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LobSig is a multigene predictor of outcome in invasive lobular
carcinoma
Amy E. McCart Reed 1, Samir Lal1,5, Jamie R. Kutasovic 1, Leesa Wockner2, Alan Robertson3, Xavier M. de Luca 1,
Priyakshi Kalita-de Croft 1, Andrew J. Dalley 1, Craig P. Coorey1, Luyu Kuo1, Kaltin Ferguson1, Colleen Niland1, Gregory Miller1,4,
Julie Johnson1, Lynne E. Reid1, Renique Males1, Jodi M. Saunus1, Georgia Chenevix-Trench2, Lachlan Coin3, Sunil R. Lakhani1,4 and
Peter T. Simpson 1

Invasive lobular carcinoma (ILC) is the most common special type of breast cancer, and is characterized by functional loss of E-
cadherin, resulting in cellular adhesion defects. ILC typically present as estrogen receptor positive, grade 2 breast cancers, with a
good short-term prognosis. Several large-scale molecular profiling studies have now dissected the unique genomics of ILC. We have
undertaken an integrative analysis of gene expression and DNA copy number to identify novel drivers and prognostic biomarkers,
using in-house (n= 25), METABRIC (n= 125) and TCGA (n= 146) samples. Using in silico integrative analyses, a 194-gene set was
derived that is highly prognostic in ILC (P= 1.20 × 10−5)—we named this metagene ‘LobSig’. Assessing a 10-year follow-up period,
LobSig outperformed the Nottingham Prognostic Index, PAM50 risk-of-recurrence (Prosigna), OncotypeDx, and Genomic Grade
Index (MapQuantDx) in a stepwise, multivariate Cox proportional hazards model, particularly in grade 2 ILC cases (χ2, P= 9.0 ×
10−6), which are difficult to prognosticate clinically. Importantly, LobSig status predicted outcome with 94.6% accuracy amongst
cases classified as ‘moderate-risk’ according to Nottingham Prognostic Index in the METABRIC cohort. Network analysis identified
few candidate pathways, though genesets related to proliferation were identified, and a LobSig-high phenotype was associated
with the TCGA proliferative subtype (χ2, P < 8.86 × 10−4). ILC with a poor outcome as predicted by LobSig were enriched with
mutations in ERBB2, ERBB3, TP53, AKT1 and ROS1. LobSig has the potential to be a clinically relevant prognostic signature and
warrants further development.
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INTRODUCTION
Invasive lobular carcinoma (ILC) is the most common ‘special’ type
of breast cancer, accounting for 5–15% of all cases. The tumor has
distinct morphological and biological features, and clinical
behavior compared to the more commonly diagnosed invasive
carcinoma-no special type (IC-NST). Typically, ILC tumors display
features associated with a good prognosis: lower grade, estrogen/
progesterone receptor (ER/PR) positive, HER2 negative and a low
proliferative index.1 Generally, there is a poorer response to
chemotherapy,2 yet most patients will respond well to endocrine
therapy,3 and data from the BIG 1–98 trial suggests that aromatase
inhibitors, such as letrozole could be more effective than
tamoxifen.4 However, ILC has an inherently invasive growth
pattern and can be highly metastatic.5 Indeed, several large
patient cohort studies have demonstrated that the overall long-
term outcome for patients diagnosed with ILC may be similar or
even worse than it is for patients diagnosed with IC-NST.3,6 This
presents a conundrum for clinicians with few clues to inform
which patients will develop recurrent or metastatic disease.
Loss of the transmembrane cell–cell adhesion molecule, E-

cadherin, is a critical molecular event in the natural history of the
lobular phenotype. CDH1 gene mutation, deletion and/or

methylation account for the absence of functional E-cadherin
complex,1 contributing to the lack of cellular cohesion and
resulting invasive growth pattern. Many of the clinical challenges
associated with diagnosing and managing patients with ILC are
directly related to this behavior, including the difficulty in imaging
by mammography7 and obtaining clear surgical margins. Subse-
quently, more patients present late, with larger tumors, more
frequently involved axillary lymph nodes and requiring higher
frequency of mastectomies compared to patients diagnosed with
IC-NST.8

The genomic profile of ILC has been explored in some
depth,9–11 revealing that these tumors are more likely to be
diploid than IC-NST, and harbor recurrent gains of chromosome
1q, 8q, 16p; deletions of 8p23-p21, 11q14.1-q25, and 16q; and
complex, high-level amplifications at 1q32, 8p12, and 11q13.10–13

Three large studies have recently presented a more comprehen-
sive examination of the multi-omic landscape of ILC, providing
power to tease out alterations enriched in ILC relative to
IC-NST.14–16 For instance, ILC are typified by CDH1 and PTEN loss,
enhanced AKT activation, mutations in TBX3 and FOXA1, and
amplification of ESR1. Of great interest is the enrichment for
potentially actionable mutations in ERBB2 (HER2, 5.1%) and ERBB3
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(HER3, 3.6%).14 Indeed, HER2-negative ILC with high-grade
features show an increased frequency of ERBB2 mutations (15%),
especially the pleomorphic variant (26%),17 far higher than that
reported for breast cancer generally (≤1%, TCGA18), but with no
significant impact on prognosis.19 ERBB2 mutation in CDH1-
mutated patients shows a significantly worse outcome than
control groups, and indeed in CDH1-mutated cancers that have
relapsed, there is a high ERBB2 mutation rate.20,21

