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Abstract

Objectives. Systemic lupus erythematosus (SLE) is a heterogeneous
autoimmune disease that is difficult to treat. There is currently no
optimal stratification of patients with SLE, and thus, responses to
available treatments are unpredictable. Here, we developed a new
stratification scheme for patients with SLE, based on the
computational analysis of patients’ whole-blood transcriptomes.
Methods. We applied machine learning approaches to RNA-
sequencing (RNA-seq) data sets to stratify patients with SLE into four
distinct clusters based on their gene expression profiles. A meta-
analysis on three recently published whole-blood RNA-seq data sets
was carried out, and an additional similar data set of 30 patients with
SLE and 29 healthy donors was incorporated in this study; a total of 161
patients with SLE and 57 healthy donors were analysed. Results.
Examination of SLE clusters, as opposed to unstratified SLE patients,
revealed underappreciated differences in the pattern of expression
of disease-related genes relative to clinical presentation. Moreover,
gene signatures correlated with flare activity were successfully
identified. Conclusion. Given that SLE disease heterogeneity is a key
challenge hindering the design of optimal clinical trials and the
adequate management of patients, our approach opens a new
possible avenue addressing this limitation via a greater understanding
of SLE heterogeneity in humans. Stratification of patients based on
gene expression signatures may be a valuable strategy allowing the
identification of separate molecular mechanisms underpinning disease
in SLE. Further, this approach may have a use in understanding the
variability in responsiveness to therapeutics, thereby improving the
design of clinical trials and advancing personalised therapy.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a debilitating
chronic autoimmune condition characterised by the
activation of inflammatory immune cells and the
production of proinflammatory autoantibodies
responsible for pathology in multiple organs.1 SLE is
highly heterogeneous and can be seen as a
syndrome rather than a single disease.2 The
responsiveness of patients to available treatments is
variable and difficult to predict. Rather than a small
number of highly associated loci, over 60 SLE low-
association loci have been identified by genome-
wide association studies.3–7 SLE has been studied
using numerous useful mouse models, each of
which manifests SLE-like symptoms underpinned by
different molecular mechanisms. Two examples are
mice overexpressing B-cell-activating factor of the
TNF family (BAFF, also known as TNFSF13B), that is
BAFF-transgenic mice, in which low-affinity self-
reactive B cells aberrantly survive,8,9 and
glucocorticoid-induced leucine zipper (GILZ)-
deficient mice10 with impaired regulation of
activated B cells. These and various other mouse
models of SLE replicate some aspects of disease
relevant to some patients with SLE, but most likely
do not individually account for all the disease
symptoms and pathogenesis mechanisms in humans.

Numerous large-scale clinical trials for SLE
treatments have been carried out, with an
improvement over standard of care as the
expected outcome of these studies.
Disappointingly, the vast majority of tested
therapies failed their primary endpoints,11 except
belimumab, an inhibitor of the cytokine BAFF,
showing modest efficacy in a subset of patients
with SLE.12 Highly variable responses to
treatments could be explained by the fact that
recruitment of patients into clinical trials is based
on a limited set of clinical manifestations and/or
clinical scores, unlikely to fully capture the
differences between patients. Therefore, there is
an unmet need for more meaningful patient
stratification and recruitment criteria, not just
limited to clinical manifestations. Indeed, this can
potentially be better achieved using biomarkers
reflecting the specific underlying mechanism of
disease, allowing for a more mechanism-targeted
and personalised approach to therapy.

Here, we have applied machine learning
approaches to stratify patients with SLE based on
gene expression patterns derived from whole-
blood transcriptomic data. We demonstrated that

this approach identified disease-linked gene
expression patterns not previously visible through
conventional data analysis of unstratified patients.

RESULTS

We examined a cohort of 30 patients with SLE
and 29 healthy donors for differentially expressed
genes by RNA-seq, alongside three publicly
available independent data sets (161 SLE and 57
healthy donor whole-blood transcriptomes in
total) (Table 1 and Supplementary figure 1).13–15

Batch effects from combining multiple data sets
were taken into account in the differential
expression analyses when using limma/edgeR
software or otherwise applying ComBat with data
set source as a known covariate and verifying a
minimal influence of batch effect compared to
condition effect using BatchQC (Supplementary
figures 1 and 2). Principal components analysis
(PCA), which looks at all gene expression and
visualises the overall variance between individuals,
suggests a higher gene expression heterogeneity
in SLE samples than healthy controls, which
projected more closely together (Figure 1a). Gene
expression in some SLE samples was similar to that
of healthy controls. Supervised clustering (to draw
apart the groups) was performed using partial
least squares discriminant analysis (PLSDA). The
PLSDA method assigns greater weighting values
to genes that are more useful for separating
healthy and SLE patients (Figure 1b). An
expression heatmap using the top-ranking
discriminating genes shows heterogeneity across
patients with SLE (Figure 1c), but visually
demonstrates the possibility of organising SLE
patients into several discrete clusters.

