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Abstract

Polygenic factors are estimated to account for an additional 18% of the familial relative risk of breast cancer, with
those at the highest level of polygenic risk distribution having a least a twofold increased risk of the disease.
Polygenic testing promises to revolutionize health services by providing personalized risk assessments to women at
high-risk of breast cancer and within population breast screening programs. However, implementation of polygenic
testing needs to be considered in light of its current limitations, such as limited risk prediction for women of non-
European ancestry. This article aims to provide a comprehensive review of the evidence for polygenic breast cancer
risk, including the discovery of variants associated with breast cancer at the genome-wide level of significance and
the use of polygenic risk scores to estimate breast cancer risk. We also review the different applications of this
technology including testing of women from high-risk breast cancer families with uninformative genetic testing
results, as a moderator of monogenic risk, and for population screening programs. Finally, a potential framework for
introducing testing for polygenic risk in familial cancer clinics and the potential challenges with implementing this
technology in clinical practice are discussed.
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Introduction
Breast cancer is a common disorder with a strong her-
editary contribution. Women with a first-degree relative
with breast cancer have a twofold increased risk of de-
veloping the disease [1, 2]. Much of the hereditary com-
ponent of breast cancer remains unexplained, with
pathogenic variants in moderate- and high-risk genes,
such as BRCA1 and BRCA2 (BRCA1/2), accounting for
less than 25% of the familial risk for the disease [3]. Re-
cent studies suggest breast cancer is a complex disease,
with polygenic factors accounting for a further 18% of
the familial risk [4]. Currently, there is considerable de-
bate over the clinical utility of polygenic information to
assess breast cancer risk. Supporters of this technology
argue that polygenic testing has the potential to provide
risk information for a significant number of women who

would otherwise receive uninformative genetic testing
results and further stratify risk for those with pathogenic
variants in high- and moderate-risk genes [5–7]. Add-
itionally, polygenic risk promises to revolutionize popu-
lation screening programs by providing personalized risk
assessments and risk management strategies [8, 9]. How-
ever, it has also been argued that there is not enough
evidence to support its implementation in clinical prac-
tice and that the test does not provide sufficient risk
stratification to warrant implementation over traditional
risk assessment tools [10–12]. Furthermore, there is no
consensus for the implementation of this technology,
such as which variants to include in the polygenic risk
calculations. Despite these concerns, testing for poly-
genic breast cancer risk is now being implemented in
clinical practice with several commercial genetic testing
laboratory now offering the test [13, 14].
This article aims to review the evidence for testing for

polygenic breast cancer risk and the different applica-
tions of the test, including for high-risk women with un-
informative genetic testing results, as a modifier of
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monogenetic risk genes, and to guide population screen-
ing programs. This article also explores the potential
benefits and limitations of this technology, as well as the
challenges associated with implementing polygenic test-
ing in clinical practice.

Genome-wide association studies
There have been over 100 different breast cancer
genome-wide association studies (GWAS), which have
collectively led to the identification of over 182 vari-
ants associated with breast cancer risk at the genome-
wide level of significance (Additional file 1) [15].
Given the small effect size of these variants, there has
been an ongoing need to increase the sample sizes of
GWAS to detect true genetic associations [16]. In-
creasingly large GWAS have been made possible due
the establishment of international research consortia,
including the Breast Cancer Association Consortium
(BCAC) and The Collaborative Oncological Gene-
Environment Study (COGS), formed in 2005 and
2009 respectively [17, 18].
The COGS combined data from multiple international

consortiums with the goal of improving understanding
of the genetic susceptibility to breast, ovarian, and pros-
tate cancer, and designed a custom array, the Illumina
iSelect (iCOGS) [18]. The first major breast cancer out-
come from the COGS program was a GWAS that geno-
typed 52,675 cases and 49,436 controls of European
ancestry [19]. Twenty-three of the 27 previously re-
ported breast cancer associated loci were replicated
using iCOGS and an additional 41 new breast cancer
loci were identified. Further analysis of the full dataset
suggested that more than 1000 loci are involved in
breast cancer susceptibility [19].
In a follow-up study, a meta-analysis of 11 previous

