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Abstract: The acquisition, processing, and interpretation of thermal images from unmanned aerial
vehicles (UAVs) is becoming a useful source of information for agronomic applications because of
the higher temporal and spatial resolution of these products compared with those obtained from
satellites. However, due to the low load capacity of the UAV they need to mount light, uncooled
thermal cameras, where the microbolometer is not stabilized to a constant temperature. This makes
the camera precision low for many applications. Additionally, the low contrast of the thermal images
makes the photogrammetry process inaccurate, which result in large errors in the generation of
orthoimages. In this research, we propose the use of new calibration algorithms, based on neural
networks, which consider the sensor temperature and the digital response of the microbolometer
as input data. In addition, we evaluate the use of the Wallis filter for improving the quality of
the photogrammetry process using structure from motion software. With the proposed calibration
algorithm, the measurement accuracy increased from 3.55 ◦C with the original camera configuration
to 1.37 ◦C. The implementation of the Wallis filter increases the number of tie-point from 58,000 to
110,000 and decreases the total positing error from 7.1 m to 1.3 m.

Keywords: uncooled thermal camera calibration; microbolometer; unmanned aerial vehicle;
image filtering; structure from motion; irrigation management

1. Introduction

Unmanned aerial vehicles (UAVs) provide new alternatives to traditional satellite-based remote
sensing for obtaining high-resolution images in real time for precision agriculture and environmental
applications [1,2]. When compared with other remote sensing platforms, UAVs have the advantage
of being more flexible, lower cost, more independent of climatic variables [1], and they can provide
higher-resolution information [3]. Therefore, these platforms offer appropriate resolution for vegetation
observation which was not possible with traditional platforms. Different types of sensors, such as
RGB digital cameras [4], thermal cameras [5], multispectral and hyperspectral cameras [6], and
other sensors [7], allow for the extraction of agriculturally-useful information [8]. UAVs have been
used to predict several crop characteristics, such as water status variability, crop region and tree
crown mapping, vegetation index calculation, and species phenotyping, among others [5,9–11].
Estimating crop yields is one of the main challenges UAV-based vegetation analysis face today.
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With this aim the successful tomato detection using UAV images carried out by [12] seems promising.
Additionally, the use of thermal information obtained from these devices in agricultural applications
has been proposed, mostly focused on crop phenotyping under stress conditions [13–17]. However,
depending on the thermal sensor used, thermal calibration is a crucial problem to be solved as uncooled
sensors’ temperature measurements are constantly changing [18]. Research on the correct use of
thermal cameras in agricultural applications is becoming more frequent, primarily for the development
of studies showing the possibilities of using this equipment in crop monitoring. Rud et al. [19] stated
that the use of images generated by thermal cameras is a very effective tool in assessing water
availability in the cultivation of potatoes. Möller et al. [20] stated that the use of thermal cameras
together with the use of digital cameras provide very good accuracy in determining physiological
data for vineyards. DeJonge et al. [21] in studies with maize plants, affirmed that the monitoring and
quantification of water stress through evaluating the canopy temperature by using thermometry can
be useful in the detection of plant stress.

The use of thermal information is a remote sensing technique that is being developed to
interpret the state of crops, the detection of pests and diseases related to the moisture content, and
the determination of the energy balance and, therefore, the water needs, through the use of data
obtained from thermal and multispectral cameras. Energy balance methods generally demand surface
reflectance data detected remotely in the visible and near infrared regions of the spectrum to determine
the thermal and infrared band [22–24]. Some of these models are described below:

1 The Surface Energy Balance Index (SEBI), developed by [25], is based on the idea of the Crop
Water Stress Index (CWSI) and an essential aspect is the variation of the surface temperature with
respect to the air temperature. It is a pioneering and widely-used model.

2 The two-source model (TSM), described in [26], is widely used, emphasizing its use in the case of
the vineyard.

3 Clumped (three-source model: transpiration of the cover, evaporation from the soil of the row,
evaporation from the ground between rows), generated from the works of [27], has been used in
vineyards with good results, although it the accuracy of some parameters need to be improved
(characterization of the roof architecture or parameterization of soil moisture) [28].

4 Surface Energy Balance Algorithm for Land (SEBAL), one of the most used models, developed
by [23], calculates evapotranspiration as a residue of the energy balance of the surface. Within the
most used models, SEBAL is designed to calculate the energy balance components, both locally
and regionally, with minimum soil data [29,30].

5 The Simplified Surface Energy Index (S-SEBI) is a method based on a simplification of SEBI [25].
It is based on the contrast between a maximum and minimum surface reflectance temperature
(albedo) for dry and wet conditions. Thus, it divides the available energy into sensible and latent
heat flows. If the maximum and minimum surface temperatures are clearly available in the image,
it does not require additional meteorological data, which becomes an advantage.

6 The Surface Energy Balance System (SEBS) is a SEBI modification to estimate the energy balance
on the surface [31]. SEBS estimates the sensible and latent heat fluxes from satellite data and
commonly-available meteorological data (air temperature and wind speed).

7 The Mapping Evapotranspiration at High Resolution and with Internalized Calibration (METRIC)
is a widely-used model and proposes the modification of some parameters of the SEBAL
model [22,32]. It is calibrated internally with the inclusion in the images of two reference
surfaces (dry or wet pixels and hot or cold pixels) that permits fixing the boundary conditions in
the energy balance and simplifying the need for atmospheric corrections.

8 The Surface Energy Balance to Measure Evapotranspiration (MEBES) is a development of SEBAL
performed by [33] for application in a wide area of Spain. MEBES is a version developed for
applications in regions where the availability of meteorological data is limited (incomplete data).
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MEBES was also validated with a lysimetric measurement at the local level. In addition, local
actual evapotranspiration values (ETa) were compared using the Penman-Montieth method.

