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Colorectal cancer (CRC) is a biologically heterogeneous disease. To characterize its muta-

tional profile, we conduct targeted sequencing of 205 genes for 2,105 CRC cases with

survival data. Our data shows several findings in addition to enhancing the existing knowl-

edge of CRC. We identify PRKCI, SPZ1, MUTYH, MAP2K4, FETUB, and TGFBR2 as additional

genes significantly mutated in CRC. We find that among hypermutated tumors, an increased

mutation burden is associated with improved CRC-specific survival (HR= 0.42, 95% CI:

0.21–0.82). Mutations in TP53 are associated with poorer CRC-specific survival, which is

most pronounced in cases carrying TP53 mutations with predicted 0% transcriptional activity

(HR= 1.53, 95% CI: 1.21–1.94). Furthermore, we observe differences in mutational frequency

of several genes and pathways by tumor location, stage, and sex. Overall, this large study

provides deep insights into somatic mutations in CRC, and their potential relationships with

survival and tumor features.
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Colorectal cancer (CRC) is the third most common cancer
and the second leading cause of cancer deaths worldwide1.
CRC is a complex disease caused by multiple environ-

mental, lifestyle, and genetic risk factors. Exposures to exogenous
and endogenous factors, aberrant DNA editing, and defective
DNA maintenance cause mutations and epigenetic alterations,
which confer cellular transformation and growth, leading to the
development of CRC.

Next-generation sequencing (NGS) has identified a diversity of
driver mutations in genes and altered signaling pathways in
CRC2–5. Limitations of these studies are the scarcity of clinical
data, as well as the inability to achieve statistical significance due
to small sample size. Advances in DNA extraction from archived
formalin-fixed paraffin-embedded (FFPE) tissues and sequencing
have enabled us to utilize a sizeable collection of CRC cases with
available clinical data from the Genetics and Epidemiology of
Colorectal Cancer Consortium (GECCO) and the Colon Cancer
Family Registry (CCFR). Here, we present a systematic mutation
analysis of 2105 CRC cases using targeted, deep sequencing data.
We constructed a custom AmpliSeq panel of 205 genes, prior-
itized from the analyses of CRC mutation datasets and literature
review2,6,7, and conducted targeted deep sequencing on DNA
from FFPE tumors and matching normal tissues from five-well-
characterized studies. The profiling of mutations in the largest
population-based CRC sequencing study to date provides a deep
insight into the mutational landscape of CRC and associations
with survival.

Results
Targeted sequencing. To construct an AmpliSeq panel, we
prioritized a list of 205 genes selected based on analysis of whole
exome sequencing data for CRC from TCGA2,6, and two pro-
spective cohort studies, the Health Professionals’ Follow-Up
Study (HPFS) and the Nurses’ Health Study (NHS)7, as well as a
literature search. We included homopolymer repeats to evaluate
microsatellite stability (see Supplementary Methods for panel
design). The DNA extraction, sequencing, and mutation calling
are described in detail in “Methods” and Supplement sections.
We successfully sequenced tumor DNA (from FFPE tissue) and
normal DNA (primarily from blood) from 2105 CRC cases
recruited across five observational studies that collected survival
data, CORSA, OFCCR, SCCFR, CPS-II, and DACHS. The mean
sequencing coverage of tumor and normal DNA was 857× and
302×, respectively.

Frequency and type of mutations and hypermutated tumors.
Among the 2105 CRC tumors, we identified a total of
25,586 synonymous, and 29,947 non-silent somatic mutations
(Supplementary Data 1). The non-silent mutations consisted of
19,838 missense mutations (66%), 3152 nonsense mutations
(11%), 15 stop losses (0.05%), 541 splice site mutations (2%),
6203 frameshift indels (21%), and 194 in-frame indels (0.7%,
Supplementary Fig. 1). Tumor mutation frequency varied sub-
stantially across samples (Fig. 1). A total of 19% of all CRC cases
were defined as hypermutated (HM) based on the frequency
distribution of somatic point mutations from all samples (see
“Methods”). As expected, a large fraction of the HM tumors was
MSI (67.8%). MSS-HM tumors were enriched for nonsynon-
ymous point mutations in the proofreading exonuclease domain
of POLE (Fig. 1). The HM tumors with POLE exonuclease
domain mutations exhibited an ultra-hypermutated phenotype
whereas this was not seen in HM tumors with POLD1 exonu-
clease domain mutations (mean number of somatic mutations=
235.6 (sd= 158.2) vs. 144.1 (sd= 80.0), respectively). In HM
tumors, recurrent mutations in the exonuclease domains include

P286R/S (3%), V411L (1%), S459F (1%), F367C/S/V (0.8%),
P436R/S (0.5%), and A456P (0.5%) in POLE, and R454C/H (1%),
E318K (0.8%), R352C (0.5%), R470C/H (0.5%), and V477M
(0.5%) in POLD1. In MSS-HM tumors without mutations in the
POLE and POLD1 genes (n= 64), we examined other genes on
our panel that could affect DNA replication or repair. A subset of
these tumors (n= 30), contained mutations in CDK12, ATM,
RECQL5, FAN1, NCAPD3, ERCC3, XPC, NTHL1, and passenger
mutations in MMR genes (Supplementary Fig. 2). The remaining
MSS-HM tumors (n= 34) may carry mutations in other DNA
repair genes not included in the current panel. A detailed analysis
of the newly identified subset of MSS-HM tumors without non-
silent mutations in POLE and POLD1 is described at the end of
the “Results” section.

