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A B S T R A C T

Resting-state functional connectivity MRI (rs-fcMRI) is a non-invasive imaging technique that has come into increasing use to understand disrupted neural network
function in neuropsychiatric disease. However, despite extensive study over the past 15 years, the development of rs-fcMRI as a biomarker has been impeded by a
lack of reliable longitudinal rs-fcMRI measures. Here we focus on longitudinal change along the Alzheimer's disease (AD) trajectory and demonstrate the utility of
Template Based Rotation (TBR) in detecting differential longitudinal rs-fcMRI change between higher and lower amyloid burden individuals with mildly impaired
cognition. Specifically, we examine a small (N=24), but densely sampled (~5 observations over ~3 years), cohort of symptomatic individuals with serial rs-fcMRI
imaging and PiB-PET imaging for β-amyloid pathology. We observed longitudinal decline of the Default Mode and Salience network axis (DMN/SAL) among
impaired individuals with high amyloid burden. No other networks showed differential change in high vs. low amyloid individuals over time. The standardized effect
size of AD related DMN/SAL change is comparable to the standardized effect size of amyloid-related change on the mini-mental state exam (MMSE) and hippocampal
volume (HV). Last, we show that the AD-related change in DMN/SAL connectivity is almost completely independent of change on MMSE or HV, suggesting that rs-
fcMRI is sensitive to an aspect of AD progression that is not captured by these other measures. Together these analyses demonstrate that longitudinal rs-fcMRI using
TBR can capture disease-relevant network disruption in a clinical population.

1. Introduction

Network sensitive imaging techniques, especially resting state
functional connectivity MRI (rs-fcMRI), have become increasingly im-
portant tools to investigate the pathophysiology of neurodegenerative
and psychiatric diseases. In the case of Alzheimer's disease (AD), initial
reports of decreased default network connectivity in sporadic, late-
onset AD (LOAD) have been replicated across a wide spectrum of im-
pairment (Buckner et al., 2009, 2008; Greicius, 2013; Greicius et al.,
2003; Hedden et al., 2009; Seeley et al., 2009; Sorg et al., 2007;
Sperling et al., 2009; Supekar et al., 2008). In addition to LOAD, de-
creased default network connectivity has also been well-described in
early onset AD (EOAD; (M. Lehmann et al., 2013)) and genetically-
driven, autosomal dominant AD (ADAD; (Chhatwal et al., 2018b;
J.P. 2013; Thomas et al., 2014). More recent studies that examine
multiple networks in the same sample suggest that the degradation of
the default network across the spectrum of AD is accompanied by de-
creased connectivity in a subset of other networks, particularly the

salience, dorsal attention, and control networks (Chhatwal et al.,
2018b; Thomas et al., 2014), and that the variation in clinical pre-
sentation in AD corresponds to variations in networks targeted by the
disease process (Lehmann et al., 2015; M. 2013; Ossenkoppele et al.,
2015). Importantly, several reports have closely linked connectivity in
AD-targeted networks to memory performance (Chhatwal et al., 2018a;
Fjell et al., 2016, 2015; Gilmore et al., 2015; Salami et al., 2016;
Shaw et al., 2015; Staffaroni et al., 2018; Ward et al., 2014), suggesting
that rs-fcMRI may provide an intermediate measure linking AD pa-
thology to cognitive decline.

However, despite relatively consistent findings of altered rs-fcMRI
in AD using multiple analytic methods and cohorts, the development of
rs-fcMRI metrics as usable biomarkers in clinical and translational re-
search settings has been slowed by difficulties with measurement re-
liability and longitudinal rs-fcMRI analysis. Owing to a variety of
analytic and technical obstacles, reports of longitudinal fcMRI have
been fairly few in number, with many focusing on age-related long-
itudinal change (Fjell et al., 2015; Ng et al., 2016; Persson et al., 2014;
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Salami et al., 2016; Staffaroni et al., 2018). With respect to AD, long-
itudinal reports of rs-fcMRI changes over time (Deng et al., 2016;
Hafkemeijer et al., 2017; Serra et al., 2016; Wang et al., 2012;
Zhan et al., 2016) have not specifically assessed how the presence and
amount of β-amyloid (Aβ) pathology relate to longitudinal network
degradation, an omission which is particularly problematic given that
elevated Aβ is one of the defining neuropathologic features of AD. In
the present report, we begin to address these issues by leveraging a
sample of mildly-impaired older adults followed with longitudinal rs-
fcMRI and with available PiBPET to assess fibrillar Aβ burden. This
clinically relevant group has been followed closely with longitudinal
cognitive measures; Mini Mental State Exam (MMSE) and Clinical De-
mentia Rating (CDR), as well as structural MRI, allowing us to place rs-
fcMRI changes in the context of commonly used clinical measures and
imaging biomarkers. This cohort (N=24) has the additional advantage
that rs-fcMRI was assessed on a relatively frequent basis during long-
itudinal follow-up, with the median participant having 5 available rs-
fcMRI sessions over approximately 3 years of follow-up.

