from OLS shows the benefits of incorporating previous findings as priors. 

Specifically, results show that the 95% credibility intervals for the effects of condition on score, 

time taken, and the number of attributes measured do not contain zero. This is a substantially 

different outcome than NHST based on OLS estimation, where the null hypothesis was retained. 

Also, by relying on a meta-analysis for priors, this Bayesian analysis reflects the combination of 

all prior research on ego depletion with the results from Zyphur et al. (2007). Future research in 

any field can update existing meta-analytic results in a similar manner using Bayesian analysis. 

Summary. The frequentist procedures show one statistically significant effect, even 

though all effects were consistent with theory and hypotheses. By incorporating prior meta-

analytic findings into analyses, the accuracy of the estimates increased and credibility intervals 

and point estimates from the Bayesian analyses directly support proposed hypotheses. 
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DISCUSSION 

Bayesian methods allow for a straightforward test of the probability that parameters lie in 

a particular region, such as a range associated with a null hypothesis or any other values. This 

goes beyond frequentist methods using NHST, which limit researchers to descriptions of the 

probability of data given fixed parameters. Also, Bayesian methods provide a principled way to 

incorporate prior information into analyses to limit uncertainty in estimates, thus potentially 

supporting hypotheses that are not supported with frequentist methods—even though data may 

be consistent with theory and hypotheses. We now discuss Bayesian methods more broadly. 

Expertise and the Growth of Knowledge 

Organizational scholars have accrued a vast collection of theories and findings that 

describe and predict many important micro- and macro-level phenomena. From decision making 

(e.g., Simon, 1967) and sense making (e.g., Weick, 1979) to team functioning (e.g., Thompson, 

1967) and institutional processes (e.g., DiMaggio & Powell, 1983), organizational scholars are 

masters of their content—often when they are most critical (e.g., March, 2003).  

With such a large body of expertise, it is unfortunate that researchers have been unable to 

incorporate this knowledge formally as priors in the frequentist statistical estimates dominating 

organizational research. Perhaps this is one reason that meta-analysis is so immensely popular: 

meta-analysis follows the Bayesian spirit of combining prior information for the benefit of 

current and future research. Indeed, some meta-analytic methods in organizational research even 

take a Bayesian approach (see Brannick, 2001; Newman, Jacobs, Bartram, 2007; Steel & 

Kammeyer-Mueller, 2008). Conveniently, meta-analytic results could be updated in real time, if 

past findings are used as priors for Bayesian analyses, which would allow a straightforward way 

for organizational scholars to combine past studies with current findings. Further consideration 
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of this Bayesian idea would be needed to make it operational, but if the idea gained traction, it 

could revolutionize how data across studies are accumulated and reported. 

In such cases, the weight of evidence in a new study (the likelihood based on current 

data) often has to be radically different from the weight of past studies (the prior distribution of 

parameter estimates) in order to substantially revise knowledge in a domain (create a posterior 

distribution that meaningfully differs from the prior). As shown in our second example, small-

sample research that formally incorporates informative priors can provide better information 

about the nature of the parameters that symbolize phenomena of interest; with Bayesian analysis, 

we do not have to start from scratch every time a new study is conducted. This can open the door 

to small sample research that currently finds a barrier to publication because of low statistical 

power. Extensive additional work on Bayesian methods is needed to explore how to map theory 

and findings onto prior distributions to solidify this practice as a mainstream method. 

To this end, our example with informative priors shows one method for choosing priors: 

past findings grounded in theory, as is done in fields like physics and medicine (e.g., Ashby, 

2006; Dose, 2003). However, there are ways of choosing priors that represent bad-faith research 

practices. For example, researchers could investigate their data and then choose priors that agree 

with the data, so that posterior distributions support their hypotheses; similarly, researchers 

could choose theory-driven priors that “drive” the posteriors in a way not consistent with 

observed data. Such cases show two ways for Bayesian analysis to be conducted in bad faith.  

