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The exploration/exploitation tradeoff – pursuing a known reward vs. sampling from
lesser known options in the hope of finding a better payoff – is a fundamental aspect
of learning and decision making. In humans, this has been studied using multi-armed
bandit tasks. The same processes have also been studied using simplified probabilistic
reversal learning (PRL) tasks with binary choices. Our investigations suggest that
protocols previously used to explore PRL in mice may prove beyond their cognitive
capacities, with animals performing at a no-better-than-chance level. We sought a novel
probabilistic learning task to improve behavioral responding in mice, whilst allowing
the investigation of the exploration/exploitation tradeoff in decision making. To achieve
this, we developed a two-lever operant chamber task with levers corresponding to
different probabilities (high/low) of receiving a saccharin reward, reversing the reward
contingencies associated with levers once animals reached a threshold of 80%
responding at the high rewarding lever. We found that, unlike in existing PRL tasks, mice
are able to learn and behave near optimally with 80% high/20% low reward probabilities.
Altering the reward contingencies towards equality showed that some mice displayed
preference for the high rewarding lever with probabilities as close as 60% high/40% low.
Additionally, we show that animal choice behavior can be effectively modelled using
reinforcement learning (RL) models incorporating learning rates for positive and negative
prediction error, a perseveration parameter, and a noise parameter. This new decision
task, coupled with RL analyses, advances access to investigate the neuroscience of the
exploration/exploitation tradeoff in decision making.

Keywords: reinforcement, probabilistic, discrimination, reversal, learning, mouse, cognition, operant

INTRODUCTION

To survive and thrive in an ever-changing world, both human and non-human animals
must make a multitude of rapid decisions about how they interact with, and adapt to, the
environment around them in order to optimize gains and minimize losses associated with their
behaviors. One large component influencing these decisions is the explore–exploit trade off
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(Addicott et al., 2017)– to pursue the current best option
(exploit), or to test alternative options in the hopes of
finding something better (explore). Importantly, exploitative
and exploratory behavior must be appropriately balanced to
maximize optimal long-term behavior (Addicott et al., 2017).

Probabilistic Reversal Learning (PRL) is a powerful behavioral
task which has been used to assess this trade off, as well as
cognitive flexibility, impulsivity, and compulsivity. PRL allows
the evaluation of how positive or negative feedback differently
affect learning in a range of neurological and psychological
conditions including Autism Spectrum Disorder, Schizophrenia
and Huntington’s Disease in both patient populations (Lawrence
et al., 1999) and animal models of disease (Amitai et al., 2014;
Amodeo et al., 2014). Additionally, PRL tasks have been used
more generally to understand the neurobiological systems and
neurotransmitters governing these behaviors (Cohen, 2008; Bari
et al., 2010; Costa et al., 2015).

A PRL task involves subjects making a series of choices
between binary options, one with high and low probabilities,
respectively (e.g., in both rodent and human PRL task, 80% and
20% reward contingencies are commonly used (Mehta et al.,
2001; Bari et al., 2010; Dalton et al., 2014)). Subjects are free
to choose between the two options and are expected to quickly
acquire a preference for the high rewarding option. Once this
preference has been established (typically, in the rodent version,
as evidenced by eight consecutive choices of the high value
option) reward contingencies are reversed; the high value option
becomes low value and vice versa. These reversals take place
with no additional cues, and in order to successfully engage
in the task, subjects are required to do three things. Firstly,
subjects must learn to discriminate between the high and low
rewarding lever option and learn to favor the high reward lever.
Secondly, following a reversal, subjects must realize that the value
of the previously high rewarding option has shifted, and lastly,
disengage from responding at this previous high value choice and
shift toward preferring the other, now high value, option.

Experiments in rats have shown an average peak of three
reversals per session in sessions of 200 trials (Bari et al.,
2010; Dalton et al., 2014, 2016), and an average peak of six
reversals per session in sessions of 600 trials (Amitai et al.,
2014), whereas in mice, an average peak between one and two
reversals per session in sessions of 400 trials has been reported
(Milienne-Petiot et al., 2017).