Analysis of gene expression data has led to the classification of
molecular subtypes within ILC.15,16 TCGA developed a 60-gene
classifier and identified ‘reactive-like’, ‘immune-related’, and ‘pro-
liferative’ subtypes of the disease. The ‘reactive-like’ tumors had
enriched stromal/cancer fibroblast signaling and high expression
of various myoepithelial genes (including SOX10, KRT14,
COL17A1)15 and were more likely to also be classified as normal-
like using the intrinsic subtyping approach. Whilst this analysis was
focused more on biology than prognosis, it was unsurprising that
the proliferative group had a worse outcome compared to the
immune and reactive-like groups.15 Independently, subtyping by a
European team also defined an immune-related group with high
expression in lymphocyte signaling, together with a hormone-
related subgroup with elevated levels of PGR1, ESR1, and GATA3
protein expression.16 However, these two ‘immune’ subtyping
approaches do not identify the same cases when applied to the
same dataset,22 and detailed analyses confirm that ILC broadly
have a low level of tumor infiltrating lymphocytes.22

Despite clear biological and clinical differences, treatment of IC-
NST and ILC remains the same. Prognostication is routinely
performed using clinico-pathologic information; namely the
Nottingham Prognostic Index (NPI),23 which comprises tumor
size, grade and lymph node status, and an IHC panel to evaluate
ER, PR and HER2 (with or without Ki67, a marker of proliferation).24

Ostensibly, the molecular signature market for breast cancer is a
busy space (reviewed in ref. 25), however the utility in ILC of some
of the existing commercial tests remains to be seen, and uptake is
by no means global. While most focus on ER+ tumors, notably,
none of these signatures account for tumor morphology in their
algorithms. The Genomic Grade Index (GGI/MapQuantDx™) panel
has been shown to be more powerful than grade alone in the ILC
population,26 while MammaPrint® has validated value only in
node negative ILC patients.27 The clinical utility in ILC of the 21-
gene signature, OncotypeDx®, remains unclear with two studies
showing classification of 42%28 and 35.5%29 of patients as being
as of intermediate risk (IR; managing the IR designated patient is
clinically challenging30) and further studies indicate limited
additional value over histology.31 Prosigna® is the commercial
diagnostic test based on the PAM50 ‘intrinsic’ subtyping. It
generates a Risk of Recurrence score (ROR) and has a better
prognostic value than that of the OncotypeDx test, in ER+ node
negative patients.32 Again, the utility of Prosigna® in ILC
specifically is unknown, and a recent study on its utility in breast
histological special types excluded ILC.33 A recently reported five-
transcript metagene, EarlyR, has shown prognostic power for
recurrence-free survival over 8 years in ER+ tumors, however
there is no discussion of histology.34

Here, we present an integration of gene expression and copy
number data to identify genes influencing ILC behavior and
prognosis. Through this combination of approaches we have
developed a 194 metagene signature, which we have termed
LobSig, that could add significant prognostic power to the
standard clinical information for patients with ILC.

RESULTS
Genomic features of ILC associated with outcome
Several studies have reported the DNA copy number landscape of
ILC.10–13 Here, single nucleotide polymorphism (SNP) array data

from three cohorts was merged to review this landscape (Fig. 1a)
in a large series of cases at higher resolution (n= 303; Fig. 1a;
Supplementary Fig. 1 for individual cohort data). Previously
defined recurrent alterations were identified in this pooled ILC
cohort, with large chromosome level gains seen on 1q, 8q, 11q
and 16p; and deletions on 1p, 6q, 8p23-p21, 11q14.1-q25, 13q,
16q and 22. Recurrent, high-level amplifications were also
identified 8p12-p11.2 (7%), 11q13.3 (12%) and 17q12 (2%; Fig.
1b) and significant focal deletions were defined at various loci,
including 1p, 11q and 13q (Fig. 1b; Supplementary Table 2). GISTIC
analysis of the TCGA cohort, identified putative drivers in these
regions including CCND1 and ORAOV1 (11q13.3), FGFR1 and LETM1
(8p12), and ERBB2 (17q12) (Supplementary Table 2). GISTIC focal
alterations were then associated with breast cancer-specific
survival (BCSS) data to identify regions that are highly prognostic
in ILC tumors (Supplementary Table 3). Key prognostic regions of
deletion as assessed by Logrank include 19p13.3 (P= 0.0031);
2q23.1 (P= 0.0034); 8p21.2 (P= 0.0036); 14q32.12 (P= 0.0192);
and 1p21.2 (P= 0.0218) (Supplementary Fig. 2). A poorer
prognosis is associated with the presence of amplifications in
any of the following three regions, or combinations of, 11q13.3,
8p11.23, and 17q12 (P= 0.0383) (Supplementary Fig. 3).
Interestingly, of the nine ILC tumors with amplification at 8p12-

11.2, three (33%) had co-amplification with 11q13-q14.1, as
previously reported (Fig. 1c).11,12,35 This event was shown recently
to be a co-evolution, and likely an early, critical event in
tumorigenesis.35 FISH analysis using gene-specific probes for
FGFR1 (8p11) and CCND1 (11q13.3) (GISTIC-identified putative
driver genes Supplementary Table 2; Fig. 1h), confirmed this co-
amplification event in a tumor from the UQCCR cohort, including
in an adjacent component of Lobular Carcinoma in situ (LCIS; Fig.
1d–g). All tumor cells harbored multiple signals for each gene and
co-clustering of signals indicating that this was part of a complex
structural rearrangement and amplification event,35 and was likely
to be an early and critical driver alteration in the evolution of some
tumors.