Overall, we observed that HM tumors were less likely to be
diagnosed at stage IV than non-hypermutated (NHM) tumors
(4% vs. 10%, respectively), and more likely to arise in right-sided
CRC (76% vs. 24%). We also observed that CRC-specific survival
was significantly more favorable among individuals with HM
tumors than among those with NHM CRC (HR= 0.36, 95% CI:
0.24–0.54). This association was consistent regardless of stage at
diagnosis or tumor site, and was not impacted by adjustment for
these variables. Associations with survival were also consistent
among both those with (HR= 0.24, 95% CI: 0.10–0.58) and
without somatic POLE exonuclease domain mutations (HR=
0.41, 95% CI: 0.26–0.65).

Frequently mutated genes. We defined gene mutations based on
the presence of non-silent mutations. As expected, we observed
substantial differences in the mutational frequency of genes
between NHM tumors and HM tumors (Fig. 2). In NHM, the
most frequently mutated genes based on non-silent mutations
included APC, TP53, KRAS, SYNE1, PIK3CA, FBXW7, SOX9,
RYR1, and SMAD4 (Fig. 2a). These genes also harbored non-
silent mutations in the HM tumors, but were mutated at different
frequencies in the HM set. Among the HM tumors, SYNE1,
RYR1, RNF43, and KMT2D were the most commonly mutated
genes. Several of the frequently mutated and some of the less
frequent mutated genes in NHM and HM tumors were classified
as significantly mutated by MutSigCV (q < 0.1; Fig. 2a). In addi-
tion to previous known genes, we identified PRKCI, SPZ1,
MUTYH, MAP2K4, FETUB, and TGFBR2 as significantly muta-
ted by MutSigCV, which had not been reported in previous
studies2,4,6,7, suggesting putative driver status of these genes.
Validation of 84 mutations from these genes by Sanger sequen-
cing showed 98.8% correct calls.

In analyses across all CRC cases, we examined associations
between gene-level mutations and CRC-specific survival,
accounting for multiple testing and restricting our analyses to
genes with at least 10 CRC deaths in those with non-silent
mutations. Median survival time ranged from 60.6 to
194.1 months across the included studies (Supplementary
Table 1), and the study-specific proportion of participants who
died from CRC ranged from 14.8 to 27.0%. No gene-level
mutations were significantly associated with CRC-specific
survival after adjusting for age, sex, mutational burden and study
(Supplementary Data 2). Similarly, we did not find any gene
significantly associated with CRC-specific survival when we
stratified the analyses by hypermutation status, although such
stratified analyses were based on smaller numbers.

Alterations in main signaling pathways implicated in CRC. We
conducted a detailed analysis of primary pathways implicated in
CRC2. A total of 82% of tumors carried non-silent mutations in
genes belonging to more than one signaling pathway, though
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differences in mutation frequencies were observed between HM
and NHM tumors (Fig. 2b). In NHM tumors, 77% of tumors have
mutations in the WNT/beta-catenin pathway, followed by TP53/
ATM (62%), receptor tyrosine kinases/RAS (RTK/RAS, 50%),
transforming growth factor-beta (TGF-beta, 21%), and IGF2/
phosphatidylinositide 3-kinases (PI-3-kinase, 17%) pathways. In

HM tumors, 97% of tumors were mutated in WNT/beta-catenin
signaling genes, followed by TGF-beta (80%), RTK/RAS (74%),
TP53/ATM (48%), and IGF2/PI-3-kinase (46%) pathways. Con-
tributions of mutated genes in individual pathways are shown in
Fig. 2c and Supplementary Fig. 3. Overall, 96% of NHM and
100% of HM tumors displayed at least one non-silent mutation in
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Fig. 1 Mutation profiling of 2105 colorectal tumors. a Tumors are sorted based on the number of mutations with each dot indicating mutations in that
tumor. Jitter was added to easier visualize overlapping data points. The vertical dotted line separates hypermutated and non-hypermutated tumors (see
“Methods”). Tumors with MSI and POLE exonuclease domain mutations are frequent in hypermutated tumors. b Analysis of hypermutated tumors. Tumors
with mutations in DNA mismatch repair genes (MMR:MLH1,MLH3,MSH2,MSH6, or PMS2), tumors with non-silent non-truncating mutations in POLE, and
their MSI status are shown. c MSI or MSS tumors were examined for the impact of POLE exonuclease non-silent non-truncating mutations on overall
mutation burden. The boxplots show tumors with and without POLE exonuclease (exo) domain mutations and the MSI status. The center line, bounds, and
whiskers of the boxplots are median, first and third quartiles, and outliers, respectively. The medians for boxes without overlapping notches are significantly
different at the 0.95 confidence level. MSS tumors with mutations in the POLE exonuclease domain have significantly higher mutation burden compared to
the MSS and MSI tumors without the POLE exonuclease domain mutations.
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Fig. 2 Non-silent mutations in commonly mutated genes and altered pathways in colorectal tumors. a The top 50 mutated genes in non-hypermutated
and hypermutated tumors are shown. Significantly mutated genes identified by MutSigCV (q < 0.1) are indicated with asterisks. b Oncoprint display of
alterations in main signaling pathways in non-hypermutated and hypermutated tumors. Contributions of individual genes to pathways are shown in
Supplementary Fig. 2. Chi-square test p-values show significant differences in mutated pathways between non-hypermutated and hypermutated tumors.
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mutation frequencies of genes with non-silent mutations between non-hypermutated and hypermutated tumors.
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a gene belonging to the main signaling pathways implicated in
CRC. Compared to the NHM, HM tumors had more alterations
in multiple pathways.

WNT/CTNNB1(beta-catenin) signaling pathway: In the WNT-
signaling pathway, APC most frequently carried non-silent
mutations. Among APC mutated tumors, 99% of NHM and
85% of HM tumors harbored truncating mutations occurring
within the first 1600 codons, for which truncating mutations are
predicted to have the most functional consequences8 (Supple-
mentary Fig. 4). Approximately 19% of all NHM and 22% of all
HM tumors carried two or more non-silent mutations in APC.