To put this in perspective, simulations suggest that the
expected number of reversals made by an animal responding
randomly in these PRL tasks increases linearly with the number
of trials presented in a session (Figure 1A). More precisely,
random responding would result in at least three reversals in
sessions of 200 trials in 0.55% of cases (Figure 1B), and at
least six reversals in sessions of 600 trials in 0.076% of cases
(Figure 1D). Conversely, random responding in sessions of 400
trials would result in at least one reversal in 55% of cases, and at
least two reversals in 18% of cases (Figure 1C). Together these
data indicate that mice perform this task substantially worse than
rats, and in a manner much closer to random responding.

To account for this comparatively poor performance, other
groups have developed simplified mouse probabilistic learning

tasks (Ineichen et al., 2012) in which the high value choice
maintains an 80% probability of reward, but choosing the low
value option will never provide reward. After sufficient training
this presentation of the PRL task is one which mice can easily
achieve, with animals making between four and five out of seven
possible reversals in a 60 trial session, which is much greater than
the 1–2 reversals in 400 trials of mice in the PRL task optimized
for rats. However, this simplification changes the task in two
major ways. Firstly, it makes it easier to inhibit responding at the
previously high rewarding option, as perseverating at this option
provides no value at all, compared to the required detection of
reduction in value in the full PRL task. And, secondly, it requires
only a single rewarded response at the high value option to
establish without a doubt that it is indeed the high value option.
In both cases, the result is a reduction of uncertainty. Combined,
these changes result in a task that is much closer to deterministic
reversal learning, in which there is no uncertainty of reward, than
to probabilistic learning.

In the present study, we established a task with a different
simplification. Rather than altering the probabilistic nature of
the task, we focused on allowing mice to acquire a clear
preference for the high value option first in an initial block
of probabilistic learning sessions, then subsequently reversed
the reward contingencies and allowed multiple sessions for
animals to inhibit this preference and to learn the new
reversed reward contingencies. We found that most animals
trained to respond in an operant task were able to successfully
acquire an initial preference and subsequently reverse that
preference with 80%/20% high/low reward probabilities. As
such, we propose that this modified PRL task with 80%/20%
reward probabilities would be suitable in subsequent studies
to investigate the neurobiology of reinforcement and reversal
learning in mice. Additionally, we presented animals with
increasingly noisy reward probabilities (70%/30% and 60%/40%
on high/low rewarding levers, respectively) and found that
some mice were also able to discriminate and reverse in these
more complex, uncertain environments, illustrating access to a
cognitive gradient within the task.

MATERIALS AND METHODS

Animals
A total of sixteen 10-week old male C57BL/6J Arc mice were
used. Mice were kept in a 12-h reversed light dark cycle with free
access to water and food-restricted to maintain 90% of their free
feeding body weight. Behavioral testing occurred daily between
the 3rd and 6th hours of the dark phase. Animal experimentation
was conducted in accordance with the Prevention of Cruelty to
Animals Act and National Health and Medical Research Code
of Practice for the Use of Animals and approved by The Florey
Animal Ethics Committee (Application 17-035).

Apparatus
All behavioral testing was conducted in 8 operant chambers
(Med Associates, St. Albans, VT, United States) enclosed in
light and sound attenuating boxes. Each chamber contained two
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FIGURE 1 | Probability of reversal under random responding with different session lengths. (A) Expected reversals averaged across 10,000 simulations of session
lengths from 1 to 1,000 trials. Probability distributions showing the likelihood of a certain number of reversal occurring in a session under random responding from
1,000,000 bootstrapped random samples of sessions of (B) 200 trials, (C) 400 trials or (D) 600 trials in length.

retractable levers, located on either side of a central reward
port calibrated to deliver ∼10 µL of sodium-saccharin solution
(0.1% w/v, in water) on a rewarding trial, coupled with a
1000 Hz, 75 dB tone. The enclosing boxes were equipped with
fans to provide ventilation and to mask extraneous noise, as
well as infrared cameras for observing animals during their
sessions (Figure 2A).