GWAS together with the data from the 41 studies geno-
typed in iCOGS was conducted. Data for 62,533 breast
cancer cases and 60,976 controls of European ancestry
was analyzed, leading to the identification of an add-
itional 15 breast cancer associated variants along with
replication of 71 of the 79 previously reported variants
[20]. Consistent with previous GWAS, nearly all of these
variants were located in intronic or intergenic regions of
the genome, suggesting they are regulatory [20].
In the largest breast cancer GWAS to date, Michaili-

dou et al. [4] genotyped 61,282 cases and 45,494 controls
of European ancestry using the specifically developed
Illumina OncoArray and results were also included in a
meta-analysis of a further 61,695 cases and 60,480 con-
trols from iCOGS and 11 other studies. This compre-
hensive analysis led to the identification of the 61 new
breast cancer variants, and 49 out of the 102 previously
reported loci showed evidence of association with breast
cancer risk in the OncoArray dataset. Together, the 182

known loci were estimated to account for 18% of the fa-
milial risk for breast cancer [4].
There have been increasing efforts to conduct GWAS

in non-European populations, with most of the reported
breast cancer variants discovered in European cohorts
[21–25]. Michailidou et al. [4] conducted a meta-analysis
of 14,068 cases and 13,104 controls of East Asian ances-
try. Out of 94 loci discovered in European populations,
50 showed evidence of association in the East Asian co-
hort. Similarly, five loci previously reported in Asian
women showed evidence in the European cohort. How-
ever, such findings have not been consistent across dif-
ferent ethnic groups. For example, approximately 100
variants previously validated in European or Asian
women did not provide comparable risk stratification in
women of African ancestry, with 30 to 40% of variants
conferring risk in one population but appearing to be
protective in another [26]. These findings highlight the
need to conduct further studies to assess the association
of breast cancer variants in non-European populations
and to identify novel variants that confer breast cancer
risk in those populations.
Most GWAS to date have been unselected for

breast cancer subtype and as a result include a major-
ity of the more common estrogen receptor (ER) posi-
tive subtypes. Consequently, most of the reported loci
have been more strongly associated with ER-positive
tumors. For example, out of the 61 new variants re-
ported by Michailidou et al. [4], 19 showed a specific
association with ER-positive breast cancer, and only
two were associated with ER-negative disease. There
have been growing efforts to identify variants associ-
ated with other breast cancer subtypes. Using data
from over 21,000 ER-negative cases, Milne et al. [27]
reported on 125 variants specifically associated with
ER-negative disease. Combined, these variants were
estimated to account for 16% of the familial risk for
this disease subtype [27]. A strong association be-
tween ER-negative variants and breast cancer risk in
BRCA1 mutation carriers was also reported [27].
Similarly to other GWAS, ER-negative variants have
been mostly identified in European populations.

Polygenic risk scores
Individually, each breast cancer SNP has a minimal ef-
fect on breast cancer risk. However, their combined ef-
fect, in the form of polygenic risk scores (PRS), has been
shown to provide a degree of risk discrimination that
can be used to stratify individuals into different categor-
ies of disease risk. Studies examining the effect of PRS
on breast cancer risk have consistently reported a higher
PRS among women diagnosed with the disease when
compared to population controls (Table 1) [7, 30–32,
39–42]. Overall, studies of European populations have
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reported at least a twofold difference in breast cancer
risk between the lowest and highest quartile of PRS dis-
tribution. Similar findings have also been reported across
other populations including women of African American
and Asian ancestry (Table 1) [26, 30, 33, 35, 36, 43].
However, not all studies have weighted the breast cancer
variants for their specific ethic group, and therefore find-
ings may not be an accurate representation of breast
cancer risk for their population [35]. An increased rate
of contralateral breast cancer has also been reported for
women with a PRS in the highest quartile of risk distri-
bution [7, 37, 44].

