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Abstract

Corona virus disease 2019 (COVID-19), caused by the novel severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), was first detected in the city of Wuhan, China in
December 2019. Although, the disease appeared in Africa later than other regions, it has
now spread to virtually all countries on the continent. We provide early spatio-temporal
dynamics of COVID-19 within the first 62 days of the disease’s appearance on the African
continent. We used a two-parameter hurdle Poisson model to simultaneously analyse the
zero counts and the frequency of occurrence. We investigate the effects of important health-
care capacities including hospital beds and number of medical doctors in different countries.
The results show that cases of the pandemic vary geographically across Africa with notably
high incidence in neighbouring countries particularly in West and North Africa. The burden
of the disease (per 100 000) mostly impacted Djibouti, Tunisia, Morocco and Algeria.
Temporally, during the first 4 weeks, the burden was highest in Senegal, Egypt and
Mauritania, but by mid-April it shifted to Somalia, Chad, Guinea, Tanzania, Gabon, Sudan
and Zimbabwe. Currently, Namibia, Angola, South Sudan, Burundi and Uganda have the
least burden. These findings could be useful in guiding epidemiological interventions and
the allocation of scarce resources based on heterogeneity of the disease patterns.

Introduction

On 11 March 2020, the World Health Organization (WHO) declared the novel coronavirus
disease (COVID-19) outbreak a pandemic. The disease, caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), was first reported in the city of Wuhan, China in late
December 2019 and has quickly spread globally with 11 937 659 cases and a case fatality
rate (CFR) of 4.57% as of 7 July 2020. [1] This pandemic has not only become a public health
crisis leading to loss of life but has affected the global economy with severe disruption to inter-
national travel, tourism and trade [2]. As of 7 July 2020, all African countries combined have
reported 494 380 confirmed cases and 11 652 deaths from the pandemic yielding a CFR of
2.36%. It is however, likely that case ascertainment in Africa is incomplete.

Human population movement generally plays an important role in the spread of infectious
diseases and this particularly applies to COVID-19 as SARS-CoV-2 is highly transmissible.
The reasons for the late appearance of COVID-19 in Africa compared with other parts of
the world are unknown but it may be due to relatively limited international travel to the con-
tinent [3]. African countries predominantly reported their first COVID-19 cases to be
imported from Europe [4]. The first confirmed case on the African continent on 14
February 2020 occurred in Egypt followed by Nigeria on 27 February 2020. The initial dynam-
ics of the disease demonstrated a slow spread across the continent until the situation escalated
abruptly in the last week of March.

Global experts have shown concern about the spread of COVID-19 in Africa, because of
grossly underfunded and inadequate healthcare systems. Early detection and control of out-
breaks is inefficient and unreliable due to poor disease surveillance, insufficient training of
healthcare workers and inadequate data transmission [3, 5–8].

There have been a number of applications of statistical models for prediction of infection
rates and spread during the COVID-19 pandemic [9, 10]. However, mapping of disease inci-
dence to identify spatial clustering and patterns remains an important pathway to understand-
ing disease epidemiology and is required for effective planning, prevention or containment
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action [11–13]. There are a few studies that attempt to map the
pandemic in China [14] and in Iran [15]. However, the temporal
dynamic of the COVID-19 pandemic has not been taken into
account in order to assess space-time dynamics although a
descriptive representation of the spatio-temporal pattern of the
CFR was published for Brazil [16].

Our aim, therefore, is to analyse the spatio-temporal dynam-
ics of COVID-19 within the first 62 days of the disease’s arrival
on the African continent. We propose a two-parameter hurdle
Poisson model to simultaneously analyse the zero counts as
well as average occurrence of the disease. The two parameters
are extended, through appropriately chosen link functions, to
the spatio-temporal covariates following the framework of distri-
butional regression coined by Klein et al. [17]. Additionally, we
investigate the effect of important healthcare capacities includ-
ing hospital beds and the number of medical doctors on the
risk of COVID-19 in the different African countries. The hurdle
model is a modified count model in which two processes gen-
erating the zeros and the positives are not constrained to be the
same [18]. The idea is that a binomial distribution model gov-
erns the binary outcome that stipulates whether the count vari-
able returns a zero or a positive realisation and a Poisson
distribution models the truncated-at-zero count data. With
this, we are able to examine both the patterns of zeros and
the average counts of the pandemic across space and time
throughout Africa.