Behavioral Tasks
Mice were presented with a single operant session every day
throughout the course of the experiment.

Habituation
Initially, mice were given a single 30-min session to freely explore
the chamber, with no levers presented and ∼50 µL saccharin
solution provided in the central reward port.

Training
Prior to entering the PRL task, animals underwent several
stages of habituation, single lever training on both levers, dual
lever training, then dual lever FR-2 training as described below
and in Figure 2B.

Throughout training and testing, trials were initiated by the
extension of one or both levers in the operant chambers. During
each trial, animals had 10 s to make a response at a lever. After
responding, or at the end of the 10 s trial if no response was made,

the lever was retracted and a 10 s inter-trial interval (ITI) elapsed
before the lever extended again and the subsequent trial began.

Single lever training
Following habituation, mice were exposed to daily sessions of 100
trials with the lever at the back of the chamber in operation and
the lever at the front of the box retracted. If an animal pressed
the lever within this window, a reinforcing tone sounded, and a
10 µL saccharin reward was delivered to the central reward port
0.5 s after a successful lever press.

Mice remained in this phase of training with the back lever
extended until they completed two sessions with greater than 60
rewarded trials and were trained subsequently on the front lever
until the same criteria were reached.

Dual lever training
Next, mice were given sessions with both levers active, with one
lever extended at a time, pseudo-randomized to provide five
front/back lever extensions per 10-trial block in the 100-trial
session. Again, animals remained in this phase of training until
two sessions with at least 60 responses were achieved.

Dual lever FR-2 training
In previous operant chamber experiments, we observed that
mice sometimes made “accidental” lever presses by inadvertent
contact with the levers, rather than actively pressing them. To
minimize these unintentional responses, we trained animals to
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FIGURE 2 | Operant chamber and training/testing protocols. (A) Operant chamber fitted with tone generator for reinforcing rewarded trials, liquid reward port for
saccharin delivery, two retractable levers, and two stimulus lights located above to indicate when a lever was active. (B) Schematic of operant training/testing. Before
testing, animals were trained to push levers on both sides of the chamber, and then to push levers twice consecutively for reward (left column). Following this,
animals were introduced to probabilistic rewards and reversals, progressively moving to noisier reward contingencies.

press the same lever twice consecutively for reward, using the
same randomized lever extensions as in the dual lever training.
After achieving two sessions with at least 60 responses, mice
progressed into probabilistic learning.

Testing
Probabilistic learning
In these sessions, both levers were extended simultaneously,
with two consecutive presses on the front/back levers providing
an 80%/20% chance of reward, respectively. On rewarded
trials, levers were retracted, the conditioning tone sounded,
and the saccharin reward simultaneously delivered, whereas on
unrewarded trials levers were retracted, but with no tone or
reward delivery. Mice remained in probabilistic learning until
they achieved two sessions with at least 60 responses, and greater
than 80% of lever presses made on the high rewarding lever.

Reversal learning
Upon achieving criterion in the probabilistic learning task,
reward contingencies were reversed; the previously high, 80%
reward lever now rewarding on only 20% of trials and vice
versa. This task required mice to make a substantial change in
their behavior, suppressing their previously learned reward/lever
associations and adapting to the new contingencies. As in
the probabilistic learning phase, animals remained in reversal
learning until they achieved two sessions with at least 60
responses, and greater than 80% of lever presses made on the
high-rewarding lever.

Further reversal learning
After mice reached criterion in the reversal learning phase,
the high and low rewarding levers were again reversed,

but now with a 70%/30% probability of reward, rather
than 80%/20%. Once mice reached the same levels of
performance as above, the levers were again reversed,
keeping the 70%/30% reward contingencies. Following
completion of reversal learning with the 70%/30% reward
contingencies, animals were lastly presented with 60%/40%
reward contingencies and reversal.