Gene expression characteristics associated with outcome in ILC
ILC cases from the METABRIC cohort, with both gene expression and
clinical follow up data, were interrogated to determine if gene
expression changes were associated with patient survival (n= 101;
Supplementary Fig. 4). A supervised analysis of differential gene
expression profiling of ‘good‘, and ‘poor’ BCSS outcome groups
identified a total of 856 probes/772 genes (Supplementary Table 4).
Chi-squared analysis revealed that the two sample subgroups were
significantly associated with PR status (P= 9.541e–05),
PAM50 subtype (P= 0.0005) and outcome (P= 4.583e–05) (Supple-
mentary Table 5); gene cluster 1 was enriched for good outcome,
normal-like/luminal A, PR positivity and grade 2 tumors while gene
cluster 2 was enriched for poor outcome, Luminal B/HER2/Basal, PR
negativity, and grade 3 tumors. This panel of genes were analyzed
using GeneGo Pathways Software (MetaCore) to identify pathways/
functional modules that might be driving the behavior of these
subgroups (Supplementary Table 6). The poor outcome cluster
showed significant enrichment of the ‘cell cycle initiation of mitosis’
module (FDR= 6.788e–06) and also of the ‘progesterone-mediated
maturation’ module (FDR= 9.165e–06). The modules down-
regulated in the poor outcome cluster include ‘Gonadotropin-
releasing hormone signaling’ (FDR= 0.00004), ‘YAP/TAZ co-
regulation of transcription’ (FDR= 0.002) and various immune-
signaling pathways, such as ‘IL18 signaling’ (FDR= 0.002).

Identifying copy number-driven expression changes
In order to identify copy number-driven expression changes, we
integrated gene expression and copy number data using two
complementary approaches: Spearman rank order and ANOVA
meta-analysis. The rationale for this approach is detailed in
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Supplementary Fig. 4. This analysis was performed in all three
datasets independently, before combining the data in a meta-
analysis using either a Dersimonian Laird (for the Spearman
generated data) or Stouffers Z-score (ANOVA data) method. A total
of 1896 genes were identified from the ANOVA analysis (P <
0.00001) and 428 genes from the Spearman analysis (combined
effect size >0.6); 1501 genes were unique to the ANOVA analysis
(Supplementary Table 7) and 33 genes were unique to the
Spearman analysis (Supplementary Table 8); 395 genes were

common between both methods (Supplementary Table 9). Many
of the genes were present in regions of the genome with
recurrent alterations (1q, 8p, 8q and 11q, 13q, 16p and 16q), most
notably from regions of high-level amplification at 8p12-11 and
11q13-14 (Fig. 1i; Supplementary Tables 7–9). Some of the top
genes identified from the ANOVA analysis include those at 11q13
including INTS4 (P= 5.957e−59), CLNS1A (P= 4.110e–50), FADD
(P= 6.441e–42), PRKRIR (P= 4.247e–39) and CTTN (P= 6.237e–39);
and at 8p12, ASH2L (P= 2.777e–43), PROSC (P= 1.0348e–42), BRF2
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(P= 1.057e–40) and LSM1 (P= 6.072e–40 (Supplementary Table 7;
Supplementary Fig. 5). The top genes from the Spearman analysis
were enriched at the 1q locus, specifically GNPAT (ρ= 0.969),
VPS45 (ρ= 0.959), PRCC (ρ= 0.948), COG2 (ρ= 0.946) and ARV1 (ρ
= 0.928) and at 8p12, e.g. LSM1 (ρ= 0.936) (Supplementary Table
8; Supplementary Fig. 6).

Synergizing prognostic capabilities
Each gene from the integrative and GEX analyses was evaluated
independently to identify the association with outcome to ensure
robust prediction in the resulting lobular-specific meta-gene.
Survival associations were assessed in all ILC tumors and then
exclusively in grade 2 ILC to account for the disproportionately
high number of grade 3 ILC in the METABRIC cohort. Filtering was
dependent on stringent requirements: (i) logical, monotonic
spread of the tertile-split KM curves of mRNA expression; (ii)
consistency between multiple probes for the same gene; and (iii)
significant separation of the curves based on the logrank test, as
plotted in Fig. 2a (Supplementary Table 10). A 194 gene set, which
we termed ‘LobSig’, comprises the resultant collection of
prognostic genes. The gene set shows limited similarity with
many of the available commercial signatures (Supplementary
Table 11). Comparing LobSig with OncotypeDx,36 TCGA 60 gene
classifier;15 RbSig37 GGI;38 MammaPrint;39 PAM50;40 EarlyR;34 ER
and CIN attractors;41 proliferation_AURKA,42 176/194 genes are
unique to LobSig. The LobSig genes most commonly encountered
across the various metagenes analyzed were BIRC5 and CCNB1,
present together in 6/10 tested signatures. LobSig contains 27
genes (14%) considered to be cell-cycle/proliferation-related (cf.
GGI (54%) RbSig (74%)). SFRP1 is the sole gene in common
between LobSig and the TCGA 60 gene classifier15 and its loss
correlates with poor overall survival in breast cancer patients.43