Among CTNNB1-mutated tumors, missense point mutations
and in-frame indels in the D32-S45 hotspot region of CTNNB1
were significantly more frequent among tumors without trunca-
tions within the first 1600 codons of APC when compared to
tumors with APC inactivating mutations in the first 1600 codons
(p value < 1 × 10−5, Fisher exact test; (Fig. 3)) suggesting mutual
exclusivity. In the tumors with CTNNB1 hotspot mutations, we
observed mutations that alter codons S45 (n= 17), T41 (n= 16),
S37 (n= 3), G34 (n= 4), S33 (n= 1), and D32 (n= 1).

We did not observe a significant association between having
any WNT-signaling pathway gene mutation and CRC survival
(Supplementary Data 2) or between CTNNB1 hotspot mutations
and CRC survival.

TP53/ATM pathway: TP53 was the second most commonly
mutated gene in NHM tumors (60%), but less often mutated in
HM tumors (32%). In contrast, the ATM gene was more
frequently mutated in HM tumors (23%) than NHM tumors (4%;
Fig. 2 and Supplementary Fig. 3). In TP53 76% of the mutations
were missense which were predominantly in the DNA binding
domain, and 23% of the mutations were truncating which were
distributed along the entire length of the protein (Supplementary
Fig. 4). All in-frame indels in TP53 (1%) were found in the DNA
binding domain. Approximately 5% of TP53 mutated tumors
carried two or more non-silent mutations in TP53.

The presence of a non-silent somatic mutation in TP53 was
associated with modestly poorer CRC survival in all cases
combined (HR= 1.27, 95% CI: 1.01–1.59, Supplementary Data 2).
When categorizing somatic mutations by deleteriousness based
on residual transcriptional activity, the association with CRC-
specific survival was more pronounced (Table 1). TP53 residual
activity was determined using the International Agency for
Research on Cancer (IARC) TP53 database9 (See “Methods”).
Among individuals with a somatic mutation in TP53, those with
0% predicted residual TP53 activity had significantly poorer
CRC-specific survival compared to those with mutations causing
>5% predicted residual activity or those with no mutations (HR
= 1.53, 95% CI: 1.21–1.94) after adjusting for age, sex, mutational
burden, and study. This association was primarily driven by
results among NHM cases (HR= 1.52, 95% CI: 1.19–1.94),
among whom the observed association was modestly impacted by
adjustment for stage at diagnosis (HR= 1.36, 95% CI: 1.06–1.95).
TP53 mutations that resulted in minimal residual activity (>0%
but <5%) were also associated with a non-statistically significant
poorer CRC-specific survival (HR= 1.38, 95% CI: 0.89–2.13).
TP53 mutations were less common in right-sided vs. left-sided
CRC, and the proportion of tumors in right-sided CRC decreased
with decreasing TP53 residual activity. However, adjustment for
tumor site did not impact the observed association of TP53
mutation status with CRC survival, nor did these associations
vary substantially by tumor site.

Receptor tyrosine kinase (RTK)/RAS pathway: Among genes
analyzed in this pathway, KRAS was the most frequently mutated,
followed by BRAF and NRAS in NHM tumors and BRAF, KRAS,
and ERBB3 in HM tumors (Fig. 2 and Supplementary Fig. 3). As
expected, the frequently mutated codons in KRAS and NRAS were
G12, G13, and Q61 and in BRAF was V600 (Supplementary
Figs. 4 and 5). In the RTK/RAS pathway, we demonstrate that
most mutations in KRAS, NRAS, BRAF, ERBB2, and ERBB3 are
mutually exclusive (Supplementary Fig. 3).
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The presence of a mutation in the RTK/RAS pathway was not
significantly associated with CRC survival overall, or when
stratified by HM status (Supplementary Data 2). More specifi-
cally, the presence of a BRAF V600E mutation was not associated
with CRC survival, even among cases diagnosed with distant
metastatic disease, and the presence of known oncogenic
mutations in KRAS was only modestly associated with poorer
survival (Supplementary Data 2). Although these observations are
somewhat contrary to prior studies10, they are consistent with
results based on a large meta-analysis on previously measured
tumor marker data including studies that are included here
(Phipps et al., in press Gastroenterology).

TGF-beta superfamily pathway: Members of the TGF-beta
superfamily are frequently mutated in sporadic and hereditary
CRC causing loss of TGF-beta signaling and its anti-proliferative
effects11. We sequenced genes encoding for the ligand GDF5, cell
membrane-anchored receptors (ACVR2A, ACVR1B, BMPR1A,
BMPR2, TGFBR1, and TGFBR2), intracellular receptor-regulated
R-Smads (SMAD2, SMAD3), and SMAD4, which is a mediator of
signal transduction to the nucleus to regulate expression of target
genes. While multiple TGF-beta signaling genes often harbored
non-silent mutations in HM tumors, mutated genes appear to be
mutually exclusive only in NHM tumors (Supplementary Fig. 3).

Overall, the presence of a mutation in the TGF-beta pathway
was associated with less favorable survival for those with NHM
CRC (HR= 1.40, 95% CI: 1.06–1.86), but the opposite was true
for individuals with HM CRC (HR= 0.44, 95% CI: 0.18–1.06).
Among those with NHM tumors, the presence of a somatic
mutation in SMAD4 was most strongly associated with poorer
survival (HR= 1.58, 95% CI: 1.13–2.22). However, none of these
associations remain significant after adjusting for multiple
comparisons.