Data and Analyses
At each trial, we recorded (a) whether a mouse made a response
or not, and whether the chosen lever was associated with high
or low reward (high/low/omit), (b) whether a trial was rewarded
or not (rewarded/unrewarded), and (c) the time from lever
extension to response in milliseconds.

Data were processed in R version 3.6.1 (R Core Team,
2019) with RStudio (Allaire, 2012) using the tidyverse
package (Wickham, 2016). Choice data were analyzed using
reinforcement learning (RL) models (Rutledge et al., 2009; Sutton
and Barto, 2018), the parameters of which were estimated on a
subject-by-subject basis, and fit by maximizing the likelihood
of the observed choices compounded across all trials. These
optimizations were carried out using the optimx package (Nash
and Varadhan, 2011) in RStudio.

Analysis of Task Progression
Time taken to reach criterion in different reversal learning stages
was compared in a mixed-effects model fitted using restricted
maximum likelihood (REML) with days to criterion as main
effect and random intercepts for individual animals in order to
account for repeated measures.
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Analysis of Choice Data
We fitted choice and reward data from individual animals to a
range of RL algorithms (Sutton and Barto, 2018). These models
use the sequence of choices and rewards to estimate and update
the expected reward value of each lever on a trial by trial basis
(Rutledge et al., 2009; Sutton and Barto, 2018). The expected
values were initialized to one as animals were initially trained to
push levers for a sure reward at every trial. Model comparisons
were made using the relative Akaike Information Criterion (AIC)
(Akaike, 1998; Anderson and Burnham, 2002).

Parameters for learning from positive or negative outcomes
were compared within animals using a Wilcoxon matched pairs
signed-ranks test in Prism 8.0 (GraphPad Software, San Diego,
CA, United States).

Single learning rate RL model
The simplest model consisted of two parameters; a learning rate
α, through which the value of an option is updated following
a trial, and the softmax parameter β governing how much the
expected values of options affect choices being made. Given
expected values Vf(t) for the front lever, and Vb(t) for the
back lever, the probability of choosing the front lever Pf (t) was
calculated using the softmax rule:

Pf (t) =
1

1+ e−β
(
Vf (t)−Vb(t)

)
and following each trial, the expected value of the chosen lever
(Vf , for example) was updated according to the following rule:

Vf (t + 1) = Vf (t)+ α[R(t)− Vf (t)]

where R(t)− Vf (t) is the reward prediction error – the difference
between the reward received on a given trial R(t), and the
expected value of the lever Vf (t).

Dual learning rates RL model
This model separated out the α learning rate parameter into
two different parameters for positive (αpos) and negative (αneg)
reward prediction errors reflecting the idea that learning rates
may be different for positive versus negative experiences (Daw
et al., 2002; Frank et al., 2007; Rutledge et al., 2009). In this model,
Pf (t) was calculated in the same manner as in the standard RL
model, but following each trial, values were updated according to
the rule:

Vf (t + 1) = Vf (t)+
{

αpos[R (t)− Vf (t)]|R (t) ≥ Vf (t)
αneg[R (t)− Vf (t)]|R (t) < Vf (t)

Perseverative RL model
This model introduced an additional perseveration parameter δ,
which enters into the softmax rule for determining probability of
choosing a lever as:

Pf (t) =
1

1+ e−β
(
Vf (t)−Vb(t)

)
+δ

(
Cf (t−1)−Cb(t−1)

)
In this model, Cf and Cb are indicator variables, taking the value
of 1 if the relevant lever is chosen, and 0 otherwise. A positive
δ indicates that an animal is more likely to respond on the

same side as the previous trial (perseveration), while a negative δ

indicates that animals are more likely to switch from side to side
on consecutive trials (alternation).

