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Abstract
Childhood maltreatment is highly prevalent and serves as a risk factor for mental and physical disorders. Self-reported childhood
maltreatment appears heritable, but the specific genetic influences on this phenotype are largely unknown. The aims of this
study were to (1) identify genetic variation associated with self-reported childhood maltreatment, (2) estimate SNP-based
heritability (h2snp), (3) assess predictive value of polygenic risk scores (PRS) for childhood maltreatment, and (4) quantify genetic
overlap of childhood maltreatment with mental and physical health-related phenotypes, and condition the top hits from our
analyses when such overlap is present. Genome-wide association analysis for childhood maltreatment was undertaken, using a
discovery sample from the UK Biobank (UKBB) (n= 124,000) and a replication sample from the Psychiatric Genomics Consortium-
posttraumatic stress disorder group (PGC-PTSD) (n= 26,290). h2snp for childhood maltreatment and genetic correlations with
mental/physical health traits were calculated using linkage disequilibrium score regression. PRS was calculated using PRSice and
mtCOJO was used to perform conditional analysis. Two genome-wide significant loci associated with childhood maltreatment
(rs142346759, p= 4.35 × 10−8, FOXP1; rs10262462, p= 3.24 × 10−8, FOXP2) were identified in the discovery dataset but were not
replicated in PGC-PTSD. h2snp for childhood maltreatment was ~6% and the PRS derived from the UKBB was significantly
predictive of childhood maltreatment in PGC-PTSD (r2= 0.0025; p= 1.8 × 10−15). The most significant genetic correlation of
childhood maltreatment was with depressive symptoms (rg= 0.70, p= 4.65 × 10−40), although we show evidence that our top
hits may be specific to childhood maltreatment. This is the first large-scale genetic study to identify specific variants associated
with self-reported childhood maltreatment. Speculatively, FOXP genes might influence externalizing traits and so be relevant to
childhood maltreatment. Alternatively, these variants may be associated with a greater likelihood of reporting maltreatment. A
clearer understanding of the genetic relationships of childhood maltreatment, including particular abuse subtypes, with a range
of phenotypes, may ultimately be useful in in developing targeted treatment and prevention strategies.
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Introduction
The lifetime prevalence of childhood physical, sexual,

and emotional maltreatment ranges from 8% to 36%1. In
addition to being highly prevalent, such childhood abuse
is associated with the development of mental disorders,
including depression2,3, and physical ill health, including
non-communicable diseases4,5. Although these associa-
tions are now well established, estimates of effect size vary
considerably across epidemiological studies, likely
reflecting methodological challenges, including uncer-
tainty about how best to assess childhood maltreatment6.
A twin-based study found that retrospective reports of

childhood maltreatment has a heritability of 6%7.
Although the idea that childhood maltreatment is heri-
table may seem counter-intuitive, work on behavior
genetics has long documented the heritability of many
exposures perceived as environmental. Such heritability is
referred to as gene–environment correlation (rGE), and
three potential rGE mechanisms to explain the heritability
of childhood maltreatment may be posited. First, a “pas-
sive” rGE: parental genes affecting parental behavior may
influence the childhood environment (e.g. aggressive
parents may be more likely to physically punish their
children8). Second, an “active” rGE: individuals with
genetic variants associated with certain behavioral phe-
notypes may be more at risk of selecting or creating
adverse situations (e.g. risk-taking is heritable and chil-
dren who are high in risk-taking may be exposed to more
trauma)9,10. Third, an “evocative” rGE: genetic variation
may influence child behavior, which in turn is associated
with responses to the child (e.g. genetic factors may
influence infant “difficultness”, which in turn is associated
with maternal hostile-reactive behavior that is correlated
with child abuse11,12). The latter two rGEs are sometimes
collectively referred to as non-passive correlations7.
While a number of key risk factors for childhood mal-