We utilize template based rotation (TBR) and the network templates
derived from (A.P. 2014), in which we have previously demonstrated:
cross-sectional relationships between functional connectivity in cogni-
tive networks and cognitive performance (Shaw et al., 2015); an asso-
ciation between baseline rs-fcMRI and longitudinal decline on the
preclinical Alzheimer's disease cognitive composite (PACC), particu-
larly in high Aβ individuals (Buckley et al., 2017); AD specific profiles
of network disruption (Chhatwal et al., 2018b); cross-sectional re-
lationships to Aβ and tau pathology in cognitively normal elderly
(Schultz et al., 2017); and sensitivity to manipulation of the cholinergic
system with scopolamine, including a strong relationships between
change in rs-fcMRI and subsequent changes to mnemonic memory
performance (Chhatwal et al., 2018a). In addition to the standard
network descriptions from A.P. Schultz et al. (2014), which include an
anti-correlated default mode and salience networks, we also include
new template maps for independent default mode and salience net-
works.

Using this densely-sampled cohort, we test for difference in long-
itudinal rs-fcMRI change between low and high Aβ subjects. We then
compare the fcMRI results to MMSE and hippocampal volume in order
to compare the size and independence of the rs-fcMRI effects.

2. Methods

2.1. Participants

24 participants (Female= 6 (25%), age range= 65–83 years) un-
derwent multiple longitudinal structural and resting-state functional
MRI (rs-fcMRI) scans, as well as a Pittsburgh compound B positron
emission tomography (PIB-PET) scan during the course of the study. All
participants completed the Mini-Mental State Examination (MMSE) and
the Clinical Dementia Rating scale (CDR). To be included in this study,
participants were required to possess at least four rs-fcMRI scans (one
completed four scans, twelve completed five scans, three completed six
scans, and eight completed seven scans; median=5 scans) over a
period of approximately 3 years. The mean follow-up period was 2.75
years (± 5 months, minimum=1.6 years, maximum=3.2 years) for a
total of 138 observations across the 24 participants. MRI scans were
obtained at baseline, 3-months, 6-months, 12-months, 18-months, 24
months, and 36 months, though resting state fMRI data was not col-
lected at every session. For the sample being used here, we have 15
baseline observations, 20 at 3-months, 16 at 6-months, 24 at 1 year, 23
at 18-months, 19 at 24 months, and 20 at 36 months (see Fig. 1). For
subjects without an fcMRI measure at baseline, the zero time was set as
the first resting state fMRI scan.

Additionally all 24 participants were required to demonstrate
clinically-significant cognitive impairment during the study period.
None of the participants were clinically demented at baseline, and met

ADNI criteria for MCI at the first instance of CDR 0.5. Accordingly,
participants were required to have a baseline global CDR of 0.5
(N=22) or have progressed to a global CDR of 0.5 (N=2) by the end
of the study. These 24 subjects were then stratified according to their
level of Aβ burden using previously published PiB-PET thresholds (see
below). Using this approach, 12 participants were categorized as low-
Aβ and 12 as high-Aβ. Six of the subjects were APOE ε4 carriers, 11
were ε4 negative, and 7 did not receive APOE genotyping. Baseline
demographics, including breakdowns by Aβ status can be found in
Table 1.

2.2. Standard protocol approvals, registrations and patient consents

Study protocols were approved by the Partners Healthcare
Institutional Review Board, and all participants provided written in-
formed consent prior to the completion of any study procedures.

Fig. 1. The timing of fcMRI data collection over a three-year period is shown
for each subject.

Table 1
Demographics table showing the whole sample and the sample split by amyloid
status. Variables in bold font show a significant difference between low and
high amyloid groups, namely low-PiB subjects have an average MMSE score 1.6
points higher, and on average have four months longer follow-up. All non-ca-
tegorical variables are shown as means± 1 standard deviation.

