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Abstract: Patients with glioblastoma (GB), a highly aggressive brain tumor, have a median survival
of 14.6 months following neurosurgical resection and adjuvant chemoradiotherapy. Quiescent GB
cancer stem cells (CSCs) invariably cause local recurrence. These GB CSCs can be identified by
embryonic stem cell markers, express components of the renin-angiotensin system (RAS) and are
associated with circulating CSCs. Despite the presence of circulating CSCs, GB patients rarely develop
distant metastasis outside the central nervous system. This paper reviews the current literature on GB
growth inhibition in relation to CSCs, circulating CSCs, the RAS and the novel therapeutic approach
by repurposing drugs that target the RAS to improve overall symptom-free survival and maintain
quality of life.
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1. Introduction

Human astrocytic tumors are the most common primary intra-axial brain tumors. Under
the World Health Organization (WHO) classification of central nervous system tumors, grade I
astrocytomas include the more well-circumscribed pilocytic astrocytomas, in contrast to grade II to
IV diffuse astrocytomas [1]. The presence of cytological atypia confers a grade II tumor. Anaplasia
and mitotic activity confer a grade III tumor. Glioblastoma (GB), the most aggressive astrocytic
tumor, classified as a grade IV astrocytoma, is characterized by microvascular proliferation and
palisading necrosis. Treatment of GB traditionally involves maximal safe surgical resection for
cytoreduction followed by adjuvant chemoradiotherapy with concomitant use of radiotherapy and
the alkylating agent temozolomide, extending median survival to 14.6 months [2]. Methylation of
the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with better response
to temozolomide and prolonged survival. Furthermore, the longstanding obstacle of the delivery of
chemotherapy agents to the central nervous system due to the presence of the blood brain barrier may be
overcome by a promising novel drug delivery system that was developed, involving curcumin-loaded
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chitosan polylactic-co-glycolic acid nanoparticles modified with sialic acid, to penetrate the blood brain
barrier with anti-aldehyde dehydrogenase to target the CSCs [3].

The recent revision of the WHO classification of central nervous system tumors incorporates
molecular parameters: a paradigm shift that provides dynamic phenotype and genotype classifications
that impacts on prognosis and outcomes. Known intrinsic factors affecting the prognosis of GB
include isocitrate dehydrogenase (IDH) mutation and methylation of the MGMT gene. GBs are
divided into IDH-wildtype (90% of cases) and IDH-mutant tumors [1]. IDH is an enzyme involved
in catalyzing oxidative decarboxylation of isocitrate to 2-oxoglutarate. The most common mutation
in GB affects IDH1 with a single amino acid missense mutation at arginine 132 replaced by histidine
(IDH1 R132H) [4]. IDH-wildtype GB tends to arise de novo, while IDH-mutants tend to progress
from lower-grade precursor lesions and are commonly found in younger patients [5]. IDH mutants
with methylation fingerprints [6] are associated with a better survival rate due to the accumulation
of 2-hydroxyglutarate, secondary to loss of normal enzymatic function [7], increasing the sensitivity
of the tumors to selective chemoradiotherapy [8]. Genetic alterations typical of IDH-wildtype GB
include TERT promoter mutations (80%), loss of chromosome 10q (70%), homozygous deletion of
CDKN2A/DKN2B (60%), loss of chromosome 10p (50%), EGFR alterations (55%), PTEN mutations
(40%), TP53 mutations (25–30%), and PI3K mutations (25%) [1].

The original four GB subtype classification (proneural, neural, classical and mesenchymal) based
on the genomic analysis of PDGFRA, IDH1, EGFR and NF1 coupled with a transcriptional profile by the
Cancer Genome Atlas Network in 2010 [9], was recently refined to include three GB subtypes, namely
classical, mesenchymal and proneural/neural [10,11]. Genomic and transcriptomic analysis demonstrate
biological heterogeneity between different GB subtypes with important implications for future research.
The poor survival rates of GB, together with the recent discovery of key molecular pathways regulating
GB cell biology, fueled intense research to find novel therapeutic targets, particularly at the genomic
and molecular levels.