Perseverative dual learning rates RL model
We also fitted a combination of the perseverative and dual
learning rates RL models, incorporating αpos, αneg, β, and δ with
Pf (t) determined by:

Pf (t) =
1

1+ e−β
(
Vf (t)−Vb(t)

)
+δ

(
Cf (t−1)−Cb(t−1)

)
and expected reward values updated by:

Vf (t + 1) = Vf (t)+
{

αpos[R (t)− Vf (t)]|R (t) ≥ Vf (t)
αneg[R (t)− Vf (t)]|R (t) < Vf (t)

RESULTS

Performance Across Different Stages of
Task Progression
From our initial 16 animals, 12 progressed through operant
lever training and into the probabilistic learning tasks, all
of which were able to reach criterion in the initial 80:20
probabilistic learning phase. Of these 12 animals, 10 were
then able to complete the first reversal learning phase. As
difficulty increased, fewer animals were able to complete each
task, with 7, 4, 3, and 2 animals able to complete the 70:30
Learning, 70:30 Reversal, 60:40 Learning and 60:40 Reversal
tasks, respectively (Figure 3A). Despite the increasing complexity
of the task, there was no significant difference in the number
of days it took animals to reach criterion under different
reward contingencies, as analyzed using a mixed-effects model
fitted using REML with random intercepts for individual
animals (Figure 3B).

Choice Data Analysis
We fitted data from the 12 animals that progressed into
the operant tasks. Of these 12 datasets, the MLE estimation
procedure successfully converged to parameter point estimates
for the 10 animals able to complete both the 80%/20%
Probabilistic Learning and Reversal Learning tasks, with models
failing to converge for the two animals unable to complete the
80:20 Reversal Learning task.

In 8 of these 10 mice, the perseverative dual learning rates RL
model gave the lowest AIC, and hence the best fit, followed by the
perseverative RL model. In the remaining two subjects, this order
was reversed, with the perseverative RL model providing the best
fit, followed by the perseverative dual learning rates RL model.

Investigating the distributions of these parameters across
animals resulted in the following population level values
(Figure 4A):

• Learning from positive outcomes parameter
αpos = 0.00923 (95% CI : 0.00694, 0.0115).
• Learning from negative outcomes parameter

αneg = 0.0282 (95% CI : 0.0107, 0.0457).
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FIGURE 3 | Differences across reward contingencies. (A) Bars represent the number of animals able to complete training and each different reward contingency in
testing. (B) Days to reach criterion in each reward contingency. Points represent the number of sessions individual animals took to achieve >80% of responses at
the high rewarding lever in two sessions. Bars represent cohort mean ±95% CI. (C) Bars represent the mean ± SD presses in a session made at the high or low
levers, as well as the number of response omissions made. (D) Bars represent the mean ± SD presses in a resulting in rewards or a lack thereof, as well as the
number of omissions made.

• Softmax parameter
β = 3.275 (95% CI : 2.5, 4.05).
• Perseveration parameter

δ = 0.744 (95% CI : 0.529, 0.959).

A Wilcoxon matched pairs signed-ranks test showed that αpos
was significantly smaller than αneg (p < 0.05) and suggests that
animals were learning significantly more from negative outcomes
than positive ones (Figure 4B). However, this was not observed
in all animals, with some exhibiting a higher αpos than αneg.
Such differences may be expected to occur between individuals
and may be suggestive of different underlying neurobiological
substrates in learning from positive versus negative outcomes
(Daw et al., 2002; Cazé and Van Der Meer, 2013). Additionally,
whether an animal showed a higher learning rate to positive
or negative outcomes did not impact on its ability to develop
preferences for the high value option in the reversal learning
tasks. For example, one of the two animals able to perform the
most complex 60:40 Reversal Learning task, showed a higher
αpos (Figure 4C) whereas the other displayed a higher αneg
(Figure 4D).