treatment, including child behavioral characteristics and
parental mental health, have been investigated6, studies
have seldom focused on associated genetic variation. The
few genetic association studies of childhood maltreatment
have only considered variants in candidate genes13 and
have had insufficient power to detect the small polygenic
effect sizes typically associated with behavioral pheno-
types14. Also, there are no studies of the genetic overlap of
childhood maltreatment with mental and physical health-
related traits, using genome-wide single nucleotide poly-
morphism (SNP) data. Knowledge of specific genetic
variation for childhood maltreatment, the heritability of
this phenotype, the polygenic risk, and the genetic overlap
with other traits may be useful in informing our under-
standing of the risk factors, the etiology, and the outcomes
of childhood maltreatment. This, in turn, may have
implications for the design of prevention and treatment
programs for adverse health outcomes. For example,

environmental exposures that play a causal role in
impacting health outcomes are likely to mediate any
observed associations between genetic variants and that
health outcome (e.g. early loss of a parent may lead to
depression, with such loss then mediating the association
between heritability of early parental loss and depression).
Thus, preventative strategies would focus on decreasing
the risk conferred by the environmental exposure without
needing to specifically consider the genetic influences on
the health outcome9 (e.g. development of programs for
children who have experienced early loss).
The PGC-PTSD has collaborated to obtain access to

well-powered genetic studies of trauma and PTSD that
have allowed a number of key genetic questions in this
field to be investigated15–17, providing a unique oppor-
tunity to address knowledge gaps in the area of childhood
maltreatment. This study aims to: (1) identify genetic
variants associated with childhood maltreatment using a
genome-wide association study (GWAS) design, (2)
quantify the heritability of childhood maltreatment using
SNP-based methods, (3) assess the predictive value of
polygenic risk scores (PRS) for childhood maltreatment,
and (4) assess the degree of genetic overlap of childhood
maltreatment with mental and physical health-related
phenotypes, and condition the top genome-wide hits from
our analyses when such overlap is present.

Materials and methods
Participating studies
Nineteen studies, comprising subjects of European

ancestry only, were used in this analysis. The discovery
dataset consisted of 124,711 individuals with available
childhood maltreatment data from the UK Biobank
(UKBB)18, and the replication sample comprised 26,290
individuals—a subset of the PGC-PTSD Freeze 1.5 dataset
(PGC1.5)17. The details of these studies, including the
demographics and instruments used to assess maltreat-
ment can be found in Supplementary Table 1. We have
complied with relevant ethical regulations for work with
human subjects. All subjects provided written informed
consent and studies were approved by the relevant insti-
tutional review boards and the UCSD IRB (protocol
#16097×).

Phenotype harmonization
For the childhood maltreatment phenotype, Childhood

Trauma Questionnaire (CTQ) scores on physical, sexual,
and emotional abuse19 were obtained from the partici-
pating studies. From this, an overall childhood maltreat-
ment count score of 0–3 was constructed, based on a
count of the three abuse categories listed above. An
individual was considered to have endorsed a childhood
abuse category if they scored in the moderate to extreme
range for that particular category, per established cut-
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offs20 (Supplementary Table 2). If CTQ data were not
available, the event assessment during childhood (occur-
ring before 18 years of age) that was most validated for
that particular study was obtained, providing a count of
the total number of different categories of reported
childhood events (e.g. physical, sexual, or severe emo-
tional abuse) along with the range of possible scores for
the measure. The reported maltreatment exposure from
the UKBB dataset comprised a score of three items where
participants were asked whether they were (i) “physically
abused by family as a child”, (ii) “sexually molested as a
child”, and whether they (iii) “felt hated by family member
as a child”. The childhood maltreatment count score,
whether it was generated from the CTQ or another
instrument, was used as the main outcome measure in the
association analysis. The range and mean of maltreatment
count scores for each study can be seen in Supplementary
Table 1.