LobSig outperforms existing signatures in prognostication in silico
LobSig is highly prognostic in unselected ILC, and specifically in
grade 2 and grade 3 ILC tumors, as well as to a lesser degree in ER-
positive, grade 2 IC-NST cases (Fig. 2b–e). LobSig stratifies ILC
significantly compared to existing signatures (Fig. 2f–i) while
neither OncotypeDX nor MammaPrint are prognostic exclusively
in this tumor type (Fig. 2h, i). LobSig outperforms existing
signatures in both a univariate (P= 9.0 × 10−6) and multivariate
context (P= 3.14 × 10−4; Supplementary Tables 12–14), and shows
greater prognostic capability than the NPI (Fig. 2j). Considering the
discovery cohorts separately, LobSig stratifies 17.3% grade 2 ILC in
TCGA and 30% grade 2 ILC in METABRIC as LobSig high, with an
increased risk of a poor outcome (Supplementary Fig. 8).
Furthermore, using the RATHER cohort as an independent validation
set, 31.4% are stratified as LobSig high (Fig. 2k; Supplementary Fig.
7). LobSig is particularly effective in grade 2 ILC tumors (AUC=
0.906, Fig. 2m), versus all ILC (AUC= 0.707; Fig. 2l). Figure 3
demonstrates the case-by-case data of LobSig risk compared to
the risk scores generated by NPI, GGI, PAM50 ROR and

OncotypeDx; the heterogeneity of the alternative risk scores
within the LobSig groups confirms that LobSig does not simply
recapitulate the risk scores of existing signatures.
Of the 126 cases assigned an NPI risk category, 49 (38.9%) were

good, 7 (5.6%) were poor but 70 (55.5%) were assigned a
moderate risk. Focusing on NPI moderate cases (grade 2;
METABRIC, n= 29), stratification with LobSig was performed to
determine whether LobSig would add value, and be able to re-
assign the ‘moderate’ cases. Figure 4a shows that LobSig is highly
prognostic in the NPI moderate grade 2 tumors within the cohort.
Interestingly, there is no clear difference between the groups in
terms of histopathological characteristics (Fig. 4b). Unique
molecular subgroups were prevalent among LobSig-stratified
tumors (Supplementary Table 15; Fig. 4b) with enrichment for
Luminal B and TCGA proliferative type in the LobSig high group,
and Luminal A/normal-like and TCGA reactive-like in the LobSig
low group (Fig. 4b). There was a significant enrichment of TP53
mutation in the LobSig high group, consistent with a poor
outcome tumor type (Fig. 4c). LobSig is the most accurate of the
signatures tested in predicting survival outcomes for grade 2 NPI
moderate cases (Fig. 4d).
To identify genetic features discriminating the LobSig stratifica-

tion, an assessment of genetic alterations and their enrichment
was made (Fig. 5a, Supplementary Table 15). This analysis showed
LobSig high tumors were enriched for mutations in ERBB3 (P=
0.00007), ERBB2 (P= 0.0002), BIRC6 (P= 0.005), AKT1 mutations (P
= 0.02), ROS1 (P < 0.01); amplifications of PRMT2 (P= 7.329e–08),
S100B (P= 7.33e–08) and DIP2A (P= 7.99e–07; 21q22.3); and for
deletions of CTCF (16q22.1; P= 8.41e–11), C17ORF39 (17p11.2; P=
4.597e–09) and ARID1A (1p36.11; P= 8.045e–06). The LobSig low
tumors showed a relatively quiet genome.
In order to define broader molecular differences between

LobSig low and high tumors, Gene Ontology (GO) terms were
assigned to the differentially expressed genes, revealing enrich-
ment of several pathways (FWER P-value < 0.05; Supplementary
Tables 16 and 17). These terms are visualized using REVIGO (Fig.
5b), which summarizes the semantic similarity of the GO terms.
The pathways upregulated in LobSig high tumors were cell cycle
processes including DNA replication, chromosomal segregation,
mitotic nuclear division, organelle fission, mitotic spindle organi-
zation. Pathways enriched in the LobSig low group were diverse
and included various immune pathways, such as regulation of
leukocyte chemotaxis, monocyte chemotaxis, chemokine-
mediated signaling and adaptive immune response.