Methods

Data sources

We used publicly available daily number of confirmed COVID-19
cases reported by the World Health Organization (https://covid19.
who.int) from 14 February to 15 April 2020. Due to the require-
ment of the spatial effect model considered in this study, we only
included 47 African countries that have confirmed COVID-19
cases and share at least one international boundary.
Additionally, we obtained data on healthcare capacities; number
of hospital beds and physicians for each of the countries from
the World Development Indicators of the World Bank (https://
data.worldbank.org). Physicians include generalist and specialist
medical practitioners while hospital beds include inpatient beds
available in public, private, general, and specialised hospitals
and rehabilitation centres. The most recent data for number of
physicians per 1000 was from 2018 while that for hospital beds
was from 2015.

Statistical analysis

Preliminary exploratory spatial analysis was used to investigate the
spatial and temporal distribution of incidence of COVID-19 cases
and healthcare capacities (number of hospital beds and number of
physicians) across Africa. We used Pearson’s correlation to assess
the relationships between the number of confirmed COVID-19
cases and each of the two healthcare capabilities of each country.

For the spatio-temporal analysis, we considered a two-
component hurdle Poisson model which consists of a point
mass at zero followed by a truncated Poisson distribution for
the non-zero count observation. For an independently and iden-
tically distributed random variable, the hurdle Poisson

distribution is expressed as

P(Yi = y| p, m) =
p y = 0

(1− p)
myexp(−m)

y!(1− exp(−m))
y = 1, 2, . . . , 1

⎧⎨
⎩

where Yi is the response variable of interest that counts the
number of reported cases of COVID-19 in a particular country,
p is the none occurrence probability (the probability of not
reporting a COVID-19 case in a given day) and μ measures
the frequency of occurrence (the expected value of the Poisson
distribution). Thus, as μ increases, the average count of
COVID-19 increases. If p is 0, this implies that each country
reported an infection during the period under consideration,
but if p is 1 then there would be no infections caused by the
pathogen on the continent during the period under consider-
ation. Usually, p is considered to be strictly between 0 and 1,
such that everyone in the population of the African continent
has a non-zero probability of being infected with the virus
even if they do not get infected during the period considered.
Under the hurdle distribution, the expected value of Y is given
by E(Y ) = pμ/(1 − exp( − μ)).

Based on the framework of distributional regression that allows
multiple parameters of a response distribution, rather than just
the mean as is common in most classical applications, we extend
the two parameters space qk = (q1 = p, q2 = m) of the hurdle
Poisson model to the spatial and spatio-temporal covariates of
the COVID-19 cases in Africa. Suitable (one-to-one) link func-
tions that ensure appropriate restrictions on the parameter
space were considered.

The general form of the geo-additive hurdle Poisson model
considered is given by

g−1
1 (p) = h

p
i = b

p
0 + Spstr + Spunstr + Tp + (ST)p

g−1
2 (m) = hm

i = bm
0 + Smstr + Smunstr + Tm + (ST)m

{

where g1 and g2 are link functions chosen as logit and log links for
the parameters p and μ, respectively. Omitting superscript, β0 is
the model constant term, Sstr is the structured spatial random
effect, Sunstr is the unstructured random effect, T is the temporal
term and ST accounts for the spatio-temporal random effect.
The structured component assumes a spatial correlation among
the countries such that neighbouring countries are assumed to
have more influence on one another than those far apart while
the unstructured component assumes the countries are independ-
ent of one another. The temporal term was modelled based on a
Bayesian P-spline. This allows for the estimation of the temporal
term as a linear combination of basis spline (B-splines) based on a
second-order random walk prior with inverse gamma for the