Polygenic risk and breast cancer classification
Polygenic risk scores have been shown to differentiate
risk for ER-positive and ER-negative disease. However,
as noted, PRS is more effective at stratifying the risk of
ER-positive disease [26, 28, 29, 32, 33, 38, 41, 45–52].
Recently, Mavaddat et al. [38] developed a PRS that was
optimized for prediction of breast cancer-specific sub-
type. This was achieved by weighting a subset of variants
according to subtype-specific effect sizes, with the
remaining variants weighted for overall breast cancer
risk. Improvements in risk prediction for breast cancer-
specific subtypes were reported. However, prediction of
ER-positive disease was still superior to ER-negative dis-
ease; odds ratio (OR) per 1 standard deviation (SD) of
the PRS was 1.68 and 1.45, respectively [38].
The possibility that PRS may provide information

on prognostic factors has also been examined. In one
study, a high PRS was associated with an increased
risk of being diagnosed with breast cancer during
routine screening rather than between screening
(interval breast cancer) [48]. When compared to
breast cancer diagnosed during routine screening,
interval cancers are associated with poorer prognosis
and more aggressive tumors [48]. Similarly, two stud-
ies reported that a high PRS was associated with
more favorable tumor characteristics including lower-
grade ER-positive breast cancer, smaller size tumor,
and less likely to be diagnosed with distant metastasis
[45, 53]. However, these findings have not always
been consistently replicated in other studies [54].

Accuracy of polygenic risk models
Several studies have assessed the discriminatory accuracy
and calibration of breast cancer PRS. The discriminatory
accuracy of PRS has been most commonly assessed by
calculating the area under the receiver operating charac-
teristic curve (AUC) (Table 1). The AUC is the overall
probability that the predicted risk is higher for cases
than for controls. Values range from 0.5 (risk for cases is
higher 50% of the time, indicating the model does not
discriminate cases from controls) to 1.0 (risk higher for

cases 100% of the time, thus perfect discrimination) [55].
The reported AUC for breast cancer PRS has been mod-
est, ranging from 0.58 to 0.65 for European populations
and 0.53 to 0.64 for non-European populations (Table 1).
Accuracy of PRS has also been reported based on breast
cancer subtype, with studies reporting higher AUC for
ER-positive cancer when compared to ER-negative dis-
ease [38, 46, 56].
Calibration (i.e., an assessment of how well the model’s

predicted probability agrees with observed risk) was
assessed in two studies, with both reporting excellent
calibration for a PRS based on just 18 variants for a co-
hort of European ancestry [31, 41]. In another study,
PRS calculated based on 75 variants was shown to be a
well calibrated model for women of African American
and Hispanic ancestry [39]. Finally, a study examining
the effect of including PRS for risk assessment reported
risk re-classification for 53% of their cohort compared to
using the Manchester Scoring System alone [31], with
25% of women moving into a higher-risk category and
27% into a lower-risk category.
Determining the appropriate number of variants to in-

clude in the PRS calculation has remained a significant
challenge. However, it is evident that increasing the
number of variants has only had a minimal impact on
the accuracy of PRS. For example, Mavaddat et al. [29]
reported an AUC of 0.62 for a PRS based on 77 variants;
in contrast, a PRS based on 313 variants had an AUC of
0.63 [38]. Despite the limited changes in AUC, there is
evidence of improvements in the ability of the model to
distribute risk in the population. Specifically, OR per 1
SD of the PRS was 1.46 for the 77 PRS [29], compared
to a OR of 1.61 for the 313 PRS [38]. The modest im-
provement in AUC is to some extent expected with the
progressive increase in the size and power of GWAS.
This contributes to at least two moderating effects.
Firstly, as the power of GWAS improves, variants are de-
tected that confer lower breast cancer risk than in earlier
smaller studies [57]. As a result, the additional variants
that are incorporated in the PRS, add less to the overall
prediction of breast cancer risk compared to the initially
discovered variants in a “diminishing returns” effect.
Secondly, the replication of individual SNPs or risk loci
in larger GWAS allows for improved accuracy in the es-
timate of associated OR and can overcome the effect
known as the “winners curse,” whereby the first report
of a SNP association tends to provide an inflated esti-
mate of the associated risk. As a result, early estimates
of the discrimination of the PRS will have a tendency for
overestimation, an effect that will be corrected over time
as the OR for each SNP tends to be revised downward.
These problems are addressed in more recent studies
that have used new statistical methods of calculation
polygenic risk with the goal of improving risk prediction,
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including creating a meta-PRS [42] and using LDpred
[9]. Nevertheless, further research is still needed to de-
termine the best-performing PRS.