DISCUSSION
Despite clear biological and clinical differences, treatment of IC-
NST and ILC remains the same. It is currently impossible to predict
ILC clinical course at diagnosis, as a result of homogeneity in the
standard diagnostic criteria for ILC. Molecular diagnostic tests,
such as OncotypeDx, remain of limited value for ILC, since there is
a paucity of data on their suitability and they were not developed

Fig. 1 ILC genomic landscape. a Copy number landscape of 303 ILC tumors as demonstrated by frequency of alteration (%, Y-axis) across the
genome (chromosomes on X-axis). Red, amplification (Amp); pink, Gain; light blue, Loss; dark blue, homozygous deletion (HD). b GISTIC
significant focal alterations. Amplifications in red and deletions in blue, significant false discovery rate (FDR) in green. c Heatmap of frequency
of recurrent co-amplifications in ILC tumors. d FISH analysis showing co-amplification (yellow) of FGFR1 (green) and CCND1 (red) in an ILC case
identified as having co-amplification of 8p12 and 11q13 by SNP array. Note increased numbers of signals for both genes in individual nuclei;
signals also often clustered/joined (arrows) suggesting a complex clustered rearrangement process involving translocation between these
gene regions. e shows normal cells diploid for both genes; f shows a tumor cell nucleus with multiple copies of FGFR1 (green) and a
chromosome 8 centromere probe (red); g shows two tumor nuclei analyzed for CCND1 (red) and a chromosome 11 centromere probe (green).
LCIS present in the same section displayed the same pattern of co-amplification (not shown), while no evidence of gene copy number change
was seen in surrounding columnar cell lesions (not shown). h Boxplot of copy number versus mRNA expression z-scores of FISH targets FGFR1
and CCND1; central line is median, with whiskers extending from the 25th and 75th percentiles. I Spearman genes plotted as ρ across
chromosomal location (X-axis) and ANOVA genes plotted as −log P value across chromosomes. Green lines represent cut-off point of
significance (ρ > 0.06; P < 0.00001)
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on this tumor histology. Differentiating which patients will do well
long-term on endocrine therapy and could be spared chemother-
apy treatment-associated morbidity, and, which patients require
aggressive treatment remains unclear. In this study, we have
derived the first meta-gene signature focused on prognostication
in ILC. LobSig results from the integrated curation of transcripts
and genomic regions, in the context of breast cancer-specific
survival. Transcripts from previously identified regions of inter-
est10–13 in the lobular genome are well represented in the
signature. The meta-gene is remarkably robust, out-performing

existing signatures in the prognostication of ILC patient outcome.
As expected, given our lobular-centric rationale, there are limited
similarities with existing signatures, further supporting that some
of these genes are unique to the ILC biology. A component of the
gene set relates to proliferation, however, this is unlikely to be the
lone driving force of LobSig’s prognostic power, given its
improvements in stratification of risk over grade and other
signatures. Naturally, there are limitations associated with an in
silico study predicting the prognosis of ILC patients: their often
long time to relapse makes finding extensive cohorts with

Fig. 2 LobSig is an excellent prognostic tool with superior performance in ILC tumors. a Manhattan plot of the prognostic grade 2 ILC genes
across all chromosomes; with logrank P < 0.05 marked as green line. Kaplan–Meier curves of signature stratified populations that retained an
independent prognostic role for BCSS. LobSig in all ILC b; grade 2 only c; grade 3 only d; Grade 2, ER-positive IC-NST e. Considering the
population of grade 2 ILC only, existing signatures stratify as follows: f PAM50 RORS, g GGI, h OncotypeDX, i MammaPrint, and j NPI. k is the
LobSig194 stratification seen in cases unique to the RATHER cohort. P-value is logrank. Blue lines indicate low-risk patients, gray indicates
patients with intermediate-risk and red lines indicate high-risk patients. Receiver operator characteristic (ROC) curves comparing
performances of prognostic gene signatures in ILC tumors l and Grade 2 ILC tumors m
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molecular profiling data for both discovery and validation
challenging. We present a gene set derived acknowledging these
limitations, but with the capacity to be refined and developed to
the benefit of ILC patients in the future. In addition, LobSig
provides a detailed examination of the molecular variability in an
otherwise clinicopathologically homogeneous cohort.
Stratification with LobSig identified a group of low-risk tumors,

which showed an enrichment for luminal A phenotype, immune-
related pathways, and the TCGA immune-enriched subtype. The
LobSig low samples have the best BCSS outcomes, and the impact
of their immune-enrichment appears similar to that of triple-
negative breast cancer, whereby higher levels of tumor infiltrating
lymphocytes correlated with a better prognosis.44 There are few
published datasets of ILC with detailed TILs analysis, however
Desmedt et al.22 show in a comparative analysis that ILC generally
have low levels of TILs compared to IDC. They also found,
somewhat paradoxically, that those ILC patients with high TILs
were of young age, with proliferative, LN+ tumors.22 However,
immune-enriched ILC from TCGA had a better outcome than
those designated proliferative.15

LobSig high tumors were enriched for the Luminal B subtype,
an expected finding independently confirming previous data that
luminal B ILCs have a poorer outcome than luminal A ILC.45