IGF2/PI-3-kinase pathway: In the IGF2/PI-3-kinase pathway,
mutually exclusive non-silent mutations were found in the
PIK3CA, PIK3R1, and PTEN genes in NHM and HM tumors
(Supplementary Fig. 3). 97% of mutations in PIK3CA, the
catalytic subunit of Phosphoinositide-3-kinase (PI3K), are mis-
sense or in-frame indels and 51% of mutations in the regulatory
subunit, PIK3R1, and 49% of mutations in the negative regulator,
PTEN, are frameshift, splicing, and truncating mutations. The
most mutated gene in this pathway, PIK3CA, showed recurrent
mutations in codons R88, E542, Q546, H1047. The oncogenic
gain of function mutations in codons E542 and H1047 have been
described to activate the AKT pathway12.

The presence of a mutation in the IGF2/PI-3-kinase pathway
was not significantly associated with CRC survival overall or
when stratified by HM status (Supplementary Data 2).

MSS-HM tumors without non-silent mutations in POLE and
POLD1. Approximately 3% of tumors (n= 64) were MSS-HM

and without non-silent mutations in POLE or POLD1. These
tumors were frequently mutated in APC (73%), TP53 (50%), and
KRAS (45%) (Supplementary Fig. 6). The most frequently
mutated pathways in these tumors included the WNT-signaling
pathway, RTK/RAS signaling pathway, TGF-beta superfamily
signaling pathway, and IGF2-PI3K signaling pathway. Slightly
more tumors occurred on the right side (53.1%). Across hyper-
mutated tumors, MSS tumors with and without mutations in
POLE/POLD1 and tumors exhibiting MSI showed similar fre-
quency of different types of mutations, such as exonic, intronic,
UTR, and intergenic regions (Supplementary Fig. 7).

Mutated genes by tumor characteristics and sex. We observed
what has been well described by others, that MSI status differs by
tumor site and sex, with MSI occurring more frequently in
females and in right-sided CRC (Table 2). After accounting for
multiple comparisons and adjusting for age, sex, mutational
burden, MSI status and study, we observed statistically significant
differences in mutation status among right-sided versus left-sided
tumors for several genes (Table 2 and Supplementary Data 3),
including the KRAS, TP53, BRAF, BCL9, AMER1, and FBXW7, as
well as for several pathways, including RTK/RAS, TP53/ATM,
TGF-beta, and IGF2/PI-3-kinase. When stratified by tumor stage,
we found that genes mutated in the IGF2/PI3K pathway occurred
more frequently in stages 2 and 3 compared to stage 1 tumors
(OR= 1.48, p-value 7.0 × 10−3; Supplementary Data 4). Whereas,
genes mutated in the WNT-signaling pathway were less frequent
in stages 2 and 3 compared to stage 1 tumors (OR= 0.67, p-value
6.6 × 10−3). In addition, results were suggestive for an increased
frequency of SMAD4 mutations in stages 2 and 3 tumors com-
pared with stage 1 tumors (OR= 1.91, p-value 1.8 × 10−3; Sup-
plementary Data 4). Furthermore, mutations in BRAF and the
RTK/RAS pathway occurred more frequently among females
(BRAF: OR= 0.37, p-value 2.0 × 10−6; RTK/RAS pathway
mutation: OR= 0.76, p-value 2.5 × 10−3; Supplementary Data 5).

Discussion
In this study, we provide a detailed look at the mutational profile
and its link to survival in over 2000 CRC cases. As expected, the
most frequently non-silent mutated genes belong to the WNT,
TP53/ATM, receptor tyrosine kinase, TGF-beta, and PI-3-kinase
pathways; however, mutational frequency varied substantially by
hypermutation status. We not only found that HM tumors were
associated with improved survival, but also that an increased
number of mutations within HM tumors was associated with
improved survival. When looking at specific genes while
accounting for multiple comparisons, we found that mutations in
TP53 with 0% predicted transcriptional activity were associated
with poorer survival. Furthermore, we observed differences in

Table 1 Survival analyses for TP53 somatic mutations defined by transcriptional activity and stratified by hypermutation status.

Mutation group Hypermutation status Cases (n) CRC-specific deaths (n) HR 95% CIa P valuea

>5% residual activity or no mutation Combined 1083 169 1.00 (Ref) –
NHM 806 150 1.00 (Ref) –
HM 277 19 1.00 (Ref) –

>0% to <5% residual activity Combined 102 23 1.38 0.89–2.13 0.15
NHM 85 20 1.29 0.81–2.05 0.29
HM 17 3 2.38 0.68–8.38 0.18

0% residual activity Combined 484 121 1.53 1.21–1.94 3.8 × 10−4

NHM 440 117 1.52 1.19–1.94 7.4 × 10−4

HM 44 4 1.29 0.42–3.90 0.66

CRC colorectal cancer, NHM non-hypermutated, HM hypermutated, HR hazard ratio, CI confidence interval.
aCox proportional hazard regression models adjust for age at diagnosis, sex, mutation burden, and study. TP53 non-silent mutations are based on transcript NM000546.
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mutational frequency of several genes and pathways by tumor
location, stage and sex.

As tumors with a large number of mutations are linked to
response to immunotherapy due to the larger number of potential
neoantigens13–16, we had a closer look at the HM tumors which
account for almost 20% of all CRC. About two-thirds of HM
tumors are MSI which occur through defective DNA repair by
germline and somatic mutations or promoter methylation in
MMR genes that leads to an increased mutational burden. Among
the MSS tumors that account for the remaining one-third of HM
tumors we observed an enrichment of POLEmutations frequently
resulting in an ultra-mutated phenotype. Given our large sample
size we were not only able to show that HM tumors were asso-
ciated with improved survival but further able to show that within