9 Remote Sensing of Evapotranspiration (ReSET) is a SEB model, proposed by [34] on the same
principles as METRIC and SEBAL, but with some improvements, such as being able to integrate
data from different meteorological stations.

These models each have their advantages and disadvantages [30], but they allow knowing
ETa with different irrigation and cultivation management strategies [35], being able to approximate
many parameters that determine the criteria for irrigation scheduling [36]. With the use of these
methodologies, and based on thermometry parameters, the water status of the crop and the stress
can be obtained. Many works are available for different herbaceous or woody species with different
spatial scales but, in general, they are focused on the study of wide territories as support systems to
the management of water resources [29,33,37,38].

All these models are based on the fact that the temperature of the canopy is an indicator of
the water status of the plant, which is linked in turn to the stomatal conductance. Various water
stress indices of crops have been developed based on the temperature of the canopy. The crop
water stress index (CWSI) was developed by [39] and is increasingly being used to decide on
irrigation management [40]. Other indicators are being implemented and applied to try to improve
irrigation management.

To develop a functional methodology that utilizes images acquired with thermal cameras
on UAVs, it is imperative that these sensors provide quantitative temperature information and
that this temperature is measured with high precision, which demands a proper radiometric
calibration. Another important problem related to the use of thermal images is the mosaicking
in the photogrammetric process due to the low contrast of this type of image. This fact causes failures
of the algorithms used for the automatic detection and pairing for the relative orientation of the images.

Thermal cameras are used in a wide range of different applications and, compared with
conventional sensors, they do not depend on any external energy source [41]. These devices can
be classified according to the type of image detector that they have, being classified as cooled or
uncooled. Cooled thermal infrared cameras have the largest use in remote sensing because this type of
camera is very sensitive and accurate [42], but the use of cooled sensors has some problematic because
they are large, expensive, and consume a large amount of energy. Due to this fact, cooled thermal
cameras are not usually mounted on small UAVs [42,43]. In contrast, the use of uncooled cameras
coupled to UAVs is viable because they are lighter [5]. One disadvantage of the use of uncooled sensors
is that these microbolometers are not as sensitive and accurate as in cooled systems and the majority of
them are not calibrated, being only able to measure relative temperatures of a scene (image). For most
remote sensing applications, accurate surface temperatures are required, which demands a calibrated
thermal camera from the spectral and geometric point of view [5,43].

In uncooled thermal cameras, which mount thermo-electric cooler (TEC)-less microbolometers,
the microbolometer is not stabilized to a constant temperature. This fact makes the sensor temperature
fluctuate along with the temperature of the camera, which should be taken into account in any camera
calibration model used [44]. Additionally, there are other causes that demand a calibration of TEC-less
infrared sensors [44]:

1 Non-uniformity correction, which refers to the different operating points of the individual pixels
of a microbolometer. A smoothing process is typically carried out in the current uncooled thermal
cameras which attempts to equalize their performance.

2 Defective pixel correction, which refers to pixels that either do not work or whose parameters
vary greatly from the mean. This is a characteristic of the sensor, which should be specified by
the manufacturer. The correction of these pixels is based on their location and their interpolation
based on the data obtained from neighbouring pixels. The main objective of this correction is to
have a high-quality visual image rather than a high-quality radiometric value.
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3 Shutter correction, which refers to the correction required due to the radiance of the camera
interior that also varies with sensor temperature. Current uncooled thermal cameras perform an
automatic shutter correction based on the time or change in sensor temperature.

4 Radiometric calibration, which refers to establishing the relationship between the response of the
sensor and the temperature of the object. It is possible to approximate the sensor output signal
with a Planck curve.

5 Temperature dependence correction, which refers to the effect of the sensor temperature on the
response of the sensor. A linear correction that considers the signal from the object and the
signal from the camera (dependent on camera temperature) is typically used to perform this type
of correction.

In current uncooled thermal cameras, the first three sources of inaccuracies are corrected by
the firmware included in the system. The fourth correction in devices is corrected by the digital
acquisition system, if included in the sensor. However, the fifth correction is not usually performed,
which leads to errors in the temperature measurements that are not acceptable for many applications,
such as some agricultural or environmental applications. We found that the digital response of the
camera is affected by the camera temperature in a non-linear manner. Thus, we will compare linear
and non-linear classical models (polynomial models) to calibrate the thermal camera. Also, we will
implement Artificial Neural Networks models to calibrate the camera because of their appropriate
performance for solving highly non-linear problems [45].

Other sources of inaccuracies in thermal measurements using TEC-less cameras are [46]:
size-of-source effect, distance effect, and environmental effects, among others, which are also present
in the cooled cameras.

The procedure of generating the mosaic of orthoimages solves the general method of
photogrammetry from the original images, obtaining the effect of obtaining an orthogonal perspective
and covering the entire study area, which extends the field of view of the cameras [47] without
introducing undesirable lens deformation [48]. Different types of photogrammetry software,
such as PhotoScan® (Agisoft, St. Petersburg, Russia), Pix4D® (Pix4D, Lausanne, Switzerland),
Apero-MicMac [49], VisualSfM [50], and Bundler [51], are used to obtain geomatic products from UAVs,
such as georeferenced orthoimages and digital elevation models (DEM). These software packages
require adequate image quality to obtain accurate geomatic products with the photogrammetry process.