Luminal B tumors are known to have a higher proliferation index
with higher expression of CCNB1, MKI67 and MYBL2 compared to
Luminal A tumors.46 Similarly, a subset of LobSig high tumors are
also classed as the TGCA proliferation subtype; however, only 1
gene is shared by both LobSig and the TCGA 60-gene classifier
(SFRP1). We found no correlation between MKI67 expression and
the LobSig high group of tumors, and only 14% of LobSig gene set

annotated for proliferation. A surprising finding is that MYC
expression is low in the LobSig high cohort. MYC is recurrently
altered across ILC and a common driver of tumor progression and
recurrence in ER-positive breast cancers generally, however this
may not be the case in LobSig high tumors.47,48 The signature
captures a biology driven by the combination of multiple different
genomic alterations (amplifications of 1q, 8p, 11q, 17q12;
mutations in TP53, ERBB2/3; losses of 13q). All these events
occurred at relatively low frequencies but collectively, they drive
this apparent ‘aggressive’ behavior. Ki67 is unlikely to be sufficient
to capture all this diversity, however, the GGI is good at capturing
a similar biology. PAM50 highlights some enrichments of intrinsic
type in the LobSig High group (e.g. HER2, luminal B), while
OncotypeDx was not prognostic in this dataset. In fact, several
papers have pointed to the limited value in ILC patients, with
recent SEER dataset analyses showing that OncotypeDx offers
little value above standard histopathology in ILC and other low-
risk subtypes;31,49 many recent studies concede that the relevance
of OncotypeDx ILC requires further study.28,29,50 Overall, LobSig
appears to have increased value than existing signatures in the
lobular context.
There was a notable prevalence of ERBB2 (20%), ERBB3 (14.28%),

AKT1 (8.57%) and ROS1 (8.57%) mutations in the LobSig high
group, raising exciting possibilities for applying targeted therapies
in LobSig high tumors, with evidence emerging of the value of
anti-HER2 therapies,19,51–54 AKT inhibitors55 and the recently
described ROS1 inhibitors via synthetic lethal interaction with
CDH1 mutant ILC.56 Multivariate analysis demonstrated the
significant value of LobSig above individual clinico-pathology
features, but more importantly, the value of this signature resides
in its ability to stratify the NPI moderate tumors—effectively
moving from the ‘intermediate’, unclear group, into one of two
groups with clear prognostic outcomes. The data presented here
supports that LobSig low-risk patients need not receive adjuvant
chemotherapy. Our signature is not predictive for chemotherapy
administration per se, but likely identifies a group of ILC patients
in whom chemotherapies may be beneficial. A paucity of highly
annotated ILC cohorts with sufficient follow-up, as well as
molecular profiling data in a clinical trial setting, precludes us
from determining if and whether there are specific therapies that
may have efficacy.
In conclusion, we present the molecular signature, LobSig,

which captures the peculiar genomic landscape of ILC tumors, and
together with clinico-pathology information, provides a robust
mechanism for prognostication in ILC. This signature warrants
further analysis and development, and validation on expanded
retrospective cohorts of ILC with detailed treatment information.

METHODS
Sample cohort details
Fresh frozen tumors and matching blood samples were accessed from the
Brisbane Breast Bank (BBB) at the University of Queensland Centre for
Clinical Research (UQCCR) and from the Australian Breast Cancer Tissue
Bank (ABCTB) based at the Westmead Institute for Medical Research. These
cases constituted the in-house ‘UQCCR’ cohort. All patients provided
written, informed consent to the use of their tissues for research and the
study had ethics approval from the Human Research Ethics Committee
(The University of Queensland (2005000785) and Royal Brisbane and
Women’s Hospital (2005/022)).
DNA and RNA were extracted from frozen tissue sections by either

collecting frozen sections directly into extraction tubes or following needle
dissection to enrich for tumor cellularity. Tumor cellularity was estimated
by a pathologist (G.M., S.R.L.) from adjacent-stained frozen sections, with
samples requiring 70% observed tumor cellularity to progress (thus
reducing the available samples for analysis significantly). QIAgen extraction
kits were used (QIAgen, Chadstone, Vic, Australia). Quantification and
quality assessment of nucleic acids were performed using the Qubit dsDNA

Fig. 3 LobSig does not simply recapitulate existing risk evaluating
signatures. Case by case assessment of risk predictions. Comparison
of risk scores of 138 cases of grade 2 ILC. NPI Nottingham Prognostic
Index, GGI Genomic Grade Index, ROR risk of recurrence
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BR and RNA BR assays (Invitrogen, Scoresby, Australia) and Bioanalyser RNA
6000 Nano assay (Agilent, Mulgrave, Vic, Australia).

Published ILC datasets
Molecular profiling data on ILC tumors was accessed from a number of
published studies. In brief: discovery set comprised n= 146 ILC from The
Cancer Genome Atlas (TCGA) data portal (http://cancergenome.nih.gov/,
data status as at May 15, 2014);15 n= 125 ILC from the METABRIC cohort
(EGAS00000000083)57 (excluding those classified as low cellularity or not
annotated for cellularity); validation set, n= 45 unique ILC cases from the
RATHER cohort (GSE68057).16 Supplementary Table 1 describes the
clinicopathological features of these cohorts and the context in which
they were used in this study. Gene expression data for ILC samples from
TCGA were obtained as raw RNA-Seq counts for each gene. This data was
voom transformed58 using the limma package59 in preparation for
integration with DNA copy number data (see below).