Global ancestry determination, genotyping quality control,
and imputation
Study participants from the PGC-PTSD were genotyped

with a number of different arrays (Supplementary Table 1).
Genotype data were quality controlled and processed
using the standard PGC pipeline, Ricopili-MANC
(https://sites.google.com/a/broadinstitute.org/ricopili/ and
https://github.com/orgs/Nealelab/teams/ricopili) as part
of the PGC-PTSD Freeze 2 data analysis17,21. This work was
carried out on the Dutch national e-infrastructure with the
support of SURF Cooperative. A detailed outline of these
methods can be found in ref. 17. Briefly, ancestry was
determined with pre-QC genotypes using a SNPweights
panel of 10,000 ancestry informative markers from a
reference panel comprising 2911 subjects from 71 diverse
populations and six continental groups (https://github.com/
nievergeltlab/global_ancestry). Samples with estimated >
90% European ancestry were classified as European. Sam-
ples were excluded if they had call rates < 98%, deviated
from the expected inbreeding coefficient (fhet <−0.2 or
>0.2), or had a sex discrepancy between reported and
genotypic sex (based on inbreeding coefficients calculated
from SNPs on the X chromosome). Markers were excluded
if they had call rates < 98%, >2% difference in missing
genotypes between PTSD cases and controls, or were
monomorphic. Markers with a Hardy–Weinberg equili-
brium (HWE) p < 1 × 10−6 in controls were excluded from
all subjects. Principal components (PCs) were calculated
using the smartPCA algorithm in EIGENSTRAT22. Pre-
phasing and phasing was performed using SHAPEIT2 v2.
r83723. Imputation was performed with IMPUTE2 v2.2.224

using the 1000 Genomes (1000G) phase 3 data25 as the
reference.
Details regarding the QC, imputation, and ancestry

determination of the UKBB dataset can be found in ref. 26.

Briefly, study participants were genotyped with two cus-
tom genotyping arrays (with ∼800,000 markers). A two-
stage imputation was performed using the Haplotype
Reference Consortium (HRC)27 and the UK10K28 as the
reference panels. Variants in the UKBB dataset were fil-
tered to include only those with a minor allele frequency
(MAF) of > 1% and an INFO score of > 0.4. Related indi-
viduals (third degree and closer) and those with a geno-
typing call rate < 98% were excluded. Ancestry was
determined by 4-means clustering on the first two PCs
provided by the UKBB29. Additional principal component
analysis was conducted on the European-only data subset
using flashpca230.

Main GWAS
GWAS analysis was conducted separately for each

study. Best-guess genotypes were tested for association to
self-reported childhood maltreatment using an ordinal
logistic regression model with age, sex, and the first five
PCs included as covariates. Variants with a MAF < 0.5%
and a genotyping rate < 98% were excluded, for all studies
except the UKBB. These analyses were implemented in
PLINK 1.931 using the plug-in Rserve. To ensure com-
putational efficiency, linear regression models were run
for 4 of the larger contributing studies (NSS1; NSS2;
PPDS; and UKBB, N= 143,392 subjects)17. For the NSS1;
NSS2; and PPDS studies, age, sex, and 5 PCs were included
as covariates in the regression model. For the UKBB
dataset, the regression analysis was implemented in BGe-
nie v1.232 with age, sex, 6 PCs, batch, and site included as
covariates. All tests performed were two-sided.

Meta-analysis
As both linear and ordinal logistic models were imple-

mented in the GWASs, which resulted in different effect
statistics, fixed effects meta-analysis was conducted across
studies using p-values and direction of effect, weighted
according to the effective sample size as the analysis
scheme, in METAL (v. March 25 2011)33. Effective sample
sizes (Neff) for ordinal logistic regressions were calculated
as Neff= harmonic mean*n levels of childhood maltreat-
ment, and for linear regressions as Neff= ((1−probability
of having a zero score) ×mean of nonzero data)34. Het-
erogeneity across datasets was tested using the Cochran’s
Q-test for heterogeneity, also implemented in METAL.
Only variants with an INFO score of >0.8 and a con-
servative MAF of >5% were included in the meta-analysis,
except where otherwise indicated in the results. Forest
plots were generated for genome-wide significant hits
using the R package meta35.

