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The autoimmune encephalitides are a group of autoimmune conditions targeting the

central nervous system and causing severe clinical symptoms including drug-resistant

seizures, cognitive dysfunction and psychiatric disturbance. Although these disorders

appear to be antibody mediated, the role of innate immune responses needs further

clarification. Infiltrating monocytes and microglial proliferation at the site of pathology

could contribute to the pathogenesis of the disease with resultant blood brain barrier

dysfunction, and subsequent activation of adaptive immune response. Both innate

and adaptive immune cells can produce pro-inflammatory molecules which can

perpetuate ongoing neuroinflammation and drive ongoing seizure activity. Ultimately

neurodegenerative changes can ensue with resultant long-term neurological sequelae

that can impact on ongoing patient morbidity and quality of life, providing a potential

target for future translational research.

Keywords: autoimmune encephalitis, innate immunity, microglia, monocytes, epilepsy, neuroimmunology, blood

brain barrier

INTRODUCTION

Central nervous system (CNS) autoimmunity is a rapidly advancing field, with significant recent
advances in our knowledge of the underlying mechanisms of disease. However, there remains
significant gaps in our knowledge, particularly in the genesis of autoimmunity within the CNS
and the interaction between the innate and adaptive arms of the immune response. While
Multiple Sclerosis (MS) remains the prototypical, and most common, autoimmune CNS disorder,
autoimmune encephalitis is a useful disease to further investigate the intersecting processes of
the immune response for a number of reasons. First, it has a dramatic onset with clear markers
of immune etiology. Second, it affects a broad spectrum of neuronal networks. Third, it has
demonstrated the potential for serious long-term sequelae in the form of drug-resistant seizures and
cognitive or psychiatric morbidity. The adaptive immune system contribution has been the main
focus of investigation into this group of disorders, as exemplified by auto-antibody identification.
The innate immune system contribution has been less well-investigated, but it is potentially also
important and will be the focus of this review.
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INNATE IMMUNE DYSFUNCTION IN CNS
AUTOIMMUNE DISEASES

Blood Brain Barrier Dysfunction
The blood brain barrier (BBB) forms part of the initial defenses
of the CNS. BBB permeability can be altered by several factors
including inflammatory molecules such as interleukin-1β (IL-
1β), tumor necrosis factor-α (TNF-α), C-C motif chemokine
receptor-2 ligand (CCL-2), and interleukin-17A (IL-17A) (1).

The main mechanism by which TNF-α mediates BBB
disruption is via internalization of tight junction proteins
on endothelial cells. This is mediated by upregulation of
the downstream pro-inflammatory gene transcription regulator
nuclear factor kappa-B (NFkB) (2). These proteins, such as
claudin-5, occludin, and zona occludens 1 (ZO-1) prevent
transcellular diffusion of molecules and cells (1).

IL-1β contributes to BBB permeability in three major ways.
First, it induces expression of matrix metallopeptidase-9 (MMP-
9) and vascular endothelial growth factor (VEGF) in endothelial
cells, glial cells and monocytes/macrophages that act to degrade
tight junction proteins (3–5). Second, IL-1β induces expression of
hypoxia-inducible factor-1α (HIF-1α) andVEGF-A, contributing
to BBB permeability and increased angiogenesis (4). Third,
secreted IL-1β also alters the location of CXCL12 expression
in CNS endothelial cells from the basolateral BBB membrane
to the luminal surface, contributing to BBB permeability to
leukocytes (6).

Experimental autoimmune encephalomyeltis (EAE) is an
animal model of CNS autoimmunity and neuroinflammation.
Early on in the course of EAE monocyte-derived macrophages
produce IL-1β. This can then induce CNS endothelial
cells to secrete molecules such as granulocyte-macrophage
colony-stimulating-factor (GM-CSF) and granulocyte-colony-
stimulating-factor (G-CSF) (7, 8). These factors are important for
the recruitment and activation of immune cells (7, 8). In the EAE
model, GM-CSF, and G-CSF encourage the differentiation of
infiltrating monocytes into antigen presenting cells that can then
interact with CD4+ cells (9). Mice with the GM-CSF receptor
gene deleted only in CCR2+ monocytes are more resistant to
initiation of EAE. Conversely constitutive GM-CSF secretion by
polyclonal T cells results in infiltration of the CNS with myeloid
cells (10).

