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Abstract

The construction of dams and weirs, and associated changes to hydrological and

hydraulic (e.g., water level and velocity) characteristics of rivers is a key environmen-

tal threat for fish. These multiple stressors potentially can affect fish in a variety of

ways, including by causing changes in their movement, habitat use and activity.

Understanding how and why these changes occur can inform management efforts to

ameliorate these threats. In this context, we used acoustic telemetry to examine hab-

itat use, longitudinal movement and activity of two lowland river fishes, Murray cod

Maccullochella peelii and golden perch Macquaria ambigua, in a weir pool environment

in south-eastern Australia. We compared our results to published studies on riverine

populations to determine if their behaviours are similar (or not). We show that

M. peelii and M. ambigua in a weir pool exhibited some similar behaviours to conspe-

cific riverine populations, such as strong site fidelity and use of woody habitat for

M. ambigua. However, some behaviours, such as large-scale (tens–hundreds of

kilometres) movements documented for riverine populations, were rarely observed.

These differences potentially reflect flow regulation (e.g., stable water levels, loss of

hydraulic cues) in the weir pool. The two species also exhibited contrasting responses

to dissolved oxygen conditions in the weir pool, which may reflect differences in their

life history. Overall, this study shows that although some aspects of these two native

fishes' life history can continue despite flow regulation, other aspects may change in

weir pools, potentially impacting on long-term population persistence.
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1 | INTRODUCTION

The construction of dams and weirs to store or divert water for human

use has altered the condition of aquatic ecosystems worldwide

(Dudgeon et al., 2006; Jo et al., 2019; Olden, 2016; Vörösmarty et al.,

2010). Major alterations include reduced flow variability, conversion of

lotic to lentic habitats, reduced habitat complexity and altered water

quality (Bunn & Arthington, 2002). These changes impact ecological

processes and have effects on a range of biota, including fish, inverte-

brates and plants. For instance, conversion of lotic habitat to lentic in

rivers due to the impoundment of upstream waters in dams and weirs,

and associated changes to flow variability, water velocity, level and tur-

bulence have been associated with the elimination of pelagic spawning

fishes such as burbot Lota lota (Linnaeus 1758) in the Great River Ouse,
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UK (Copp, 1990), extinctions of aquatic snails in the lower River Mur-

ray, Australia (Sheldon & Walker, 1997), and decreased wood decom-

position in regulated Mediterranean rivers (Abril et al., 2015).

Flow regulation can affect fish in a variety of ways, across cellular,

individual, population and community levels (Murchie et al., 2008).

However, many animals, including fish, alter their behaviour as an ini-

tial response to environmental change and this can be a strong deter-

minant of fitness outcomes (Wong & Candolin, 2015). Consequently,

behavioural responses of fish (e.g., habitat use, movement, activity) to

flow regulation are particularly important. For example, some fish shift

position during periods of flow alteration or alter their habitat use or

feeding, and these behaviours have implications for growth, condition

and reproduction (Alexandre et al., 2016; Brenden et al., 2006; Del

Mar Torralva et al., 1997). Understanding these changes to behaviour

is critical therefore to evaluate impacts of alterations due to regulation

and to guide management actions.

In Australia, regulation of river systems with dams and weirs has

been extensive. In the Murray–Darling Basin (MDB), Australia's largest

drainage basin, more than 4000 licensed in-stream structures have

been constructed to regulate river flow (Lintermans, 2007). Along the

main river in the MDB, the Murray River, weirs have created a series

of contiguous pools for at least 700 km in the lower reaches (Walker,

2006). This modification has been identified as a driver of severe

declines of biota, such as extinctions of native riverine fish species,

including trout cod Maccullochella macquariensis (Cuvier 1829) and

Macquarie perch Macquaria australasica (Cuvier 1830), and declines in

other species such as silver perch Bidyanus bidyanus (Mitchell 1838)

in the lower Murray River (Mallen-Cooper & Zampatti, 2018;

Wedderburn et al., 2017). Elsewhere in the MDB dramatic fish kills

have occurred from low dissolved oxygen concentrations (hypoxia)

during reduced flows, such as in Rices Weir on Broken Creek and the

Menindee Weir on the Darling River, with the latter attracting global

media attention (Normile, 2019; Stewardson & Skinner, 2018).