We applied unsupervised k-means clustering to
group patients into four clusters, C1-C4; clusters
were visualised with a PCA plot (Figure 2a). The
choice of four clusters was based on Gap and
Davies–Bouldin clustering evaluations
(Supplementary figure 3). The k-means clustering
algorithm uses a chosen number of cluster
centroids, which are repositioned among the
samples until convergence.16 We applied PLSDA
separately to the two largest Data sets (1 and 2),
resulting in similar gene-weighting values being
assigned to draw apart the four clusters,
suggesting that this clustering scheme reproduces
well in independent study populations
(Supplementary figure 4). Supervised machine
learning was applied, confirming that
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Figure 1. Differential gene expression in SLE. 161 SLE (orange symbols) and 57 healthy donor (blue symbols) transcriptomes from four data sets

(see Table 1, shown with different symbol shapes) were examined using multivariate statistics methods. (a) Principal components analysis (PCA)

was applied to visualise the overall variance between individuals. The same data points are coloured by data set source (left plots) or disease state

(right plots) as indicated. (b) Partial least squares discriminant analysis (PLSDA), a supervised clustering method, applies weighting to genes, which

separate healthy donors and unstratified SLE patients. Ovals indicate the 80% prediction interval. (c) Standardised expression levels of top-

weighted genes from the PLSDA model were plotted as a heatmap. Each row is an individual, and each column is a gene.
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Figure 2. Patient clustering. (a) PCA visualisation of 161 SLE whole-blood transcriptomes after clustering using the k-means algorithm. Four

clusters of patients were segregated and displayed with different symbols. Three data sets were combined (see Table 1). (b) Venn diagram

displaying selected top-ranking disturbed gene sets (from MSigDB hallmark gene sets) in each SLE cluster C1-C4 compared to the healthy control

group; highest ranking gene sets are bolded. (c) Percentage of anti-Ro autoantibody levels in 99 patients from Data set 1, rated as ‘none’,

‘medium’ or ‘high’, derived from Data set 1 metadata.13 The odds ratio of anti-Ro positivity and Fisher’s exact test P-values were calculated for

each cluster compared to other patients.
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classification software can be trained to learn the
transcriptomic signatures of each cluster and
accurately classify new patients (88% accuracy,
Supplementary figures 5 and 6, using two
different classifier algorithms).

Cluster 1 (C1) is transcriptionally the most
similar to healthy donors, compared to C2-C4
(Figure 2a). Gene set enrichment analysis was
performed to summarise the predominant
transcriptomic differences between the clusters
(Figure 2b). The top-ranking disturbed pathways,
which differentiate the clusters, include immune
activation pathways (e.g. antiviral interferon
response), metabolic pathways (e.g. citrate cycle)
and DNA repair gene sets. Some of the pathways
are likely attributable to particular medications,
such as reactive oxygen species (ROS) generation
gene sets, which are expressed in response to
hydroxychloroquine treatment.17

Interestingly, anti-Ro autoantibody positivity was
increased in C2 and C4; C1 had a significantly
decreased anti-Ro positivity compared to other
subsets, whereas C4 had significantly increased anti-
Ro positivity (Figure 2c graph and table with
statistics). Ascending levels of overall disease severity
were observed from clusters 1 to 4, as suggested by
the SLEDAI-2k (Figure 3a) and Physician Global
Assessment (PGA) scores (Figure 3b). Anti-dsDNA
autoantibody ratio was significantly increased in C4
compared to the other clusters (Figure 3c).