Some problems related to obtaining orthoimages from thermal imaging are as follows: (1) the
spatial resolution of commercial thermal chambers is still low, with commercial product resolutions
varying from 160 × 120 to 1280 × 1024 [41], (2) vanadium oxide microbolometers have a higher
noise level compared to other sensors [52], (3) compared to optical images, thermal images have low
resolution and weak local contrast [53], and (4) in the particular case of non-refrigerated cameras, the
acquisition of a time series of thermal images may fluctuate due to changes in sensor temperature [54].
Another problem of the use of thermal images in the photogrammetric process is that the images present
very low contrast due to the low variation of the temperature in the observed objects. The low contrast
of the images makes it difficult for computer vision algorithms to detect key points automatically.
This problem implies that there are not enough matching points and the relative orientation process,
with or without autocalibration, is not able to orient the entire set of images so that the mosaic of
images, if it is achieved, has outstanding imperfections. In addition, it can lead to imprecision in the
geometric calibration process of the camera.

In order to minimize these problems, filters have been developed for the treatment of images.
These filters, in a simplified way, are described as part of mathematical procedures that consist of
isolating the components of interest, so as to reinforce or soften the spatial contrasts of the grey level
that integrate an image. It is performed by transforming the original grey levels of each pixel in
such a way that they increase the difference with their corresponding neighbours. The filters can be
classified according to the effect they produce to the images, being able to be of low step, of high step,
of median, or directional, among others [55]. The purpose of the application of these filters in the
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context of the problem under study is to facilitate the photogrammetric procedure, primarily in the
finding of tie-points.

Studies related to the pre-processing of images through the use of filters relate their functionality
and effects in the images. Kou et al. [56] developed a detail enhancement algorithm to produce
a detailed image, whereby the fine details can be amplified by enlarging all the gradients in the
source image, except those of the pixels at the edges. From fine detail enhancement algorithms,
fine details can be improved while avoiding halo artefacts and gradient inversion artefacts around the
edges. Guidi et al. [57] analysed the effects of optical preprocessing with polarizing filters and digital
preprocessing with high dynamic range (HDR) images to improve the conduction of 3D automated
modelling based on Structure from Motion (SfM) and image matching. However, these authors
observed that the metallic object does not preserve the polarizations of light and, consequently, is
not affected by such an improvement. HDR-based techniques have also been analysed, revealing a
moderate improvement in the ceramic object tested, on the order of 5%, compared to the standard
images, but definitely a better result in the metal object (+63%).

Within this context, the objective of this work is to develop a procedure and an algorithm, based on
machine learning, for radiometric calibration of uncooled thermal cameras. In addition, thermal image
filtering to improve the photogrammetry solution is evaluated.

2. Materials and Methods

To obtain accurate high-resolution thermal products usable in precision agriculture, an integrated
methodology is proposed. This methodology focuses on the accuracy of the acquired data, through the
implementation of a novel calibration process, together with the appropriate data treatment during
the mosaicking process to avoid post-processing artefacts.

2.1. Utilized Equipment

Different types of aircraft have different capabilities, with advantages or disadvantages depending
on the application [1]. Compromises must be made between ease of flying, stability against wind,
handling flight failures, distance covered, load capacity, and take-off/landing requirements. In this
study, a Microdrone md4-1000 (Microdrones, Inc., Kreuztal, Germany) was utilized. It is a vertical
take-off and landing (VTOL) quadcopter aircraft (Figure 1). The acronym VTOL denotes the capability
of a flight vehicle to take off and land again in the vertical direction without the need of a runway.
It employs four rotors or propellers on vertical shafts, mounted on one level of the bodywork. The UAV
size is 1.030 m from motor to motor.

Regarding the flight performance, this UAV has a maximum rate of climb of 7.5 m·s–1, a maximum
horizontal speed of 12 m·s–1, a maximum take-off weight (MTOW) of 6 kg, and a maximum load of
1.2 kg. The autonomy of the UAV reaches 40 min under optimal climatic conditions thanks to the 6S2P
LiPo, 22.2 V, 13,000 mAh battery. With these characteristics, it can fly an area of approximately 80 ha
per flight using a sensor that weights 0.3 kg.
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The reference targets used to analyse the error of the geomatic products, especially designed for
thermal applications as described below, were measured using Leica System 1200 GNSS receivers
(Leica Geosystems AG, Wetzlar, Germany), which are dual-frequency systems that receive data from
Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) constellation
satellites and allow for measurement in a real-time kinematic (RTK) mode while static observations
are recorded at the base receiver. During the subsequent post-processing step, the coordinates of the
measured points were obtained in a global system with centimetre-level accuracy. This equipment
updated its position with a frequency of 20 Hz (0.05 s) to minimize the possibility of recording false
coordinates. The accuracy in RTK mode was 0.02 m in the X and Y axes, and 0.03 mm in the Z axis.

The thermal camera used to obtain the thermal images was the FLIR Tau2 (FLIR Systems, Inc.,
Wilsonville, OR, USA) (Figure 1), the main features of this camera are a focal of 9 mm (FOV 69◦ × 56◦);
an uncooled microbolometer of 640 (H) × 520 (V), a pixel size of 17 µm; a spectral band ranging
7.5–13.5 µm, and a weight of approximately 72 g without a lens.