One pathway that is important to innate cell activation and
production of inflammatory cytokines is mediated by a family of
receptors called Toll-like Receptors (TLRs). Lipopolysaccharides
(LPS) and various environmental toxins can act as pathogen-
associated molecular patterns (PAMPs), or native molecules
such as ATP as damage-associated molecular patterns (DAMPs),
to stimulate TLRs found on C-C motif chemokine receptor-2
(CCR2) expressing monocytes (11, 12). Resultant activation of
various intracellular signaling-cascades leads to the production
and release of pro-inflammatory cytokines.

Recruitment and activation of these CCR2+ monocytes
appears to be an important step in neuroinflammation. For
example, CCR2 deficient mice exposed to hypoxic-reperfusion
injury demonstrate less BBB permeability and smaller infarct
size/brain oedema compared with wild type mice (13). The

molecule responsible for recruiting CCR2+ monocytes, CCL2,
also potentially has additional effects on endothelial cells. CCL2
can cause internalization of occludin and claudin-5 (14) within
these cells, affecting tight junction integrity. The recruitment of
CCR2+ monocytes via IL-1β and GM-CSF may play a role in
amplification of the pro-inflammatory response, subsequent BBB
dysfunction and enhanced interaction between the innate and
adaptive immune systems. The contributors to BBB dysfunction
are highlighted in Figure 1.

Innate Cells and Autoimmunity
Innate cells involved in the inflammatory cascade in the CNS
include infiltrating monocytes, macrophages, neutrophils as well
as the resident microglia.

Microglia
Microglia are specialized glial cells found in the CNS that
have a “macrophage like” function. They are responsible for
the maintenance of the CNS environment as well as a local
immune response to injury or infection. Resting microglia
exist in a ramified state and are constantly monitoring their
environment via processes (15). Activated microglia then alter
their morphology and gene expression, allowing them to perform
both pro-inflammatory and anti-inflammatory functions (16).
Activation of microglia can occur in a number of ways. Microglial
activation is strongly linked to extracellular ATP (17). Microglia
also express mRNA for TLRs 1–9. In vivo, however, TLR3
and 4 are upregulated in inflamed brain tissue (18). Activation
of TLRs induce pro-inflammatory cytokine production and
expression of MHC-I and MHC-II molecules (19). Other pro-
inflammatory cytokines such as CCL2 activate microglia and
drive inflammation (20).

Activated microglial cells are an important component of
the neuroinflammatory process in the development of MS
and subsequent disease progression. Nodules of microglia
are found in abundance in normal appearing white matter
(NAWM) in tissue autopsy specimens in MS patients (21).
These microglia express nicotinamide adenosine dinucleotide
phosphate (NADPH) oxidase, a marker of the production of toxic
reactive oxygen species (ROS) and a feature of activatedmicroglia
(21). There is also a spatial association between inflammation and
the presence of microglia in these specimens (21). Some other
surface markers of activated microglia, Major Histocompatibility
Complex Class II (MHC-II) and CD11c, are seen early in EAE
prior to overt infiltration of peripheral immune cells (22).

Activated microglia perform a number of functions in
the inflamed CNS. Microglia express CCL2 (the ligand for
CCR2), and this expression is upregulated in animal models
of demyelination (23) indicating a key role in promoting
innate immune cell infiltration. Microglia are also linked
to neurodegeneration in CNS autoimmunity. High levels of
microglial activation, as measured with [C11]PK11195 positron
emission tomography (PET) ligand, in NAWM in MS are
associated with brain atrophy and an increasing disability as
measured on the Expanded Disability Status Score (EDSS) (24).

Activated microglia can have dual functions, either promoting
or decreasing inflammation. TGF-β has been demonstrated
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FIGURE 1 | Blood Brain Barrier Function (A) and Dysfunction (B). 1. Quiescent Microglia; 2. Astrocyte foot process; 3. Basement membrane; 4. Pericyte; 5.

