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Abstract: Wine aroma profiles are determinant for the specific style and quality characteristics of final
wines. These are dependent on the seasonality, mainly weather conditions, such as solar exposure
and temperatures and water management strategies from veraison to harvest. This paper presents
machine learning modeling strategies using weather and water management information from a
Pinot noir vineyard from 2008 to 2016 vintages as inputs and aroma profiles from wines from the
same vintages assessed using gas chromatography and chemometric analyses of wines as targets.
The results showed that artificial neural network (ANN) models rendered the high accuracy in the
prediction of aroma profiles (Model 1; R = 0.99) and chemometric wine parameters (Model 2; R =

0.94) with no indication of overfitting. These models could offer powerful tools to winemakers to
assess the aroma profiles of wines before winemaking, which could help adjust some techniques to
maintain/increase the quality of wines or wine styles that are characteristic of specific vineyards or
regions. These models can be modified for different cultivars and regions by including more data
from vertical vintages to implement artificial intelligence in winemaking.

Keywords: wine quality; machine learning modeling; weather

1. Introduction

Wine quality traits are difficult to assess in a rapid and objective way in vineyards, especially
before winemaking. Usually, quality assessments that are performed in the wine industry are related
to the acidity and sugar content in berries (Brix or Baume) to assess maturity [1,2]. However, this
assessment only gives information about the amount of alcohol and acidity in the final wine through
fermentation. Hence, berry sugars/acidity do not provide useful information on any other important
quality trait, such as the potential aroma profiles that could be obtained in the final wine.

Alcohol present in beverages has been found to have an effect on the perception of flavor and
aromas, as it aids in the release of volatile aromatic compounds [3]. Furthermore, higher alcohol
wines have been sometimes regarded as beneficial for the physicochemical expression of color and
other quality traits that impact their sensory evaluation [4]. However, increasing the alcohol content
in wines is a problem nowadays due to climate change, specifically global warming. Specifically,
higher temperatures are compressing phenological stages, resulting in earlier harvest during hotter
months around the globe [5–8]. This phenomenon produces a double global warming effect in
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grapevines, which can result in berry shrivel with the associated concentration of sugar in berries, and
the degradation of color and aroma compounds, which impact the sensory aroma and flavor profile of
final wines [7,9]. Recently, the assessment of mesocarp living tissue has been associated with quality
traits for different grapevine cultivars for winemaking [10]. Berry cell death starts around 90 days after
full bloom; it is a programmed cell death, which can be uncoupled from sugar accumulation and berry
shrivel (both exacerbated by higher temperatures) and can determine the final quality of wines, aroma
profile, and sensory appreciation [11,12]. Hence, there is a direct link between the seasonal weather
characteristics, which are mainly temperature expressed in thermal time (degree days) accumulated
over 10 ◦C and phenological stages occurrence and duration [13], berry cell death, wine quality, and
aroma profiles [11,12]. Furthermore, these berry quality traits can be manipulated using different
irrigation techniques, such as regulated deficit irrigation (RDI) [14–20] and partial rootzone drying
(PRD) [21–25].

Some methods using proximal remote sensing within the near-infrared (NIR) light spectrum
reflectivity have been developed to assess quality traits from berries in a non-destructive way. Some
applications have been implemented to assess the sugar content in berries [26,27], berry pigments [28,29],
phenolic compounds [30,31], and grape maturity in general [28,32–34]. However, since these techniques
are still manual, they cannot account for the natural intra-bunch and vineyard spatial variability,
requiring a huge number of measurements and modeling strategies to obtain meaningful results.

Other techniques have been developed thanks to recent advances in unmanned aerial vehicles
and remote sensing techniques to assess grape maturity, which can take into account within-vineyard
variability using high-resolution multispectral imagery analysis [35–37]. However, studies have
been limited to a few flights per season, and the indirect assessment of berry quality and maturity
may hamper results. Furthermore, associated costs for data acquisition, post-processing to obtain
orthomosaics, data analysis for classification, and thematic map production are still costly, requiring in
many countries licensed pilots and high data analysis power to obtain meaningful models.

This paper presents machine learning modeling strategies applying integrated vineyard weather
and irrigation management parameters as inputs and the aroma profiles as targets obtained from a
vertical wine library from a boutique vineyard. The results from this modeling strategy could offer an
important tool to winemakers to assess the aroma profiles for future vintages before winemaking. The
knowledge of potential aroma profiles of the final wine may allow making adjustments within the
winemaking to maintain or increase quality traits in the final wine to maintain a specific wine style
that is characteristic of the wine region or particular vineyard.