2.2. Radiometric Calibration Data Acquisition

A radiometric calibration of the thermal cameras was conducted using a blackbody source
Hyperion R Model 982 (Isothermal Technology Limited, Pine Grove, Southport, Merseyside, UK),
with a large of 50 mm in diameter and 150 mm deep. The temperature range of the blackbody is
from −10 to 80 ◦C. The thermal camera was installed in a fixed position against the black body at a
distance of 0.5 m (Figure 2). The temperature of the sensor was measured and recorded for each image
acquisition event. Blackbody temperatures used in the calibration process ranged from 5 to 65 ◦C in
steps of 5 ◦C, which covers the range of temperatures found in agricultural applications. To obtain
different values of the temperature of the camera, the experiment was carried out in a cooling room
and in a regular room in which the temperature was modified to induce low and high temperatures
with the cooling/heater system. Thus, a wide temperature range of the sensor is achieved to generalize
the calibration model for any temperature condition. For each temperature of the blackbody images
were obtained for sensor temperatures ranging between 5 and 31 ◦C (Figure 3).

A lower number of measurements were obtained for sensor temperatures lower than 20 ◦C, which
corresponds with those obtained in the cooling room. Some problems related with water condensation
in the black body and for reaching constant temperatures in the blackbody (it was set every 10 ◦C from
5 to 65 ◦C) made it a difficult task. With these data, it is ensured that a wide range of temperatures
during the calibration process covers all the scenarios during agricultural applications. To ease the
process of camera calibration a software called TermCal was developed by the authors in the MatLab®

(Mathworks, Natick, MA, USA) environment in which the user can select a representative area of the
blackbody temperature captured by the thermal camera and determine the digital response of the
image, assigning a value of sensor temperature and perform the camera calibration with the different
models described in this paper.
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2.3. Analyzed Algorithms for Radiometric Calibration

Three types of models were analysed in this paper to perform the camera calibration: (1) linear
models (Equation (1)), (2) polynomial models (Equations (2)–(4)), which are the models that are
traditionally applied for the correction for camera temperature variation [44], and (3) an artificial
neural network [45], because of their adequate performance for solving highly non-linear regression
problems. To determine the best model, 65% of the data were used for calibration and 35% for
validation. The calibration and validation subsets were randomly selected ensuring that both data set
cover the whole range of measurements:

TBB = p00 + p10 × DL + p01 × TC (1)

TBB = p00 + p10 × DL + p01 × TC + p20 × DL2 + p11 × DL × TC + p02 × TC2 (2)

TBB = p00 + p10 × DL + p01 × TC + p20 × DL2 + p11 × DL × TC + p02 × TC2 + p30 ×
DL3 + p21 × DL2 × TC + p12 × DL × TC2

(3)

TBB = p00 + p10 × DL + p01 × TC + p20 × DL2 + p11 × DL × TC + p02 × TC2 + p30 ×
DL3 + p21 × DL2 × TC + p12 × DL × TC2 + p03 × TC3

(4)

where TBB is the temperature of the black body; DL is the digital response of the camera; TC is the
temperature of the camera; and pij are the regression coefficients.

Artificial neural networks (ANNs) are mathematical models that simulate the functioning of
a biological neuron, and these networks have some advantages which make their use possible in
different fields of study. The training algorithm type used in the neural network was back propagation.
Considering a neuron j in layer i, the sum of the input variables and corresponding weights (Sj) in the
input vector may be described according to Equation (5):

Sj = w0j +
n

∑
i=1

wi j · xI (5)
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where Sj is sum of the input variables with their corresponding weights in the neuron j of layer i; wij is
the weight associated with each of the input neurons with respect to the hidden layer nodes; w0j is the
weight associated with the first input neuron with respect to the hidden layer nodes; xI is the input
value stored in each neuron i; and n is the number of input variables.

Equation (6) describes the output variable of neuron j:

yj = f (Sj) (6)

where yj is the output of neuron j; the activation function.
The activation function, for a hyperbolic tangent function responds to Equation (7):

yj = tanh(Sj) (7)

where yj is the output of neuron j; and tanh is the hyperbolic tangent.

2.4. Analysis of Residuals

In order to analyse the model adjustments, the following statistics were utilized: number of
observations (n); representing the amount of data to be evaluated. In this paper n = 266 images;
the average values of the digital levels and the sensor temperature, which is given in Equation (8);
the coefficient of determination (R2, Equation (9)); the root mean square error (RMSE), given by
Equation (10); the relative error (RE, Equation (11)), and the similarity index (SI, Equation (12)).

x =
∑n

i=1 Xi

n
(8)

where x is the average of all observed values, Xi, and n is the number of observations:

R2 =

∑ n
i=1

(On − MO)(Sn − MS)√
∑n

i=1(On − MO)2 ∑n
i=1(Sn − MS)2

2

(9)

where R2 is the coefficient of determination; On are the observed values; Sn simulated values; MO is
the average value of the n observed values; MS is the average value of n simulated values; and n is the
number of observations:

RMSE =

√√√√√ n
∑

i=1
(Sn − On)2

n
(10)

where RMSE is the root mean square error (◦C); n is the number of observations; Sn are the simulated
values; and On are the observed values:

RE =

(
RMSE

MO

)
· 100 (11)

where RE is the relative error (%); RMSE is the root mean square error; and MO is the average value of
the n observed values:

SI = 1 −


n
∑

i=1
(Sn − On)2

n
∑

i=1
((Sn − MO) + (On − MO))2

 (12)

where SI is the similarity index; n is the number of observations; Sn are the simulated values; On are
the observed values; and MO is the average value of the n observed values.
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In addition to these statistics, error analysis will be performed by: (1) analysis of linear regression
between observed and simulated values; (2) adjustment of the residuals to the normal distribution;
(3) homoscedasticity; and (4) Cook’s distance for outlier detection.