Table 1. Assessment of various model specification used in this studya

Model Specification �D pD DIC

1 Spatial (Sstr + Sunstr) + ST 12 013.66 219.49 12 452.66

2 Trend + ST 9661.47 317.98 10 297.43

3 Trend + spatial (Sstr + Sunstr) 12 237.92 107.30 12 452.53

4 Trend + spatial (Sstr + Sunstr) + ST 9134.13 215.38 9564.89

aSstr represents structured spatial random effect, Sunstr is the unstructured random effect,
Trend is the temporal term and ST accounts for the spatio-temporal random effect.
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hyperparameters [19]. We considered cubic B-splines with 20
equidistance knots, which allows enough flexibility to capture
even the most severe non-linearity.

For the all structured spatial and spatio-temporal effects, coun-
tries are considered as discrete sets of spatial locations and we
used a Markov random field prior that considers a binary struc-
ture for the neighbourhood structure of the countries such that
proximate locations that share boundaries are assigned a weight
of 1 and 0 if they do not. To ensure smoothness, we consider a
Gaussian Markov random field prior that induces a penalty in
which differences between spatially adjacent regions are penalised.
An exchangeable independent and identically distributed normal
prior was considered for the unstructured random effects. We
provide more information on the estimation procedure of the
model in Appendix 1 but details of geo-additive models including
the different types of variables that can be included beyond those
considered in this study and the specifics of prior distributions are
contained in Fahrmeir et al. [20] and Fahrmeir and Kneib [21].

The Bayesian inference is based on the distributional regres-
sion framework of Klein et al. [17], who developed a Markov
chain Monte Carlo simulation technique in which suitable pro-
posal densities are constructed based on iterative weighted
least-squares approximation to the full conditional. All smoothing
variance parameters and hyperparameters were assigned inverse
gamma hyperpriors. We performed sensitivity analyses but the
results, based on the different hyperpriors, turned out to be
indistinguishable.

To implement the spatio-temporal component, the complete
spatio-temporal data were grouped into six periods: the first period
represents the first month (due to paucity of data), and the remain-
ing data are aggregated into one week periods. The intention was to
examine how the countries fared in terms of the occurrence of the
pandemic over a weekly period. We implement four models, by
sub-setting temporal and spatial covariates on the mean parameter
while keeping the temporal, structured and unstructured spatial
effects for the probability parameter, and based model choice on
deviance information criterion (DIC). Model fit was further
assessed through the plots of the observed and predicted values.
The details of the implemented models including the values of
the DIC are presented in Table 1. For all models, we performed
12 000 iterations with 2000 set as burn-in and the thinning

parameter set at 10. The generated Markov chains were investigated
through trace plots to ascertain mixing and convergence. Trace
plots for some of the parameters and those of the observed against
fitted values are presented in Appendix 2.

Results

Preliminary COVID-19 distribution in Africa

The distribution of COVID-19 cases as of 11 April and the
number of hospital beds and physicians (per 10 000 population)
by country are presented in Figure 1(a–c). The figure shows that
cases of COVID-19 varied geographically across Africa with
notable high incidence in West and North Africa (Fig. 1a).
However, when this incidence was converted to cases per 100
000 population, the burden of the disease in Africa was greatest
in Djibouti, East Africa and North Africa (Tunisia, Morocco
and Algeria) (Figure A3, Appendix 3). Interestingly, countries
with the highest burden of the pandemic in Africa are among
those with the highest number of hospital beds and physicians,
particularly those from the northern fringe (Fig. 1b, c). This
could be due to the testing capacities of these countries as it is
expected that countries with better healthcare capacity would be
able to conduct more tests and thus able to detect more cases.
Figure 2 examines the pattern of relationships between the pan-
demic and numbers of hospital beds and physicians. Findings
reveal a positive correlation between COVID-19 and each of
number of physicians (r = 0.49, P-value 0.001) and hospital
beds (r = 0.14, P-value = 0.34) though only the estimate for phy-
sicians is statistically significant.