Therefore, researchers should be honest about where they get their priors, and without 

good justifications for a prior, researchers may report results from different priors, including a 

non-informative (diffuse) prior. Honesty about describing priors in the Bayesian framework 

mirrors honesty required for good-faith research in a frequentist framework, such as avoiding 

“hypothesizing after results are known,” or HARKing (Kerr, 1998). In HARKing, frequentists 
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describe what appear to be a priori hypotheses, but they are actually formed after data have been 

analyzed and examined for their conclusions, raising the danger of capitalizing on chance and 

biased parameter estimates. In other words, Bayesian priors offer a clear way to act in bad faith, 

but this already exists in the frequentist approach. Indeed, in any framework involving data, 

statistics, and probabilistic inference, there is a possibility of practicing science in bad faith.  

To guard against dishonesty, however, Bayesian methods offer a unique opportunity: 

Authors can be transparent about where they have derived priors, and the standards of a 

profession and its journals can regulate these derivations to fit a researcher’s particular context. 

Future work should address priors in light of the conflict that characterizes empirical scientists’ 

call to be honest and to publish or perish. As an example, to derive priors, organizational 

researchers can consult not only published work, but also their expert colleagues who can 

provide priors without being biased by any data that have already been collected by a researcher. 

Why Bayes and Why Now? 

As Edwards et al. (1963) lamented almost 50 years ago in a pro-Bayesian article from 

Psychological Review, “The textbook that would make all the Bayesian procedures mentioned in 

this paper readily available to experimental psychologists does not yet exist, and perhaps it 

cannot exist soon” (p. 193). What Edwards et al. could have added here is that difficulties 

deriving posteriors would limit the application of Bayesian techniques until modern computers 

and MCMC methods were developed. Alternatively, frequentist estimation methods with known 

asymptotic (i.e., large-sample) properties made statistical estimation and probabilistic inference 

easy by comparison. Indeed, as Box and Tiao (1973) note when describing frequentist methods, 

“the nice solutions… have been popular for another reason—they were easy to compute” (p. 1).  

Today, however, Bayesian solutions are equally attainable given modern computer power 

and software implementing MCMC methods. For example, with problems involving high-
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dimensional numerical integration (as is required with maximum likelihood estimation with 

categorical observed variables and latent variables), Bayesian estimation can be easily 

accomplished in cases that are completely intractable using traditional methods (see Muthén & 

Asparouhov, 2012). Also, as demonstrated previously, Bayesian models and methods are 

flexible, allowing parameter estimation where frequentist approaches are impossible due to 

model identification issues. With this flexibility in Bayesian estimation and inference, it is safe 

to say that the majority of future complex data analytic methods may be Bayesian—indeed, they 

may have to be Bayesian to cope with the increasingly complicated model specifications that 

correspond with increasingly sophisticated theories that are multilevel and dynamic in nature. 

Organizational researchers can take heart in the fact that Edwards et al. (1963) are no 

longer correct; there is now a wealth of useful Bayesian literature. Discussions that are focused 

around implementation in Mplus are by Asparouhov and Muthén (2010a, 2010b), Muthén 

(2010), and Muthén and Asparouhov (2012). An exemplary book is by Gill (2008), but many 

others are also very good (e.g., Bolstad, 2007; Christensen, Johnson, & Branscum, 2011; 

Gelman et al., 2004; Hoff, 2009; Jackman, 2009; Kruschke, 2011; Lee, 2004; Lynch, 2010; for 

concise pro-Bayesian arguments see Robert, 2007, Chapter 11). Further, a truly exceptional 

introduction to Bayesian scientific reasoning is by Howson and Urbach (1993). 