2. Glioblastoma Cancer Stem Cells

Cancer stem cells (CSCs) in human brain tumors were initially discovered by the identification of
cells expressing the cell surface marker CD133, a cell surface pentaspan transmembrane glycoprotein
located in plasma membrane protrusions [12]. This observation was further extended by a study
demonstrating stem-like neural precursor cells in GB, which can initiate growth and recurrence of
the tumor even following multiple serial transplantations [13]. CSCs divide asymmetrically giving
rise to identical, highly tumorigenic CSCs, and non-tumorigenic cancer cells which form the bulk
of the tumor, contributing to intra-tumoral heterogeneity. The aggressive nature of GB is attributed
to the presence of small subpopulations of CSCs and the potential molecular treatment options for
targeting these GB CSCs were reviewed extensively [14]. Quiescent GB CSCs have the capacity for
perpetual self-renewal and proliferation supported by tumor microenvironmental factors including
TGF-β and hypoxia to promote tumor recurrence, providing a potential explanation for resistance to
conventional treatments [15]. This ability for self-renewal is maintained by the Notch, Sonic hedgehog,
and Wnt signaling pathways [16]. On the other hand, non-stem cancer cells can convert to CSCs due to
epigenetic alterations conferring phenotypic plasticity to the glioma cell population. Recent evidence
suggests that dynamic plasticity and bidirectional interconversion are possible in heterogenous tumor
populations [17].

The CSC markers expressed in GB are categorized according to the cellular localization which
include cell surface markers (e.g., CD133, CD15, A2B5, L1CAM), cytoskeletal proteins (e.g., nestin),
transcription factors (e.g., SOX2, NANOG, OCT4), post-transcriptional factors (e.g., Musashi1), and
polycomb transcriptional suppressors (e.g., Bmi1, Ezh2) [14]. Yamanaka et al. achieved a significant
breakthrough with the discovery that mature mouse embryonic cells and adult fibroblasts can be
reprogrammed to form pluripotent stem cells by adding a combination of key transcription factors
OCT4, SOX2, c-MYC and KLF4 [18]. These factors are known to be expressed by embryonic stem
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cells (ESCs), and over-expression of these transcription factors can result in the transformation of
somatic cells into induced pluripotent stem cells (iPSCs) [19,20]. Primitive populations expressing ESC
markers such as NANOG4, KLF4, c-MYC, OCT4 and SOX2 were identified in GB [21]. Importantly,
NANOG was identified as an independent prognostic factor in predicting survival for GB [22]. We
previously proposed the presence of a CSC hierarchy in GB, implicating that OCT4+ cells represent
the most primitive CSCs, which can differentiate to form SOX2+ and SALL4+ progenitor cells [21].
Invariant stem cell hierarchy is seen in GB with slow-cycling stem cells giving rise to fast-cycling
progenitor cells which in turn generate non-proliferative cells, with the presence of outlier stem cells
where chemotherapy facilitates proliferation of drug resistant stem cells [23,24].

Transcription factors including OCT4 and SOX2 may play a critical role in perpetual self-renewal
of GB CSCs [14]. SOX2 which is highly expressed in GB [21] is considered a master transcription
factor crucial in maintaining pluripotency of mammalian ESCs and is exponentially correlated with
the expression of CD133 [25], a cell surface marker commonly seen in brain tumors as described
above. SOX2 is shown to be crucial in maintaining plasticity for bidirectional conversion between
cancer stem-like and differentiated glioma cells in patient-derived mouse xenografts [26]. In addition,
SOX2 silencing in GB tumor-initiating cells was shown to inhibit tumor proliferation [27], providing a
potential treatment strategy for GB at the cellular level [28]. For instance, tunicamycin, an inhibitor of
N-linked glycosylation which acts as an endoplasmic reticulum stress inducer, was shown to cause
cell cycle arrest in G1 phase, blocking the self-renewal capability of glioma CSCs by reducing the
expression of SOX2 [29].

Traditionally, the contrast-enhancing components of GB seen on MRI were thought to be the
moving front of tumor progression and invasion and as such were targeted for neurosurgical resection.
However, multimodal MRI techniques such as diffusion tensor imaging coupled with magnetic
resonance spectroscopy confirmed the presence of tumor cells beyond the contrast-enhancing rim [30].
These infiltrating tumor edges that show contrast enhancement harbor significantly higher percentages
of CD133+ cells and are associated with a higher proliferative index [31]. Furthermore, tumor cells
found in the normal brain beyond the margin of contrast enhancement, also show the presence of
CD133+ and SOX2+ cells [32], confirming the infiltrative nature of GB and that these CSCs are a reservoir
for the initiation of tumor recurrence following surgical resection and adjuvant chemoradiation.