All Low PiB < 1.186 High Pib > 1.186

N 24 12 12
Age 75.6 ± 5.3 74.0 ± 6.1 77.3 ± 4
Aβ Status 12 low PiB / 12

high PiB
1.04 1.73

Sex 6F / 18M 3F / 9M 3F / 9M
Education(Years) 16.2 ± 2.6 16.2 ± 2.4 16.2 ± 2.8
MMSE 27 ± 2 28.0 ± 1.3 26.4 ± 2.1
Follow up

(Years)
2.75 ± 0.43 2.92 ± 0.14 2.57 ± 0.54
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2.3. MR imaging

MR images were collected on a 3T Trio Tim scanner (Siemens
Medical Systems, Erlangen, Germany) using 12-channel phased-array
head coil. Head motion was restrained with extendable foam-padded
clamps. Earplugs and noise-reduction headphones were used to at-
tenuate scanner noise.

2.3.1. Structural MRI
Acquisition of structural images consisted of a T1-weighted

MPRAGE (160 sagittal slices, with TR=2.3 s, TE=2.98ms, inversion
time=900ms, flip angle= 9°, FOV=256×240, ma-
trix= 256×240, voxel size= 1×1×1.2mm). Structural images
were processed using FreeSurfer v5.1.

2.3.2. Functional MRI
Functional data were acquired using a gradient-echo-planar pulse

sequence (EPI) sensitive to BOLD contrast using the following para-
meters: TR=2000ms, TE= 30ms, flip angle= 90°, 64×64 matrix,
FOV=200mm, with 3.125 3.125 5 skip 1mm voxels. Thirty inter-
leaved coronal oblique slices aligned perpendicular to the anterior-
posterior commissural plane covered the whole brain. Functional
images were acquired in one 6.5 min run of 195 time points at each
visit. A cross-hair was projected on a screen at the head of the bore,
visible to participants during the scan via a mirror attached to the head
coil. Instructions were to lie still, remain awake, and keep eyes open.

All resting state data were processed using SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/). Each run was slice-time corrected, followed by a
single realignment and coregistration across all timepoints, where each
volume was realigned to the first volume of each run, then realigned to
the first session. This was followed by a second pass realignment to the
mean EPI image across all sessions. The mean-across-time EPI image
was then directly normalized to MNI space using the SPM12 unified
segmentation and normalization routine (Calhoun et al., 2017) and
then applied to the data. Spatial normalization to template space was
followed by spatial smoothing with a 6mm FWHM Gaussian kernel,
followed by removal of temporal frequencies below 0.08 Hz, and tem-
poral z-scoring of each time course.

Functional connectivity measurements were made using Template
Based Rotation (TBR (A.P. Schultz et al., 2014)). Briefly, TBR works by
mapping variance from a given subject's fMRI run to a set of a priori
template maps. Template maps are derived from a large outside sample.
The process produces a least squares fit to the template maps via a
weighted linear summation of functional volumes. The weights asso-
ciated with each functional volume can be interpreted as a time series
that best recapitulates the spatial pattern in the templates. Full details
can be found in A.P. Schultz et al. (2014).

Measures were derived for the following cognitive networks:
Default Mode (DMN) / Salience (SAL), Dorsal Attention (DAN),
Frontoparietal Control (Left/Right FPCN), and the Motor network using
the network templates from A.P. Schultz et. al. (2014). Having the DMN
and SAL in a single component means that both networks are re-
presented with a single variance component that is positively correlated
with DMN regions and negatively correlated with SAL regions. This,
however, leaves open the possibility of variance components that are
shared across DMN regions and orthogonal to SAL regions and vice
versa. To address this issue, we also included two additional compo-
nents (Fig. 2) derived using the same data and methods, except without
row-based normalization. This resulted in separate components for the
DMN and SAL (see A.P. Schultz et al. (2014) for details about row-based
normalization and the derivation of the template maps). Fig. 2 shows
the separate DMN and SAL templates as well as the combined DMN/
SAL template used for the main analyses. The addition of these two
additional templates allows us to more directly assess differences be-
tween DMN and SAL networks relative to a unitary DMN/SAL network
axis. Detailed depictions of the other template maps can be found in

(A.P. Schultz et al., 2014 and Chhatwal et al., 2018). Template maps
and relevant code for TBR are publicly available at mrtools.mgh.har-
vard.edu. TBR connectivity measures for each session and each network
were calculated by using a spatial correlation to compute the similarity
of the connectivity map from each fcMRI session to the template map.
One time-point from one subject was dropped due to abnormally low
connectivity measures, both with respect to the subject and with respect
to the sample as a whole. Manual inspection of the scan revealed no-
table spatial artifacts.