Endothelial cell; 6. Claudin-1; 7. Zona occludins-1; 8. Monocyte; 9. Vessel lumen; 10. Activated monocyte; 11. T-lymphocyte; 12. Chemokines; 13. ICAM-1, VCAM-1;

14. Monocyte initiating diapedesis; 15. Breakdown of tight junctions; 16. Infiltrating monocyte; 17. Macrophage; 18. Activated microglia via DAMP/PAMP. DAMP,

Damage associated molecular pattern; PAMP, Pathogen associated molecular pattern; ICAM-1, Intracellular adhesion molecule 1; VCAM-1, Vascular cell adhesion

molecule.

to induce microglia to produce anti-inflammatory molecules
and down-regulate pro-inflammatory molecules (23). TGF-β
injected into a pure neuronal cell culture has protective effects
against excitotoxicity (25). In mouse organotypic culture, TNF-
α secreted by microglia has similarly been shown to protect
neurons from excitotoxicity and promote remyelination (26).
In a microglial-hippocampal organotypic coculture, microglia
expressing M-CSF are able to decrease NMDA mediated
neurotoxicity (27). Similarly, in animal models of neurological
disease the neuroprotective role of microglia has been reported.
In a mouse model of cerebral ischaemia microglial depletion
resulted in a larger infarct size, increased levels of inflammatory
compounds, increased immune cell infiltration and increased
cell necrosis (28). This was primarily mediated by astrocyte
overactivity in the absence of the protective effects exerted by
microglial cells (28).

In EAE the inhibition of microglial activation with a
tetracycline antibiotic (minocycline) results in an attenuated
disease course (29). There is also emerging evidence for
minocycline in the prevention of recurrent CNS inflammation
(relapse) after a first demyelinating event (30). In this trial
patients with clinically isolated syndrome (CIS) who were
treated with minocycline had a lower risk of conversion to
clinically definite MS. It should be noted that minocycline
has other anti-inflammatory properties aside from supressing
microglial activation that may play a role in ameliorating EAE
or inflammation noted in CIS (31). Inhibition of microglial
activation can also be achieved through more targeted methods.
Modified rat models utilizing a thymidine kinase suicide gene
linked to CD11b reduce the number of activated microglial cells
in EAE mice (32). These mice also demonstrate an attenuated
clinical course (32).

A number of MS disease modifying medications (DMT)
appear to have activity against microglia that may play a

role in their efficacy. Aside from its action on lymphocyte
trafficking Fingolimod also decreases pro-inflammatory
cytokine production and increases the production of
neuroprotective molecules produced by activated microglia
(33). The immunomodulating small molecule Glatiramer acetate
induces an anti-inflammatory profile in microglia and promotes
phagocytic activity (34). Another MS disease modifying therapy,
Interferon- β, also appears tomediate its protective effect through
myeloid cells (35). Mice with selective type-1 interferon receptor
in myeloid cells develop severe disease with increased mortality.
Conversely selective type-1 interferon receptor knockout in
lymphocytes had no effect on the disease course (35).

Infiltrating Myeloid Cells
Notably in EAE it appears that the macrophages driving the
inflammatory process in demyelinating lesions are actually
derived from infiltrating monocytes rather than resident
microglia (36, 37). Resident microglia show lower expression
of pro-inflammatory genes as compared with these infiltrating
macrophages (38). An elegant study in EAE used distinct cell
surface markers for resident microglia (CX3CR) and infiltrating
monocytes (CCR2) in combination with morphological analysis
with electron microscopy and gene expression profiles to
examine the role of these myeloid cells (39). It demonstrated
that the infiltrating myeloid cells adopted a pro-inflammatory
role within the demyelinating lesions. Conversely the resident
microglia were far more inert and adopted a more homeostatic
role (39).

Infiltrating CCR2+ (classical) monocytes appear to be a major
monocyte subtype involved in altering BBB permeability and
are seen in a number of other models of CNS injury and
neuroinflammation. CCR2+ monocytes accumulate in brain
lesions in traumatic brain injury (TBI) (40). CCR2 knock out
mice with a focal TBI demonstrate smaller lesion cavity sizes
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(40). CCR2 antagonism in focal TBI in mice decreases CCR2+

monocyte/macrophage accumulation, which was found to be
associated with improvements in cognitive outcomes (14, 41).
Monocytes have been shown to migrate to the CNS in hypoxic-
ischemic injuries as well as in animal models of amyloid plaque
related neurodegeneration (42). In EAE the absence of CCR2+

monocytes decrease disease severity (43), indicating a role
for CCR2+ monocytes in both CNS neuroinflammation and
autoimmunity. However, as with microglia, the role of these
infiltrating monocytes can be pleiotropic. In a mouse model
of spinal cord injury (SCI) inhibition of CCR2+ monocyte
infiltration into the CNS resulted in chronic microglial activation
and delayed clinical recovery (44). The infiltrating myeloid cells
in this model had a suppressive effect on pro-inflammatory
microglia, providing an anti-inflammatory environment (44).