Spatio-temporal analysis

Table 1 presents the specifications of the four models considered
together with the values of the model diagnostics criteria. As is
evident from Table 1, the fourth model whose mean component
includes the trend, structured and unstructured random effects
and the spatio-temporal components had the lowest DIC value
and thus provides the best fit. Presentations of results shall there-
fore be based on those of this model. Figure 3 presents the maps
of Africa showing the spatio-temporal patterns of the parameter

Fig. 1. (a) Total number of confirmed COVID-19 cases as of 11 April 2020, (b) Distribution of the number of hospital beds (per 10 000), (C) Distribution of the number
of physicians (per 10 000).
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μ, measuring the frequency of occurrence of COVID-19 on the
continent during the period 14 February to 15 April 2020,
based on a 6-week group. The results show that during the period

14 February–13 March, Senegal had the highest average record of
the pandemic closely followed by countries such as Egypt and
Mauritania. By the week of 14–20 March, the burden shifted to

Fig. 2. Scatter plot of number of confirmed cases of COVID-19 and healthcare capacities (Number of hospital beds/medical doctors).
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Fig. 3. Spatiotemporal pattern of COVID-19 in Africa based on expected value of the Poisson parameter (mu (μ) parameter). The scales indicate the range of the
posterior mean estimates of the parameter.

Fig. 4. Structured (a) and unstructured (b) spatial effects for the mean of COVID-19 (mu (μ) parameter) in Africa. The scales indicate the range of the posterior mean
estimates of the parameter. Note: The structured spatial map was obtained from a component of the model that assumes spatial correlation among the countries
implying that neighbouring countries can influence events among themselves which is not the case for two countries that are at distance and share no boundary.
The unstructured map assumes independence among the countries.

Epidemiology and Infection 5



Togo, South Africa, Egypt, DR Congo, Senegal and Burkina Faso.
However, during the period 21–27 March, South Africa had the
highest burden of the pandemic, while for the week 28 March
to 3 April, the burden of the pandemic appears to be relatively
similar across most of the African countries. For the week 4–10
April, the burden shifted to Niger, Morocco, Guinea, Egypt and
Sierra Leone and lastly, for the week 11–15 April, the burden
was most felt by countries such as Somalia, Chad, Guinea,
Tanzania, Gabon, Sudan and Zimbabwe but least for Namibia,
Angola and Uganda.

Results for the structured and unstructured random terms are
presented in Figure 4a, b for the frequency of occurrence of the
pandemic. The two maps reveal different patterns across the con-
tinent, which could have been the result of the neighbourhood
structures of the countries that were taken into account in the
structured effect. Thus, the structured random effect presents a
western-southern divide indicating that the burden of the pan-
demic has been generally heavier among countries in the West
African region specifically, in neighbouring Ivory Coast,
Burkina Faso, Ghana, Mali, Guinea, Senegal, as well as Morocco
and Algeria in North Africa but generally lesser in the southern
African countries. However, estimates from the unstructured
effect that assumes independent and identically distributed nor-
mal prior show that South Africa, Egypt, Algeria, Morocco,
Tunisia and Cameroon had the highest individual burden but it
was lowest for South Sudan, Central African Republic and
Mauritania. The estimates are moderate for Nigeria, Ghana,
Ivory Coast, Burkina Faso, Niger, Senegal, Republic of Congo
and Kenya.

Results for the spatial patterns of the probability of no occur-
rence are presented in Figure 5a, b. The structured spatial effects
show that neighbouring countries in southern and central Africa
had the highest likelihood of not recording any cases of
COVID-19. The map for the unstructured effect however reveals
that the likelihood of not reporting a case was highest among

Mauritania, Botswana, South Sudan, Burundi, Namibia, Libya,
Chad, Central African Republic, Somalia, Malawi, Benin, Sierra
Leone, The Gambia and Swaziland, but lowest for South Africa,
Egypt, Algeria, Morocco, Tunisia and Senegal. The temporal pat-
terns presented in Figure 6a, b displayed the posterior mean esti-
mate (black) and 95% credible interval (blue). The figure reveals
that the frequency of occurrence has been on a consistent rise
since the first case was reported up to around day 50, followed
by a somewhat gradual decline for about 3 days after which
there was evidence of another rise. On the other hand, the esti-
mates for the likelihood of no occurrence decline sharply until
day 50 and appear to flatten thereafter. Note that the wide credible
intervals for the early days are evidence of few reported cases dur-
ing this period.