Beyond these texts, there are many accessible treatments of Bayesian methods (e.g., 

Efron, 2005; Little, 2006) and special issues on Bayesian methods can be found in Statistical 

Science (see Christian & Casella, 2004; Lahiri & Slud, 2011); the British Journal of 

Mathematical and Statistical Psychology (2013, Vol 66, Issue 1); and the journal Bayesian 

Analysis is free of charge (see www.ba.stat.cmu.edu). In other words, organizational researchers 

can bolster their knowledge with ready access to a healthy and growing Bayesian literature, 

along with an active and supportive community of researchers and methodologists. 
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Conclusion 

Our paper introduces organizational science to Bayesian methods by contrasting them 

with the usual logic of NHST and the frequentist methods that have dominated the field since its 

inception. To be clear, we are not saying that Bayesian analysis is a cure-all for issues in data 

analysis, but it has literally been called “revolutionary” in many other disciplines due to its 

flexibility and the range of possible analyses it allows, all combined with the benefit of the 

intuitive interpretations and inferences that result from such analyses. The field of management 

should not shy away from promising new methods that offer improvements or complements to 

traditional frequentist methods that have taken organizational researchers far, but not without 

limitations. At the very least, diverse qualitative and quantitative methods should be explored 

when they facilitate addressing organizational issues. To this end, Bayesian analysis now allows 

researchers to fulfill goals for estimation and inference that simply cannot be accomplished by 

existing approaches. As the Bayesian revolution unfolds in organization science, we hope it 

substantially benefits organizational researchers and organizational stakeholders alike. 
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Table 1 

Quasi-Experiment with Null as a Research Hypothesis 

Frequentist Analysis with Maximum Likelihood Estimator 

Effect      -2.5%          β         +2.5%  p-value 
 
Factor Loading      
 Y1                 -----       1.00        ----- ----- 
 Y2                0.90       0.94        0.97 <.01 
 Y3                 0.72       0.76        0.79 <.01 
 Y4              0.80       0.85        0.88 <.01 
 Y5                0.64       0.68        0.72 <.01 
 
Regression Effects 

TStatus                                    -0.004      -0.001      0.002    .71  
 

Bayesian Analysis with Uninformative Priors     

Effect        Prior        Posterior 
      ( )            -2.5%                +2.5% 
 
Factor Loading 

Y1   0.00(1010)     -----       1.00         ----- 
 Y2   0.00(1010)      0.85       0.94         1.03 
 Y3   0.00(1010)          0.67         0.76         0.84 
 Y4   0.00(1010)          0.75         0.84         0.93 
 Y5   0.00(1010)          0.61         0.68         0.75 
 
Regression Effects  

TStatus             0.00(1010)        -0.003     -0.001       0.002      
 

Standardized Residual Covariances  
Y1Y2  0.00(.01)     -0.02       0.04         0.12 
Y1Y3  0.00(.01)     -0.04       0.03         0.11 
Y1Y4  0.00(.01)     -0.04       0.03         0.10 
Y1Y5  0.00(.01)     -0.02       0.03         0.09 
Y2Y3  0.00(.01)     -0.03       0.02         0.08 
Y2Y4  0.00(.01)     -0.02       0.05         0.13 
Y2Y5  0.00(.01)     -0.04       0.03         0.06 
Y3Y4  0.00(.01)     -0.04       0.04         0.12 
Y3Y5  0.00(.01)     -0.02       0.04         0.10 
Y4Y5  0.00(.01)     -0.06       0.01         0.09 
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Table 2 

Experiment with Random Assignment 

Frequentist Analysis with OLS Estimator     

Dependent variable Predictor    -2.5%          β       +2.5%  p-value 
 
Overall score  Condition     0.03        0.12       0.22 .01 
    Video               -0.04        0.05       0.15 .29 
    Interaction         -0.12       -0.03       0.07 .56 
 
Time remaining  Condition          -4.89        -1.57      1.75 .35 
    Video               -1.76         1.56       4.87 .35  

    Interaction        -1.88          1.44       4.75 .39 
 
Attributes measured Condition          -0.01         0.01       0.02 .08 
    Video               -0.01         0.01       0.01 .64  

    Interaction         -0.01         0.01       0.02 .46 
 

Bayesian Analysis with Informative Priors     

Dependent variable Predictor      Prior        Posterior 
        ( )            -2.5%              +2.5% 
 