Flow cytometry revealed that circulating
neutrophil numbers were significantly increased in
C3 (Figure 3d). Neutrophils are potentially drivers of
nephritis,18 but we did not find a significant
difference in neutrophil numbers in patients with or
without renal disorder in our study population
(data not shown). ‘xCell’ (a software tool looking at
cell-specific genes)19 calculated enrichment scores,
suggesting several significant differences in the
representation of some immune cell types in specific
clusters (Supplementary figure 7). In particular, the
plasma cell gene signature was reduced in C3,
whereas B-cell and CD8+ T-cell gene signatures were
reduced in C3 and C4; NKT cell gene signature was
increased in C4, while conventional dendritic cell
(cDC) gene signature was reduced in C4. M1 and M2
macrophage gene signatures were not significantly
altered (Supplementary figure 7).

The 30 patients in Data set 2 all presented with
a similar total number of American College of
Rheumatology (ACR) criteria (Figure 3e), although
there are significant differences in each cluster.
For instance, C4 has significantly greater

occurrence of renal disorder and discoid rash,
whereas C2 has significantly more serositis and
less oral ulcers (Figure 3f). C1 has significantly
increased occurrence of photosensitivity
(Figure 3f). C3 and C4 had significantly more flare
activity than C1 and C2 (Figure 3f).

To further investigate the association of gene
expression patterns with clinical features, we
trained an error-correcting output codes (ECOC)
classifier using the three independent Data sets
(1 + 3 + 4), which we then used to classify the
patients in Data set 2 (Supplementary figure 8).
The predicted clusters reproduced the same clinical
distinctions (i.e. increased neutrophils in C3, more
disease severity in C4 and more flares in C3 and
C4), demonstrating that machine learning may be
used as a reliable method detecting differences in
clinical features in independent patient cohorts.

In comparing the expression levels of several well-
established SLE-associated genes in SLE clusters, we
found evidence that different pathogenesis
pathways may be associated with each cluster of
patients (Figure 4), providing more information
compared to unstratified analysis (Supplementary
figure 9). BAFF (TNFSF13B) overexpression is well
established as a driver of autoimmunity,8 targeted
by belimumab. Interestingly, high BAFF expression
was a very significant feature of C4 and to a lesser
magnitude C2 and C3, but not C1 (Figure 4a).
TNFSF10 mRNA (encoding TNF-Related Apoptosis-
Inducing Ligand, TRAIL) expression is also
upregulated in SLE,20 and this mirrored elevated
BAFF expression (Figure 4b). Defective apoptosis has
been implicated in autoinflammatory settings,
including SLE.21 Efficient apoptosis can be impaired
by upregulation of anti-apoptotic factors such as
cellular FLICE-inhibitory protein (encoded by
CFLAR), previously reported to be upregulated in
blood B cells of patients with SLE, and correlating
with disease severity.21 This likely prevents
apoptosis signalling in response to ligands such as
TRAIL and Fas ligand, to allow aberrant survival of
autoreactive cells.21 Our stratification found
substantial CFLAR overexpression in C3 and C4
(Figure 4c).

Excessive TLR receptor signalling is implicated in
autoimmunity, with TLR2, TLR7 and TLR9 pursued
as potential therapeutic targets in SLE.22

Abnormal excessive TLR signalling is thought to
exacerbate unspecific immune cell activation.23

Interestingly, TLR7 expression was significantly
upregulated in C2 and downregulated in C3
(Figure 4d). PELI1 (encoding Pellino1) is a TLR3-
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Figure 3. Disease severity and clinical features in SLE subtypes. SLE clusters C1-C4 in Data set 2 were compared by clinical features. Blue bars

represent the mean, and symbols represent patients. Red + symbols represent patients experiencing flares (temporary period of worsened

symptoms) at the time of sampling. (a) SLE disease activity index 2000 (SLEDAI-2k). (b) Physician Global Assessment (PGA). (c) Ratio of anti-

dsDNA autoantibodies, in C4 vs the other clusters combined. (d) Circulating neutrophil numbers. (e) Total number of ACR criteria each patient

was positive for. (f) Percentage map of patients in each cluster, who are positive for particular disease features as detailed (ACR criteria) and flare

activity.
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Figure 4. Relative expression levels of known SLE-associated genes. Expression levels (log2 fold-change relative to the mean of the healthy

controls) of (a) TNFSF13B (BAFF), (b) TNFSF10 (TRAIL), (c) CFLAR, (d) TLR7, (e) PELI1, (f) TSC22D3 (GILZ), (g) CD40LG, (h) IFNAR1 and (i) CTLA4.