Discussion

This study has established that the burden of COVID-19 in Africa
varies geographically with each country’s healthcare-related vari-
ables. As COVID-19 causes significant health and economic chal-
lenges globally, the impacts on Africa are still in their infancy. The
present study reveals the geographical spread of the disease in
Africa and its relation to individual country health capacities.
Findings from the spatio-temporal analysis reveal that the occur-
rence and burden of COVID-19 in Africa varied geographically in
neighbouring countries particularly in the western part of the
continent which could imply that neighbouring countries pose
significant importation risk to each other. This is quite a challen-
ging problem due to the free movement of people within the
region and supports the contention that African countries should
form a coalition to fight against COVID-19.

There are several possible reasons for the geographical distri-
bution of COVID-19 across Africa. The first is the route of disease
introduction to Africa. For example, when China was the only
COVID-19 epicentre, the risk of COVID-19 importation from

Fig. 5. Structured (a) and unstructured (b) spatial effects for the probability of no occurrence of COVID-19 (π parameter) in Africa. The scales indicate the range of
the posterior mean estimates of the parameter.
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China to Africa was high for North Africa [5]. Previous studies
based on travel data from provinces in China identified Egypt,
Algeria and South Africa as having the highest importation risk
of first cases from China [4, 5]. However, as the epicentre changed
from China to Italy and the USA, the risk to other regions in
Africa increased as there were more African travellers from
Europe and North America than Asia [4]. The second reason is
the issue of border porosity in most African countries [22, 23].
The ease of people’s movement over borders could increase
importations as seen in Nigeria where many Nigerians returning
from the Ivory Coast were diagnosed to have COVID-19. This is
what happens with neighbouring African countries as they endan-
ger each other unless enhanced border and flight restrictions are
put in place.

COVID-19 poses significant health issues because it can
quickly overwhelm healthcare capacity if not checked. In this
study, countries with greater healthcare capacity measured by
number of hospital beds and physicians had more cases. This
seeming paradox could be explained as healthcare capacity has
been used as a measure of a country’s wealth [24, 25].
Additionally, previous studies using air travel volume data have
suggested some African countries to be at higher risk of
COVID-19 importation from Europe and China [4, 5].
Therefore, it is more likely that citizens of such countries will tra-
vel overseas. This tendency increases the chance of importing
COVID-19 on their return. Our findings are consistent with a
previous study that suggested African countries with more sophis-
ticated surveillance systems are more likely to identify a higher
risk of disease importation [5]. This implies that additional public
health capacity is needed for those countries with limited
resources to detect COVID-19 and undertake meaningful contact
tracing to curtail the rapid spread of the virus.

There have been warnings that some countries in Africa could
be the next COVID-19 epicentre [7, 26]. Thus far, the burden of

COVID-19 in Africa is low in comparison with Europe, Asia and
the Americas. There is a pressing need for early introduction of
interventions such as isolation, quarantine and social distancing
[27]. However, many African countries are poor and whether
these control measures will work as effectively as seen in China
is still an open question [26].

It is worth nothing that the findings reported in this study are
based on data available on 15 April 2020 and, at this time, the
pandemic was in its early stages in Africa. Consequently, future
spatial patterns could change considerably as more testing is
done and new cases detected. Also, considering the low testing
capacities of most African countries, it is very likely that the
reported data may not truly reflect the extent of the pandemic
on the continent due to underascertainment of cases.
Additionally, the data on healthcare capacity may not be exactly
comparable across countries due to data sources and means of
monitoring. Notwithstanding these comments, the spatio-
temporal maps generated in this study provide early evidence of
the distribution of the situation on the African continent over
the period considered.