The JAK-STAT3 signaling pathway is implicated in promoting self-renewal of GB CSCs. It involves
the activation of JAK, phosphorylation of STAT proteins, and their translocation into the nucleus.
STAT3 proteins are essential transcription factors in this signaling pathway. Pharmacological inhibition
of the STAT3 activator JAK leads to decreased STAT3 transcriptional activation and reduced levels
of associated matrix metalloproteinases (MMPs), potentially impacting on the extracellular matrix
degrading ability of invadopodia [33], impeding the migratory and invasive potential of GB [34].
STAT3 binds to the Notch1 promoter leading to the activation of Notch signaling which also activates
the transcription of stem cell markers in astrocytomas [35]. Inhibition of the Notch signaling pathway
also impedes the maintenance of glioma stem cells and tumorsphere formation, in addition to reducing
the expression of the glioma stem cell markers CD133, SOX2 and nestin [36]. From a therapeutic point
of view, curcumin, a naturally occurring component of turmeric, was shown to inhibit JAK signaling,
inducing reactive oxygen species, and down-regulating STAT3 phosphorylation, resulting in reduced
proliferation of the tumor cells [37]. Curcumin-induced reactive oxygen species promote cytotoxicity,
DNA damage and apoptosis [38]. Rather than relying only on the development of novel compounds,
repurposing existing FDA-approved drugs to target GB would be a faster route to target oncogenic GB
cell functions, as shown by targeting invadopodia activity in GB cell lines [39].

3. Circulating Cancer Stem Cells and Epithelial-to-Mesenchymal Transition

The concept of circulating CSCs and “liquid biopsy” was proposed as an alternative to obtaining
histological specimens for diagnosis and molecular typing of the tumors [40]. It presents an alternative
mechanism to explain the local recurrence of GB, implicating epithelial-to-mesenchymal (EMT) and
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mesenchymal-to-epithelial (MET) transformational pathways [41]. This paradigm is counterintuitive
to the concept of activation of regional non-circulating quiescent GB CSCs in causing local recurrence
of GB. Despite the invasive nature of GB and the presence of circulating CSCs, the reasons for the
reported rarity of distant metastatic GB [42–45] remain unknown.

Historically, the concept of circulating CSCs is supported by studies demonstrating
immunosuppressed patients who had received transplanted organs from donors with GB [46] and
subsequently developed metastatic GB in lymph nodes and distant organs [47], and identification of
circulating CSCs in peripheral blood of GB patients [48]. Early commentary on ultrastructural features
suggested two potential factors that refute the possibility of circulating GB CSCs. Firstly, neoplastic
glial cells are excluded from extravasation by the vascular basal laminae of the brain. Secondly, even if
the neoplastic cells manage to escape into the vascular system, they are prevented from binding to the
endothelium of the target organs, due to lack of appropriate cell adhesion molecules [49]. Another
proposed reason is that the mesenchymal plasticity exhibited by GB CSCs is more differentiated and
these CSCs are unable to find a suitable niche other than the brain [50].

More recently, EMT gained increased recognition and momentum as a process determining the
presence or absence of metastases. Transcription factors and signaling pathways involved in EMT in
gliomas were described [51]. Through EMT, an epithelial cell assumes increasing migratory ability and
infiltrative capacity by transforming into a more immature mesenchymal cell type. The Hedgehog
signaling pathway is shown to regulate the self-renewal of CD133+ glioma CSCs [52]. Activation of
this pathway leads to increased expression of the transcription factors Snail and Slug, suppressing
expression of E-cadherin, resulting in reduced junctional adherence between epithelial cells and
increased capacity of cell migration [53]. GB cells were shown to be devoid of cell junctions while
peri-tumoral cells display fully organized desmosomes and junctional complexes [54].