The other predominant infiltrating myeloid cell in CNS
autoimmunity is the neutrophil (45). Neutrophils are early
phase effector cells that produce a variety of pro-inflammatory
factors such as IL-1β, IL-6, TNF-α as well as ROS (45). In EAE
neutrophils appear to play a role in the development of disease,
particularly in BBB dysfunction (46). Neutrophils have been
shown to infiltrate the CNS in the pre-clinical phase of EAE
(47). Depletion of neutrophils prior to disease onset ameliorates
disease progression (48). This is not seen with depletion after
disease onset or at the clinical peak of disease (48). This suggests
an important role of neutrophils in the initial phase of the disease.
Similar studies in EAE have demonstrated that BBB dysfunction
is spatially related to neutrophil infiltration into the brain (46).
Interestingly depletion of neutrophils also diminishes monocyte
or microglia maturation into antigen presenting cells (APCs)
expressing HLA-DR (49), which may indicate another important
role in driving early CNS autoimmunity and neuroinflammation.

Initiation of the Adaptive Immune
Response
One potentially important, yet poorly understood, role of
these innate cells in CNS autoimmunity is in stimulating the
proliferation and maturation of autoreactive lymphocytes. In
the EAE model APCs expressing endogenous antigens promote
differentiation of antigen-specific lymphocytes into specific
lineages (50). The interaction with T cells appears to play a
central role in the initiation of the adaptive response in CNS
autoimmunity. MS has long been considered a T cell mediated
disease, supported by the presence of activated T cells in active,
demyelinating plaques in a large neuropathological study of
MS biopsies and autopsy specimens (51). The T cells in MS
are thought to be activated by CNS APCs presenting CNS
autoantigens, although no specific antigen has been identified
(52). The presence of clonally expanded populations of MHC
II restricted T cells that are preferentially activated in EAE
induction (51) supports the concept of target antigens that
activate specific TCRs and induce cellular proliferation.

B cells are also increasingly considered to play a major
role in CNS autoimmunity (53). The involvement of B cells
in the pathogenesis of MS is supported by the presence of
CSF specific oligoclonal immunoglobulins in up to 90% of

MS patients (54). Brain tissue specimens from MS patients
also demonstrate immunoglobulin and complement deposition
in areas of CNS demyelination, indicating B cell antibody
production (55). However, as discussed previously, there is no
clear antigenic target. Further supporting the role of B cells in
MS is the high efficacy of anti-CD20 monoclonal antibodies in
preventing relapses in MS and controlling disease progression
(56). However, there have also been failures in B cell targeted
treatment. Atacicept, a molecule targeting B cell activation
factors, actually increased the risk of relapses when used in MS
patients (57). It is unclear why these B cell directed treatments
have such disparate clinical effects, but does suggest that a
potential sub-population of B cells may play a protective role
in MS.

B cells may also play a role as APCs in MS. Peripheral B cells
from patients with MS have upregulatedMHC II expression (58).
Higher levels of co-stimulatory molecules are also seen on B cells
within the CNS (59, 60). Ablation of MHC II molecules on B cells
in mice causes resistance to EAE development (61). Activated B
cells also drive Th17 responses due to secretion of IL-6 (62, 63)
and the absence of B cell secreted IL-6 reduces disease severity
in EAE (64). A recent study examining auto-proliferating auto-
reactive lymphocyte populations in the peripheral circulation of
patients with MS demonstrated the importance of the interaction
between the B cells and T cells to maintain activation and
proliferation (65). Pertinent to the interaction between the innate
and the adaptive immune responses, B cells also play a key role in
promoting the ongoing pro-inflammatory response by myeloid
cells due to secretion of GM-CSF (66).