Murray cod Maccullochella peelii (Mitchell 1838) and golden perch

Macquaria ambigua (Richardson 1845) are two large native riverine fish

species of recreational angling and conservation significance endemic to

south-eastern Australia. Populations of both species have declined sub-

stantially in the MDB due to factors such as habitat degradation and loss,

altered flow regimes, reduced water quality and barriers to movement

(Koehn & Nicol, 2014; Leigh & Zampatti, 2013; Thiem et al., 2017;

Wedderburn et al., 2017). M. peelii is listed as Threatened nationally and

M. ambigua as Near Threatened in Victoria. The two species display dis-

tinct life history strategies and thus may behave differently in response

to environmental changes associated with river flow regulation, such as

loss of hydraulic cues, altered water quality or reduced habitat complex-

ity in weir pools.

Studies on riverine populations have shown that M. ambigua spawn

and migrate in response to increases in flow or water level (Koster et al.,

2017; Reynolds, 1983) whereas M. peelii spawning and migration is not

dependent on flow increases (Humphries et al., 1999; Koehn et al., 2009).

M. peelii has a greater sensitivity to hypoxia than M. ambigua (Small et al.,

2014) and there is evidence that M. ambigua may be more likely to move

away from areas affected by hypoxic conditions than M. peelii (King et al.,

2012; Koster et al., 2014b; Leigh & Zampatti, 2013). Both species use

woody habitat, butM. peelii use deeper habitats, with higher water veloci-

ties, than M. ambigua (Koehn & Nicol, 2014). Given that environmental

conditions such as hydraulics, water quality or habitat might be altered in

weir pools, it is important to understand if fishes exhibit similar behaviour

in weirs compared to rivers.

The aim of this study was to quantify daily and seasonal habitat use

patterns and the longitudinal movement and activity of M. peelii and

M. ambigua in relation to environmental conditions in a weir pool environ-

ment. We used a fine-scale continuous acoustic telemetry array, inte-

grated with side-scanning sonar, to assess instream habitat conditions to

(a) characterize the behaviour of fish in weir pools and evaluate if this is

similar to knowledge about the traits and behaviours of these species in

riverine populations; and (b) evaluate whether patterns differ among

these two species. Knowledge of aspects of life history such as habitat

use, movement and activity in weir pools is needed to better understand

potential impacts of habitat change and flow regulation on these two spe-

cies, and to inform potential management interventions. This information

will also potentially inform efforts to assess and mitigate future impacts

on other riverine fishes experiencing the effects of flow regulation.

2 | MATERIALS AND METHODS

2.1 | Study area

The study was conducted in lower Broken Creek, south-eastern Australia

(Figure 1). Lower Broken Creek is typically 40–50 mwide and 2–3 m deep.

Average daily discharge in Broken Creek is 230 ml (Stewardson & Skinner,

2018). Broken Creek was subject to extensive historical removal of fallen

trees and dredging (Trueman, 2011). Under natural conditions Broken

Creek flowed intermittently, predominantly during winter–spring, and dur-

ing most summers contracted to a series of pools (Reich et al., 2010). For

the past 100 years a series of predominantly contiguous low-level weirs

along lower Broken Creek and diversion channels has maintained perma-

nent water for irrigation (Reich et al., 2010). These weirs are similar to

those found in many other regulated rivers, that is, low-level (<3–5 m), nar-

row (<50–100 m wide) and shallow (<several metres deep) weirs operated

to maintain a steady upstream pool level for irrigation (Baumgartner, 2007;

Baumgartner et al., 2014; O'Connor et al., 2006). All of the weirs along

lower Broken Creek have fishways installed capable of facilitating fish pas-

sage (O'Connor et al., 2006). Rices Weir, the most downstream weir on

Broken Creek, exhibits water-quality issues, especially low dissolved oxy-

gen concentrations (Stewardson & Skinner, 2018). Major fish kills have

become a serious problem in lower Broken Creek in recent years, particu-

larly at Rices Weir. The most likely explanation for the fish kills is low dis-

solved oxygen levels in conjunction with little or no flow (Rees, 2006).