Therapeutically, nuciferine was shown to inhibit EMT by decreasing Slug expression via the
AKT and STAT3 signaling pathways in GB [55]. In another study, a combination of an antagonist
of the Hedgehog signal transducer Smoothened and an ATP competitor were shown to reduce the
expression of Snail, Slug and Zeb1, thus inhibiting EMT, suggesting that combined inhibition of the
PI3K/AKT/mTOR and Sonic Hedgehog pathways can be exploited together to suppress the growth of
GB [56]. On the other hand, TGF-β1 was shown to induce EMT in GB cells by decreasing the expression
of E-cadherin, inducing up-regulation of mesenchymal markers (e.g., N-cadherin, vimentin), crucial
regulators (e.g., Twist1, β-catenin), EMT-activating transcription factors (e.g., Snail, Slug, Zeb1); and
activating various downstream pathways including PI3K, Smads and MAP kinase [57]. An in vitro
study showed that metformin inhibits TGF-β1 and suppresses the self-renewal capacity of GB CSCs
and expression of CSC markers by decreasing the phosphorylation of AKT and mTOR [53]. Resveratrol,
a natural phenol found in grapes, berries and peanuts, was also found to suppress EMT by suppressing
the levels of MMPs and associated invadopodia activity, in addition to decreasing secondary gliosphere
formation and expression of CSC markers via regulation of Smad-dependent signaling pathway [58].

The concept of circulating CSCs in GB introduces novel etiological pathways and may provide
explanations for the resistance to traditional therapies and high rate of tumor recurrence. The regulatory
effect of EMT by the renin-angiotensin system (RAS) was demonstrated in colorectal cancer. In one
study, angiotensin II (ATII) was shown to induce migration of colorectal cancer cells via ATII receptor 1
(ATIIR1) and ATII receptor 2 (ATIIR2) [59]. Effects mediated by ATIIR1 are associated with changes
typical of EMT, namely increased expression of E-cadherin, reduced ZEB1 and vimentin levels. A
comprehensive review of the many current studies on GB CSCs and EMT-MET in glioma is beyond
the scope of this review. However, further characterization may lead to the development of targeted
systemic therapies based on the modulation of the RAS.

4. The Renin-Angiotensin System

The RAS (Figure 1) is a hormone system physiologically important in cardiovascular homeostasis
and regulation of blood pressure in humans. Renin, which is physiologically secreted by the renal
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juxtaglomerular apparatus, acts to convert angiotensinogen, normally produced by the liver, to
angiotensin I. Angiotensin I is then converted to ATII by angiotensin-converting enzyme (ACE), largely
produced in the lungs. ATIIR1 and ATIIR2 are G-protein-coupled receptors with antagonistic effects.
Activation of ATIIR1 induces cellular proliferation, inflammation and angiogenesis, whereas activation
of ATIIR2 inhibits cell growth and enhances programmed cell death and cellular differentiation [60].
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Figure 1. The renin-angiotensin system (RAS), its bypass loops and convergent signaling pathways,
and medications that target key steps of these pathways. The classical RAS, highlighted in black,
regulates blood pressure, stem cells and tumor development. Bypass loops of the RAS, highlighted
in blue, involves enzymes such as cathepsins B, D and G provide redundancy, while other signaling
pathways such as the COX-2 pathway and the IGF/IGFR-1 pathway, highlighted in green, converge on
the RAS, to activate the pro-renin receptor. Key steps of the RAS and related pathways can be inhibited
by commonly available medications, highlighted in red. Angiotensinogen (AGN) is physiologically
synthesized and released by the liver and is cleaved by renin which is released by the kidneys, to
form angiotensin I (ATI). Renin is formed following binding of pro-renin to the pro-renin receptor.
Production pro-renin is reduced by β-blockers, and renin can be directly blocked using aliskerin. ATI is
converted to angiotensin II (ATII) by angiotensin-converting enzyme (ACE), normally produced by the
lungs. ACE can be blocked using ACE inhibitors (ACEI). ATII interacts with the G-protein coupled
receptors ATII receptor 1 (ATIIR1) and ATII receptor 2 (ATIIR2), to restore homeostasis. ATIIR1 can be
blocked using an ATIIR1 blocker (ARB). Cathepsins B and D are also renin-activating enzymes that
convert pro-renin to renin. Curcumin inhibits the activities of cathepsin B. Cathepsin D also converts
AGN to ATI, and cathepsin G converts ATI to ATII or AGN directly to ATII. The COX-2 pathway and
the IGF/IGFR-1 pathway can be blocked using non-steroidal anti-inflammatory drugs (NSAIDS) and
metformin, respectively.