Functional mapping and annotation
Genome-wide significant hits identified from the

GWAS meta-analysis were annotated using the web-
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based tool FUnctional Mapping and Annotation (FUMA)
v1.3.4c36. Default settings were used and annotations were
based on the human genome assembly GRCh37 (hg19).
The SNP2GENE module was used to identify genomic
risk loci and these were mapped to protein-coding genes
within a 10 kb window. An r2 of ≥ 0.6 was used to identify
variants in LD with lead SNPs. The 1000G European
Phase 3 was used as the reference dataset. Variants were
functionally annotated using ANNOVAR, combined
dependent depletion (CADD), RegulomeDB (RDB), and
chromatin states (only tissues/cells from brains were
included). The NHGRI-EBI GWAS catalog was used to
determine any previous associations with the identified
risk variants. The GTEx v7 brain tissue, RNAseq data
from the CommonMind Consortium and the BRAINEAC
database were used to perform eQTL mapping for sig-
nificant SNP–gene pairs (FDR q < 0.05).
A gene-based analysis was performed within FUMA

using MAGMA whereby SNPs were mapped to 18,989
protein-coding genes. Genome-wide significance was set
at a Bonferroni-corrected threshold p < 2.63 × 10−6. In
addition, gene-based test statistics were used to determine
whether specific biological pathways are associated with
childhood maltreatment. This was performed for 10,678
curated gene sets and GO terms obtained from MsigDB,
using MAGMA. The significance threshold was set at a
Bonferroni-corrected threshold of p= 4.68 × 10−6 (0.05/
10,678).

Heritability estimation
Linkage disequilibrium score regression (LDSR) is a

technique for quantifying polygenicity and confounding,
such as population stratification, in GWAS summary
statistics37. This is accomplished by evaluating the rela-
tionship between linkage disequilibrium (LD) scores (the
average squared correlation of a SNP with all neighboring
SNPs) and SNP test statistics. Using this approach, the
LDSR intercept was used to estimate the proportion of
inflation in test statistics due to polygenic signal (rather
than inflation due to population stratification and cryptic
relatedness), with the Eq. (1)—(LDSR intercept−1)/(mean
observed chi-square−1)17. Using GWAS summary sta-
tistics, SNP-based heritability (h2snp) was calculated,
which is one of the applications of LDSR.

Polygenic risk scoring
Using PRSice v2.1.3.beta38, PRS were calculated in tar-

get samples (PGC1.5) based on SNP effect sizes from
childhood maltreatment GWAS in non-overlapping dis-
covery/training samples (UKBB). Multiple p-value
thresholds (PT) (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1) were
generated using the best guess genotype data of target
samples. Variants with a MAF < 5% were excluded from

the discovery dataset. As a default in PRSice, LD pruning
was performed whereby variants were pruned if they were
nearby (within 250 kb) and in LD (r2 > 0.1) with the
leading variant (lowest p-value) in a given region. For this
analysis, a rescaled childhood maltreatment phenotype
was generated whereby the childhood maltreatment score
for each individual was divided by the theoretical max-
imum score for a given study. Best-fit PRS (at PT=
0.0354) were used to predict childhood maltreatment
status as a quantitative trait, adjusting for five PCs and
dummy study indicator variables. As women in PGC1.5
experienced significantly more childhood maltreatment
than men, we generated PRS in women and men sepa-
rately. The proportion of variance explained by PRS was
estimated as the difference in Nagelkerke’s R2 between
the full model (which includes PRS plus covariates) and
the null model (which only has the covariates). PRS
prediction plots were based on quantiles of PRS, with
effect sizes calculated in reference to the lowest quantile.
p-values for PRS were derived from a likelihood ratio test
comparing the two models. The significance threshold
was set at a Bonferroni-corrected threshold of p= 0.006
(0.05/8).

Genetic correlation
Another application of LDSR is the measurement of

genetic correlation, i.e. the degree and direction of shared
genetic effects between different traits37,39. Cross-cohort
genetic correlation (rg) was calculated using LDSR. The
web-based interface for LDSR, LD Hub, was used to
further calculate pairwise genetic correlations between
childhood maltreatment and 247 non-UKBB traits of
interest including psychiatric, anthropomorphic, smoking
behavior, reproductive, aging, education, autoimmune,
and cardio-metabolic categories.