2.5. Photogrammetry Process and Image Filtering

The procedure to acquire georeferenced geomatic products includes: (1) flight planning,
which considers photogrammetric data that are provided by flight-planning software; (2) locating
ground control points (GCPs) along the observed area; (3) measuring GCPs with a GNSS-RTK;
(4) executing flights that follow the uploaded flight plan; (5) visually selecting the best set of images
for post-processing by removing any blurred images; (6) entering the images and coordinates of the
targets into photogrammetry software, which will self-calibrate the camera with the bundle-adjustment
method; and (7) obtaining a georeferenced orthoimage, dense point cloud, and digital terrain model
(DTM) [8,58].

As stated in the introduction section, the photogrammetry process using thermal images is a
challenging task because of the lack of contrast in the images and the difficulty of locating the GCPs
in the images. To solve the low contrast in the image we propose to apply the Wallis filter [59] on
thermal imaging, which has been successfully applied in other cases with visible images when the
scene presents low contrast [60–62]. This filter applies a contrast enhancement to each zone of the
image by adjusting the brightness values in specific areas of the image to make the measurement and
the standard deviation match the user default values. This improvement achieves a good local contrast
throughout the image (Figure 4a,b), which allows for better detection of key points and corresponding
matching, as well as allowing the operator to improve the photointerpretation of the GCPs.
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Figure 4. Example of photointerpretation in non-filtered images (a) and filtered images (b).

From the set of thermal images resulting from the planning flight, three sets of images are created:
(1) the set of original thermal images, (2) the set of filtered thermal images after applying the Wallis filter
to the set of thermal images, and (3) the set of radiometrically-calibrated thermal images after applying
the thermal radiometric calibration to the original set of original thermal images. Photogrammetric
processing was performed using Agisoft PhotoScan® (Agisoft, St. Petersburg, Russia) software using
the parameters described in Table 1.
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Table 1. Parameters used in Agisoft PhotoScan®.

Alignment Parameters

Accuracy High
Pair preselection Generic
Key point limit 40.000
Tie point limit 4.000

Adaptive camera model fitting yes
Optimized parameters f, b1, b2, cx, cy, k1–k4, p1, p2

Dense point cloud
Quality Medium

Depth filtering Mild

Model

Surface type Arbitrary
Source data Dense cloud
Face count High

Interpolation Enabled
Orthomosaic

Mapping mode Orthophoto
Blending mode Mosaic

For the processes of alignment of the images, determination of the dense cloud of points, and
creation of the mesh, we used the set of thermal images treated with the Wallis filter. To texture and
generate the final orthoimages, these images were replaced by the set of radiometrically-calibrated
images. To apply the Wallis filter to the images, the GRAPHOS program was used [61]. In the process
of self-calibration of the thermal camera with Agisoft PhotoScan® software the following parameters
were determined:

f: which is the focal length measured in pixels.
cx and cy: which are the coordinates of the main point.
b1, b2: which are the biased transformation coefficients.
k1, k2, k3, k4: which are the radial distortion coefficients.
p1, p2: which are the tangential distortion coefficients.

In addition to the results of the self-calibration procedure, errors were calculated in the GCPs.
The total error in X, Y, and Z was calculated from Equation (13):

Total error =

√√√√√
 n

∑
i=1

[(
Xi,est − Xi,in

)
+
(

Yi,est − Yi,in
)
+
(

Zi,est − Zi,in
)]

n

 (13)

where Xi is the estimated value for the X coordinate for the position of the camera i; Xi,in is the input
value for the X coordinate for the position of the camera i; Yi,est is the estimated value for the Y
coordinate for the position of the camera i; Yi,in is the value input for the Y coordinate for the position
of the camera i; Zi,est is the estimated value for the Z coordinate for the position of the camera i; and
Zi,in is the input value for the Z coordinate for the position of the camera i.

The photogrammetric processing was performed for three different situations: (1) use of
the images as obtained from the camera with the factory settings, without filtering and without
radiometric calibration; (2) use of filtered images without radiometric calibration; and (3) use
of radiometrically-filtered and corrected images. The analysis of these cases allowed illustrating
the improvements provided by the proposed methodology, by comparing the results in the
photogrammetric processing of the images filtered and corrected radiometrically with those obtained
with the same software when using the set of original thermal images (unfiltered and without
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radiometric calibration). In addition, the difference in temperature measurement was analysed by the
use of radiometrically-corrected and uncorrected images.

The number of tie points obtained with the filtered and unfiltered images and the number
of stereoscopic pairs generated were evaluated, which has a significant influence on the accuracy
of the aerotriangulation with autocalibration and, consequently, on the quality of the obtained
geomatic products.

2.6. Application to a Case Study

The proposed methodology was implemented in a vineyard located in Iniesta (Cuenca, Spain)
irrigated with water of the hydrogeological unit (H.U.) 08.29. (Figure 5). This unit is located in the
southeast of Spain, on the eastern side of the La Mancha plains, with a total area of 8500 km2 and
with relatively uniform agronomic features. This area is classified as semi-arid according to the aridity
index (AI) described by [63] (AI = 0.36). Therefore, proper water management for irrigation is essential
for rural development. Air temperature and other meteorological variables were recorded from an
agro-meteorological station located 7 km from the plot. For the 2015 season, the precipitation was
268.4 mm year−1 and the annual reference evapotranspiration (ETo) was 1321.4 mm year−1.

The total area of the plot is 17.8 ha. The varieties cultivated in this plot were Sauvignon Blanc,
Garnacha Tintorera, and Syrah. Plots were irrigated using drip irrigation systems, applying an average
of 800 m3 ha−1, which means a deficit irrigation due to water scarcity and water restriction in the area.
The irrigation system is divided into 12 sectors. The cultivation techniques applied were considered
typical practices for vineyards.
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Figure 5. Location of the case study, and detail of the orthoimage obtained with the UAV. Black squares
are ground measurements of validation points (PNOA, 2015).