AN EMERGING CNS AUTOIMMUNE
DISEASE: AUTOIMMUNE ENCEPHALITIS

Autoimmune Encephalitis Overview
The autoimmune encephalitides (AIE) are a collection of
heterogeneous disorders characterized by immune mediated
inflammation of the brain parenchyma and disruption of
neuronal circuitry (67). Due to the variation in anatomical and
functional locations within the CNS that can be affected, these
disorders can present with a broad range of symptoms ranging
from fevers and headaches to neuropsychiatric disturbance,
movement disorders (dystonia/dyskinesia), seizures, cognitive
impairment, autonomic dysfunction and sleep-wake cycle
disturbance (67). Both individually and as a group, AIE are
a relatively rare condition with a measured incidence of
0.8–2/100,000 per year in Europe, and a similar incidence
of 1.2/100,000 in the United States of America (68). This
is comparable with the incidence of infectious encephalitis
(1.0/100,000) (68). Notably this incidence is more than 2-fold
greater than in the preceding 10 years, likely reflecting increased
recognition and improved diagnostic tests.

Autoimmune Encephalitis: A Clinical
Syndrome
Diagnosis of AIE relies on the recognition of a clinical syndrome
together with serological testing. This is supported with
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identification of inflammation on ancillary investigations.
This can include cerebrospinal fluid (CSF) testing looking for
pleiocytosis and/or elevated protein, or neuroimaging. MRI
brain imaging utilizing gadolinium contrast can demonstrate
oedema or increased blood brain barrier permeability. Resultant
neuronal circuitry dysfunction can also be identified on
electroencephalogram. Due to a reliance on serological
testing (and potentially representing some differences in
pathophysiology) AIE can be further divided into three
sub-groups: (1) a subtype defined by antibodies directed at
intracellular targets, (2) a subtype defined by antibodies directed
at cell surface antigens, and (3) a further subtype without
identifiable antibodies (“seronegative” disease).

The subtype defined by antibodies directed against
intracellular antigens are largely paraneoplastic disorders.
Despite many similarities to the other subtypes of AIE, this
group typically demonstrate poor response to immunotherapy
if the underlying neoplastic process is not treated (69). These
syndromes and their neoplastic associations are summarized in
Table 1. However, a detailed discussion of these specific disorders
is outside the scope of this review, but has been covered in a
recent publication by Rosenfeld and Dalmau (70).

The cell surface antibody associated AIE are a more
recently identified entity. Anti-N-methyl-D-aspartate Receptor
(NMDAR) antibody associated AIE, characterized in 2007
(71, 72) has a typical clinical syndrome characterized by
neuropsychiatric disturbance including psychosis, catatonia,
hypersomnia or insomnia, movement disorder (dyskinesia and
dystonia) and dysautonomia (73). It is most commonly found in
younger females and associated with an ovarian teratoma in 24%
of cases (74). Identification of NMDAR antibody associated AIE
has led to a search for other novel CNS auto-antibodies. Thus far
this research has been fruitful in the identification of a number of
clinical syndromes associated with antibodies directed to other
cell surface antigens (Table 2).

Unsurprisingly, the seronegative subtype is the most difficult
to diagnose due to the lack of an “identifiable” antibody
in the blood or CSF. A number of these patients have
likely non-pathogenic antibodies to antigens such as glutamate
decarboxylase (GAD) and Thyroid peroxidase (TPO) (75)

which may represent an underlying tendency to autoimmunity.
Ancillary investigations supportive of CNS inflammation remain
an important criterion for diagnosis (76). Despite the absence
of a currently identifiable specific antibodies, this patient
cohort appears to have good functional improvement after
immunotherapy (77). However, studies on “seronegative” AIE
may be potentially confounded by the possible inclusion of
undiagnosed viral encephalitides.

TABLE 2 | Cell-surface Antibody associated AIE subtypes.