Conditional analyses of childhood maltreatment top hits
To evaluate if the effects of top variants in the UKBB

GWAS and meta-analysis were specific to childhood
maltreatment, we conditioned childhood maltreatment on
genetically correlated traits using the multi-trait condi-
tional and joint analysis (mtCOJO)40 feature in GCTA41.
Data for major depressive disorder (MDD)42 (from
https://www.med.unc.edu/pgc/results-and-downloads)
was used to minimize sample overlap with the UK Bio-
bank data. The effect of the correlated trait on childhood
maltreatment was estimated using a generalized
summary-data based Mendelian randomization analysis
of significant LD independent SNPs (r2 < 0.05, based on
1000G Phase 3 CEU samples). The threshold for sig-
nificance was set at p < 5 × 10−6, due to having less than
the required 10 significant independent SNPs at the
program default of p < 5 × 10−8, for the correlated trait.
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Results
GWAS and meta-analysis
We report GWAS results from our discovery dataset

(UKBB) (n= 124,711) and meta-analysis (n= 151,001). In
our UKBB discovery dataset, we identified two genome-
wide significant loci (p < 5 × 10−8) associated with child-
hood maltreatment (Table 1 and Fig. 1), rs142346759
(chr3, beta= 0.015, p= 4.35 × 10−8) and rs10262462
(chr7, beta=−0.016, p= 3.24 × 10−8). These variants
remained significant in the meta-analysis (Table 1, Sup-
plementary Figs. 1 and 2). Additional variants on chro-
mosome 7 (rs1859100, beta= 0.015, p= 3.91 × 10−8) and
chromosome 12 (rs917577, beta= 0.017, p= 2.64 × 10−8)
(Supplementary Fig. 3), also achieved genome-wide sig-
nificance in the meta-analysis. Running an ordinal
regression on these hits in the UKBB led to similar results
(data not shown). None of these hits were replicated in
PGC1.5 (Table 1 and Supplementary Fig. 4).
Quantile–quantile (qq) plots indicate minimal inflation

of p-values across studies (Supplementary Figs. 5–7).
Using the LDSR intercept method, polygenic effects
account for 93% and 94% of the observed inflation in test
statistics for the UKBB dataset (intercept= 1.0096, SE=
0.0064) and meta-analysis (intercept= 1.0095, SE=
0.0077), respectively (Supplementary Figs. 5 and 7), con-
sistent with minimal population stratification and cryptic
relatedness.

Integration with functional genomic data
Using the web-based tool FUMA, the two UKBB GWAS

hits were each annotated to two genes, FOXP1 and
FOXP2 (Table 2). Gene-based analysis of the UKBB
GWAS summary statistics further identified three gene-
wide significant genes, KIF26B (p= 1.67 × 10−7),
CNTNAP5 (p= 8.89 × 10−7), and EXOC2 (p= 2.04 ×
10−6) from a total of 18,989 protein-coding genes. Gene-
set analysis did not reveal any significant pathways asso-
ciated with childhood maltreatment. Limited functionality
of the two risk variants (rs142346759 and rs10262462)
was observed (Table 2). One of the SNPs in LD for the
risk variant on chromosome 3, rs142346759, obtained a
CADD score of >12.37, indicating that this SNP may be
deleterious. Six of the SNPs in LD with the risk variant on
chromosome 7, rs10262462, had a CADD score of >12.37.
No significant eQTLs were identified for either risk locus.
The chromosome 7 variant identified in the meta-analysis,

rs1859100, also mapped to the gene FOXP2 and is located in
the same genomic risk locus (chr7:114,015,707–114,287,116
base pairs) as rs10262462. The other hit observed in the
meta-analysis, rs917577, was mapped to an intergenic
region on chromosome 12. This variant obtained an RDB
categorical score of 2B, indicating that it is likely to affect
transcription factor binding. No eQTLs exist in the selected
tissue types for this region (Table 2). Ta
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Heritability of reported childhood maltreatment
GWAS summary statistics were used to estimate the

h2snp of childhood maltreatment with the tool LDSR
(Table 3). The h2snp was estimated at 0.057 (p= 1.60 ×
10−32) for the UKBB discovery dataset and 0.123 (p=
0.002) for PGC1.5. The h2snp for the meta-analysis was
0.057 (p= 4.48 × 10−46).