the HM tumors an increasing number of mutations impacted
survival positively. This is consistent with the observation that an
elevated neoantigen load is associated with high-lymphocytic
infiltration and improved CRC-specific survival7. In phase II
trials, MMR deficient tumors were responsive to the immune
checkpoint inhibition using pembrolizumab, nivolumab, and the
combination of nivolumab and ipilimumab13,14,17 which has led
to FDA approvals of Opdivo (nivolumab) with or without Yervoy
(ipilimumab) and Keytruda (pembrolizumab), for treating
tumors with MSI or deficient MMR. While currently such
treatment is limited to cases with MSI or MMR deficiency, our
data show that these cases only account for about two-thirds of all
HM tumors and that nearly one-third of all HM tumors are MSS.
These HM-MSS cases may also benefit from checkpoint inhibitor
and neoantigen vaccination immunotherapies, particularly as a
sizable fraction is even ultra-hypermutated. Accordingly, immu-
notherapy studies should investigate if the subset of MSS tumors
with a large number of mutations would also benefit from this
promising treatment. Accordingly, the ongoing clinical trial,
NCT01876511 (https://clinicaltrials.gov), extended inclusion to
HM-MSS cases. Immunotherapy benefits are also observed in
lung cancer with a high tumor mutational burden18.

Somatic mutations in TP53, which are present in the majority
of cancers3, are associated with poorer clinical outcomes in
several cancer types, including CRC19, consistent with our
finding. However, analyses of TP53 somatic mutations and p53
function in relation to cancer outcomes, including CRC, have
resulted in inconsistent findings19–21. This may be due, in part,
to discrepant approaches to defining mutation status, sample
sizes, methodologies, and population characteristics. Impor-
tantly, when we account for transcriptional activity in the
definition of gene mutation status, the relationship between
TP53 mutation status and CRC survival became substantially
more pronounced. These results demonstrate that while the
classification of a mutation as silent or non-silent is relevant for
determining the functional effect of a mutation, additional
functional annotations may aid in more accurate character-
ization of the putative effect of mutations on clinical outcomes.
Consistent with our finding, a study of CRC and a study of
glioma and gastric adenocarcinoma found differences in sur-
vival outcomes when accounting for p53 transcriptional
activity22,23 as defined using the IARC TP53 database9. Fur-
thermore, a CRC study found that the type of TP53 DNA
binding domain mutation affected CRC survival outcome24;
while using a different functional definition and analyzing a
subset of patients, this finding is in line with ours. Mutations in
TP53 could result in a gain of oncogenic function, reduced
degradation, and dominant-negative effect on the wild-type
protein. As such, heterozygous mutations without the loss of
heterozygosity could further reduce the activity of p53 protein
from wild-type allele by altering the ratios of mutant and wild-
type p53 proteins and by generating p53 tetramers with reduced
p53 activity. As more information about the functional effects
of mutations is gained across other genes, it can be expected
that future studies will be able to better characterize mutation
phenotypes and clinical impacts of specific somatic mutations.
Fortunately, higher throughput functional assays are becoming
increasingly available to make such detailed analyses possible.

Our findings suggested that SMAD4 mutations are more fre-
quent in stage 2/3 compared to stage 1 CRC, and are modestly
associated with poorer survival; although results were not sig-
nificant after adjusting for multiple comparisons. In line with this,
SMAD4 loss, as determined by immunohistochemistry, was
recently reported to be associated with worse CRC survival25. The
study further showed that SMAD4 loss was associated with
resistance to chemotherapy, and decreased tumor immune

Table 2 Distribution of somatic mutated genes and
pathways by tumor site.

Subtype Tumor site

Left-sided
(n= 1184)

Right-sided
(n= 899)

P valuea

MSI status
MSI 47 (4%) 261 (29%) 2.77E−07
MSS 1137 (96%) 638 (71%)

Hypermutation
NHM 1088 (92%) 603 (67%) 0.467
HM 96 (8%) 296 (33%)

Mutated genesb

KRASc

Mutated 379 (32%) 354 (39%) 7.79E−10
Non-mutated 805 (68%) 545 (61%)

TP53d

Mutated 759 (64%) 381 (42%) 1.98E−09
Non-mutated 425 (36%) 518 (58%)

BRAFe

Mutated 23 (2%) 132 (15%) 2.89E−05
Non-mutated 1,161 (98%) 767 (85%)

BCL9
Mutated 65 (5%) 68 (8%) 4.06E−05
Non-mutated 1119 (95%) 831 (92%)

AMER1
Mutated 57 (5%) 116 (13%) 1.10E−04
Non-mutated 1,127 (95%) 783 (87%)

FBXW7
Mutated 174 (14.7%) 135 (15%) 1.48E−04
Non-mutated 1010 (85%) 764 (85%)

Mutated Pathwaysb

RTK/RAS
Mutated 505 (43%) 586 (65%) 3.36E−12
Non-mutated 679 (57%) 313 (35%)

TP53/ATM
Mutated 789 (67%) 452 (50%) 9.62E−08
Non-mutated 395 (33%) 447 (50%)

TGF-beta
Mutated 246 (21%) 422 (47%) 3.85E−05
Non-mutated 938 (79%) 477 (53%)

IGF2/PI-3-kinase
Mutated 172 (15%) 271 (30%) 8.23E−05
Non-mutated 1,012 (85%) 628 (70%)

MSI microsatellite instability, MSS microsatellite stable, HM hypermutated, NHM non-
hypermutated.
aAnalyses adjusted for age at diagnosis, sex, mutation burden, MSI status and study. Significance
threshold determined based on Bonferroni correction (205 genes, p value < 2.4 × 10−4, and 6
pathways, p value < 8.3 × 10−3.
bGene and pathway mutation defined based on presence of non-silent mutations in genes.
ccodons G12, G13, Q61, K117, and A146 mutations.
dTranscript NM00546 encoding for the canonical p53 protein was used.
eCodon V600 mutations.
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infiltration25. Large deletions in chromosome 18q were not
measured in the present study.