Polygenic risk in combination with risk prediction models
Several studies have examined the effect of PRS on
existing risk prediction models, including the Gail
Model [39, 46, 56, 58–62], Breast and Ovarian Ana-
lysis of Disease Incidence and Carrier Estimation Al-
gorithm (BOADICEA) [46, 63, 64], Tyrer-Cuzick (TC)
[39, 41, 46, 49, 52], BRCAPRO [46], and Breast Can-
cer Surveillance Consortium (BCSC) [30, 40, 65]
(Table 2). These statistical models utilize a range of
well-known breast cancer risk factors such as personal
and family history, breast pathology, and lifestyle fac-
tors to estimate the risk of breast cancer.
Currently, all studies of European populations have re-

ported improved accuracy when PRS is added to the
model (Table 2). In a study of four different risk predic-
tion models, Dite et al. [46] reported that across the dif-
ferent approaches, approximately 10% of women with a
personal history of breast cancer moved into a higher
breast cancer risk category and less than 2% into a
lower-risk category (Table 2). Similarly, Li et al. [34]
found that adding PRS to BOADICEA resulted in 16%
of their cohort moving above the risk threshold for
breast screening through magnetic resonance imaging
(MRI). Currently, the highest AUC has been reported in
a model that combined BCSC, circulating estradiol
levels, and PRS (AUC = 0.72) [65]. The BCSC model uses
information on age, ethnicity, first-degree family history
of breast cancer, and breast density to assess breast can-
cer risk [65]. Such findings highlight the potential for
improving current breast cancer risk discrimination
through more comprehensive prediction models that in-
clude genomic information, although even the best
models described to date leave room for continued im-
provement. As in other areas, there is a lack of studies
examining these approaches in women of non-European
ancestry; three relatively small studies have examined
the combination of the Gail model and PRS in African
American, Hispanic and Asian women respectively [30,
39, 62] providing some evidence of improved risk pre-
diction in these groups.
A limitation of many of these studies is that they as-

sume independence between the PRS and previously de-
scribed risk factors. Ignoring the correlation between
components in the model, most obviously between gen-
etically determined risk and family history, is likely to re-
sult in an overestimation of risk among women with a
family history of the disease. A recent study by Lee et al.
[66] has addressed this issue in the BOADICEA model
where the effect of the residual family history is attenu-
ated by the PRS. Future studies should aim to

incorporate similar features into the other risk predic-
tion models to address to the redundancy between fam-
ily history and PRS.

Applications of polygenic breast cancer risk
Despite earlier concerns, the latest research has demon-
strated that PRS is a strong predictor of breast cancer
risk, with most studies of women from European ances-
try suggesting a greater than twofold difference in risk
between the lowest and highest PRS quartiles (Table 1).
Consideration now turns to the clinical utility of PRS
and challenges with clinical implementation of testing.
There are several applications to polygenic breast cancer
risk that include (i) to provide addition risk information
to families at high-risk of breast cancer with uninforma-
tive genetic testing results, (ii) as a moderator of mono-
genic risk, and (iii) to guide population breast screening
programs. Each application of polygenic testing has its
own benefits and limitations which warrant further
exploration.