As with spatial group independent component analysis (ICA), when
using TBR there is no explicit requirement to clean data (Power et al.,
2014) (e.g. motion correction, data scrubbing, nuisance regression) in
advance of analysis (A.P. Schultz et al., 2014). ICA can be written in
matrix algebra as IC= X•M where IC is the independent components
(m-voxels by n-components), M is the unmixing matrix (m-volumes by
n-components), and X is the empirical data (m-voxels by n-volumes).
Starting with only X, M must be discovered which then provides IC. If IC
is already known, then the derivation of M is a straightforward alge-
braic problem that can be solved as M= X− 1•IC, which is precisely the
TBR formulation (where X− 1 is the pseudo-inverse of the matrix X).
The only assumption is that a given IC, derived on an independent
dataset, is a sufficiently close approximation to a true source in X, and is
independent of nuisance variance sources. This provides TBR with an
implicit ability to perform blind source/signal separation even when
not explicitly modeling all sources. Additionally, prior work strongly
suggests that nearly all approaches to cleaning fMRI data result in lower
measurement reliability (Shirer et al., 2015), a potentially critical
problem in longitudinal analyses. Given the focus here on longitudinal
change in fcMRI measures and the inherent source/signal separability
of TBR, we minimized data cleaning as much as possible to avoid di-
minished measurement reliability as a source of spurious within-subject
variability across time.

2.4. PET imaging

Acquisition of 11C Pittsburgh Compound B PET data has previously
been described in detail (Becker et al., 2011; Johnson et al., 2007;
Sperling et al., 2009). In brief, PiB PET images were acquired with an
8.5 to 15 mCi bolus injection followed by a 60-minute dynamic ac-
quisition in 69 vol (12× 15 s, 57×60 s). PET data were reconstructed,
attenuation corrected, scatter corrected, and evaluated for excessive
head motion. Data from the first 8 min post injection was used to co-
register the data to the T1 image for each subject using a 6 DoF rigid
body registration. A summary distribution volume ratio (DVR) com-
puted with Logan plotting was derived from a target region composed
of frontal, lateral and retrosplenial tracer uptake (FLR) and a cerebellar
grey reference region. The regions comprising the FLR are known to
show elevated PiB binding in AD dementia patients (8). The cutoff of
PiB FLR DVR>1.186 for Aβ positivity was derived on a reference
sample using Gaussian mixture modeling as previously described
(Mormino et al., 2014a; E.C. 2014b).

2.5. Clinical measures

The MMSE (Folstein et al., 1975) and CDR (Morris, 1993) were
obtained annually at baseline, 12-months, 24 months, and 36 months.
Due to missing observations relative the MRI acquisitions, intermediate
measures for MMSE were temporally imputed to align with MRI data.
Within subject temporal imputation utilized resampling with a shape
preserving piecewise cubic spline interpolation.

2.6. Analyses

Analyses were performed using linear mixed effects (LME) models
using the fitlme routine in the MATLAB 2018b statistics package using
default settings. Subject level random effects for both intercept
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(subject) and slope (time) were included in all LME models. Models
were constructed to ascertain the relationship of baseline Aβ to long-
itudinal change in rs-fcMRI networks. The primary effect of interest was
the PiB•time interaction term. We chose to use PiB-PET as a continuous
measure rather than dichotomizing, and time was based on the dates of
the MRI acquisitions with 0-time set as the first rs-fcMRI scan. To
control for spurious and confounding effects we included between-
subjects covariates for age, sex, and years of education, including in-
teractions with time. We also included time-varying estimates of subject
motion, time-varying cortical gray matter volume, and time-varying
intracranial volume to correct for variability in the FreeSurfer recons,
gross differences in head size, and cortical atrophy. Subject motion was
computed as the average framewise displacement across the functional
run. To achieve this we computed the Euclidean distance between the
origin of each frame as estimated by the realignment procedure, and
then computed the average distance moved between frames. Due to
between subject distributions of motion tending towards positive skew,
these measures were log-transformed to generate normal distributions.