Expression of interferon signature metric (ISM) genes: (j) HERC5, (k) CMPK2 and (l) EPSTI1. Therapeutics are indicated in red text above genes

coding for the relevant target protein. Three data sets were combined (see Table 1) with batch effects modelled using limma. Significant

differences between healthy and SLE samples, using Benjamini–Hochberg-adjusted P-values, are indicated (*P < 0.05, **P < 0.01, ***P < 0.001

and ****P < 0.0001). Gene expression in unstratified patients is provided in Supplementary figure 9.
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inducible negative regulator of noncanonical NF-
jB, and the expression of PELI1 was negatively
correlated with disease severity.24,25 In our
stratification, PELI1 was not significantly
underexpressed in any SLE clusters, but was
upregulated in C3 and C4, possibly induced for
NF-jB regulation (Figure 4e). TSC22D3 (also
known as GILZ) was identified as a negative
regulator of B cells, and lack of GILZ drives
autoimmune disease (Figure 4e).10 GILZ expression
was markedly diminished in C2, suggesting
possible loss of B-cell regulation. GILZ was
upregulated in C3 and C4, possibly as an effect of
glucocorticoid induction (Figure 4e).

CD40L, encoded by CD40LG, mediates T-cell
help driving T-dependent B-cell activation and has
been unsuccessfully targeted in clinical trials for
SLE.11 CD40LG expression was significantly
diminished in clusters C2, C3 and C4, possibly
questioning the usefulness of CD40L blockade in
those patients (Figure 4g).

IFNAR1 expression was significantly increased in
clusters C3 and C4, suggesting increased interferon
signalling sensitivity (Figure 4h). CTLA4 expression
was significantly reduced in C3 and C4, suggesting
impaired regulation of effector T cells (Figure 4i).
The interferon signature metric (ISM) is a
composite score of mRNA expression from three
interferon-regulated genes (HERC5, CMPK2 and
EPSTI1).26 Expression of these genes was
consistently upregulated in C2 and C4, whereas C3
levels were comparable to those of healthy donors.
Some patients in C1 and some healthy donors had
increased levels of ISM genes (Figure 4j–l).

We examined numerous SLE-associated genes
previously identified by GWAS.3–7 These genes
were significantly differentially expressed in
certain clusters, most frequently C4, but also C3
and C2, but not C1 (Supplementary figure 10).

In Data set 2, 6 of the 30 patients with SLE had
flares, who diverged further from healthy donors
when visualised by PCA (Figure 5a). While
numbers are limited, using PLSDA to select flare-
discriminating genes (Figure 5b), we were able to
observe differential gene expression during flares
consistent with increased innate activation and
altered immune cell regulation (Figure 5c–f).
Indeed, the RETN gene, encoding the
proinflammatory adipokine resistin, was
upregulated in patients with active flares only
(Figure 5c). Resistin is linked to the induction of
proinflammatory cytokines.27 Significant
downregulation of TCL1A and PAX5 (Figure 5d and

e) during flares suggests alterations in T- and B-cell
homeostasis, respectively.28,29 LCN2 expression was
increased in patients with flares (Figure 5f). LCN2
encodes neutrophil gelatinase-associated lipocalin
(NGAL), which suggests increased neutrophil-
mediated antibacterial activity; NGAL is also a
biomarker of kidney injury.30 Gene set enrichment
analysis of patients with flares suggested increased
inflammatory signalling (e.g. IL-6 and TNF-a),
increased proliferation signalling (KRAS) and
haematological disturbances (haem metabolism,
coagulation, complement and platelet-related gene
sets) (Supplementary figure 11). These data suggest
that our method can be used to look at discrete
subpopulations of patients and identify significant
differences that can be later validated with larger
cohorts.

DISCUSSION

A universally effective and safe treatment for SLE
remains an unmet need because of the
heterogeneity of clinical presentations, associated
with unpredictable responses to current
treatments.31 SLE remains a condition with poor
long-term outcome. Over six decades of clinical
trials in SLE have only yielded one new therapy,
belimumab, an inhibitor of the cytokine BAFF,
with mixed efficacy in patients.11 Major failures of
targeted therapy in the clinic for SLE11,32,33

suggest that breakthrough treatments may
remain years away. This situation has obligated
clinical experts and the pharmaceutical sector to
more rigorously understand the reasons for this
high failure rate. Suggested factors include issues
with the design of clinical trials, difficulty in
defining robust endpoints, suboptimal drug
targets and biomarkers, study populations that
are not broadly representative and high
heterogeneity within the study populations.11

Large-scale clinical trials invariably fail to
demonstrate efficacy when enrolling patients
selected on a limited number of clinical criteria,
which do not capture the underlying molecular
mechanism likely underpinning disease, which our
work showed may vary greatly in patients (Figures
2 and 3). Enrolment of some patients with low
disease propensity (C1) further weakens
comparisons between placebo and experimental
treatment groups.