Familial cancer clinic
Currently, most women at high-risk of breast cancer re-
ceive uninformative results from genetic testing of high-
and moderate-risk genes. Uptake of breast cancer risk
management strategies among this group of women is
reported to be low [67, 68]. Thus, there is a need to de-
velop new method of risk stratification to inform risk
management decisions for women with uninformative
results from monogenic testing. Studies assessing the ap-
plication of polygenic factors for familial cancer have re-
ported that PRS was predictive of breast cancer risk
among women from high-risk families with uninforma-
tive BRCA1/2 result [7, 31, 32, 34, 46, 56, 64]. Higher
PRS has also been reported among women from breast
cancer families when compared to those without a fam-
ily history of the disease [29, 31, 32], suggesting that
breast cancer variants may cluster in affected families.
Despite some evidence of variant clustering, it is not
possible to predict an individual’s PRS based on their
relative’s result [69]. Additionally, it is likely that poly-
genic testing will be implemented as part of a risk pre-
diction model such as Tyrer-Cuzick, and therefore,
breast cancer risk should be evaluated individually re-
gardless of their relatives’ risk level.
Polygenic testing is likely to be implemented in familial

cancer clinics, alongside an assessment of family history, for
women at increased risk of breast cancer with uninforma-
tive genetic testing results. Women with uninformative re-
sult and an increased PRS could be counseled about the
higher risk of early-onset breast cancer, increased risk of
contralateral breast cancer, no change in ovarian cancer
risk, and reduced chance of a pathogenic variant in high-
penetrance genes [7]. This information can be used to
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guide risk management decisions such as increased surveil-
lance and chemoprevention. Currently, PRS is a better
predictor of ER-positive breast cancer. Given that current
risk-reducing medications, such as tamoxifen, function by
interfering with the estrogen pathway, it is possible that this
approach will be a particularly effective for women with a
high PRS based on current variants [29]. Among women
with a low PRS, the residual familial risk will be estimated
through the integration of PRS into risk prediction models
[66]. This group of women could also be informed about
the ongoing risk for ER-negative disease.
Currently, there is no framework to support the imple-

mentation of breast cancer polygenic testing across
clinical genetic services. Historically, genetic services
have focused on testing of monogenic risk genes (e.g.,
BRCA1/2) and its familial implications. However, a shift
towards a personalized model of care will be required as
polygenic testing continues to be implemented into
clinical practice. While genetic counseling for common
complex disorders are available [70, 71], a new model of
genetic counseling that accounts for both monogenic
and polygenic risk, as well as additional risk factors such
as family history and lifestyle factors, is yet to be devel-
oped. Additional training of genetic health professional
will also be required to ensure clinicians are able to ef-
fectively communicate this information. Furthermore,
there are few studies assessing communication and
response to receiving PRS [72, 73]. Research is needed
to assess how women understand this complex informa-
tion and the psychological and behavioral impact of
receiving polygenic risk. These challenges will be magni-
fied as polygenic testing moves into mainstream medi-
cine. Despite the challenges, testing for breast cancer
PRS is now clinically available [13, 14], with testing
being target to unaffected women at increased risk of
familial breast cancer with uninformative results from
monogenic testing.

Polygenic risk and single gene modification
Polygenic risk scores have been shown to modify risk as-
sociated with high- and moderate-risk breast cancer risk
genes [6, 74]. Using a cohort of women from the Con-
sortium of Investigators of Modifiers of BRCA1/2
(CIMBA), Kuchenbaecker et al. [6] reported large differ-
ences in the absolute risk of developing breast cancer
when PRS was incorporated in to the risk prediction
model. Specifically, BRCA1 carries with a PRS in the
10th percentile of risk distribution had a 56% chance of
developing breast cancer by age 80 years. In comparison,
those with a PRS in the 90th percentile had a 75% breast
cancer risk by age 80 years. Evidence of subtype-specific
PRS was also reported, with a PRS weighted for ER-
negative risk displaying the strongest association with
breast cancer risk in BRCA1 carriers [6]. The AUC for

these models were modest, with ER-negative PRS for
BRCA1 carriers having the highest discrimination
(AUC = 0.58). In another study, a PRS based on 77 vari-
ants was a significant risk factors for CHEK2*1100delC
carriers [74]. Early research on the impact of PRS on
monogenic risk is promising [6, 74]. However, this litera-
ture is still limited to a few studies and therefore add-
itional research is needed.
Additional research is also needed to determine the