2.2 | Acoustic tracking

Twenty-three M. peelii [mean total length (TL) 480 mm, range

320–780 mm; mean weight 2562 g, range 410–10,000 g] and
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15 M. ambigua (mean TL 351 mm, range 314–415 mm; mean weight

800 g, range 523–1408 g) collected from the lower 5 km of the Rices

Weir pool on lower Broken Creek were tagged with acoustic transmit-

ters (Vemco, Nova Scotia, Canada) in August 2012 (Table 1). The

transmitter-to-fish weight ratio was below about 2% as recommended

by Winter (1996). The fish were collected using a Smith-Root model

(Vancouver, Washington, USA) 7.5 GPP boat-mounted electrofishing

unit (500–1000 V, 120 pulses s−1).

Vemco V9 accelerometer transmitters (43 × 9 mm, frequency

69 kHz, mass 6.1 g in air, estimated battery life 350 days) were used

for M. ambigua. Vemco V9 or V13 accelerometer transmitters

(42 × 13 mm, frequency 69 kHz, mass 12.2 g in air, estimated battery

life 740 days) were used for M. peelii, depending on the size of the

fish. For both transmitter types the average delay between transmis-

sion was 240 s. Acceleration was sampled at 5 Hz for 30 s. The tag

calculates a value that represents the root mean square acceleration

that results from the combination of the acceleration from each of the

three axes averaged over time.

For transmitter implantation, fish were transferred into an aer-

ated, 50 l holding container of river water (temperature 11–13�C) and

individually anaesthetized (0.03 ml AQUI-S per litre water) (AQUI-S,

Lower Hutt, New Zealand). Time to anaesthesia was about 6–9 min.

Acoustic transmitters were implanted into the peritoneal cavity

through an incision of about 20 mm on the ventral surface, between

the pelvic and anal fins. The incision was closed with two dissolvable

external synthetic absorbable monofilament sutures. The sex of the

fish could not be determined at the time of tagging. Throughout the

procedure the head and gills of fish were immersed in aerated anaes-

thetic solution. Each surgery took about 3 min and the fish was then

placed into a recovery net positioned in the creek. Once the fish were

observed to maintain their balance and freely swim throughout the

net they were subsequently released near the point of capture.

Forty-two acoustic listening stations (Model VR2W, Vemco) were

deployed in Broken Creek between the River Murray junction and

Nathalia (a distance of about 50 km) (Figure 1). Thirty-seven of these

listening stations were between Rices Weir and 7 km upstream at

about 200 m intervals to provide precise information on fish locations

within these reaches (Figure 1). The listening stations were deployed

using a length of plastic-coated steel cable anchored to a log. A float

and weight were attached above and below each listening station,

respectively, to maintain a vertical position. Each listening station was

suspended about 0.5 m above the riverbed. In situ tests showed that

the listening stations had total detection ranges of about 200 m (i.e.,

100 m upstream, 100 m downstream), depending on the physical

attributes of the site (e.g., depth, turbulence). Data were downloaded

from the listening stations every 3 months throughout the study.

2.3 | Habitat mapping

Instream woody habitat (IWH) and stream depth were measured in

February 2015 between Rices Weir and 7 km upstream. Locations of

IWH masses, defined as individuals and piles of logs and trees with a

minimum diameter of 0.1 m and a length of 1 m (excludes small twigs

and floating debris), along the stream were recorded using a Trimble

GeoExplorer XT6000 series handheld Global Navigation Satellite Sys-

tem (Ultimate Positioning Group Australia, Melbourne, Victoria,

Australia) coupled with a laser range finder. Submerged IWHwas identi-

fied using a Humminbird 998c SI side imaging system (Humminbird

Australia, BLA Distribution, Brisbane, Queensland, Australia). At each

IWH mass, size [i.e., footprint area (m2)] and complexity (number of con-

tiguous pieces/large branches) were measured and converted to volume

(m3 of wood) as per Kitchingman et al. (2013). These data were then

summarized into total volume (m3 of wood) within 100 m upstream and

downstream of each logger position. Counts of IWH masses within

100 m upstream and downstream of each logger position were also cal-

culated. The volume of wood in Rices Weir was ~2.2 m3, which is simi-

lar to much of the entire lower Broken Creek, which comprises

predominantly weir pools (A. Kitchingman, unpublished data). Stream

depths were recorded using the Hummingbird 998cx SI side scan sonar.