Renin is formed by the cleavage of its inactive precursor, pro-renin, to active renin, by binding
to pro-renin receptor (PRR) [61], as well as by various enzymes including cathepsin B [62], cathepsin
D and cathepsin G (Munro, M.; Wickremesekera, A.C.; et al. 2017) (Figure 1). COX-2 causes the
up-regulation of PRR [63] (Figure 1). β-blockers reduce the production of pro-renin [64] (Figure 1).
Insulin growth factor (IGF) activates insulin growth factor receptor-1 (IGFR-1) to promote conversion
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of pro-renin to active renin [65] (Figure 1). The action of ATII on ATIIR1 can be blocked by angiotensin
receptor blockers (ARBs) [66] (Figure 1).

The RAS was implicated in the hallmarks of cancer [67,68]. We demonstrated the expression of
components of the RAS: PRR, ACE, ATIIR1 and ATIIR2 by CSCs in different cancer types including
head and neck cutaneous squamous cell carcinoma (SCC) [69], oral cavity SCC (OCSCC) affecting the
lip [70], buccal mucosa [71] and oral tongue [72], liver metastases from colon adenocarcinoma [73] and
metastatic melanoma to the brain [74]. More importantly, components of the RAS: PRR, ATIIR1 and
ATIIR2 were shown to be expressed by the CSCs in GB; with ACE, PRR, ATIIR1 and ATIIR2 localizing
to the endothelium of the microvessels [75] (Figure 2). These findings suggest that modulation of the
RAS may provide novel therapeutic targeting of CSCs within GB and other types of cancers [76].Cells 2019, 8, x 9 of 15 
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Figure 2. Expression of components of the renin-angiotensin system and proteins that constitute bypass
loops of the renin-angiotensin system by cancer stem cells and the microvessels within glioblastoma.
Cancer stem cells in glioblastoma express ATIIR1, ATIIR2, pro-renin receptor, cathepsin B and cathepsin
D. The endothelium (pink cells) on the microvessels within glioblastoma express ACE, ATIIR1, ATIIR2
and cathepsin G.

Lysosomal cysteine protease cathepsin B is increased six-fold in GB compared to normal brain
tissues [77], which is further confirmed by studies demonstrating increased cathepsin B expression
in GB, compared to anaplastic astrocytomas, low-grade gliomas and normal brain tissues [78,79].
Greater cathepsin B immunoreactivity in primary brain tumors and endothelial cells is associated
with shorter survival time [80]. Another analysis reveals that cathepsin B and plasminogen activator
inhibitor type 1 are important biomarkers for predicting overall survival of patients with GB [81].
Activation of cathepsins induces cell-membrane associated urokinase plasminogen activator (uPA),
causing extracellular release of plasmin from plasminogen. Plasmin activates various MMPs capable
of degrading basal lamina proteins [82], increasing the motility of glioma cancer cells. We undertook
an analysis of GB-based studies within the online Oncomine® platform for datasets that contained
mRNA expression levels of cathepsin B. Oncomine [83] is an online tool that contains 715 mRNA and
copy number expression datasets from 86,733 cancer and normal tissue samples (12,764 samples are
normal tissue samples). Our datamining of the brain/central nervous system datasets deposited in the
Oncomine Compendium examined the relative mRNA levels of cathepsin B in both GB and normal



Cells 2019, 8, 1364 7 of 15

brain tissue. As shown by the data presented in Table 1, there is an elevation of cathepsin B in GB
tissue, relative to normal brain in three studies (TCGA Brain, Bredel Brain 2, Sun Brain) [84].

Table 1. Cathepsin B over-expression in glioblastoma compared to normal brain.