2. Materials and Methods

2.1. Study Area and Weather/Irrigation Management Data Acquisition

The study was conducted using weather and management data and wine samples from a vertical
wine library belonging to a commercial vineyard located at an elevation of 540 m.a.s.l in the South of
the Great Dividing Range of the Macedon Ranges in the sub-region of Romsey/Lancefield, Victoria in
Australia. The vineyard is situated at a distance from the mitigating influence of the ocean (Figure 1),
and the cultivars planted consist of 69% Pinot noir, 26% Chardonnay, and 5% Pinot gris, and use
mostly the lyre training system. The study was conducted for vertical vintages from 2008 to 2016 of
Pinot noir cultivars, and weather/irrigation management data were obtained from the same site for
each season. Information such as (i) solar exposure from veraison to harvest (V-H), (ii) solar exposure
from September to harvest (S-H), (iii) maximum January solar exposure (MJSE), (iv) degree days from
S-H (DD-S-H), (v) maximum January temperature (MJT), (vi) mean maximum temperature from V-H
(MeanMaxTV-H), and (vii) mean minimum temperature from V-H (MeanMinTV-H) was extracted
from the Bureau of Meteorology (BoM). Furthermore, the water balance (WB) was calculated using the
irrigation (I), rainfall (RF), and evapotranspiration (ETc) data using the following Equation (1):
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WB = I + RF(0.85) − ETc (1)

where WB = water balance; I = irrigation applied in megaliter (ML); RF = effective rainfall, considering
85% of the water is available to the plant, and ETc = crop evapotranspiration calculated using the
corresponding crop coefficient (Kc) for different phenological stages [14].

Figure 1. Aerial image of the study area obtained using an unmanned aerial vehicle (UAV) in the
2015–2016 growing season from a total area planted of 42 hectares.

2.2. Physicochemical Analysis

Wines from each vintage were analyzed in triplicates for the different physicochemical data
measured in this study. A volume of 20 mL of each wine sample was poured in a 60 × 15 mm Greiner
Bio-One Polystyrene Petri dish (item number 628102; Greiner Bio-One, Kremsmünster, Austria) and
placed on a white uniform surface. Color in CIELab and RGB scales was measured using a NIX Pro
color sensor (NIX Sensor Ltd. Hamilton, Ontario, Canada). The UV-Vis spectra from 380 to 780 nm were
acquired with a Lighting Passport Pro portable spectrometer (Asensetek Incorporation, New Taipei
City, Taiwan). To calculate color intensity, the absorbance of 420, 520, and 620 nm were summed, while
for color hue, the absorbance from 420 nm was divided by the value from 520 nm. Fifty mL of each
wine sample were used to determine liquid density (weight divided by volume), pH was determined
using a pH-meter (QM-1670, DigiTech, Sandy, UT, USA), total dissolved solids (TDS) and electric
conductivity (EC) were measured with a Yuelong YL-TDS2-A digital water quality tester (Zhengzhou
Yuelong Electronic Technology Co., Ltd, Zhengzhou City, Henan Province, China), salt concentration
was measured using a digital salt-meter (PAL-SALT Mohr, Atago Co., Ltd. Saitama, Japan), and alcohol
content using an AlcolyzerWine M alcohol meter (Anton Paar GmbH, Graz, Austria).
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2.3. Gas Chromatography–Mass Spectroscopy

A 5 mL sample of each wine replicate was poured into a 20 mL screw cap vial and sealed with an 18
mm magnetic screwcap with a polytetrafluoroethylene and silicone liner. These samples were analyzed
with the method proposed by Gonzalez Viejo et al. [38] using a high-efficiency gas chromatograph
with a mass selective detector 5977B (GC-MSD; Agilent Technologies, Inc., Santa Clara, CA, USA),
coupled with a PAL3 autosampler system (CTC Analytics AG, Zwingen, Switzerland). The GC-MSD
has a detection limit of 1.5 fg, and an HP-5MS column was attached (length: 30 m, inner diameter: 0.25
mm, film: 0.25 µ; Agilent Technologies, Inc., Santa Clara, CA, USA), while the flow rate was set to
1 mL min−1 of the carrier gas (Helium). Headspace with solid-phase microextraction (SPME) and a
divinylbenzene–carboxen–polydimethylsiloxane grey fiber (1.1 mm; Agilent Technologies, Inc., Santa
Clara, CA, USA) was used. Incubation time was set to 20 at 45 ◦C with a 5 min cycle and 1 min for
fiber conditioning (170 ◦C). Furthermore, the extraction time was set to 40 min with agitation. Two
blank samples were used, one at the start and one at the end to avoid any carryover effect. To identify
the volatile compounds, the National Institute of Standards and Technology library (NIST; National
Institute of Standards and Technology, Gaithersburg, MD, USA) was used. Only the compounds with
≥ 80% certainty were reported.