Overall score  Condition 0.06(0.005)      0.02       0.10        0.18 
    Video  0.00(.01)      -0.04       0.04        0.13 
    Interaction 0.00(.01)           -0.11       -0.03        0.06 
 
Time remaining  

Condition       -4.50(.384)         -5.25       -4.16       -2.98       
    Video  0.00(.01)           -0.20        0.01         0.20       
    Interaction 0.00(.01)           -0.19        0.01         0.20  
 
Attributes measured Condition 0.03(.003)          0.01        0.01         0.02  
    Video  0.00(.01)           -0.01        0.01         0.02 
    Interaction 0.00(.01)           -0.01        0.01         0.02 
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Figure 1 

Hypothetical Probability Distribution for a Regression Coefficient β 

 
 
 
 



BAYESIAN ESTIMATION AND INFERENCE      49 
 

Figures 2a-2c 

Hypothetical Probability Density Distributions of Priors, Likelihoods, and Posteriors 
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Figures 3a-3b 

Results from Frequentist Analysis (Top) and Bayesian Analysis (Bottom) 
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Figure 4 

Credibility Interval for Testosterone-Status Effect 
 
 

 
 



BAYESIAN ESTIMATION AND INFERENCE      52 
 

APPENDIX A 

 
DATA: 
File = data.dat; ! Names data file 
 
VARIABLE: 
Names = Y1-Y5 T; ! Variable names, Y1-Y5 are status indicators, T is testosterone 
 
ANALYSIS: 
Estimator = Bayes;! Requests Bayesian estimation 
 
MODEL: 
Status BY Y1-Y5; ! Defines status factor 
Status ON T;     ! Regresses latent status variable on testosterone 
 
leadt1_y WITH convt1_y (RESCOV1);     ! Names covariances RESCOV1-10 
leadt1_y WITH inft1_y (RESCOV2); 
leadt1_y WITH domt1_y (RESCOV3); 
leadt1_y WITH powt1_y (RESCOV4); 
convt1_y WITH inft1_y (RESCOV5); 
convt1_y WITH domt1_y (RESCOV6); 
convt1_y WITH powt1_y (RESCOV7); 
inft1_y WITH domt1_y (RESCOV8); 
inft1_y WITH powt1_y (RESCOV9); 
domt1_y WITH powt1_y (RESCOV10); 
 
MODEL PRIORS: 
RESCOV1 ~ N(0,.01); ! Specifies normal distribution with mean 0, variance .01 
RESCOV2 ~ N(0,.01);  
RESCOV3 ~ N(0,.01);! 
RESCOV4 ~ N(0,.01);  
RESCOV5 ~ N(0,.01);  
RESCOV6 ~ N(0,.01);  
RESCOV7 ~ N(0,.01);  
RESCOV8 ~ N(0,.01);  
RESCOV9 ~ N(0,.01);  
RESCOV10 ~ N(0,.01); 
 
OUTPUT: 
TECH1           ! Requests parameter matrices 
CINTERVAL(hpd); ! Requests credibility intervals with highest posterior density 
 
SAVEDATA: 
BPARAMETERS = savedata.dat; ! Saves posterior estimates to file savedata.dat  
 
PLOT: 
Type = Plot2; ! Requests plots to assess estimation and posterior distributions 
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APPENDIX B 
 

Prior distributions of variances are parameterized with inverse gamma (IG) distributions 

(e.g., Asparouhov & Muthén, 2010a; Muthén, 2010), which have positive density from  

and are characterized by two parameters: a shape parameter α  and a scale parameter β , such 

that σ Y
2 ~ IG(α ,  β ) . In their Appendix A, Asparouhov and Muthén (2010b) note that 

α = 2 + m
2

v
    and   β = m + m

3

v
 

where m is the mean of the prior ( µ
σY
2 ) and  is the variance (σ

σY
2
2 ). 