These data were summarized into maximum depth (m) within 100 m

upstream and downstream of each logger position.
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2.4 | Data analysis

2.4.1 | Habitat use

Generalized additive mixed models (Hastie & Tibshirani, 1995) were

used to examine patterns of daily and seasonal habitat use, using the

mgcv (Wood, 2017) package in R (www.R-project.org). Habitat variables

examined were (a) IWH volume (m3 of wood); (b) count of IWH masses;

and (c) maximum stream depth (m). These variables were selected

because they are likely important for M. peelii and M. ambigua (Crook

et al., 2001; Koehn & Nicol, 2014). Cyclic cubic regression splines

(Wood, 2017) were used to smooth the response to hour-of-day and

day-of-year. Individual fish were treated as a random effect. Any auto-

correlation was assumed to be autoregressive with order 1 (AR1). Mean

values for each habitat variable per hour were calculated for each indi-

vidual across the entire monitoring period, when transmitters were

detected within the intensive listening station array (88% of the time).

2.4.2 | Longitudinal movement

Generalized additive mixed models were used to explore relationships

between the distances moved by M. peelii and M. ambigua and environ-

mental variables, using the package mgcv in R. Explanatory variables

examined were (a) average daily discharge; (b) change (t1− t0) in daily flow;

(c) average daily dissolved oxygen; (d) change (t1 − t0) in daily dissolved

oxygen; (e) average daily water temperature; (f) diel period; (g) previous

movement; (h) day-of-year; and (i) water level. Cubic regression splines

(Royston & Sauerbrei, 2007) were used to smooth the response to these

variables. Individual fish were treated as a random effect. Again, autocor-

relations were assumed to be AR1. The model used a log-normal distribu-

tion. Distance moved (km) was calculated as the difference in mean daily

position from the current day to the previous day (t1 − t0), with position

defined as the distance of the receiver from RicesWeir. Total linear ranges

for each fish were estimated by determining the distance between the

most upstream and downstream locations in Broken Creek.

2.4.3 | Activity

Generalized additive mixed models were used to examine relationships

between environmental variables and activity (measured in terms of

m s−2) of M. peelii and M. ambigua, using the mgcv package in

R. Explanatory variables examined were (a) average hourly discharge;

(b) change (t1 − t0) in hourly flow; (c) average hourly dissolved oxygen;

(d) change (t1 − t0) in hourly dissolved oxygen; (e) average hourly water

temperature; (f) diel period; (g) previous hourly activity; (h) day-of-year;

and (i) water level. Cubic regression smoothers for water temperature,

water level and day-of-year were included to account for the possibility

of peak activity. Mean values of activity (m s−2) per hour were calcu-

lated for each individual across the entire monitoring period.

3 | RESULTS

3.1 | Discharge and water quality

Discharge, water level, water temperature and dissolved oxygen data

were obtained from the gauging station at Rices Weir. Discharge was

TABLE 1 Details of the tagged M. peelii and M. ambigua during
the study

Species ID TL (mm) Mass (g)

Total linear

range (km)

M. peelii MC1 404 967 1.8

MC2 407 1162 1.2

MC3 702 6785 10.0

MC4 425 1122 2.6

MC5 698 6381 7.4

MC6 470 1807 2.2

MC7 320 422 0.4

MC8 366 692 0.6

MC9 390 799 1.2

MC10 320 410 0.8

MC11 325 440 0.2

MC12 344 559 0.8

MC13 360 645 0.2

MC14 350 536 0.6

MC15 710 6255 5.2

MC16 650 5184 47.1

MC17 390 876 1.6

MC18 780 10,000 7.3

MC19 550 2688 3.5

MC20 710 7083 3.4

MC21 440 1111 5.4

MC22 410 975 5.6

MC23 510 2022 2.1

M. ambigua GP1 360 782 6.0

GP2 354 855 1.2

GP3 340 730 11.2

GP4 400 1228 1.2

GP5 314 523 3.0

GP6 379 994 3.4

GP7 321 565 2.0

GP8 350 808 2.0

GP9 357 802 2.6

GP10 348 702 48.7

GP11 330 636 6.0

GP12 340 664 3.8

GP13 340 719 0.8

GP14 320 585 26.9

GP15 415 1408 4.0

Note: ID, identification number; TL, total length.
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typically lowest around June–August (~50–100 ml day−1) and highest