Polygenic risk scoring
We assessed the predictive value of PRS for childhood

maltreatment, using our largest cohort, the UKBB, as a
training sample. Our analyses showed a highly significant
increase in effect size to develop childhood maltreatment
across PRS quantiles in the PGC1.5 target sample, with a
variance explained of r2= 0.0025 (p= 1.8 × 10−15). Parti-
cipants in the 5th quantile of genetic risk had significantly
higher childhood maltreatment scores than subjects in the
1st quantile (beta= 0.042, p= 4.78 × 10−16; Supplemen-
tary Fig. 8). Since women reported significantly more
childhood maltreatment than men (PGC1.5 mean child-
hood maltreatment: women= 0.32, men= 0.127, p < 1 ×
10−80), PRS were also calculated separately for women
and men. When stratified by sex, PRS had significantly
higher explanatory power in women (r2= 0.0053) relative
to men (r2= 0.0015) (p= 0.0002, Supplementary Fig. 8).

Genetic correlations of reported childhood maltreatment
with other traits and disorders
All pairwise genetic correlations are listed in Supple-

mentary Table 3. The rg for childhood maltreatment

between the UKBB and PGC1.5 datasets was 0.63 (p=
3.28 × 10−6). To determine whether there is significant
genetic overlap between childhood maltreatment and other
traits and disorders, pairwise genetic correlations were
calculated using the web-based tool LD Hub. A total of
27 significant correlations (Bonferroni-corrected p-value
threshold= 0.05/247= 0.0002) were found between
childhood maltreatment in the meta-analysis and 247 non-
UKBB traits. The top 10 highest genetic correlations are
plotted in Fig. 2 with depressive symptoms (rg= 0.70, p=
4.65 × 10−40) having the most significant correlation with
childhood maltreatment. There were also positive genetic
correlations with “MDD” (rg= 0.71, p= 4.13 × 10−11),
“PGC cross-disorder analysis” (rg= 0.47, p= 1.62 × 10−14)
and “neuroticism” (rg= 0.44, p= 1.14 × 10−17). Significant
negative genetic correlations between childhood maltreat-
ment and “age of first birth” (rg=−0.47, p= 2.61 × 10−27),
“subjective well-being” (rg=−0.46, p= 1.00 × 10−18), and
“mother’s age at death” (rg=−0.36, p= 7.42 × 10−6) were
also observed.

Conditional analyses of childhood maltreatment top hits
As depressive symptoms (rg= 0.70, p= 4.65 × 10−40)

and MDD (rg= 0.71, p= 4.13 × 10−11) were the most
genetically correlated with childhood maltreatment, we
conditioned the top hits from our meta-analysis for the
effects of MDD using publicly available summary statistics
for MDD42. We found that effect sizes for the four top hits
for childhood maltreatment remained similar when
adjusted for the effects of MDD (Supplementary Table 4).

Fig. 1 Manhattan plot of UKBB GWAS for childhood maltreatment, showing the top variants. The horizontal line represents genome-wide
significance at p < 5 × 10−8.
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These findings indicate that the genetic variants identified
here are specific to childhood maltreatment when tested
in the context of MDD, the disorder genetically most
significantly correlated with childhood maltreatment.

Discussion
The main findings of this study were that (1) variants

located in the genes FOXP1 and FOXP2 and on chro-
mosome 12 are significantly associated with childhood
maltreatment, (2) the SNP-based estimate of childhood
maltreatment is ~6%, (3) PRS of self-reported childhood
maltreatment derived from a discovery cohort can sig-
nificantly predict this phenotype in a target cohort, with
0.25% of variance explained, and (4) childhood maltreat-
ment is significantly genetically correlated with “depres-
sive symptoms” and “MDD”, “neuroticism”, “age of first
birth”, and “subjective well-being”, despite showing evi-
dence that our top hits may be specific to childhood
maltreatment when conditioning on MDD.
Two genome-wide loci for childhood maltreatment