Our stratification method differentiates patient
subgroups with four different gene expression
profiles (C1–C4), using whole-blood transcriptomics
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to obtain a snapshot of the immune system, and
we examined three study populations. This
stratification may possibly have a use in improving
the design of clinical trials, by more appropriately
targeting specific clusters of patients with SLE who
possibly express pathology-relevant genes more
homogeneously, suggesting a more consistent
mechanism of action underpinning disease in each
cluster (Figures 2b and 4). Retrospective analysis of
previous failed trials could potentially reveal high
efficacy in specific clusters of patients, a possible
significant outcome in efficacy currently hidden in
unstratified analysis. Successful off-label usage of
rituximab in some patients with SLE further
suggests that therapies unsuccessful in clinical trials
with SLE may yet have efficacy in selected
patients.34,35 Indeed, the expression levels of key

drug-targeted molecules such as BAFF and CD40L
suggest that certain clusters of patients might be
more suitable for the rationale of certain targeted
biologics than other clusters (Figure 4). Further
studies using RNA samples from patients who
participated in clinical trials with differing
responses to treatment is the important next step
to validate the utility of our method of
stratification.

Similar to us, previous studies using microarrays
have described distinct clusters of SLE patients in
whole-blood transcriptomic data.36,37 Banchereau
et al.38 conducted the largest microarray study in
SLE, which longitudinally monitored 158 patients
with juvenile SLE and uncovered markers
associated with disease activity. Recently, Panousis
et al.39 examined 142 patients with SLE and 58

Figure 5. Gene signature for SLE flare activity. Whole-blood RNA-seq data from 30 SLE patients (24 without flares and six with flares) and 29

healthy donors were compared (Data set 2, see Table 1). (a) Principal components analysis (PCA) to visualise the variation between samples (in all

genes); different symbols represent individuals in each group as shown. (b) Partial least squares discriminant analysis (PLSDA) was used to select

genes that distinguish the groups. (c–f) Relative expression of flare-associated genes, shown as the log2 fold-change relative to the mean of the

healthy donor group (‘H’). BH-adjusted P-values for differential expression (on count data) were calculated using limma (*P < 0.05, **P < 0.01).

Gene set enrichment analysis is provided in Supplementary figure 11.
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healthy donors by whole-blood RNA-seq, and
derived additional signals related to global
disease activity scores. In this study, we also used
RNA-seq data, which has the advantages of
capturing additional genes (not solely restricted
to probe sets) and improved dynamic range
compared to microarrays. Our study contributes a
new stratification scheme derived from the
convergence of four RNA-seq data sets, resolving
patients into four main subtypes with machine-
learned gene expression signatures. Additional
systems biology approaches (such as microbial
metagenomics and metabolomics) are becoming
available in SLE, and combining matching data
from additional profiling methods may allow for
improved sets of clinically useful biomarkers.40–43

Transient flare activity in SLE patients causes a
significant surge in inflammation requiring
increased medical attention, but much remains to
be understood about the underlying molecular
mechanism triggering flare activity. We identified
several genes that were differentially expressed in
patients with flare activity, including the RETN
gene, encoding the proinflammatory adipokine
resistin (Figure 5c). Interestingly, serum resistin
levels were elevated in patients with rheumatoid
arthritis and/or SLE, although the differences were
reported not significant in unstratified patients
with SLE, where high heterogeneity was noted.44

The specificity of elevated resistin levels to flare-
active patients may explain these results. However,
longitudinal studies monitoring successive flares
are needed to validate these observations, to
identify new flare-predicting transcriptional
signatures and to harness this information for
better management of patients with SLE.