Somatic differences in CRC along the colonic axis from caecum
to rectum have been well established. Our findings for differences in
MSI, KRAS, BRAF, TP53, and FBXW7 mutations are in line with
previous reports of tumor-site differences in these somatic
mutations26,27. In addition, one study of 516 patients with stage 2
and 3 tumors identified site-specific differences in RTK/RAS, PI-3-
kinase, and TGF-beta pathways, which is consistent with our
findings, though they did not find statistically significant differences
in the mutational frequencies in the TP53/ATM pathway27. How-
ever, it appears that several studies evaluating gene and pathway
mutation frequencies by tumor site did not account for MSI status
and mutational burden. Many genes that we identified as having
different mutational frequencies by tumor site, while accounting for
MSI status and mutational burden, are not as well described in the
literature, and additional studies are needed to confirm these.
Consistent with our findings, BRAF mutations have been reported
to be more prevalent in females28. In summary, our findings pro-
vide a more detailed understanding of the tumor heterogeneity and
how that heterogeneity pertains to prognosis.

In cancers, mutations in CTNNB1 are often found in the
hotspot region encoding for codons D32 to S452,29,30. This region
contains phosphorylation sites needed for the removal of excess
beta-catenin31. The beta-catenin degradation complex is formed
by APC, AXIN1, and AXIN2, which recruits casein kinase 1 alpha
to phosphorylate beta-catenin at S45, and subsequent phos-
phorylation by GSK3-beta at T41, S37, and S3332,33. While S45
phosphorylation priming and subsequent phosphorylation of
T41, S37, and S33 are required for the degradation of beta-cate-
nin, the D32 and G34 are also essential for its interaction with
BTRCP, a specificity component of ubiquitination machinery33.
Mutations in this region can stabilize beta-catenin resulting in its
cytoplasmic accumulation, nuclear translocation, and transcrip-
tion of cell cycle- and growth-related genes. Interestingly, we
observed that CTNNB1 hotspot mutations were enriched in
tumors without inactivating mutations in APC. Treatment of
these tumors will require direct inhibition of the beta-catenin/
TCF transcriptional complex.

We identified PRKCI, SPZ1, MUTYH, MAP2K4, FETUB, and
TGFBR2 as significantly mutated new genes. These genes have
been implicated in cancer. Reduced levels of PRKCI correlated
with the worst survival in CRC patients, and its deficiency is
linked to inflammation and tumorigenesis in mice34. SPZ1 pro-
motes epithelial-mesenchymal transition and oncogenesis in liver
cancer35. This transcription factor functions in the MAPK sig-
naling pathway to stimulate cell proliferation and oncogenesis36.
MUTYH is involved in oxidative DNA damage repair by
removing improperly paired adenine with 8-oxoG37. Its defi-
ciency is associated with MUTYH-Associated Polyposis syn-
drome. As MUTYH is transcriptionally regulated by TP5338, in
tumors with defective TP53, decreased levels of MUTYH could
affect DNA repair resulting in accumulation of mutations in
cancer genes. The MUTYH mutational signatures persistent with
mispaired adenine and 8-oxoG occur frequently in CRC genes
including, APC, KRAS, PIK3CA, and SMAD437. Downregulation
of MAP2K4, a key mediator of Jun N-terminal kinase signaling,
was associated with poor prognosis in CRC patients39. FETUB
encodes for a cysteine protease inhibitor. Its expression in CRC
cell lines and its tumor-suppressing activity in vivo in mice have
been described40. TGFBR2 is an essential receptor in the TGF-
beta signaling pathway, which is often mutated in CRC2,3,5–7. Its
disruption resulted in invasive intestinal tumors in inflamed
mucosa in mice41. Our large dataset and a robust mutation calling
method have allowed identification of these genes as significantly
mutated driver genes.

Independent of activation of EGFR, mutations that activate
KRAS, BRAF, or NRAS relay signal to the nucleus to promote cell
growth and survival through the RAS-RAF-MAPK pathway.
Tumors with these mutations exhibit resistance to anti-EGFR
therapy with panitumumab and cetuximab10,42. Among the EGF
receptor family members, activating mutations in ERBB2 and
its dimerization partner, ERBB3, have also been described in
CRC43–45. A subset of cetuximab-resistant tumors with deregu-
lated ERBB2 pathway was responsive to concurrent treatments
with cetuximab and the ERBB2 inhibitor trastuzumab46. The
oncogenic S310F mutation in ERBB2 responded to inhibition by
neratinib, afatinib, and trastuzumab43. Treatments of cells har-
boring V104M mutation in ERBB3 with ERBB antibodies and
other inhibitors blocked oncogenic signaling45. These two
somatic mutations in ERBB2 (S310F, 6% of ERBB2 mutated) and
ERBB3 (V104M, 10% of ERBB3 mutated) are found in our CRC
cases. These results show that in patients with failed response to
EGFR blockade, in addition to KRAS, BRAF, and NRAS
sequencing of ERBB2 and ERBB3 is important, as these patients
may benefit by ERBB signaling blockade using antibodies or small
molecule inhibitors. Furthermore, while most BRAF mutated
tumors contain the well-known V600E oncogenic mutation, we
also found mutations in neighboring codons D594, L597, and
K601 that can lead to resistance to anti-EGFR therapy. Accord-
ingly, extensive mutation profiling of RTK/RAS signaling will
allow to identify cases with better treatment options.

The MSS-HM tumors without non-silent mutations in POLE
and POLD1 genes appear to have a distinct mutation profile than
HM tumors with MSI or POLE/POLD1 mutations. Although
most frequently mutated in APC, TP53, and KRAS, resembling
MSS-NHM tumors, they are also mutated in other genes with
higher frequencies. This subset of tumors comprises 3% of all
tumors, and 16% of all HM tumors. These tumors are also likely
candidates for immunotherapy like other HM tumors with MSI
or mutations in POLE/POLD1 genes.