identified in our discovery dataset were also significant in
the meta-analysis: rs142346759 (chr3p13), an intronic
variant in FOXP1 and rs10262462 (chr7q31.1) an intronic
variant located in FOXP2. Both genes form part of the
forkhead box superfamily of transcription factors which
are widely expressed, and which play important roles
during development and adulthood. FOXP1 and FOXP2
fall under the FOXP sub-family (also comprising FOXP3
and FOXP4) which has functions in oncogenic and tumor
suppressive pathways43. FOXP2 contains highly conserved
genomic sites, including an intronic region within this
gene, located about 107 kb downstream from our risk
variant44. FOXP1 and FOXP2 have ~60% homology at the
amino acid level (https://www.ncbi.nlm.nih.gov/books/
NBK7023/) and both proteins have been implicated in
cognitive disorders, including expressive language
impairment45. In the meta-analysis, we observed an
additional genome-wide variant, located in an intergenic
region on chromosome 12, but as this variant does not
map to a particular gene, its possible biological mechan-
ism is unclear.
Notably, variation within FOXP1 has been found to have

associations with language impairment, internalizingTa
b
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Table 3 Heritability estimates based on LD-score
regression (LDSR).

Sample n h2snp SE Z p-value

UKBB 124,711 0.057 0.005 11.40 1.60E−32

PGC1.5 26,290 0.123 0.040 3.08 2.00E−03

Meta-analysis 151,001 0.057 0.004 14.25 4.48E−46

Estimates are calculated for the UK biobank (UKBB), the PGC-PTSD Freeze 1.5
(PGC1.5), and meta-analysis
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symptoms, and externalizing symptoms46. FOXP2 has
mainly been investigated in regards to speech and lan-
guage development47, but has also been found to be
associated with depression48 and attention deficit hyper-
activity disorder (ADHD)49. Further, an intronic variant in
the FOXP2 gene, rs727644, has been associated with risk-
taking behavior50,51. While most work on childhood
maltreatment has emphasized subsequent risk for mental
and physical disorders, it is possible that externalizing
behaviors increase risk for childhood trauma52, consistent
with a non-passive rGE mechanism. Alternatively, phe-
notypes such as depression or neuroticism may increase
the likelihood of individuals recalling childhood
maltreatment53,54.
In this study we estimated SNP-based heritability for

childhood maltreatment to be ~6%. A first possibility, in
line with a link between FOXP variants and externalizing
symptoms, is that genetic factors influence environmental
factors indirectly through temperament and behavior9. A
second possibility, consistent with the link of FOXP var-
iants to internalizing symptoms and depression, is that
genetic factors influence the recall of childhood mal-
treatment. In particular, retrospective assessment of
childhood maltreatment may be limited by recall bias and

the respondent’s subjective assessment of the event55,56.
Indeed, a recent systematic review found very low con-
cordance between prospective and retrospective measures
of childhood maltreatment57 and those who retro-
spectively report childhood adversity were at greater risk
for having psychopathology than those who prospectively
reported childhood maltreatment58.
A twin-based study estimated the heritability of repor-

ted childhood maltreatment (comprising physical, and
sexual maltreatment and neglect) to be 6%7, the same as
our SNP-based estimate. As twin-based studies capture
latent heritability across the entire genome, these herit-
ability estimates are generally higher than SNP-based
heritability estimates, which are limited to common var-
iation and by the number of markers present and tagged
on the genotyping array used15. However, in this twin
study, when considering each maltreatment category
separately, the heritability of childhood physical mal-
treatment, sexual maltreatment, and neglect was 28%, 0%,
and 24%, respectively. This suggests that only physical
abuse and neglect are heritable and that sexual abuse is
not genetically influenced. It is notable that these twin
data, then, do not support an rGE for some abuse types
(i.e. sexual abuse).