Previous literature reports variances for participants’ scores on the naval simulation of 

around µ
σY
2 = .04 , with virtually no variance in the estimates across studies (e.g., Hollenbeck et 

al., 1995). Yet, as noted by Zyphur et al. (2007), the simulation was designed specifically for 

their purposes. Therefore, priors come from a mixture of past findings, with variation in the prior 

added to reflect possible differences between the procedures used in previous research and those 

used by Zyphur et al. (2007), such that σ
σY
2
2 = .02 . These translate to IG(2.08, .043).  

In terms of the time it took participants, past research does not report this. However, in an 

unpublished master’s thesis, Zyphur (2003) notes that the scenarios were designed to take 

approximately 90 seconds +/- 30 seconds. As such, an SD of 15 seconds was chosen to 

approximate a 30 second interval, translating to µ
σY
2 = 225 , with variation around this estimate 

σ
σY
2
2 = 100  to represent uncertainty in the estimate. These translate to IG(508.25, 114141.3).  

The number of attributes measured is crucial (Zyphur et al., 2007). Therefore, very little 

variation in this variable is expected, with a point estimate chosen of µ
σY
2 = .01 and a variance 

σ
σY
2
2 = .001. These translate into IG(2.1, .011). 

v
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APPENDIX C 
 
DATA:  
File is data.dat;     ! Names data file 
 
VARIABLE:  
Names = video condition X score time measure;     ! Names independent variables  
! video, condition, their interaction X, and dependent variables score, time taken, and  
! the number of target attributes measured 
 
ANALYSIS: 
Estimator = Bayes;     ! Requests Bayesian estimation 
FBIterations = 10000;     ! Requests 10,000 iterations 
 
MODEL: 
score (sVAR);     ! Names variance of score sVAR 
time (tVAR);     ! Names variance of time tVAR 
measure (mVAR);     ! Names variance of measure mVAR 
score ON condition (sONc);     ! Names effect of condition on score sONc 
time ON condition (tONc);     ! Names effect of condition on time tONc 
measure ON condition (mONc);     ! Names effect of condition on measure mONc 
score ON video (CONTROL1);     ! Names effect of video on score CONTROL1 
time ON video (CONTROL2);     ! Names effect of video on time CONTROL2 
measure ON video (CONTROL3);     ! Names video effect on measure CONTROL3 
score ON X (CONTROL4);     ! Names effect of interaction on score CONTROL4 
time ON X (CONTROL5);     ! Names effect of interaction on time CONTROL5 
measure ON X (CONTROL6);     ! Names interaction effect on measure CONTROL6 
 
MODEL PRIORS: 
sVAR ~ IG(2.08, .043);     ! Sets inverse gamma parameters for shape, scale 
tVAR ~ IG(508.25, 114141.3);     ! Sets inverse gamma parameters for shape, scale 
mVAR ~ IG(2.1, .011);     ! Sets inverse gamma parameters for shape, scale 
CONTROL1-CONTROL6 ~ N(0, .01);     ! Sets mean, variance effect of controls 
sONc ~ N(.06, .005);     ! Sets effect of condition on score mean, variance 
tONc ~ N(-4.5, .384);     ! Sets effect of condition on time mean, variance 
mONc ~ N(.03, .00256);     ! Sets effect of condition on measure mean, variance 
 
OUTPUT: 
TECH1     ! Requests parameter matrices 
CINTERVAL(hpd);     ! Requests credibility intervals with highest posterior density 
 
PLOT: 
Type = Plot2;     ! Requests plots to assess estimation and posterior distributions 



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Zyphur, MJ; Oswald, FL

 

Title: 

Bayesian Estimation and Inference: A User's Guide

 

Date: 

2015-02-01

 

Citation: 

Zyphur, M. J.  &  Oswald, F. L. (2015). Bayesian Estimation and Inference: A User's Guide.

JOURNAL OF MANAGEMENT, 41 (2), pp.390-420.

https://doi.org/10.1177/0149206313501200.

 

Persistent Link: 

http://hdl.handle.net/11343/247891