Although the perseverative dual learning rates model provided
the best fit to animal choice data, the Q-values generated by this
model and used as estimates for the softmax decision rule did
not accurately estimate the true probabilities of reward associated

with each lever. Q-value estimates from models with a greater
αpos than αneg were systemically greater than the true reward
probabilities (Figure 4E), while Q-value estimates from models
with a greater αneg than αpos were systemically lower than the
true reward probabilities (Figure 4F). Despite this, Q-values were
accurate on an ordinal level in both situations, with the high
rewarding option associated with higher Q-values than the low
rewarding option.

Interestingly, the perseverative RL model with a single
learning rate was better able to accurately track the
true probability of reward, with Q-values falling much
closer to the true probability of reward for each option
(Figures 4E,F, blue lines).

DISCUSSION

We assessed the ability of mice to perform a probabilistic learning
task in a two lever operant chamber and determined that: (1) of
those animals able to reliably push both levers in the chambers,
all were able to “solve” the 80:20 probabilistic learning task,
and more than 80% of these animals were also able to reverse
under these contingencies; (2) some mice were able to discern
and show preference for the high rewarding lever with 70:30
reward contingencies, and a few were even able to solve the highly
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FIGURE 4 | Choice data and reinforcement learning model fits. (A) Maximum likelihood estimated parameter values of the Perseverative Dual Learning Rate model.
Points represent individual animal estimates. Bars represent cohort mean ±95% CI. (B) Individual differences between positive and negative reward prediction error
learning rates. Points represent individual animal parameter estimates. Joining lines indicate parameters coming from the same subject. While on average animals
had higher αneg than αpos learning rates, this was not apparent in all animals, with much greater variance in negative than positive learning rates. (C,D) Observed and
model predicted choices for example animals with high positive alpha (C) and high negative alpha (D) and best fitting models. Choice data were fit with the
perseverative reinforcement learning model (blue) and perseverative dual learning rate reinforcement learning model (red) and model predictions plot against the true
animal choices using 25-point moving average smoothing (black). Vertical lines indicate changes to reward contingencies. (E,F) Value estimates of reinforcement
learning models for example animal with high positive alpha (E) and high negative alpha (F). Value estimates of one lever from both the perseverative (blue) and dual
learning rate perseverative (red) models were plotted against the true probability of reward of that lever (black) over time. Vertical lines indicate changes to reward
contingencies.

complex 60:40 learning and reversal tasks; (3) a four parameter
RL model, incorporating learning from positive and negative
outcomes parameters αpos and αneg, softmax parameter β and
perseveration parameter δ, was best able to capture animal choice
behavior, while a simpler three parameter model with a single
α learning rate was able to estimate the true expected values of
options across different reward contingencies.

Of those animals capable of reliably pushing both levers in
the chambers, all were able to “solve” the 80:20 probabilistic
learning task, showing a robust preference for the high rewarding
lever after a mean of 14 daily sessions. Additionally, more
than 80% of these animals were able to suppress this learned
behavior in the 80:20 reversal learning task, showing an equally
strong preference for the new high rewarding lever after a mean
of 16.6 days. This suggests that mice are able to discriminate
reward values and perform PRL when rewards on both the
high and low value options are stochastic, although at a
much slower rate than rats and/or other species expected to
have greater cognitive capabilities. This in turn provides some
explanation as to why the performance of mice (Milienne-
Petiot et al., 2017) at traditional within-session PRL tasks
is so much lower than that of rats (Bari et al., 2010). In
within-session PRL tasks, subjects are required to develop and
switch preference on the order of 10s of trials, within a single
day session consisting of several hundred trials, while our
data suggests that mice require >1,000 individual trials to

develop these strong preferences and reversals, spread over many
separate 100 trial days.

Moving beyond the 80:20 reward contingencies, some mice
were able to discern and develop preference for the high
rewarding lever in the noisier 70:30 and even 60:40 reward
contingency environments (Figures 3C,D). This ability to
successfully develop preferences and reverse behavior under
the 60:40 reward contingencies is particularly impressive for a
number of reasons.