Black squares are the locations of the ground measurements, which were performed over rain-fed
neighbouring vineyards (eastern squares), irrigated vineyards that were irrigated the night before the
flight (cantered squares), and irrigated vineyards irrigated seven days before the flight. In addition,
soil measurements were obtained in the three placements.



Sensors 2017, 17, 2173 12 of 23

2.7. Flight Planning and UAV Data Acquisition

The objective of flight planning was to generate a navigation file that guides the UAV to
automatically capture images, with proper overlapping and sidelapping, according to the requirements
of the final product (mainly GSD) and the requirements of the photogrammetry workflow [58]. In this
case of study, the GSD employed was 0.20 m.

Overlapping was established in 60% and sidelapping in 40%. To ensure these values, flight
planning should consider the errors of GPS, camera angles, etc. Microdrone photogrammetric flight
planning software (MFLIP) was developed by the authors in collaboration with the company ICOM
3D (Asturias, Spain) for UAV flight planning, introducing all of the photogrammetry parameters
required for each flight. The main result of the flight planning is an ASCII file in which each line
includes an order for the UAV. This file is copied into the microSD card on the UAV. In addition, it
generates a database with the theoretical footprints of the images, overlapping, among other data,
in SHP files that can be opened with QGIS or a similar program. This information is useful in the
photogrammetry workflow.

With the dual objective of georeferencing the generated geomatic products and geometrically
calibrating the camera lens, a total of eight GCPs were located and measured by GNSS-RTK. In order
to allow the measurement of the GCPs in the thermal images, an evaluation was made of combinations
of materials suitable for making the thermal targets, with EVA rubber material of dimensions of
0.60 × 0.80 m being chosen for their manufacture, with a polished aluminum plate of 0.34 × 0.29 m
(Figure 6) in the centre. The polished aluminum sheet allows reflecting of the temperature of the sky,
which is obviously very low compared to the temperature of the ground. Thus, it was easy to detect
the targets in the thermal images by means of photointerpretation.
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2.8. Ground Temperature Acquisition for Validation

In order to validate the proposed methodology, different temperature measurements were
taken in different vines and soils just after the flight. To determine water stress in the plants,
thermal measurements were obtained in different sectors. As the irrigation interval was one week,
measurements were taken in vines irrigated from one week before the flight (five measurements in
sector 3) to the night before (five measurements in sector 9). Additionally, neighboring rain-fed vines
(five measurements) and soil (five measurements) were obtained. The measurements were made in
the field with a FLIR B660 refrigerated thermal camera (FLIR Systems, Inc., Wilsonville, OR, USA).
The emissivity was set to 1 to be able to compare both measurements. A Leica Zeno GNSS-RTK
handheld system (Leica Geosystems AG) was used to capture the coordinates of each of the selected
temperature sample points immediately after the flight, as well as the plants and the soil, to locate the
sampled points in the generated orthoimagery. These temperature values were compared with the
temperature values obtained from the orthoimages generated from the photogrammetric procedure
using the radiometrically-corrected thermal images.
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3. Results

3.1. Error Analysis of the Uncooled Thermal Camera

We obtained a series of data from 266 images of this camera that were analysed as they were
captured with the configurations of the manufacturer. These same images were used in the comparison
of the adjustments of the lineal and polynomial models and the ANN. Table 2 shows the statistics that
determine the measuring accuracy of the camera. It can be observed that the measurement accuracy
with the default parameters of the camera is very low, with an RMSE of 3.55 ◦C and an average RE
of 8.47%. When using artificial neural networks, it can be observed that the RMSE decreased up to
1.37 ◦C and a RE of 8%.

Table 2. Main statistic indices of the manufacturer configuration, linear model, polynomial models
(P1–P4), and the artificial neural network model.

Manufacturer Configuration Linear P1 P2 P3 P4 ANN

Data 266 95 95 95 95 95 95
R2 0.96 0.99 0.99 0.99 0.99 0.99 0.99

RMSE, ◦C 3.55 1.81 1.81 1.49 1.51 1.51 1.37
Relative Error, % 8.47 5.59 5.57 4.59 4.66 4.66 4.22
Similarity Index 0.99 1.00 1.00 1.00 1.00 1.00 1.00

It can be observed that the RMSE decreases drastically from the manufacturer configuration to
the polynomial and even the linear model (from 3.55 ◦C to 1.49 ◦C). According to the manufacturer,
this camera should have an expected final precision of ±2 ◦C in absolute temperature measurements.
There is an increase of the RMSE for polynomial models 3 and 4, which could be due to overfitting
of the model. However, these differences are very slight. Thus, in this case, the best classical model
is the polynomial 2 with a RMSE of 1.49 ◦C. However, when applying the ANN model, a RMSE
of 1.37 ◦C can be reached. The slight difference does not justify the use of complex models based
on machine learning over traditional polynomial models. However, a deep analysis of the model’s
residuals should be performed to select the best model. Figure 7 shows the error analysis for the
manufacturer configuration, polynomial 2 and ANN, respectively. It can be seen that the measurement
errors are very high and are not randomly distributed, being non-homoscedastic. These errors call
into question the usefulness of the camera in its original configuration for agronomic applications and
demonstrate the need for an adequate calibration process to increase the accuracy of the measurement.