clinical outcomes associated with implementing PRS in
familial cancer clinics and guidelines for risk manage-
ment strategies will need to be developed. For example,
risk-reducing strategies may be recommended to
CHEK2*1100delC carriers with increased risk PRS, while
increased surveillance may be an appropriate strategy for
those with the same pathogenic variant and reduced risk
PRS. Nevertheless, if early data is replicated, incorporat-
ing PRS to high- and moderate-risk gene testing would
allow for personalization of risk prediction and ultim-
ately facilitate risk management decisions for women
with pathogenic variants in these genes.

Polygenic risk and population breast screening
Despite the strong evidence for the high variability of
breast cancer risk within populations, most population
screening programs only utilize age as a risk factor in
determining recommendations for mammographic
screening. However, there is growing evidence to
support the inclusion of polygenic information to popu-
lation screening programs, with studies reporting an
age-specific effect for PRS [9, 29, 52, 63]. For example,
Mavaddat et al. [29] reported women in the 99th per-
centile of PRS distribution reached the threshold for
population screening in their early 30s, while women
below the 20th percentile remained under the risk
threshold for population screening up until age 70 years
[29]. In another study, Khera et al. [9] estimated that
20% of the population would have a greater than twofold
risk of developing breast cancer based on PRS alone.
More recently, it was reported that greater levels of
breast cancer risk stratification for the general popula-
tion could be achieved by incorporating PRS, mammo-
graphic density, and other risk factors into the
BOADICEA risk model [63]. The authors estimated that
13% of women in the population would be classified as
moderate or high risk of developing breast cancer. To-
gether, these data indicate that polygenic information
has the potential to provide personalized risk manage-
ment for a meaningful proportion of the population, in-
cluding earlier and more frequent screening for women
at increased risk and reduced mammographic screening
for women with a lower PRS. Further research is now
needed to evaluate the clinical utility of this personalized
approach to population screening. For example, studies
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are needed to assess the extent in which PRS improves
clinical outcomes, including reducing morbidity and
mortality for at-risk women, and reducing overdiagnosis
[75]. Studies are also needed to assess individual screen-
ing pathways including ages for commencing screening
and modalities for calculating the absolute benefits of
preventative strategies (e.g., chemoprevention) to allow
women to make more informed choices about how to
manage their level of risk.
Implementation of PRS into population screening

programs also requires consideration of the social,
ethical, and psychological outcomes. For example,
consideration needs to be given to the acceptability of
risk-based surveillance (particularly for those with a
reduced risk), training of non-genetics health profes-
sionals, how best to communicate this information,
and cost-benefit analyses [29, 75, 76]. Several large-
scale studies are now underway to assess the impact
of implementing PRS to breast screening program in-
cluding the PROCAS [52, 77], CORDIS [78], and
WISDOM trial [79]. These studies will provide a plat-
form for the rigorous evaluation of risk-based screen-
ing, as well as a framework for the implementation of
PRS into population screening programs. Neverthe-
less, PRS testing has the potential to change popula-
tion screening programs and allow access to
personalized genetic testing to a wider group of
women, including testing of women with breast can-
cer unselected for family history, and women in the
general population to tailor their mammographic
screening schedule.

Conclusion
Significant progress has been made in understating
the genetic architecture of breast cancer and the
role of polygenic information in familial breast can-
cer and for population screening programs. The
studies presented in this review demonstrate that
polygenic information has the power to effectively
stratify breast cancer risk. These findings need to be
considered in light of current limitations, including
limited research on women from non-European an-
cestry and emphasis of ER-positive breast cancer.
Equally, further research is needed to determine the
best-performing PRS, with varying number of SNPs
and statistical methods being currently used to cal-
culate polygenic risk [9, 42]. Despite the current
limitations, testing for polygenic risk is already be-
ing implemented in specialist familial cancer clinics
to provide additional information for at-risk women
with uninformative genetic test results, while re-
search is ongoing to assess the clinical utility of
PRS for population screening programs.
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