Antibody Clinical phenotypes

N-methyl-D-aspartate Receptor

(NMDAR)

Dyskinetic movements (esp.

orofacial), psychiatric symptoms,

dysautonomia, catatonia

associated with ovarian teratoma

Leucine-rich, Glioma Inactivated 1

(LGI-1)

Limbic Encephalitis, rapid onset

dementia, memory impairment,

FBDS

Contactin Associated Protein 2

(CASPR)

Limbic encephalitis, neuromyotonia

Gamma-Aminobutyric acid B

(GABAB)

Refractory seizures, limbic

encephalitis

α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid

(AMPAR)

Refractory seizures, limbic

encephalitis, amnestic syndrome

Dipeptidyl-peptidase-like Protein

(DPPX)

Gastrointestinal hyperexcitability,

limbic encephalitis

glycine receptor Progressive encephalomyelitis and

rigidity with myoclonus (PERM)

syndrome, hyperekplexia

Metabotropic Glutamate receptor 1

(mGlu1)

Cerebellar syndrome

Metabotropic Glutamate receptor 5

(mGlu5)

Limbic encephalitis associated with

Hodgkin’s lymphoma

IgLON5 Sleep disorder, parkinsonism,

cognitive dysfunction

Adenylate Kinase 5 Limbic Encephalitis

Gamma-Aminobutyric acid A

(GABAA )

Refractory seizures

TABLE 1 | Intracellular antibody associated AIE subtypes.

Antibody Clinical phenotypes Common associated malignancies

Hu (ANNA1) Encephalomyelitis, sensory neuronopathy, cerebellar syndrome, limbic encephalitis Small cell lung carcinoma (SCLC)

Ri (ANNA2) Ataxia, opsoclonus myoclonus, brainstem encephalitis Breast, SCLC

Yo (PCA1) Cerebellar syndrome/degeneration Ovarian

CV2 (CRMP5) Sensorimotor neuropathy, retinopathy, optic neuritis, cerebellar syndrome, limbic encephalitis SCLC, Thymoma

Amphiphysin Stiff person syndrome, encephalomyelitis, limbic encephalitis Breast, SCLC

Ma2 Limbic encephalitis, brainstem encephalitis, refractory seizures, myelopathy Testicular Seminoma

SOX1 Lambert-eaton myaesthenic syndrome, limbic encephalitis SCLC

Titin Myaesthenic syndrome Thymoma

Recoverin Acute/subacute painless vision loss (Retinopathy) SCLC, Thymoma

Zic4 Cerebellar syndrome/degeneration SCLC

Tr (DNER) Cerebellar syndrome/degeneration Hodgkins lymphoma
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Treatment Targets
Investigation and Management of Neoplasms
In AIE syndromes that are associated with neoplasms a prompt
and thorough search for a neoplasm is warranted (78). This
is particularly vital in subtypes with antibodies directed at
intracellular targets but is also true of the other subtypes. It
is thought that the tumor provides an antigenic focus that
drives the immune response (79, 80). The tumor either expresses
an intracellular antigen abnormally on the cell surface, or the
antigen becomes exposed during cell necrosis (79, 80). This
appears to drive a cell mediated response against neural cells
expressing that same antigen (79, 80). The antibodies themselves
are not thought to be pathogenic, but rather a biomarker of
this immune response. Once the tumor has been identified,
removal or treatment of the neoplasm is important to decrease
the activity of the immune response and may even ameliorate
the syndrome altogether (69). Immunotherapy alone in these
patients is unlikely to be successful in the long-term (69).

Immunotherapy
The mainstay of treatment in AIE is immunotherapy. First line
agents for treatment of AIE includes either monotherapy
or combination high dose corticosteroids, intravenous
immunoglobulin (IVIg) or plasmapheresis (81). Second
line therapy may include cyclophosphamide and/or Rituximab
(82). In the rare event of treatment failure, IL-6R antagonists
(Tocilizumab) (83) and in some instances proteasome inhibitors
(Bortezomib) (84) have been used. The need for longer term
“maintenance” immunosuppression is uncertain. In patients
with relapsing or refractory disease, longer term “maintenance”
treatment with mycophenolate mofetil, azathioprine, ciclosporin
or methotrexate has been used (85). This broad range of at
least partially effective immunotherapies hints at a potentially
complex underlying immunological pathophysiology.

AUTOIMMUNE ENCEPHALITIS: CURRENT
EVIDENCE OF IMMUNOLOGICAL
DYSFUNCTION

Neuropathology
Neuropathology can often provide an insight into potential
effector mechanisms. In AIE pathology provides further evidence
for its immune mediated nature, but also highlights its
complexity. Multiple small immunopathological studies in
AIE (86–93) have demonstrated a variety of pathological
changes; these are summarized in Table 3. While minimal
consistency is seen amongst these studies, broadly there is
a predominance of perivascular lymphocyte infiltration with
antibody or complement deposition in cell-surface antibody
mediated AIE and proliferation of innate immune cells
(microglia and macrophages) across all subtypes.