In agronomic applications, using satellite-derived data and non-local meteorological data, it was
observed that a 2 ◦C error in soil temperature (Ts) corresponds to an error of 0.23 in the latent heat flux
(LE), a 1 ◦C error in canopy temperature (Tc) corresponds to an error of 0.10 ◦C in LE for satellite data,
an error of 1 ◦C in Ts corresponds to an error of 0.11 in LE, and an error of 0.5 ◦C in Tc corresponds to
an error of 0.06 ◦C in LE for non-local meteorological data [64]. The RMSE obtained after calibration
(1.4 ◦C) could be acceptable for agronomic applications, while using the manufacturer configuration
(3.55 ◦C) could lead to gross errors in the energy balance model. Therefore, it is essential to perform an
adequate calibration of uncooled thermal cameras.

Additionally, to implement the energy balance model from thermal images obtained with UAVs,
it is recommended to perform a vicarious calibration with ground temperature measurements. Even if
the camera is powered on before the flight for around 30 min and stabilized with climatic conditions,
high variation of the sensor temperature could appear during the flight. Thus, the vicarious calibration
could become a difficult task, requiring different points for ground measurement along the plot,
increasing the cost of this activity. Here, we propose a calibration considering the sensor temperature
and to perform a vicarious calibration in accessible, easy to measure points.
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3.2. Results of Wallis Filter Application

The flight characteristics obtained from the photogrammetric process in Agisoft PhotoScan® for
each of the comparisons made are described in Table 3.

The number of images is the total number of images loaded in the project; the flight height is
the average height above the terrain level calculated in the photogrammetric procedure in Agisoft
PhotoScan®; ground resolution is the averaged field resolution on all aligned images; the coverage
area is the size of the study area; the number of oriented images refers to the images for which the
photogrammetric orientation has been corrected; projections is the total number of projections of valid
tie-points; and re-projection error is the quadratic mean of the average of re-projection errors on all
tie-points in all images. The re-projection error is the distance in the position in the image, in unit pixels,
between the position detected by computational vision and the result of applying the collinearity
equation from the position in the model system (terrain for relative or absolute orientation).
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Table 3. Characteristics of each of the photogrammetric procedures performed for each of the
described situations.

Unfiltered Images Filtered Images

Number of images 1154 1154
Flight height (m) 81.1 80.4

Ground resolution (cm pix−1) 13.8 13.5
Covered area (km2) 0.366 0.364

Number of images oriented 1.148 1.151
Tie-points 58,193 110,089
Projections 272,078 445,291

Re-projection error (pix) 0.504 0.442

The results presented in Table 3 show that when applying the Wallis filter in the images the
number of tie-points increases by 89% for the filtered images compared with unfiltered images. It is
also observed that the number of projections increases when the filter is applied, with an increase of
63%. Table 3 also shows that the re-projection error decreases after filtering the images. These results
demonstrate that the application of the Wallis filter to the images allows for an improvement in the
processing of the images by the greater number of image tie-points recognized in the photogrammetric
software used.

The results obtained from the detection of points of interest (key points) and their correspondences
(points of connection or matching) on the images with the Wallis filter have greatly improved the
results. Figure 8 shows a comparison between the number of tie-points in the alignment process using
the original images (X-axis), and the number of coincident points for the filtered images (Y-axis).
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To evaluate the statistical significance of the difference, a box and whisker diagram was obtained
(Figure 9), which resulted in a significant difference.
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In addition, Figure 10 shows how the percentage of the increase of the tie-points resulting from
the filtering process is greater for those images with a low number of points, a key question that allows
the orientation of these images and explains that they may not be oriented if this technique is not
applied. In this way, the effectiveness of the Wallis filter is confirmed in the automatic detection of
tie-points for thermal imaging, which results in greater precision in the geometric calibration of the
camera and in the relative and absolute aerotriangulation, which translates, finally, in high-quality
geomatic products.
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The calculated errors in X, Y, and Z are shown in Tables 4 and 5, showing that the accuracy
obtained in the GCPs after the absolute orientation is better for the filtered and geometrically-calibrated
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images, with reductions of 2.66 to 0.60 m in X, 2.45 to 0.43 m in Y, and from 6.19 to 0.98 m in Z. The 3D
error reaches 7.2 m if the filtering process is not implemented and is reduced to 1.2 when filtering.
The main error is obtained in Z, which means that the geomatic product obtained is accurate in
planimmetry, but innacurate in altimetry. Thus, only the thermal orthoimage is a usable product while
the dense cloud cannot be used to obtain the canopy volume. Thus, an interesting solution would
be installing together multispectral, RGB, and thermal cameras to obtained different products on the
same flights.

Table 4. Control points of images not filtered and not geometrically calibrated.

GCP Error X (mm) Error Y (mm) Error Z (mm) Total (mm) Image (pix)

1 1.00 −1.12 0.80 1.70 0.58 (34)
2 −3.81 −0.33 2.78 4.73 0.97 (49)
3 4.82 1.65 −10.87 12.01 0.74 (32)
4 2.69 1.41 5.83 6.57 0.65 (30)
5 0.53 3.56 2.36 4.30 0.36 (32)
7 −2.41 −5.36 −6.14 8.50 0.56 (26)
8 −1.60 0.68 4.89 5.19 0.86 (24)
9 −1.48 0.33 −8.92 9.05 0.53 (31)

Total 2.66 2.45 6.20 7.18 0.70

Table 5. Control points of the filtered and calibrated geometrically images.