Fig. 2 Top ten genetic correlations between several groups of traits (from psychiatric, anthropomorphic, smoking behavior, reproductive, aging,
education, autoimmune, and cardio-metabolic categories) and childhood maltreatment (meta-analysis).
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We show that PRS derived from the UKBB was sig-
nificantly predictive of childhood maltreatment in
PGC1.5, explaining 0.25% of the variance for this expo-
sure. Although the variance explained is relatively modest,
we expect greater prediction accuracy with future larger
sample sizes. When stratifying by sex, PRS had sig-
nificantly higher explanatory power in women relative to
men. This is expected as women had higher mean self-
reported childhood maltreatment scores than men in
PGC1.5.
The PRS results suggests a polygenic architecture for

self-reported childhood maltreatment but does not indi-
cate the mechanism by which genetic factors are able to
influence this exposure. However, our finding of positive
genetic correlations between childhood maltreatment,
depressive symptoms, and MDD provides support for the
hypothesis that genetic factors predisposing to reporting
early life maltreatment overlap with those underlying
depression. Genetic correlations between depression,
stressful life events, and lifetime trauma have led to the
hypothesis that genes increasing risk for the development
of depression predispose individuals to entering into
adverse environments59,60. Depressed individuals with
and without trauma exposure differ in associated genetic
variation, with trauma-exposed individuals having greater
SNP-based heritability, supporting this hypothesis26,61.
On the other hand, polygenic scores for MDD were
associated with greater reporting of stressful life events in
individuals with MDD62. Indeed, current mood can
influence the recall of childhood experiences, and indivi-
duals with current depression are at an increased like-
lihood of reporting early life adversity63. Notably,
although we show that childhood maltreatment is sig-
nificantly genetically correlated with depression, results
from our conditional GWAS analysis indicates that our
top four hits are specific to self-reported childhood mal-
treatment, favoring a non-passive rGE mechanism for
childhood maltreatment.
In addition to depression, we found significant positive

genetic correlations between childhood maltreatment and
“neuroticism” and “PGC cross-disorder analysis” (com-
prised of GWAS summary statistics of five psychiatric
disorders: autism spectrum disorder, attention deficit-
hyperactivity disorder, bipolar disorder, MDD, and schi-
zophrenia). We observed negative genetic correlations of
childhood maltreatment with “age of first birth” and
“subjective well-being”. Associations between early life
maltreatment and each of these phenotypes have pre-
viously been observed61,64–72. Further investigation is
required to delineate the mechanisms that play a role in
the relationship between childhood maltreatment and
these outcomes.
Our study had a number of limitations that deserve

emphasis. First, the genetic correlation between the UKBB

and PGC1.5 datasets was only 0.63, indicating differences
between the datasets, which possibly explains the non-
replication of our top hit and of greater SNP heritability in
PGC1.5. The UKBB dataset comprises healthy volunteers
who are typically of a higher socioeconomic status and in
better overall health than the general population of
comparable age73, and the findings reported here may not
be generalizable to the general population. However, it is
also worth noting that the top hits were significant in the
meta-analysis, where additional hits for childhood mal-
treatment were detected in an intergenic region on
chromosome 12. Second, although many of the study sites
included in the final meta-analysis utilized the well-
validated CTQ, childhood maltreatment was measured in
a diversity of ways across the different studies. Thus, our
main phenotype was not homogenous and may reflect
different aspects of childhood maltreatment in different
contributing studies.
This is the first large-scale genetic study to identify

specific variants associated with self-reported childhood
maltreatment. Variation in FOXP genes and the polygenic
architecture associated with childhood maltreatment may
put individuals at greater risk for maltreatment. Alter-
natively, however, these variants may be associated with a
greater likelihood of reporting maltreatment, given the
high genetic correlation between childhood maltreatment
and depression, and neuroticism. Using the available data,
we are unable to indicate definitively which of these
explanations is a better one, and it is possible that dif-
ferent mechanisms have more robust explanatory power
in accounting for different abuse subtypes as well as dif-
ferent associated psychopathologies. A clearer under-
standing of the genetic relationships of childhood
maltreatment, including particular abuse subtypes, with a
range of different phenotypes, may ultimately be useful in
developing targeted treatment and prevention strategies.

Disclaimer
The views, opinions, and/or findings contained in this
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