The IFN gene signature is a known feature of
human SLE, although it does not correlate well
with overall disease severity.26 Stratification of
ISM-high patients is possible using qPCR assays to
monitor expression of three genes in peripheral
blood,26 which in our stratification corresponded
to C2 and C4 (Figures 2b and 4h–l). ISM genes
have specificity limitations, shown by a proportion
of healthy individuals with elevated levels of these
genes, similar to a proportion of C1 patients (who
have low disease activity) (Figure 4h–l). Several
new treatments related to type I interferon are
under investigation, for example anti-IL-3Ra (i.e.
anti-CD123 and CSL362 mAb), which depletes
basophils and plasmacytoid dendritic cells, cell
types that produce type I IFN.45 While this
treatment may also have therapeutic effects other

than that related to limiting type I IFN production,
our patient stratification may provide clues as to
patients more likely to respond.

In conclusion, our study provides new insights
into the heterogeneity of patients with SLE with
respect to gene expression in circulating immune
cells, which are the messengers of overall immune
activity in individual patients. Our novel approach
using whole-blood transcriptomic data combined
with machine learning is powerful at segregating
and recognising new patient clusters, as well as
uncovering cluster-specific gene expression
patterns. Our work is an important first step,
examining the underlying genetic heterogeneity
of SLE, and our results provide a number of
compelling clinically relevant observations,
strongly encouraging further validation of our
method using future cohorts of patients
responding or not to treatments or having or not
flares over an extended period of time. Future
post hoc analysis of failed clinical trials for SLE
using our method may also provide useful
information that can help better understand the
outcome and refine the design of future clinical
trials. As RNA-seq for each patient is expensive
with large cohorts, our work also provides
information on cluster-specific genes, which may
be useful when included in new high-throughput
pathology qPCR gene panels identifying clusters,
to be further validated. Finally, our in-depth
stratification is potentially the first new
opportunity that might put an end to decades of
a grim history, plagued with many failures in the
clinic in providing patients with SLE with a much-
needed treatment appropriate for the particular
subtype of the disease they are suffering from.

METHODS

Human subjects

Human subjects in Data sets 1 and 3 are previously
described (Table 1).13,14 Patients with SLE and in Data set 2
were recruited from the Monash Medical Centre.46 Healthy
donor blood for Data set 2 was collected by the Skin and
Cancer Foundation Carlton Victoria after informed consent.
Patients with SLE fulfilled the ACR classification criteria.47 The
SLE disease activity index 2000 (SLEDAI-2k)48 and the
Physician Global Assessment (PGA, range: 0–3)49 scores were
recorded. Blood was collected into PAXgene Blood RNA
tubes (BD Biosciences, San Jose, CA, USA), which were frozen
at �20°C for later RNA extraction (see below). The titre of
anti-dsDNA autoantibody ratio was calculated using different
assays according to the patients’ pathology providers (using
Farr assay, ELISA and Luminex assay). We have expressed the
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level of anti-dsDNA according to the ratio of measured anti-
dsDNA level to the upper limit of normal, and ratio ≤ 1
means normal and not positive for anti-dsDNA antibodies.
Patients did not participate in the analysis.

RNA extraction and RNA-sequencing

RNA was extracted using PAXgene Blood RNA Kits
(Qiagen). RNA libraries were prepared for sequencing using
standard Illumina protocols. RNA-sequencing (RNA-seq) was
performed on an Illumina HiSeq 2500 platform (all of the
samples in cohort 2 were sequenced together); 100-bp
single-end, stranded reads were analysed with the bcl2fastq
1.8.4 pipeline. Sequence read data are available on Gene
Expression Omnibus (GSE112087). Sequencing of the same
sample in two lanes showed comparable results
(Supplementary figure 10).

Bioinformatics analysis

Read quality, trimming, mapping and
summarisation

Publicly available data sets used in this study are listed in
Table 1.13,14 RNA-seq data were processed using a consistent
workflow (Supplementary figure 1). All software is listed in
Supplementary table 1. Read ends were trimmed with
Trimmomatic (v0.38) using a sliding window quality filter.50

Data sets 2 and 3 were truncated to 50-bp single-end format
to be consistent with Data set 1, before read mapping.
Reads were mapped using HISAT251 (v2.1.0) to the human
reference genome GRCh38/hg38, and the GENCODE release
v27 of the human genome GRCh38.p10 was used to
annotate genes. Read counts were summarised using the
featureCounts function of the Subread software package
(v1.6.1);52 nonuniquely mapped reads (i.e. reads that map to
more than one gene ambiguously) were excluded from
analysis. Males (5% of subjects) were included, but Y
chromosome genes were excluded from the analyses. Lowly
expressed genes were filtered out using a threshold
requiring at least 1 count per million (cpm) in healthy donor
samples across all data sets. In total, 9952 genes with unique
Entrez accession numbers were retained.