2.4. Statistical Analysis and Machine Learning Modeling

Data from weather, physicochemical, and aroma profile measurements were analyzed using a
customized code written in Matlab® R2019a (Mathworks, Inc. Natick, MA, USA) to assess significant
correlations (p < 0.05) between parameters were reported in a matrix. These data were also used to
develop machine learning models based on artificial neural networks (ANN) using an automated
code in Matlab® that tests 17 different training algorithms in a loop. The weather data related to (i)
solar exposure V-H, (ii) solar exposure from S-H, (iii) MJSE, (iv) DD-S-H, (v) MJT, (vi) MeanMaxTV-H,
(vii) MeanMinTV-H, and (viii) water balance were used as inputs for machine learning purposes.
Two models were developed using these inputs to predict (i) the peak area of nine volatile aromatic
compounds measured using the GC-MSD (Model 1) and (ii) 14 physicochemical measurements (Model
2). Both models were developed using normalized data (inputs and targets) from −1 to 1, and with
a random data division with 60% of the samples used for training with a Levenberg–Marquardt
algorithm, 20% for validation with a mean squared error performance algorithm, and 20% for testing
with a default derivative function. The number of neurons was defined by performing a trimming
exercise with three, five, seven, and 10 neurons, with 10 neurons giving the best models that contribute
to the absence of overfitting. The models consisted of a two-layer feedforward network with a
tan-sigmoid function in the hidden layer and a linear transfer function in the output layer (Figure 2).
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Figure 2. Artificial neural network model diagrams showing the inputs and target/outputs of (a) Model
1 to predict the aroma profile based on the peak area of volatile aromatic compounds, and (b) the
physicochemical data of Pinot noir wines.

3. Results

Table 1 shows the mean values of the weather data for the vintages with contrasting water balance
data (2011–2014). It can be observed that 2011 was the wettest season with the lowest solar exposure
and mean temperatures (MeanMaxTV-H and MeanMinTV-H), while 2013 was the driest with the
highest MJSE and solar exposure. Vintages 2012 and 2014 presented values in the mid-range.

Table 1. Mean values of weather data only for the contrasting vintages based on water balance.

Year

Solar
Exposure
(V-H; MJ

m2 −1)

Solar
Exposure
(S-H; MJ

m2 −1)

MJSE
(MJ

m2 −1)

DD-S-H
(days)

MJT
(◦C)

MeanMaxT
V-H (◦C)

Mean
MinTV-H

(◦C)

Water
Balance

(mm)

2011 15.6 19.1 24.6 1066.8 18.6 19.7 9.44 673.7

2012 17.9 20.2 26.3 1147.3 19.4 22.6 10.75 255.9

2013 21.8 21.8 28.9 1234.2 19.8 26.1 12.05 −117.5

2014 19.0 20.0 27.6 1223.7 20.3 25.8 11.31 −61.9

Abbreviations: V-H = veraison to harvest, S-H = September to harvest, MJSE = maximum January solar exposure,
DD = degree days, MJT = maximum January temperature, MaxTV-H = maximum temperature veraison to harvest,
MinTV-H minimum temperature veraison to harvest.

Table 2 shows the nine volatile compounds identified in all the wine samples tested and the
aromas associated with them. It can be observed from this table that most of the aromas are related to
fruity scents, especially apple, with two specific compounds (phenylethyl alcohol and ethyl laurate)
with floral and one (ethyl palmitate) with milky or creamy notes.
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Table 2. Volatile compounds identified using gas chromatography–mass spectroscopy and their
associated aromas.

Volatile Compound Aroma *

Ethyl hexanoate Apple/Green banana/Pineapple
Phenylethyl alcohol Rose/Bread/Honey

Diethyl succinate Cooked apple
Ethyl octanoate Apple/Banana/Pineapple

Ethyl nonanoate Cognac/Apple/Winey/Nutty
Ethyl-9-decenoate Fruity/Fatty/Roses
Ethyl decanoate Waxy/Apple/Grape

Ethyl laurate Floral/Soapy/Sweet
Ethyl palmitate Waxy/Fruity/Creamy/Milky

* The association between the volatile compounds and aromas were obtained from The Good Scents Company [39],
Genovese et al. [40], Arcari et al. [41], and Gonzalez Viejo et al. [38].