around September–October (about 600–700 ml day−1) in each year

(Figure 2). Several increased discharge events driven by rainfall runoff

from the catchment occurred during the study. Water level remained

stable throughout most of the study period (Figure 2). Dissolved oxy-

gen generally remained above 4 mg l−1 over the study period,

although there were short periods (<1–2 days) when dissolved oxygen

decreased to about 3 mg l−1 between late November 2012 and early

February 2013, and between late January and early February 2014

(Figure 2). Maximum temperatures of around 33�C were reached in

January and minimum temperatures of around 7�C occurred in June

(Figure 2).

3.2 | Habitat use

All fish (23 M. peelii and 15 M. ambigua) were detected by the listening

stations. Habitat use of M. ambigua varied throughout the year

(Figure 3). Fish were more likely to occupy deeper habitats from

October to December, and shallower water from January to February
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(Figure 3a). They were also more likely to use areas with greater IWH

volume and counts of IWH masses around February, and areas with

lower counts of IWH masses around November (Figure 3b,c).

M. ambigua were also more likely to be in deeper areas during the day,

particularly from around midday to early afternoon, although the eco-

logical significance of this result is questionable given a very small

effect size (Figure 4). The generalised additive mixed models indicated

no significant patterns of daily and seasonal habitat use for M. peelii.

3.3 | Longitudinal movement

M. peelii typically occupied short stretches of stream (median total lin-

ear range 2.1 km) (Figure 5). About one-third (7 out of 23) of the

M. peelii (MC3, 702 mm TL; MC5, 698 mm TL; MC15, 710 mm TL;

MC16, 650 mm TL; MC18, 780 mm TL; MC 21, 440 mm TL; MC22,

410 mm TL) occasionally moved upstream or downstream (i.e., mostly

about 5–10 km) from their usual locations (Figure 5). Most (6 out of 7)
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of these fish returned to the area they had previously occupied; some

return movements occurred within 1–2 days (e.g., Figure 5c), while

others occurred 4–5 weeks later (e.g., Figure 5d). This pattern of

behaviour was most common in September–November. The median

size of the individuals that moved was 698 mm, compared to 390 mm

for those that did not move. The generalised additive mixed models

indicated no significant relationships between the distances moved by

M. peelii and environmental variables.

Similar to M. peelii, M. ambigua typically occupied short

stretches of stream (median total linear range 3.4 km) (Figure 6).

Two of the M. ambigua (GP10, 348 mm TL; GP14, 320 mm TL)

moved upstream long distances (i.e., 25–50 km) in November–

December away from their usual locations (e.g., Figure 6h). Two

M. ambigua also moved a short distance downstream into the Mur-

ray River in September and January and did not return to Broken

Creek. The generalised additive mixed models indicated no
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significant relationships between the distances moved by

M. ambigua and environmental variables.

3.4 | Activity

M. peelii and M. ambigua activity tended to gradually increase from

August through to a peak in November–December and then decline

or plateau to February (Figure 7). Activity in both species was strongly

influenced by previous activity and change in dissolved oxygen

(Table 2). Decreases in dissolved oxygen were associated with

decreased activity for M. peelii and increased activity for M. ambigua.

As an example, if dissolved oxygen decreased by 10%, activity

decreased by 4.1% in M. peelii and increased by 5.3% in M. ambigua.