Number of
Glioblastoma

Samples

Number of
Corresponding
Normal Brain

Samples

Total Number
of Measured

Genes

Mean
Fold

Change
(Log2)

p-Value Sample
Type Platform Study

542 10 12,624 2.0662 1.96 × 10-8 mRNA

Human
Genome
U133A
Array

TCGA
Brain

27 4 14,836 1.819 1.84 × 10-5 mRNA Not
Defined

Bredel
Brain 2

81 23 19,574 1.543 4.02 × 10-7 mRNA

Human
Genome

U133 Plus
2.0 Array

Sun Brain

Cathepsin B mRNA expression was examined in glioblastoma tissue within the Oncomine database. Displayed
in the table are the mean fold changes vs. corresponding normal tissue in each study and overall p-value. Gene
expression data are log transformed and normalized as previously described (Rhodes et al., 2004).

Up-regulation of cathepsin B and uPA receptors induces SOX2 and Bmi1 expression, both critical
for maintaining the stemness of glioma CSCs, while knockdown of cathepsin B and uPA receptors
suppresses expression of SOX2, Bmi1 and nestin, in vivo [85]. Caffeine was found to suppress
proliferation of GB cell lines, and is associated with decreased activity of cathepsin B and up-regulation
of tissue inhibitor of metalloproteinase-1 via the MAPK signaling pathway [86]. RNA sequencing of a
radio-resistant pediatric GB cell line following radiation revealed the over-expression of pro-cathepsin
B, implicating the potential for alternative therapies that target metalloproteinases or cathepsin
B [87]. Expression of cathepsin B and cathepsin D was demonstrated in OCT4+ and SALL4+ CSCs in
IDH-wildtype GB [88] (Figure 2). These cathepsins constitute bypass loops of the RAS, contributing to
the production of RAS peptides which promote proliferation of CSCs in GB. Therefore, targeting the
RAS and its bypass loops in GB CSCs may potentially control the growth of GB tumors.

5. Repurposing Drugs that Target the RAS

Numerous drugs were demonstrated to promote GB cell apoptosis in vitro and in vivo by
modulating the RAS [89,90]. ACE inhibitors reduce production of ATII, while ARBs selectively block
ATIIR1 (Figure 1). The anti-neoplastic action of the RAS-modulating drugs is primarily due to the
inhibition of ATII [91]. The ARB losartan, a selective inhibitor of ATIIR1, was shown to suppress
growth of C6 rat glioma and induce apoptosis in C6 glioma cells [91]. Nonetheless, the ASTER
study, a randomized placebo-controlled trial investigating the addition of losartan to the standard
of care (concomitant use of radiotherapy and temozolomide) for patients with GB fails to show a
difference in steroid requirement or significant improvement in median overall survival in patients
with newly diagnosed GB [92]. Other studies show that selective synthetic renin inhibitors decrease
DNA synthesis and induce apoptosis in GB cells [93], and that ARBs are associated with statistically
improved progression-free survival and overall survival in 81 patients with GB [94].

Auranofin, an inhibitor of cathepsin B, and captopril, an ACE inhibitor, are included in the
coordinated undermining of survival paths (CUSP9) treatment protocol—a trial targeting recurrent GB
by combining nine repurposed drugs with temozolomide, highlighting the six themes important to
cancer therapy, accepting that cytotoxic drugs alone are futile in prolonging survival of GB patients
and these drugs may improve the efficacy of chemotherapeutic agents such as temozolomide [95].
The study combines the use of aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram,
itraconazole, ritanvir, and sertraline, in conjunction with temozolomide. The initial results indicated
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little toxicity, maintenance of good quality of life, and hints of effectiveness. Experimental studies
using patient-derived GB CSC cultures show increased sensitivity of CSCs to the drug combination
with temozolomide, compared to temozolomide monotherapy [96].

Numerous epidemiological studies demonstrate a lower incidence of cancer and/or improved
survival rate of cancer patients taking medications that modulate the RAS. These include a one-third
reduction of the risk of developing skin SCC in patients who were treated with ACE inhibitors or
ARBs [97] and a reduced risk of developing head and neck, gastric, colon and prostate cancers in patients
receiving propranolol [98]. Treatment with aspirin, a COX-1 and COX-2 inhibitor [99] and ketorolac,
a specific COX-2 inhibitor, [100], are associated with a reduction in the risk of developing bowel
cancer [101] and reduction of recurrence and death in breast cancer patients [102] respectively. More
recently, a reformulated “liquid” aspirin (IP1867B), an inhibitor of COX1/COX2 as well as IGF/IGFR-1
(signaling pathways that converge on the RAS) (Figure 1) was shown to reduce high-grade glioma
tumor burden with an improved gastric side-effect profile [103]. Improved survival was observed in
ovarian cancer patients who are administered non-selective β-blockers [104], and patients with multiple
myeloma receiving propranolol [105]. Cathepsin B over-expression is associated with higher tumor
grades and reduced overall survival in patients with OCSCC [106]. Importantly, improved survival
of OCSCC patients after administration of curcumin, an inhibitor of cathepsin B, was reported [107].
More specifically, a recent study shows that the use of RAS inhibitors is associated with survival benefit
in glioma patients [108].