Figure 3 shows the significant (p < 0.05) correlations between the weather information, the aromas,
and physicochemical data. It can be observed that the solar exposure from September to harvest
was positively correlated with diethyl succinate (r = 0.90), while the degree days from September to
harvest was negatively correlated with ethyl-9-decenoate (r = 0.88). The MJT had a positive correlation
with phenylethyl alcohol (r = 0.82) and “b” (r = 0.88), and a negative correlation with “B”. The
MeanMaxTV-H was negatively correlated with ethyl-9-decenoate (r = −0.93) and color intensity (r =

−0.90), as well as positively correlated with color hue (r = 0.92) and “a” (r = 0.84). On the other hand,
the MeanMinTV-H had a negative correlation with ethyl hexanoate (r = −0.93), TDS (r = −0.90), and
EC (r = −0.90). Water balance was positively correlated with ethyl-9-decenoate (r = 0.93) and color
intensity (r = 0.90), and negatively correlated with color hue (r = −0.95) and “a” (r = −0.86). Mean
values of the aromatic volatile compounds and physicochemical data are shown as supplementary
material in Table S1.

Figure 3. Matrix showing only the significant correlations (p < 0.05) between the weather and
physicochemical data and volatile aromatic compounds of Pinot noir wines of vintages from 2008 to
2016. Abbreviations: TDS = total dissolved solids, EC = electric conductivity, V-H = veraison to harvest,
S-H = September to harvest, MJSE = maximum January solar exposure, DD = degree days, MJT =

maximum January temperature, MaxTV-H = maximum temperature veraison to harvest, MinTV-H
minimum temperature veraison to harvest.
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In Table 3, the statistical results from the ANN models are shown. Model 1 had an overall high
correlation coefficient (r = 0.99) with similar results for all stages (training, validation, and testing; r >

0.97) to predict the peak area of nine volatile aromatic compounds (Table 2). From the performance,
it can be observed that both validation and testing mean square error (MSE) values were the same
(MSE = 0.03), and the training had a lower result (MSE = 0.003), which contributes to the absence of
overfitting of the model. Furthermore, the slope (b) for all stages and the overall model was close
to the unity (b = 0.97). On the other hand, Model 2 had an overall correlation r = 0.94 to predict 14
physicochemical parameters (Figure 2b). The slopes from the models of the three stages were high
enough (b > 0.83) with an overall model b = 0.90. Similar to Model 1, the performance of the training
stage from Model 2 was lower (MSE = 0.02) than the validation and testing stages, with the last two
presenting similar results (MSE = 0.05 and MSE = 0.06; respectively).

Table 3. Statistics from the artificial neural network models to predict the aroma profile based on the
peak area of volatile aromatic compounds (Model 1) and the physicochemical data (Model 2) from
Pinot noir wines.

Stage Samples Observations R Slope (b) Performance (MSE)

Model 1

Training 40 360 0.99 0.98 0.003

Validation 13 117 0.97 0.98 0.03

Testing 13 117 0.97 0.92 0.03

Overall 66 594 0.99 0.97 /

Model 2

Training 40 560 0.96 0.91 0.02

Validation 13 182 0.93 0.83 0.05

Testing 13 182 0.90 0.94 0.06

Overall 66 924 0.94 0.90 /

Abbreviations: R = correlation coefficient and MSE = mean square error.

Figure 4a shows the overall Model 1 to predict the aroma profile based on the peak area of volatile
aromatic compounds of Pinot noir wines. From the 95% confidence bounds, only 1.01% of outliers
(six out of 594) were found. On the other hand, Figure 4b depicts the overall Model 2 to predict
the physicochemical data of the wines. Regarding the 95% prediction bounds, the model presented
3.25% (30 out of 924) of outliers. For both models, several retraining attempts were performed,
obtaining similar results to those presented in Table 3 and Figure 4. When feeding these models with
new data, the outputs values are given normalized from −1 to 1; however, the reverse function for
normalization in Matlab® R2019a (Mathworks Inc., Natick, MA, USA) provides the actual values in
the corresponding units.
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Figure 4. Overall artificial neural network models to predict (a) the aroma profile (Model 1) and (b)
the physicochemical parameters of Pinot noir wines (Model 2), both using the weather data as inputs
(Figure 2). The models show the observed (x-axis) and predicted (y-axis) data as well as the 95%
confidence bounds.

4. Discussion

The physicochemical parameters assessed in this study have been associated with wine quality by
other authors. Aromas and color-related parameters are some of the factors that have been the most
associated with wine quality [42,43]. Sáenz-Navajas et al. [44] found that there is a relationship between
red wine color and the quality perception from consumers and concluded that darker wines with higher
red and lower yellow values were rated as higher quality. Jackson et al. [42] reported a significant and
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positive correlation between both pH and color and overall wine quality. The importance of TDS, EC,
and salt measurements rely on the fact that these are an approach to minerals content [45], which are
important in wine quality, as the minerals present in wine have been related to those present in the soil,
and these have been associated with the wine’s nutritional composition and safety [46].