GCP Error X (mm) Error Y (mm) Error Z (mm) Total (mm) Image (pix)

1 −0.37 0.46 −0.98 1.14 0.57 (34)
2 −0.19 −0.24 −0.04 0.32 1.65 (49)
3 0.02 0.32 0.13 0.35 0.64 (31)
4 0.05 −0.64 1.33 1.48 0.87 (32)
5 1.32 0.61 1.00 1.77 0.38 (32)
7 −0.98 −0.32 −1.78 2.05 0.67 (27)
8 −0.20 0.28 0.90 0.97 0.78 (23)
9 0.08 −0.39 −0.17 0.43 0.51 (31)

Total 0.61 0.43 0.98 1.23 0.92

The geomatic product obtained presents a better quality besides being well georeferenced, as can
be observed in Figure 11.
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In some areas, the temperature difference between the corrected and uncorrected orthoimages
reaches −5.06 ◦C and up to 1.93 ◦C.
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3.3. Results of Temperature Measurements in the Case Study

Table 6 shows the comparison of three sources of information for temperatures in the validation
surfaces: the measurements with the FLIR B660 hand-held thermal camera performed after the thermal
flight as ground truth, those obtained by measurement in the uncalibrated images, and those obtained
in the images resulting from the thermal calibration, both obtained from the generated orthoimages.
The measurements, as described in the methodology (Figure 5), were obtained in neighbouring rain-fed
vineyards (RV), vineyards irrigated the day before the flight (IV), vineyards irrigated seven days before
the flight (7d-IV), and in the soil. Images were obtained for every condition.

Table 6. Results obtained from the points sampled.

Handheld Camera Original Configuration Corrected Data

Mean SD Mean SD Mean SD

RV 1 30.2 0.3 32.0 0.1 29.7 0.1
RV 2 29.2 0.2 33.8 0.0 31.7 0.1
RV 3 27.7 0.3 33.8 0.2 31.6 0.2
RV 4 29.3 0.3 32.7 0.4 30.5 0.4
RV 5 29.2 0.3 31.4 0.1 29.1 0.2
IV 1 27.4 0.1 28.3 0.0 25.8 0.0
IV 2 26.8 0.3 28.2 0.3 25.6 0.3
IV 3 28.6 0.2 27.2 0.0 24.6 0.0
IV 4 27.4 0.2 28.1 0.5 25.5 0.5
IV 5 26.0 0.2 28.5 0.3 26.0 0.3

7d-IV 1 28.2 0.3 33.4 0.0 31.4 0.0
7d-IV 2 26.7 0.3 32.7 0.3 30.6 0.3
7d-IV 3 28.3 0.1 32.5 0.2 30.4 0.2
7d-IV 4 27.1 0.1 31.4 0.1 29.3 0.1
7d-IV 5 28.3 0.1 30.9 0.0 28.8 0.0
Soil 1 42.8 0.2 42.2 0.1 40.7 0.1
Soil 2 42.3 0.3 41.6 0.1 40.1 0.1
Soil 3 41.7 0.3 40.6 0.1 39.0 0.1
Soil 4 43.2 0.5 40.1 0.1 38.4 0.1
Soil 5 41.3 0.2 39.2 0.0 37.5 0.0

Figure 12 shows the adjustment of the data measured with the hand-held thermal camera and the
calibrated camera using the procedure developed and the ortho-mosaic process described. It can be
observed that the adjustment between the values is not adequate, with an RMSE of 2.6 ◦C, a maximum
error of 4.7 ◦C and a SD of 2.7 ◦C. These errors can be due to: (1) the photogrammetric process of
orthoimaging changes the temperature values in each pixel due to the need to apply an operation
similar to the resampling method, which implies that the value assigned to each pixel of the final
orthoimaging is the result of an average of close values of the different images involved, not allowing
the software employed to request the use of the neighbour method closest to the optimal image, which
would be ideal according to the principles of remote sensing; (2) the handheld camera is not the
best method to perform a vicarious calibration, since its measurement accuracy, although markedly
greater than the uncooled sensor on the UAV, is not less than 1 ◦C. Thus, in future studies we will
use a spectroradiometer that measures in the thermal bands. Additionally, a method for selecting the
more nadiral image of the set of images that measures the same point will be implemented. Thus, the
temperature will be obtained from this image and not from the orthoimage.
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4. Conclusions

To perform accurate measurements of temperature with uncooled thermal cameras it is necessary
to perform and adequate camera calibration that considers the effect of the sensor temperature
on the measurement. Additionally, a proper photogrammetry process should be implemented to
generate high-quality mosaics from low-contrast thermal images. The proposed calibration procedure
of uncooled thermal cameras, based on the use of artificial neural networks, which considers as
input data the digital level of each pixel and the sensor temperature, noticeably improve accuracy.
The temperature of the sensor has a great effect on the measurement accuracy of the thermal sensor.
Without calibration errors, close to four degrees can be obtained while calibrating with the proposed
methodology the measurement error can be reduced to approximately 1.5 ◦C.

The application of the Wallis filter to thermal imaging significantly improves the photogrammetric
solution, providing a thermal high-quality thermal orthoimage. Similar problems have been found
by other researchers that utilized similar cameras [65]. They found temperature differences between
−5 ◦C to 20 ◦C depending of the time of the day. They performed vicarious calibration but they did
not accounted for a laboratory camera calibration as the presented in this manuscript.

Applications based on temperature measurements with uncooled microbolometers should
consider accurate camera calibration, proper systems for measuring microbolometer temperature,
and a rigorous methodology to perform UAV flights that warranties the measurement precision. Also,
images treatment in the photogrammetry workflow should carefully perform to avoid geometric
inaccuracies. All these aspects, increase the cost for obtaining a reliable thermal product.

With this research, we detected the need to improve the quality of the vicarious calibration
with accurate spectroradiometers and the need to obtain new methodologies to obtain temperature
values from the best positioned image for each point. We will focus our future research in these two
newly-detected lines of research.
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