Normalisation, standardisation and batch analysis

Read counts were normalised by the upper-quartile
method, to correct for differences in sequencing depth
between samples, using edgeR.53,54 Counts were log2-
transformed with an offset of 1, and samples in each data
set were computed as the log2 fold-change (log2fc) against
the matching healthy control group mean. These processing
steps were useful to reduce the distracting effects of
extreme values and skewness typically found in RNA-seq
data.55 Batch effects (expected when combining data sets)
were taken into account in the statistical models using
limma/edgeR for differential gene expression testing (see
below), or reduced using data set source as a known
covariate using ComBat and verified using BatchQC
(Supplementary figure 2).

Gene selection, clustering and machine learning

Principal components analysis and PLSDA were performed
using the mixOmics R package (using Lasso penalisation to
rank predictive genes)56 and the MUVR R package
(v.0.0.971).57 Cross-validation was used to protect against
overfitting: in mixOmics, using M-fold cross-validation (10-
fold averaged 50 times); and in MUVR, using 15 repetitions
of repeated double cross-validation. A repeated-measures
design was used when combining data sets.58

Unsupervised clustering was performed with MATLAB
(MathWorks, Natick, MA, USA), using the k-means function
(using 100 repetitions to optimise initial centroid
positions). The number of clusters was chosen based on
unsupervised hierarchical clustering with MATLAB. ECOC
classifiers, which contain several support vector machines
for multiclass identification, were generated using
MATLAB. Random forest classifiers were generated using
MUVR.57

Differential gene expression and gene set
enrichment analysis

Count-based expression analyses

The limma/edgeR workflow was used for differential
expression analysis, considering each data set as a batch.54

The EGSEA (v1.10.1) R package was used to statistically test
for enrichment of gene expression sets, using a consensus
of several gene set enrichment analysis tools.59 EGSEA uses
count data transformed with voom (a function of the
limma package).60 Collections of predefined gene sets were
from KEGG Pathways and the Molecular Signatures
Database (MSigDB: ‘h’ hallmark and ‘c2’ curated
collections).61

Circulating immune cell composition
analysis

Flow cytometry

Whole-blood samples collected into lithium heparin tubes
(BD) were examined for frequency of circulating
neutrophils (SSChigh CD11b+, CD49d�) by flow cytometry.
Whole-blood samples were stained for 15 min at room
temperature before being fixed with BD lysing solution
(BD) and acquired on a MACSQuant 10 (Miltenyi Biotec,
Bergisch Gladbach, Germany) with subsequent analysis
done with FlowJo software (Tree Star, Ashland, OR, USA).

Transcript-length-adjusted expression and cell-
type enrichment analysis

Transcript-length-adjusted expression estimates (FPKM,
Fragments Per Kilobase of transcript per Million mapped
reads) were obtained using StringTie (v1.3.4) and Ballgown
(v2.12.0) R packages.51 Whole-blood RNA-seq results (FPKM
format) were analysed for immune cell-type signature
enrichment using the xCell R package (v1.1.0).19
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Statistical analysis

The mixOmics and MUVR R packages were used for multivariate
analysis using count data.62 The limma R package was used to
test for significantly differentially expressed genes while
modelling batch effects (expected from combining data sets)
and correcting for multiple comparisons (i.e. testing thousands
of genes) using the Benjamini–Hochberg procedure. R version
3.5.2 was used. Fisher’s exact tests and odds ratio calculations on
contingency table data were performed using Prism software
(v8.0.2; GraphPad Software, San Diego, CA, USA). Statistically
significant differences are shown for P < 0.05 (*), P < 0.01 (**),
P < 0.001 (***), P < 0.0001 (****) or not significant (n.s.).

ACKNOWLEDGMENTS

Computational work was performed using the high-
performance computing (HPC) resources of the University of
Melbourne (Project# punim0259) and Melbourne
Bioinformatics (Project# UOM0044). We acknowledge the HPC
training and technical assistance provided by the University of
Melbourne, Melbourne Bioinformatics, and the Australian
National Computational Infrastructure. This research was
supported by use of the NeCTAR Research Cloud, a
collaborative Australian research platform supported by the
National Collaborative Research Infrastructure Strategy. We
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