Our dependent variables included multiple fcMRI networks in-
cluding the default mode with anti-correlated salience network (DMN/
SAL), DMN, SAL, the dorsal attention (DAN), left and right frontopar-
ietal control networks (rFPCN and lFPCN), primary visual (VIS), and
motor (MOT) networks. To help contextualize the results, and to in-
vestigate whether fcMRI signal was capturing a unique channel of in-
formation, we also performed analyses using longitudinal hippocampal
volume (HV), and longitudinal MMSE. Raw data plots (as a function of
age) depicting the data being modeled are shown in Fig. 3 for the DMN/
SAL (Fig. 3A), DMN (Fig. 3B), MMSE (Fig. 3C), and HV (Fig. 3D).

3. Results

3.1. Effect of Aβ on longitudinal change in fcMRI network strength

The only network to show a significant PiB•Time effect was the
DMN/SAL network where we observed that higher PiB-PET signal is
associated with a greater rate of decline in DMN/SAL network co-
herence (t(125)=−3.15 p=0.002; Fig. 5A), indicating that the DMN
and SAL networks are becoming less coordinated and more orthogonal.
Left and Right FPCN both showed trend level effects (lFPCN: t
(125)=−1.89, p=0.063. rFPCN: t(125)=−1.65, p=0.102). Nei-
ther the DMN alone (t(125)=−1.02 p=0.310; Fig. 5B) nor SAL alone
(t(125)=−1.25, p=0.213) showed a significant effect on their own,
suggesting that incorporating the strength of inter-network connections
between the DMN and SAL improves the ability to detect change along

an AD trajectory. Standardized β estimates with error bars for all de-
pendent variables are shown in Fig. 4.

3.2. Effect of Aβ on longitudinal change on MMSE and Hippocampal
Volume

To contextualize the size of the DMN/SAL effect, we also ran the
same model using an established AD clinical measure, the MMSE, and
an established imaging marker of AD neurodegeneration, hippocampal
volume (Fig. 4). The MMSE showed a significant PiB•Time effect (t(125)
= −2.56, p=0.012; Fig. 5C), as did hippocampal volume (t
(125)=−3.49, p < 0.001; Fig. 5D). These values correspond to a
Cohen's D of 0.56 for DMN/SAL, 0.46 for MMSE, and 0.62 for hippo-
campal volume, where 0.2 is considered a small effect, 0.5 a medium
effect, and 0.8 a large effect.

3.3. Does longitudinal variance in DMN/SAL fcMRI overlap with MMSE or
HV?

To address this question we re-ran the longitudinal LME from above
with DMN/SAL fcMRI as the dependent variable and then added time-
varying MMSE and HV as covariates in the model. The PiB•Time effect
on longitudinal DMN/SAL fcMRI remained largely unchanged (t
(123)=−2.98, p=0.003, D=0.53), and we did not observe sig-
nificant relationships with either MMSE (t(123)= 0.42, p=0.672) or
HV (t(123)=−0.70, p=0.483), indicating the DMN/SAL fcMRI me-
tric captures an aspect of disease progression not represented in these
commonly used measures of cognition and neurodegeneration.

3.4. Effects on DMN/SAL fcMRI with reduced covariates

Due to concerns with nuisance variance and confounding factors we
took a conservative approach to controlling for potentially confounding
sources of variance. The models utilized here included time-varying
motion, time varying cortical volume, and time varying intracranial
volume. Additionally, we controlled for between subject variance in
age, sex, and education (including interactions with time). As such we
also wanted to report results from the simplified model: DMN ~
PiB•Time+ (Time|Subject). As expected without the additional cov-
ariates the PiB•Time effect was more robust (t(134)= 4.02, p < 0.001,
D=0.69).

Fig. 2. To assess rs-fcMRI in DMN and
SAL independently, we generated an
alternate template set by omitting row-
based normalization. This approach
yielded separate maps for the DMN and
SAL. The top row shows a surface pro-
jection of the independent DMN com-
ponents. The middle row shows a sur-
face projection of the independent SAL
component. The third row shows the
combined DMN/SAL template from
A.P. Schultz et al., 2014.
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4. Discussion

We observed that progressive degradation of the coordinated
Default-Salience network axis over a three-year period distinguished
high from low Aβ clinically impaired individuals during longitudinal
follow-up. Further, we observed that DMN/SAL network measurements
which incorporate both within and between network connectivity were
superior to measures that only assessed within-network change in the
DMN or SAL. No other network showed a significant relationship be-
tween Aβ burden and longitudinal change of functional connectivity.
The effect of Aβ burden on longitudinal change of DMN/SAL network
coherence was similar in effect size to change in hippocampal volume
and MMSE, and the DMN/SAL effect was nearly fully independent of
change on both the MMSE and hippocampal volume. This suggests that
DMN/SAL rs-fcMRI is capturing a unique channel of information re-
garding AD progression that is not reflected in hippocampal volume or
MMSE.