Firstly, it is substantially harder to discern which is the
high rewarding side between a 60% and 40% chance of reward
than 70%/30% or 80%/20%. Secondly, there is little drive to
inhibit the developed preference and explore the alternative
option when perseverating at the previously high option will
still net almost as many rewards as adapting behavior to the
new contingencies. To put this in context, previous progressive
ratio studies using saccharin have shown that mice will press a
lever upward of 20 times for a single saccharin reward (Beeler
et al., 2012), a much lower rate of rewarding than the 40% of
the low lever in these situations. It is also interesting to note
that there was no significant difference in the time taken to
acquire a preference for the high rewarding lever under the
different reward contingencies. Were our animals truly behaving
according to a RL strategy, we would expect to see acquisition of
preference in noisier environments like those in the 60:40 tasks to
take longer than in simpler environments like the 80:20 tasks.
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One possible explanation of this, is that animals are meta-
learning to reverse (that is, increasing task complexity being offset
by increasing subject experience/competence), as suggested by
Costa et al. (2015) in a monkey reversal learning task. However,
given that all our animals received the same reward contingencies
and in the same order in this experiment, further work would be
required to test these hypotheses.

Lastly, a four-parameter perseverative dual learning rates RL
model provided a good fit for choice data from individual
animals. Estimated parameters of this model suggest that mice
learn more rapidly following negative outcomes than positive
outcomes. The positive δ also provides some insight into animal
behavior, implying that mice are more likely to perseverate on
the same side for multiple trials than to swap from side to side
regularly. This δ is quite substantial, accounting for a ∼ 30%
increase in the probability of choosing the same option as the trial
before, if there was no difference in the expected value of both
choices. This drive to perseverate gives further reason as to why
mice struggle so much with traditional PRL tasks.

Another point of interest is to compare how these parameter
estimates differ from human subjects. A study examining the
effects of dopaminergic drugs in Parkinson’s patients and healthy
controls (Rutledge et al., 2009) fitted the same perseverative dual
learning rates RL model to data from humans performing a
dynamic foraging task and found that for healthy young adults
the best fitting parameters were αpos ≈ αneg ≈ 0.6, β = 1.73 and
δ = 0.39. While the human parameters show somewhat smaller
β and δ compared to mice, thus implying less noisy behavior
and less perseveration, the biggest difference is in the α ’s, with
the human parameter orders of magnitude greater than that of
a mouse, reflecting a much faster learning rate in humans than
mice, as expected.

In addition to providing a good fit to our data, the RL model
consisted of only a few, simple, yet highly informative parameters.
For example, an intervention which causes an increase in αpos
could be interpreted as increasing the salience of reward signals,
either by increasing the value of reward, or the rate at which
positively reinforced learning occurs, where an intervention
causing a decrease in δ might be interpreted as decreasing
compulsive, perseverative behaviors. Lastly, this model can serve
as an easily adaptable base on which to build other, more complex
models with additional parameters; for example an additional
updating step could, at the end of a session, help to explain
between-session memory consolidation, or a temporal shrinking
parameter within-session which might be useful in assessing
appetitive satiation/reward devaluation over the course of a
session (Isles et al., 2003; Rudebeck et al., 2013).

CONCLUSION

This study describes a novel, simplified variant of the PRL task
for mice. Rather than removing or simplifying the probabilistic
element of the task, we separate the initial discrimination
from the reversal learning component. We found that, unlike
in the traditional probabilistic learning tasks, mice were able
to both acquire an initial preference for a high rewarding

probabilistic option, as well as inhibit that acquired preference
and subsequently adapt to an altered reward state with very
close contingencies. Additionally, we show that RL models
provide an appropriate tool for examining choice behavior,
offering a framework for evaluating the effects of pharmacological
and other interventions on different aspects of probability and
reversal learning. However, it is likely that RL is not the complete
process governing animal behavior in these tasks as higher order
meta-learning or model-based learning processes may be in
action. Further experimentation utilizing repeated reversals with
the same reward contingencies, or alterations of the order of
reward contingencies given, would be required to investigate
this aspect further.
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