Gene expression profiling and analysis
Gene expression profiling of UQCCR samples was performed using the
Whole-Genome Gene Expression Direct Hybridization Assay (Illumina,
Scoresby, VIC, Australia) as per protocol. Briefly, the Epicentre TargeTAmp
kit (Illumina) was used to label 250 ng of RNA, and the samples were
hybridized to the HT12 v4 chips before scanning on the Illumina iScan.
Data was analyzed using arrayQualityMetrics60 in BioConductor and is
available from GEO (GSE98528).
Following quantile normalization within each cohort (UQCCR and

METABRIC), the datasets were merged and batch effects were removed
using ComBat.61 Prior to hierarchical clustering, the gene expression data

was standardized through median-centering and dividing by median
absolute deviation normalized expression changes. Samples were then
correlated using Spearman distance, and genes were correlated using
Pearson distance. Gene expression data from UQCCR cohort (n= 25) and
RATHER (n= 45) was normalized (quantile and Robust Multichip Average
(RMA), respectively) separately and subject to the PAM50 classification
using the bioclassifier R scripts.62 The distance to each centroid was
calculated using Spearman rank correlation. The centroid with the largest
positive correlation was assigned as the subtype of each sample.

DNA copy number profiling and analysis
Tumor DNA (200 ng) and matched normal DNA from UQCCR cases was
profiled using Illumina Omni2.5-8, V1.1 SNP arrays, according to
manufacturer’s instructions. Tumor cellularity was measured with qPure.63

Copy number was quantified and summarized using GAP64 and GISTIC
2.0.65 GISTIC 2.0 parameters for significant deletions and amplifications
were set at 95% confidence, with a q-value of <0.25 deemed significant.
Frequency plots were generated as detailed in the Supplementary
Information. Discrete GISTIC focal copy number alterations were obtained
from the METABRIC cohort. Only those samples that were grade 2 and had
available survival data were kept for further analysis (n= 63). The rms
package was used to associate the CN events with outcome. Associations
of copy number events and clinical pathological features were performed
using a chi-squared analysis.

Fluorescence in situ hybridization (FISH)
FISH was performed using probes specifically targeted to genes FGFR1 and
CCND1 (Empire Genomics, Buffalo, NY, USA), labeled with 5-Fluorescein

Fig. 4 LobSig adds prognostic value to NPI. a BCSS of the LobSig-stratified NPI moderate grade 2 ILC population. b Heatmap showing the
clinical and molecular characteristics of NPI moderate LobSig-stratified tumors with blue corresponding to LobSig low, and red corresponding
to LobSig high. c Scatterplot showing the enrichment of gene-centric mutations and focal copy number alterations in the LobSig-stratified NPI
moderate cohort. Significance represented by dot size; mutations in green, amplifications in red. d Receiver operator characteristic (ROC)
curve comparing performances of different prognostic gene signatures in the NPI moderate grade 2 ILC cohort. AUC area under curve, Ref
reference, O Dx OncotypeDx
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dUTP and 5-carboxyl-x-rhodamin dUTP, respectively. Four micron tissue
sections were treated using the SPOT-Light Tissue Pretreatment Kit (Life
Technologies), with heat pre-treatment performed for 40min at 99 °C and
enzyme digestion performed for 5 min at 37 °C. The slides were then
dehydrated and the probe applied as per manufacturer’s instructions (1:4
dilution Empire Genomics). Denaturation was performed for 3 min at 83 °C
and hybridized overnight at 37 °C in a humidified chamber. Slides were
mounted and counterstained using ProLong Diamond anti-fade with DAPI
(Life Technologies). DNA copy number was assessed by scoring the
number of signals seen in at least 20 discrete tumor cell nuclei within each
high-power field.

Frequency plots
Genome-wide frequency plots for somatic CNAs (from UQCCR, TCGA, and
METABRIC cohorts) were generated using the copynumber package in R.66

For each cohort either absolute copy number values (UQCCR cohort n=
30), binned copy number states (METABRIC cohort n= 125), or CBS-
smoothed log ratios (TCGA cohort n= 146) were available and distinct

thresholds were determined for each cohort. For the UQCCR cohort,
thresholds for calling copy changes were: gain, between 2 and 5 copies of
the region; loss, <2 copies; amplification, >6 copies; or homozygous
deletion, 0 copies. For TCGA data the thresholds for calling copy gains (CBS
smoothed log ratios >0.3), losses (CBS smoothed log ratios <−0.3) and
amplifications/homozygous deletions, and sample-specific thresholds from
GISTIC were used. The copy number states (i.e. GAIN, LOSS, AMP
(amplification), HOMD (homozygous deletion)) were predefined for
METABRIC samples.