Immune Profiles in Autoimmune
Encephalitis
There are few comprehensive studies examining the immune
cell profile in acute AIE subtypes. CSF flow cytometry

performed on two patients with NMDAR antibody associated
AIE demonstrated increased CD19+ cells with no change in T
cell populations compared to patients with non-inflammatory
neurological disorders (NIND) (94). A much larger study
involving 60 patients with NMDAR antibody associated AIE
identified an expanded population of IL-17 producing CD4+

T cells (Th17 cells) on CSF flow cytometry (95). Another small
study examining CSF flow cytometry in 3 partially treated
patients with GABAB antibody associated AIE demonstrated
increased populations of CD19+, CD138+, CD4+, and CD8+

lymphocytes (96). Interestingly in this small series those with
activated CD8+ cells (measured by presence of HLA-DR) had
poorer neuropsychological outcomes than those with activated
CD4+ cells (96). These studies did not examine innate cells.

A retrospective study of AIE patients with cell-surface antigen
targeted antibodies demonstrated an increase in the neutrophil-
to-lymphocyte ratio (NLR) on a standard full blood examination
as compared with healthy controls (97). Additionally the NLR
was positively associated with poor functional outcomes (as
measured on the modified Rankin Scale or mRS) in the AIE
patients (97). Neutrophils are early responders in the innate
immune system, and persistent neutrophil proliferation may be
an indication of dysregulation of the pro-inflammatory cascade
that extends to the CNS.

Cytokines in Autoimmune Encephalitis
There are a number of cytokine or chemokine biomarkers in
AIE that could provide a clue to immunopathogenesis. Multiple
studies in NMDAR antibody associated AIE have shown an
increase in CSF CXCL-13 (98), IL-6, IL-17, CXCL-10, IL-1β (95,
99–101), serum IL-2 (102), and, in some but not all studies, CSF
B Cell Activating Factor (BAFF) and a proliferation-inducing
ligand (APRIL) compared with patients with NIND (103, 104).
In comparison the CSF of patients with viral encephalitis typically
have increased levels of IL-1β, IL-6, TNF-α, interferon-γ, APRIL,
and BAFF (101).

A number of these cytokines are associated with B cells
and plasma cells. CXCL13 is a B cell chemoattractant that
was demonstrated in CSF of patients with NMDAR antibody
associated AIE. Furthermore, decreasing levels correlated with
treatment benefit. CXCL13 is known to be produced by
monocytes and microglia (105). BAFF and APRIL are B
cell activation molecules. In one cohort of AIE patients
CSF BAFF and APRIL levels correlated with functional
outcomes. Conversely another study comparing NMDAR
antibody associated AIE with viral encephalitis noted no
elevation of BAFF and APRIL in the CSF (103, 104). AIE patients
with antibodies to cell surface proteins have higher CSF levels
of interferon-γ, IL-17, IL-12, and IL-23 compared with AIE
associated with intracellular antigens (106). These are T cell and
more specifically Th1 and Th17 associated cytokines.

There is also evidence for innate immune system activation in
AIE. A recent study identified higher levels of IL-6, pentraxin-
3 (part of an innate pro-inflammatory cascade, produced after
TLR activation), CD40L and IL-17A in the CSF of patients with
NMDAR antibody associated AIE (107). A study examining
patients with autoimmune epilepsy presenting with new-onset

Frontiers in Immunology | www.frontiersin.org 6 September 2019 | Volume 10 | Article 2066

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wesselingh et al. Autoimmune Encephalitis and Innate Immunity

TABLE 3 | Histopathological studies in AIE.