Our study has some limitations and strengths. We only con-
ducted targeted sequencing on 205 genes. However, these genes
were selected based on whole exome sequencing of 1211 CRCs.
This large sample allowed us to identify any significantly mutated
genes with a variant allele frequency of ≥2.5%4. Thus, we expect
to have coverage of all important common and even infrequently
mutated genes in our panel. While our chosen sequencing tech-
nology worked well for DNA from FFPE, we were not able to
reliably measure copy number alterations with this technology.
Given budget constraints, we were also not able to measure other
mutational features, such as epigenetic changes or RNA-Seq,
which would have allowed us to more comprehensively capture
the various tumor characteristics. Our sample size also limited
our ability to examine associations or patterns of alterations in
smaller subgroups (e.g., stage strata). However, we were able to
conduct the targeted sequencing analysis in over 2000 cases,
making this one of the largest studies of somatic mutations in
CRC to date. We were able to sequence at a very high coverage,
conduct extensive quality control analyses that enable us to
account for expected FFPE artifacts and validate mutations using
orthogonal methods demonstrating the high quality of our data
(for details see “Methods” and Supplementary Methods).

In summary, our study provides insights into the mutational
profile of CRC and its potential link to survival. We are providing
several findings which lay the foundation to advance better
strategies, including personalized approaches for prevention,
diagnosis, and treatment for CRC.

Methods
Study populations. We performed targeted sequencing on 2105 cases within
GECCO and CCFR. GECCO is an international collaboration to study 130,000
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CRC cases from 70 studies from North America, Australia, Asia, and Europe.
GECCO focuses on the identification and characterization of genetic risk factors,
gene-environment interactions, and the impact of germline genetic, environmental,
and lifestyle risk factors on the tumor genome, microbiome, immune response, and
survival. The CCFR is a National Cancer Institute-supported consortium consisting
of six centers dedicated to the establishment of a comprehensive collaborative
infrastructure for interdisciplinary studies in the genetic epidemiology of CRC. The
CCFR includes data from ~42,500 total subjects in 15,000 families (10,500 pro-
bands, 26,770 unaffected and affected relatives, and 4276 unrelated controls and
923 spouse controls). This study selected tumor samples from two of the CCFR
sites, Ontario and Seattle. Study descriptions and sample selection criteria are
provided in the Supplementary Text and Supplementary Table 1. Clinical attributes
are provided in Supplementary Data 6. The Health Science Research Ethics Board
at University of Toronto, Institutional Review Board at Fred Hutch, Mount Sinai
Hospital Research Ethics Board, Emory University Institutional Review Board,
Research Ethics Board at the Institute of Cancer Research, Ethics Commission
Board at Medical University of Vienna, and Ethics Committee of the Medical
Faculty of Heidelberg, approved the study, and all patients provided written
informed consent to allow the collection of specimens and data used in this
analysis.

Targeted sequencing. We extracted tumor DNA from FFPE sections and isolated
matching normal DNA from the blood, buccal, saliva, or adjacent normal colonic
FFPE tissues. Tumor tissue was macrodissected from slides guided by a H&E
stained slide marked for the tumor regions. All tumors underwent a pathology
review to confirm that the tumor was a primary colorectal carcinoma. We extracted
DNA from FFPE tissue using the QIAamp DNA Mini or QIAamp DNA FFPE
tissue kits and normal DNA from other tissues using standard DNA extraction
methods. DNA concentrations were determined by Quant-iT PicoGreen dsDNA
Assay or the Qubit dsDNA HS Assay kits.

DNA extracted from FFPE tissues was subjected to repair by using the PreCR
Repair Mix (New England BioLabs, Ipswich, MA). AmpliSeq target amplification
was performed using 20 ng of genomic DNA for each of the 2 AmpliSeq primer
pools. Following removal of primers, PCR products from each pool were combined
and subjected to end repair and A-tailing using the KAPA HyperPrep Kit (Roche).
Adapter ligation was performed using the NEXTflex DNA barcodes Kit
(PerkinElmer) and libraries were analyzed on High Sensitivity TapeStation and
submitted for cluster generation. Barcoded DNA sequence libraries were pooled
using 48 samples for tumors and 48 or 192 samples for normal DNA. Paired-end
sequencing was performed on HiSeq 2500 using the Illumina Genome Analyzer
operating procedure. Paired-end reads were aligned to the reference human
genome (GRCh37/hg19) using Burrows-Wheeler Aligner (BWA-MEM version
0.7.9a). Local realignments and base quality recalibrations were performed on
aligned data. Only reads aligned uniquely to the reference human GRCh37/hg19
genome assembly were used in downstream analysis.

Calling somatic variants and significantly mutated genes. We called somatic
single nucleotide variants (SNV) using Strelka v1.0.1547 and MuTect v1.1.748, and
took the intersection of mutation calls. We annotated somatic mutation calls by
ANNOVAR. A set of additional filters were used such as strand bias, minor allele
frequency in Exome Aggregation Consortium (ExAC), read-depth, alternative
read-depth, and clustered read position. We further applied an amplicon artifact
filtering to remove cases where mutant allele frequency varied across read clusters.
We obtained indel calls using majority votes from VarScan2 v2.4.349, VarDict (Feb
2017)50, and Strelka v1.0.1547. After initial filtering of indels based on coverage and
mutant allele frequency, we noticed some background signals of alternative reads in
normal samples. Thus, we used read counts from tumors and normal samples to
construct a background filter to remove indel calls in a subset of samples where
signals were not significantly higher than background. We used MutSigCV51 to
define significantly mutated genes. For more details on the quality control, calling
and analysis see Supplementary methods, Supplementary Fig. 8, and Supplemen-
tary Tables 2 and 3.