Conclusion

As the pandemic spreads, the African Centers for Disease
Control have intensified investment in enhancing diagnostic
and surveillance capacity across the various African countries
[7]. Africa may only be able to counter this virus if conscien-
tious efforts and support are garnered globally to battle
COVID-19 [7]. Unsurprisingly, we have shown the trajectory
of COVID-19 in Africa is increasing, with each African country
posing a risk to its neighbours. The findings in this study will be
useful in implementing targeted intervention strategies based on
heterogeneity of the disease patterns and optimal allocation of
limited resources.

Fig. 6. Temporal trend of COVID-19 for (a) mean number of occurrence and (b) likelihood of no occurrence.
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Appendix 1

Parameter estimation of the hurdle Poisson model was through a hierarchical
Bayesian approach where prior distributions are specified to the different para-
meters and functions of the model. For the structured spatial random compo-
nent, a correlation structure is assumed for the spatial structured based on
their spatial proximity and a Markov random field [20] was considered as a
prior distribution for the discrete sets of spatial locations such that separate
regression coefficients correspond to the distinct countries. The neighbour-
hood structure of the countries determines the Markovian structure where
proximate locations that share boundary are assigned a weight of 1 and 0 if
they do not. The precise form of the prior distribution is specified by the fol-
lowing Gaussian structure

bstr, s bstr,r , r = s, t2str � N
1
Ns

∑
reds

bstr,r ,
t2str
Ns

( )∣∣∣∣∣ ,

where Ns = |δs| is the number of adjacent neighbours, rϵδs indicates that coun-
try r is a neighbour to country s and t2stris the variance component that ensures
the spatial smoothness. The conditional mean of βstr,s given all the other coef-
ficients is the average over the neighbouring countries.

For the unstructured spatial effects, the spatial proximity (neighbourhood
structure) of the countries were ignored and the countries are considered as
membership representing different groups, and an exchangeable independent
and identically distributed Gaussian prior with the following property funstr-
(s)∼N(0, τunstr) was considered. Both variances were assigned inverse
gamma prior.

The temporal component was modelled through a Bayesian P-spline prior as
proposed by [19]. The prior allows for non-parametric estimation of the temporal
function as a linear combination of basis function (B-splines) expressed as

p(z) =
∑m
t=1

atBt(z)

where Bt(z) are B-splines, and the coefficients αt are defined to follow a first- or
second-order Gaussian random walk smoothness prior for which the second
order used in this study is defined as

a2 = 2a j−1 − a j−2 + 1

where the error term ε is assumed to be independently and identically distributed
ε∼N(0, τ2). Again, the variance, τ2 controls the smoothness of the function and
it is jointly estimated with the basis function coefficients by assigning a weakly
informative inverse gamma prior such that τ2∼ IG(ε, ε). A cubic spline with
20 inner knots were considered as based on previous studies, these would yield
sufficient flexibility to capture the non-linearity in the temporal pattern [19, 28].

As a result of the complex nature of distributional regression model,
the posterior distribution leads to full conditionals for the unknown
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regression coefficients that are analytically intractable. Consequently, fully
Bayesian inference was based on Markov chain Monte Carlo technique
(MCMC) to generate samples from the full conditional and used for
posterior estimation. The MCMC sampler was executed as a Metropolis-

Hastings algorithm through iterative weighted least square (IWLS) as
developed by [17]. For all the models considered, we generated 12 000
iterations and set the burn-in as 2000 and then thin every 10th observation
for parameter estimation.

Appendix 2

Fig. A1. Trace plot for some of the parameters.

Epidemiology and Infection 9



Fig. A2. Plot of observed and expected (predicted)
non-zero cases.

10 Ezra Gayawan et al.



Appendix 3

Fig. A3. Burden (cases per 100,000 population) of COVID-19 across Africa as at 16th April 2020.
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