Integration of DNA copy number of gene expression data
In order to identify genes that were altered by copy number we searched
for segments that overlap with whole gene annotations from Ref Seq
(hg19 and hg18 respectively). This was necessary as the segmented data
from TCGA was aligned to hg19 while the METABRIC-segmented data was
aligned to hg18. Two sample by gene copy number matrices were
generated: one matrix was a continuous log-ratio matrix (CBS) smoothed,
while the second matrix was the discrete absolute copy number state. For

Fig. 5 Features of LobSig-stratified tumors. a Genetic landscape shown in scatterplot of gene-centric mutations and driver alterations that
characterize the LobSig high-risk group. Samples analyzed were grade 2 ILC tumors in the METABRIC and RATHER cohorts (n= 108).
Significance represented by dot size; mutations in green, amplifications in red, deletions in blue. b Gene Ontology analysis of the genes
differential expression between LobSig high and low tumors is visualized with REVIGO, where the X and Y distance means similar terms are
closer together. The terms generated using the METABRIC and TCGA cohorts were combined, and only those terms with a false discovery rate
(FDR) of q < 0.002 were included in the REVIGO analysis. Note that the FDR is represented by size. Regn regulation
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each sample (s) and each gene (g), genes that fell completely within a CBS-
derived segment were retained, and assigned that copy number alteration
state and corresponding log-ratio C(s,g),L(s,g), respectively. If a transcript of
a gene was broken by a set of segments then the C(s,g),L(s,g) was assigned
based on the maximal severity based on a relationship denoted below.

C s;gð Þ ¼ CNstate argmax absolute severity CNstatesð Þð Þð Þð

L s; gð Þ ¼ LogR argmax absolute severity CNstatesð Þð Þð Þð

Severity ¼ ð NEUT ; 0Þ;f

ð HOMD ;�2Þ; ð AMP ; 2Þ;

ð HETD ;�1Þ; ð GAIN ; 1Þg
Spearman correlation and ANOVA were applied to integrate gene copy

number and expression level from the UQCCR, TCGA, and METABRIC data
sets. Spearman correlation was performed using the log-transformed gene
expression values and CBS-smoothed log ratios; genes with Spearman rho
(ρ) ≥ 0.6 were retained for further analysis. A meta-analysis of Spearman
correlations was performed using a random effects model (Dersimonian and
Laird method67) weighting each study by the inverse variance using the
metacor() function in themeta package.68 Genes with a combined effect size
value >0.6 were retained. An ANOVA was also performed, testing the
relationship between gene dosage and expression level. P-values from each
dataset were corrected for multiple hypotheses testing using the
Benjamini–Hochberg method. We then performed a meta-analysis of the
ANOVA analysis using Stouffer’s Z-score weighting each study by the sample
size. Genes with a combined P-value < 0.00001 were retained.

LobSig development
Score calculation. Each gene was assigned a coefficient of either 1 or −1
based on whether high or low expression was associated with poor
outcome, respectively. Scores were assigned to each sample in the cohort
using sig.score() in the genefu package.69 This approach uses the linear
combination of gene expression values calculating the mean expression of
the positive probes subtracting the calculated mean expression of
negative probes and standardizing both measurements by the fraction
of positive and negative probes in the signature.

Score per sample ¼
PNp

t¼0 Expression
Np

 !

� Np
N

�
PNn

t¼0 Expression
Nn

 !

� Nn
N

where N is the total number of probes in the signature, Np is the total
number of positive probes in the signature and Nn is the total number of
negative probes in the signature.
In order to increase the dynamic range of the LobSig scores, the gene
expression data for each sample was rescaled, so the expression value was
between 0 and 100, based on the following equation:

rescaledA ¼ A�min Að Þ
max Að Þ �min Að Þ ´ 100

where A is the expression values of LobSig genes in a sample and
rescaled A is the rescaled expression values of LobSig genes in a sample.

Model training. The cohort with computed LobSig scores were split into
five separate folds for five-fold cross-validation using the createFolds function
in the R package caret (https://www.jstatsoft.org/article/view/v028i05), which
involves splitting the dataset into five folds and selecting an optimal cutoff
for prediction of deceased cases with LobSig score as a predictor from the
four folds. For each iteration, the optimal cut off was selected by ROC (i.e.
maximize the sum of sensitivity and specificity) using the R package ROCR.70

The optimal cutoff was used to classify the remaining samples in the fifth fold
as either LobSig High or LobSig Low; this process is repeated until all of the
samples were classified. Training and classification were applied to all of the
available ILC cohorts (G2 METABRIC n= 64, G2 RATHER n= 45, TCGA n= 81
and a G2 combined cohort n= 138).

Survival analysis
The association of each gene with breast cancer-specific survival was
assessed using the METABRIC ILC samples, first by a univariate approach

and then also using a multivariate model. For the univariate analysis, the
survival71 and rms72 R packages were used. Patients were split into
quartiles based on expression level and survival curves plotted using the
Kaplan–Meier method. The significance of differences between survival
curves was evaluated using a log rank test, and a P-value of <0.01 was
considered significant. The multivariate model was used to evaluate the
prognostic ability of groups of genes in ILC tumors and compliment the
survival analysis described above. A Cox proportional hazards model
combined with a variable selection technique known as component-wise
likelihood-based boosting73 was used to select a representative set of
probes from the gene probes identified in the integrated analysis. The R
package CoxBoost73 was used to implement the boosting algorithm, where
the number of boosting steps was determined by 10-fold cross-validation.
The genes from both the univariate survival analysis and multivariate
CoxBoost analysis were evaluated and combined to form a gene
expression signature (LobSig).

Pathway analysis
Differentially expressed prognostic genes in ILC were analyzed using
GeneGo Pathways Software (MetaCore; https://portal.genego.com/). Path-
ways were considered significant if there was P-value < 0.05 and visualized
using REVIGO.74

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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