To define hypermutation status, we plotted point mutations for all samples and
observed two very distinct peaks. The minimum value between the two peaks is 23
point mutations per sample (17 mutations per million bases), which we used as a
cut-off for defining hypermutation status (Supplementary Fig. 9).

Validation of point mutations and indels. We evaluated calls for randomly
selected 96 point mutations and 91 indels by Sanger sequencing. Results were used
to improve mutation calling accuracy. Subsequently, we conducted a validation
study using Sequenom as an orthogonal technology for point mutations and indels.
For point mutation calls, we observed false positive and false negative rates of 0.3%
and 4.1%, respectively, with a sensitivity of 95.9% and a specificity of 99.7%. As the
validation for indels showed room for improvement, we used the data to further
tune our calling algorithms. Subsequent Sanger sequencing for another validation
of 109 indels showed 93.6% correct calls. In HM-MSS tumors without non-silent
mutations in POLE and POLD1 validation of randomly selected mutations (n= 63)
by Sanger sequencing showed 95% correct calls.

MSI status calling. We called MSI status using mSINGS52. Briefly, we established
a baseline reference using control samples from peripheral blood and for each of
the 169 microsatellite loci included in our panel design, we quantified and com-
pared the number of differently sized repeats in tumor samples to the baseline for
the same locus. A locus was considered unstable if the number of mutated alleles
exceeded the baseline reference by three times the standard deviation. To define an
MSI positive tumor, we evaluated the fraction of unstable microsatellite loci out of
the total number of loci analyzed as well as a qualitative separation of samples
(a cutoff fraction of 10% unstable loci, Supplementary Fig. 10). Of 2105 tumor
samples, we assigned 310 MSI positive with a mean fraction of 0.27 unstable loci
(range= 0.13–0.45; SD= 0.066) and 1795 MSI-negative with a mean fraction of
0.04 unstable loci (range= 0.01–0.12; SD= 0.019). As an additional way to validate
calls, we compared classification of MSI status results for participants that had both
existing tumor marker data and determined tumor characteristics from the targeted
sequencing data. The classifications from orthogonal approaches were highly
concordant with 98.6% concordance for the 1534 individuals with information on
MSI status from both sources.

Definition of mutated gene and pathways. Mutations: We defined gene muta-
tions based on the presence of non-silent mutations as determined by ANNO-
VAR53 refGene annotations. A SNV was considered to be non-silent if it was
annotated as exonic and nonsynonymous, stop-gain, stop-loss, or splicing. An
indel was considered to be non-silent if it was annotated as exonic and a frameshift
deletion, frameshift insertion, in-frame deletion, in-frame insertion, stop-gain, or
stop-loss. For a subset of genes, we further refined definitions based on known
annotations regarding functional effects of mutations (e.g., V600E mutation in
BRAF).

Pathways: We defined primary pathways implicated in CRC2 for downstream
analyses (see Supplementary Fig. 3 for list of genes included in each pathway). A
pathway was considered mutated if any gene within that pathway had a non-silent
mutation.

TP53 residual activity prediction: TP53 residual activity was determined using
the IARC TP53 database (version R19, August 2018)9,22. TP53 non-silent SNVs
were classified into subgroups with 0, 0–5%, and >5% residual transcriptional
activities. Tumors with truncating mutations in TP53 and without TP53 mutations
were classified into subgroups with 0 and >5% residual activities, respectively.

Statistical analyses. We used Bonferroni corrected p-values to assess statistical
significance, accounting for the number of genes or pathways tested in each type of
analysis.

Survival analyses: We used Cox proportional hazards regression to estimate
adjusted HRs and 95% CIs for the association of mutated genes and pathways with
CRC-specific survival. Person time accrued from the date of diagnosis to the date of
death or the end of follow-up. Cases who died from causes other than CRC were
censored at the date of death. We examined proportional hazards assumptions by
testing for a nonzero slope of the scaled Schoenfeld residuals as a function of
survival time. All analyses were adjusted for age at diagnosis, sex, and study.
Primary analyses were conducted without adjustment for hypermutation status, to
allow for the possibility of effect modification by this attribute; however, in
instances in which associations were observed to be similar across HM and NHM
cases, we conducted additional analyses adjusting for hypermutation status.
Primary analyses of survival were also not adjusted for stage at diagnosis, to
account for the fact that meaningful associations between somatic mutations and
survival could operate via an impact on disease aggressiveness (and therefore
stage). In instances in which we observed significant differences in the prevalence
of mutated genes or pathways by stage at diagnosis or tumor site, we also carried
out analyses stratified by and adjusted for these attributes.

Case only tumor comparison: We used a χ2 test to compare gene and pathway
mutation frequencies in HM and NHM tumors. To evaluate potential differences
in mutated genes and pathways by tumor site, tumor stage, and sex, we ran
unconditional case-only logistic regression analyses adjusting for MSI status. We
defined left-sided tumors as those occurring in the splenic flexure, descending
colon, sigmoid colon, rectosigmoid junction, and rectum, and right-sided tumor as
transverse colon, hepatic flexure, ascending colon, and cecum. We excluded
appendix and anal cancer cases from all analyses. We did not stratify further by
rectum as the TCGA analysis did not observe substantial differences between colon
vs rectum2. In analyses comparing mutation frequency by tumor site, we used left-
sided tumors as the referent category. Stage 1 cases served as the referent category
in analyses of mutation frequency by stage at diagnosis. In analyses comparing
mutation frequency by sex, we used females as the referent category.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary information files). The original sequencing data are available at
the database of Genotypes and Phenotypes (dbGaP, accession phs002050.v1.p1). IARC
TP53 data are available at https://p53.iarc.fr.
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