There was a significant variability within the vintages and the particular region in Victoria analyzed
in this study. The extremes can be considered for low-quality wines produced in the 2010–2011 vintage
due to heavy rains before harvest, which negatively affects the quality traits in berries and wine [47,48];
this low-quality assessment was obtained from anecdotal information from points received in those
particular years and the sensory analysis conducted by the vineyard studied. On the contrary, dry
seasons were found for example in 2013–2014 and 2014–2015, with increased berry quality traits that
were passed to the respective wines. The latter were mainly due to some control of the water received
by plants from irrigation and water deficits. These differences contribute to the robustness of the
machine learning models found, which presented no indication of overfitting with high precision in
the prediction of the peak area of volatile aromatic compounds (Model 1) and physicochemical wine
characteristics (Model 2).

The effects of solar exposure and canopy architecture (which is dependent on water balance) on the
aroma profiles of wines have been previously reported, and they are consistent with the data presented
in Figure 3. Specifically, these effects manifest through the influence of the microclimate within
bunches [49], phenolic compounds [50,51], and the flavonol profile [52]. Due to the direct effect of
bunch exposure to radiation in the aroma profiles obtained in wines, researchers have investigated the
effect of defoliation as a management strategy to increase berry quality and aroma traits, which depends
on the cultivar, timing of defoliation, and climatic region [53–60]. These researches demonstrate the
importance of fruit exposure to solar radiation and microclimate conditions that are favorable to the
development of berry quality traits.

As previously mentioned, seasonal temperatures not only influence the occurrence and length of
different phenological stages in grapevines, such as budbreak, flowering, berry set, pea size, veraison,
and harvest, but also the chemical and aroma composition of berries. Of critical importance is the
influence of weather parameters, such as temperature [61–64], and water availability from veraison
onwards in red cultivars, which is determinant to the final wine quality and aroma profiles. Several
studies have focused on the pre and post veraison phenological stages for irrigation treatments to
increase berry and wine quality traits, especially in red cultivars [65–69].

For machine learning modeling, it has been demonstrated that the implementation of important
parameters as inputs that directly influence the targets proposed render more robust models in contrast
to the usage of raw data. Based on calculated parameters rather than raw data inputs, there are recent
studies implementing machine learning to assess beer quality [70–72], interpret remote sensing data
for plant water status assessment in vineyards [73], chocolate quality assessment by consumers using
NIR [74], and aroma profiles in cocoa trees based on canopy architecture parameters [75]. In this study,
relevant parameters from weather conditions, management strategies, and physicochemical parameters
of wines were obtained and considered as inputs in the machine learning modeling, which can explain
the high accuracy obtained for the predictions of Models 1 and 2 without signs of overfitting.

The use of ANN for modeling has the advantage of being able to use multiple targets, which
makes the models more efficient. This is due to the easiness of feeding only one model to obtain
all the output data instead of having to add the new inputs to several single-target models. Several
studies related to food and agriculture have used this type of machine learning algorithms with high
performance and accuracy [38,71,72,75–77].

The technique proposed considers the readily available weather information from vintages close
to the vineyards and a vertical vintage library, which most wineries can obtain easily. The models
developed assume that the vineyard management is consistent throughout the seasons, including
the winemaking techniques and yeast used. The implementation of these models to other cultivars,
environments, and regions will need the incorporation of further site-specific data as inputs and wine
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chemical and aroma profile analysis from available and contrasting vintages. The latter benefit from
the learning aspect of the models proposed, which does not require a full development of new analyses
for different regions.

5. Conclusions

Artificial intelligence techniques can be implemented in the wine industry from readily available
weather and management practices data to assess quality traits in final wines. Modeling strategies
using artificial neural networks developed for particular regions can be implemented for other cultivars,
environments, and regions by including extreme values from their respective vintages. High accuracy
models to determine the aroma profile of wines before the winemaking process can offer a powerful
tool to growers and winemakers for the decision making in the vinification process to maintain or
increase wine quality and styles. Further research is required to adapt these techniques to canopy
management strategies and within-season modeling that can be implemented in real-time within the
season to manipulate the final wine and aroma profiles to specific targets using management strategies,
such as canopy, fertilization, and irrigation management.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/1/33/s1,
Table S1: Means and standard error (SE) of the volatile aromatic compounds and physicochemical parameters of
the wined from each vintage.
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