Of the prior reports on longitudinal rs-fcMRI, our results are most
comparable with Zhan et al., 2016, where inter-network correlation
between the DMN and SAL was disrupted, particularly in the early MCI
cohort. The significant PiB•Time effect for the DMN/SAL is also con-
sistent with prior reports using this DMN/SAL network template
(Buckley et al., 2017; Chhatwal et al., 2018a, 2018b; Schultz et al.,
2017; A.P. 2014; Shaw et al., 2015). However, with the exception of
Schultz et al., 2017 (where relationships with markers of AD molecular
pathology were limited to the DMN and SAL), these other reports all
found significant effects with other networks in addition to the DMN/
SAL, especially the Left/Right FPCN. Perhaps owing to sample size,
significant findings in the present report were only observed with re-
spect to the DMN/SAL axis, with FPCN changes at a trend-level. It re-
mains to be seen whether the DMN/SAL effect is particular to the AD
pathological cascade or if it is simply a consequence of more stable

Fig. 3. Depiction of raw longitudinal data by age. Each subject is depicted with a single line. Low-PiB subjects are shown in grey with triangle markers. High-PiB
subjects are shown in black with circular markers. Panel A (upper-left) shows the raw longitudinal data for the DMN/SAL network component which showed a
significant PiB•Time effect. Panel B shows the independent DMN component which did not show a significant PiB•Time effect. Panel C shows the longitudinal data for
the MMSE, and Panel D shows the longitudinal data for Hippocampal Volume.

Fig. 4. Standardized beta coefficients with 95% confidence intervals for the
PiB•time effect. Each measure was used individually as a dependent variable in
a longitudinal LME model assessing the effects of amyloid burden over time.
Only DMN/SAL, HV, and MMSE showed significant effects (p < 0.05), though
the left and right FPCN were observed as trend level effects. All significant
effects survived multiple comparison correction.
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longitudinal measures or modestly increased power relative to other
network measures.

Though more work is needed to further develop maximally sensitive
connectivity metrics, these results are promising for fcMRI as a long-
itudinal marker. This is especially intriguing given that many current
and upcoming clinical trials are collecting resting state fMRI data for
use as an exploratory secondary outcome measure, providing fertile
ground for further development of fcMRI as an AD biomarker.

The results presented are best understood in the context of several
important limitations. First, these results are from an early symptomatic
cohort; it remains to be seen whether these results will translate to
earlier preclinical stages of Alzheimer's disease. Second the sample size
is relatively small, consisting of 24 subjects. Accordingly, the observed
effect sizes should be interpreted with caution and replication in other
samples will be important to confirm these results. It should also be
noted the small sample size is compensated by an average of 5 ob-
servations over approximately three years. This dense sampling makes
this a unique cohort relative to most currently published reports on
longitudinal functional connectivity. Third, prior work strongly sug-
gests that tau pathologic burden may be more tightly correlated with
cognitive impairment as compared to Aβ burden. The lack of tau-PET
imaging in the sample studied here leaves open several questions re-
garding the link between tau pathology and change in the DMN/SAL
fcMRI that will need to be addressed in future studies.

We find these results encouraging for the use of fcMRI as a long-
itudinal measure of Aβ related pathological change. While rs-fcMRI is
not without flaws, it remains a powerful technique for observing and
measuring brain function in-vivo, provides a good balance of spatial and
temporal resolution, uses no ionizing radiation, and is relatively low
cost. This is especially true in the context of clinical trials where MRI is
needed for safety monitoring, and structural MRI is used for processing
of other modalities such as PET imaging. The addition of rs-fcMRI adds
very little additional subject burden and is being acquired in many
current and upcoming clinical trials. Although rs-fcMRI has shown

promise as a functional brain measure, it has yet to fulfill its potential as
a clinically useful measure for AD and other neurodegenerative dis-
eases. This is largely due to relatively poor measurement reliability
which is a product of both the high degree of dynamicity inherent to
fMRI, coupled with multiple sources of nuisance variance and mea-
surement noise. Our findings support the further development of rs-
fcMRI as an AD biomarker and, more broadly, suggests that rs-fcMRI
may be usable as an exploratory outcome measure in neuropsychiatric
disease clinical and translational research.
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