Repurposing drugs, including anti-depressants, anti-convulsants, anti-hypertensives, statins,
singly or in combination for the treatment of GB was recently reviewed [109] with positive effects. The
understanding of the regulation of the RAS and CSCs in GB, in particular the expression and function
of cathepsin B [110] and the IGF/IGFR-1 pathway [111], leads us to propose modulating the RAS, a
singular systemic homeostatic pathway, using a combination of drugs (Figure 1), to simultaneously
inhibit key steps of the RAS, its bypass loops and crosstalk signaling pathways interacting with the
RAS. This may offer a novel therapeutic approach for patients with GB [76] to potentially increase
overall survival while preserving their quality of life and avoiding drug toxicities. Currently we
are undertaking a drug repurposing study using a cocktail consisting of propranolol (a β-blocker),
metformin (an IGF/IGFR-1 blocker), curcumin (a cathepsin B blocker), aliskiren (a renin blocker),
cilazapril (an ACE inhibitor), and losartan (an ARB) to treat GB [112].

A summary of current publications on therapeutic targeting of the RAS in GB, listed chronologically,
is presented in Table 2.

Table 2. Summary of current publications on therapeutic targeting of the RAS in GB.

Authors Year Subjects Medications Effects

Rivera, et al. 2001 C6 rat glioma Losartan Reduction in tumor volume, decreased vascular
density, mitotic index, cell proliferation

Juillerat-Jeanneret,
et al. 2004 Human GB cell

cultures Renin inhibitors Induced apoptosis in human glioblastoma cells

Arrieta, et al. 2005 C6 rat glioma Losartan Decreased tumor volume, induction of apoptosis
in dose-dependent manner

Januel, et al. 2015 GB patients ACEIs, ARBs Improved progression-free survival and overall
survival in multivariate analysis

Levin, et al. 2017 GB patients
Angiotensin system
inhibitors (not specified)
+/− bevacizumab

Improved survival, further survival advantage
when renin-angiotensin system inhibitors were
combined with low-dose bevacizumab

Mihajluk, et al. 2019 Human GB cell
cultures

Reformulated aspirin
(IP1867B)

Reduction in high-grade glioma cell viability,
suppressed IL6/STAT3 and NF-κB networks,
reduction in IGF1 and EGFR expression, less
gastrointestinal side effects compared to
conventional aspirin

Ramirez-Exposito,
et al. 2019

Human
neuroblastoma
NB69, astroglioma
U373-MG

Doxazosin
Concentration-dependent inhibition of cell
growth, modification of proteolytic regulatory
enzymes of RAS cascade
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Table 2. Cont.

Authors Year Subjects Medications Effects

Skaga, et al. 2019 Human GB stem
cell cultures

Aprepitants, auranofin,
captopril, celecoxib,
disulfiram, itraconazole,
minocycline, quetiapine,
sertraline

The combination effect of CUSP9 with
temozolomide was superior to temozolomide
monotherapy in clinical plasma concentrations

Ursu, et al. 2019 GB patients Losartan No difference in steroid requirement to reduce
peritumoral edema

6. Conclusions

The prognosis for patients with GB remains poor despite intensive research over the last 50 years.
New therapeutic regimens are necessary to improve the overall survival and the quality of life of
these patients. Further research into CSCs and the role of the RAS and its bypass loops and signaling
pathways that converge onto the RAS, in the regulation of the CSCs in cancer, may underscore a
potential paradigm shift in the treatment of GB. Randomized controlled trials incorporating repurposed
drugs targeting these mechanisms are needed to demonstrate the efficacy of this novel therapeutic
approach that may enhance the results of current treatment protocols.
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