Water temperature and day-of-year also influenced activity of both

species (P-values <0.001 for smoother), but at their extremes account

for less than 50% of the variability, as measured by the standard

deviation.
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TABLE 2 Association of environmental variables with activity of (a) M. peelii and (b) M. ambigua in Broken Creek

Parameter Estimate Lower bound Upper bound
Estimate as a percentage
of standard deviation

(a) M. peelii

Previous activity 0.295 0.294 0.296 184%

Dissolved oxygen 0.016 0.014 0.018 10%

Change in dissolved oxygen 0.066 0.048 0.084 41%

Flow 0.021 0.019 0.022 13%

Change in flow −0.014 −0.018 −0.010 9%

Dusk compared to day −0.004 −0.008 0.000 2%

Night compared to day −0.002 −0.005 0.000 1%

Dawn compared to day 0.005 0.001 0.009 3%

Mean day activity 0.663 0.647 0.680

Standard deviation (overall) 0.160 0.159 0.161

(b) M. ambigua

Previous activity 0.248 0.247 0.249 188%

Dissolved oxygen 0.011z 0.008 0.013 8%

Change in dissolved oxygen −0.085 −0.107 −0.064 65%

Flow 0.011 0.009 0.013 8%

Change in flow −0.004 −0.010 0.003 3%

Dusk compared to day 0.002 −0.003 0.007 1%

Night compared to day −0.007 −0.010 −0.004 5%

Dawn compared to day −0.006 −0.011 −0.002 5%

Mean day activity 0.723 0.699 0.748

Standard deviation (overall) 0.131 0.130 0.132

Note: Lower bound, lower 95% credible interval; upper bound, upper 95% credible interval.
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4 | DISCUSSION

We found that both M. peelii and M. ambigua in a weir pool exhibit

strong site fidelity, and that M. ambigua used woody debris, similar to

observations on riverine populations (Crook, 2004; Crook et al., 2001;

Koehn & Nicol, 2016). In comparison, some behaviours differed from

those previously observed, especially the absence of longer-distance

(tens to hundreds of kilometres) movements and a lack of habitat asso-

ciations for M. peelii. The results also demonstrate interspecific variabil-

ity in behaviours, such as disparate responses to dissolved oxygen

conditions. These differences highlight the importance of understanding

species-specific fish behaviour in response to changes in environmental

conditions. Overall, the results suggest that some aspects of these two

native fishes' life history persist despite flow regulation, but other

aspects such as longer-distance movements may change in weir pools.

4.1 | Habitat use

We found that habitat use of M. ambigua was seasonally variable, with

fish more likely to be in areas with greater IWH in February (austral

late summer), and lower IWH in November. Seasonal changes in use

of woody debris habitats are well known for many fishes, for example

in brown trout Salmo trutta Linnaeus 1758, European eel Anguilla

anguilla (Linnaeus 1758) and flathead catfish Pylodictis olivaris

(Rafinesque 1818) (Weller & Winter, 2001). While M. ambigua were

associated with woody debris in a short-term study (Crook et al.,

2001) and can exhibit seasonality in habitat use (Koehn & Nicol,

2014), to our knowledge this is the first study to examine if associa-

tions with IWH vary seasonally. Woody debris can provide a range of

habitat functions, including shelter, foraging sites and refuges from

predators and high velocities (Crook et al., 2001). While the mecha-

nism for the pattern we observed is unknown, one possible explana-

tion could relate to spawning behaviour. Given M. ambigua are pelagic

spawners, they may be less likely to inhabit areas with greater IWH

masses during November, which is their peak spawning period in this

region (Koster et al., 2014b, 2017). Further work is needed to explore

if this is the case, and more generally to improve our understanding of

the spawning dynamics of fish that use weir pools.

M. ambigua were also more likely to be in deeper habitats in

August–December (late winter to early summer) and shallower habi-

tats in January–February (mid to late summer). Seasonal movements

between deeper and shallower habitats have also been reported for

other fish species such as the congeneric Macquarie perch

M. australasica Cuvier 1830 (Thiem et al., 2013) and the northern hog

sucker Hypentelium nigricans (Lesueur 1817) (Matheney & Rabeni,

1995; Thiem et al., 2013). One possibility for the result observed here

is that M. ambigua responds to changes in availability of prey.

M. ambigua feed predominantly on macrocrustaceans such as fresh-

water shrimp Paratya australiensis (Kemp 1917) (Baumgartner, 2007),

which are seasonally more abundant at warmer water temperatures,

occur mostly in shallow littoral habitats (Richardson & Cook, 2006)

and are abundant in Broken Creek (Reich et al., 2010).

We found no significant patterns of habitat use over time for

M. peelii. This species is often associated with woody debris and

deeper habitats (Jones & Stuart, 2007; Koehn, 2009; Koehn & Nicol,

2014). Seasonal differences in habitat use of M. peelii have also been

reported, possibly related to increased water velocities, river widths

and depths during higher flow periods (Koehn & Nicol, 2014). It is

possible that differences between our study and these earlier ones

may explain why different results were observed, such as the spatial

scale at which they were conducted, the sampling locations and the

methods that were used. Scales of observation, for example, are well

recognized as potentially confounding estimates of habitat use (Crook

et al., 2001; Hale et al., 2019; Koster & Crook, 2008). However, there

are also plausible biological explanations why we may not have

observed relationships, especially changes in the instream characteris-

tics of lower Broken Creek associated with regulation, such as

reduced flow variability and water level, as well as historical removal

of habitat (i.e., fallen trees) and dredging.

4.2 | Longitudinal movement

We found that M. ambigua exhibited low levels of vagility, typically

moving less than 3 km from their tagging location. Other studies have

reported extended periods of restricted movement for this species

(Crook, 2004; Zampatti et al., 2018), but these are often interspersed

by periods when many individuals undertake large-scale movements (e.

g., tens to hundreds of kilometres), often in association with high flows

(Koster et al., 2017; O'Connor et al., 2005). For example, a radio-tagging

study ofM. ambigua in the Murray River revealed that during late spring

coinciding with increasing river discharge, 15 out of 19 (79%) tagged

fish undertook long-distance (>10 km) movements (O'Connor et al.,

2005). In the current study, there were several increases in discharge (e.

g., from 185 to 449 ml day−1 in September 2012, 65 to 281 ml day−1 in

August 2013), but the water level remained relatively constant due to

regulation associated with Rices Weir.

Hydraulic-based cues such as a rise in water level rather than dis-

charge per se are increasingly recognized as important to stimulating

life history processes of riverine fishes such as movement (Dudley &

Platania, 2007; Rakowitz et al., 2008). Extensive regulation and crea-

tion of weir pools throughout the MDB (Mallen-Cooper & Zampatti,

2018) may reduce movement cues for fish, and explain the limited

extent of large-scale movements by M. ambigua observed here. While

a study by Reynolds (1983) in the lower Murray River, which com-

prises extensive sections of weir pools, found some evidence of

extensive movement by M. ambigua, this was associated with a rise in

water level due to major flooding. In comparison, the changes in water

level observed here may have been insufficient to elicit this response.

From a conservation and management perspective, approaches such

as weir pool lowering and raising to create lotic habitats upstream

may be an important management strategy for M. ambigua and other

riverine fishes that rely on flow cues (Ye et al., 2008).

We found that M. peelii movements occurred over limited spatial

extents, and most often during spring (September–November).
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Movements were characterized by shifts away from usual locations,

followed by return movements within 1–2 days, or shifts to new areas

for 4–6 weeks where movement was again very limited, followed by

return movements to areas previously occupied. Movements by M. peelii

from a home location to a new position upstream, followed by a return

movement to the area previously occupied during spring, have been

observed in riverine and lake populations of M. peelii (the latter involving

movements upstream into inflowing rivers) and may be spawning-related

(Koehn et al., 2009; Koehn & Nicol, 2016). We found that these move-

ments were undertaken by fish larger than (or just below) 500 mm in

length, the approximate size of maturity forM. peelii (Rowland, 1998). The

similarities in the spawning season movements of M. peelii from contra-

sting habitats (i.e., river, lake, weir pool) suggest that some aspects of life

history can continue to be supported despite flow regulation.

The mating system of M. peelii involves nest-guarding and

cleaning by male fish, while female fish leave the site once their eggs

are deposited (Rowland, 1998). Although the sex of the fish could not

be determined in our study, the return movements we observed

within 1–2 days could be females visiting nest sites or males looking

for mates or nesting sites. It is also possible that the shifts to new

areas for 4–6 weeks could represent male nesting behaviour. Sex-

specific variation in movement linked to reproductive behaviour has

also been reported for other fish species such as freshwater catfish

Tandanus tandanus Mitchell 1838 (Koster et al., 2014a) and barbel

Barbus barbus (Linnaeus 1758) (Lucas & Baras, 2001). Further tracking

during the spawning season, including sex determination of tagged

fish coupled with evidence of spawning (such as using larval drift nets

or underwater video cameras (e.g., Butler & Rowland, 2009, Ebner

et al., 2009), would be valuable for improving our understanding of

the spawning-related movement behaviour of M. peelii.

4.3 | Activity patterns

M. ambigua were more active during periods of decreased dissolved

oxygen. Fish respond to low dissolved oxygen in complex and varied

ways, with increased activity potentially indicative of an avoidance

response or increased swimming speed to improve gill ventilation

(Chapman & McKenzie, 2009). While aquatic surface respiration has

been documented for M. ambigua in response to hypoxia in laboratory

conditions (Small et al., 2014), knowledge of the mechanisms

M. ambigua use in the wild to cope with poor oxygen conditions is lac-

king. Determining whether the increased activity observed here

relates to behavioural–physiological reactions such as increased gill

ventilation or movements to avoid areas with low oxygen conditions

would be valuable areas for future research. Indeed, the results of a

study investigating the short-term effects of a blackwater (i.e., deoxy-

genation) event on fish, whereby more M. ambigua were collected in a

non-affected site compared to a blackwater affected site (King et al.,

2012), provide support for a hypothesis of movement of this species

away (i.e., avoidance) from poor oxygen conditions.

In contrast to M. ambigua, M. peelii were less active during periods

of decreased dissolved oxygen. In large fish such as M. peelii (up to

113.6 kg) (Lintermans, 2007) with high oxygen demands, decreased

activity may represent an energy-saving strategy to allow them to cope

with low levels of dissolved oxygen (Crocker & Cech, 1997). It has been

shown under laboratory conditions that M. peelii is highly sensitive to

hypoxia with a swimming capacity suited to energy conservation (Small

et al., 2014; Whiterod, 2013). These characteristics may also therefore

explain why M. peelii, which primarily inhabits lotic riverine environ-

ments less prone to hypoxia than lentic habitats, is often disproportion-

ately reported in hypoxic blackwater fish kills (e.g., less likely to escape

the hypoxic zone) (King et al., 2012; Small et al., 2014).

Understanding the resultant energetic expenditure for fish when

they are exposed to particular water quality conditions such as low dis-

solved oxygen would be a useful next step for evaluation of biological

consequences (Payne et al., 2011; Thiem et al., 2018). Nonetheless, our

findings demonstrate the potential consequences of altered water qual-

ity as a result of modifications such as weir pools and the importance of

water quality considerations in the management of flow regimes, which

often focus heavily on water volume (Poff, 2018). Importantly, when

dissolved oxygen decreased to about 3 mg l−1, tagged M. peelii and

M. ambigua were detected actively moving afterwards, demonstrating

tolerance to short-term oxygen depletion. However, if fish are exposed

to longer periods of dissolved oxygen depletion, the risk of mortality

may be increased (Herbert et al., 2011; Kramer, 1987).

We found no meaningful effect of temperature or discharge on

M. peelii and M. ambigua activity. In contrast, a study of M. peelii in the

Edwards–Wakool river system showed that both variables influenced

activity of this species (Thiem et al., 2018). The discrepancy between

the two studies could relate to differences in methodology and instream

characteristics of the study systems, such as hydraulic conditions, for

example lack of variation in water levels and velocity in Broken Creek.

More generally, activity patterns of fishes can vary among different

populations and even individuals of the same population (Metcalfe

et al., 1999; Valdimarsson et al., 2000). There can be a variety of causes

for this variability, including habitat, competition, and food availability

and quality (Metcalfe et al., 1999; Metcalfe & Steele, 2001).

In conclusion, we found that some behaviours of the two focal

species were similar in a weir pool to those observed in riverine

populations but that there were also some considerable differences.

These results highlight the potential effects of environmental change

(e.g., flow regulation) on fish behaviours, and whether knowledge can

be directly transferable among populations from different environ-

ments (Barbee et al., 2011). From a conservation management per-

spective, if fish behave differently in different habitats, management

actions may need to be targeted for the specific situation. Similarly,

our results demonstrate the need to understand interspecific variabil-

ity in fish responses to altered environments. Collecting more infor-

mation about changes in fish behaviour and life history will help

determine and manage the ecological consequences of river regula-

tion practices.
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