Histopathological series

References

Tissue

(Number of patients)

NMDAR AIE VGKC AIE Seronegative AIE

Bien et al. (86)

Brain biopsies

(NMDAR = 3, VGKC = 4)

Complement deposition, minimal lymphocyte infiltrate —

Tuzun et al. (87)

Autopsy

(NMDAR = 2)

Perivascular lymphocyte infiltrate (plasma

cells), IgG1 antibody deposition, microglial

(CD68) proliferation, atrophy

— —

Martinez-Hernandez et al. (88)

Brain biopsies and Autopsy

(NMDAR = 5)

Perivascular plasmablasts, no antibody

deposition

— —

Okamoto et al. (89)

Autopsy

(Seronegative = 3)

— — Microglial (CD68)

proliferation, atrophy

Park et al. (90)

Autopsy

(VGKC = 1)

— Microglial (CD68)

proliferation

Filatenkov et al. (91)

Autopsy

(NMDAR = 1, post-treatment)

Microglial activation and proliferation. CD3

lymphocyte parenchymal infiltration.

Occasional CD20 lymphocyte.

— —

Khan et al. (92)

Autopsy

(VGKC = 1)

— Microglial activation.

Perivascular CD20

lymphocyte infiltration.

—

Camdessanche et al. (93)

Brain Biopsy

(NMDA = 1)

Perivascular CD20 lymphocyte infiltration — —

NMDAR, N-methyl-D-aspartate Receptor; AIE, Autoimmune Encephalitis; VGKC, Voltage-gated Potassium Channel.

refractory status epilepticus found elevated levels of IL-6, TNF-α,
IL-2, and IL-4 in the CSF, and elevated levels of IL-6 and TNF-α in
the periphery (108). Interestingly, treatment with a monoclonal
antibody targeting the IL-6 receptor resulted in improvement in
seizure activity in 86% of the patients and normalization of the
cytokine levels (108).

Other potential AIE biomarkers not directly part of the
immune cascade that are consistent with the inflammatory and
neurotoxic nature of the immune dysregulation in AIE include
Cystatin C and uric acid. Cystatin C levels in the CSF of
patients with NMDAR antibody associated AIE are lower during
acute disease and improve with treatment (109). Cystatin is
suggested to be an anti-inflammatory cytokine and may play
a role in neuronal protection through the autophagy pathway
(109). Serumuric acid levels similarly seem to decrease in patients
with acute NMDAR antibody associated AIE and increase after
treatment (110). Uric acid can act as an anti-oxidant and this
may reflect increased oxidative stress (110) with inflammation
and innate immune cell activation.

Autoimmune Encephalitis as an Antibody
Mediated Disease
The role of antibodies in AIE remains controversial, however
there is growing evidence of their pathogenicity in a number
of AIE subtypes. The best studied subtype with regards to
pathogenicity is NMDAR antibody associated AIE. Serum from

patients with NMDAR antibody associated AIE applied to rat
hippocampi causes internalization of the NMDA receptors and
selectively decreased NMDA neuronal currents as measured
by whole cell voltage clamp recordings (111). Rats infused
intraventricularly with CSF from individuals with NMDAR
antibody associated AIE developed reversible behavioral and
memory problems (112). Although the potential presence of
other bioactive molecules within the CSF could have confounded
these findings, the same changes in NMDAR expression and
NMDA mediated currents can be seen in the presence of
recombinant NMDAR antibodies alone (113). In humans,
NMDAR antibody CSF titres correlate with disease severity and
successful treatment (114), also suggesting a potential role in the
pathogenesis of this disease.

POTENTIAL ROLE OF INNATE IMMUNE
SYSTEM DYSFUNCTION IN AUTOIMMUNE
ENCEPHALITIS

Pathogenesis: BBB Dysfunction, Cellular
Recruitment and Antigen Presentation
As we have highlighted in other CNS autoimmune disorders,
innate immune cells can perform a number of important
functions. (1) They act as the “first line of defense” against
pathogens, (2) they perform antigen processing and presentation,
(3) they release bioactive factors that can result in BBB
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dysfunction, and (4) they have the capacity to recruit other
immune cells to the CNS. Due to this myriad of functions the
innate immune response is highly likely to play an important role
in the pathogenesis of AIE.

The possibility of an initial event causing BBB changes
is especially convincing in the well-established association
between Herpes Simplex Virus-1 (HSV-1) encephalitis and
NMDAR antibody associated AIE (115). Patients who are
initially diagnosed as HSV-1 encephalitis based on polymerase
chain reaction testing may develop another encephalitic illness
approximately 4–8 weeks after recovery, marked by the presence
of NMDAR antibodies and typical phenotypic features of
the latter disease (115). A recent report suggests a similar
sequence in a case of GABAB antibody associated AIE
(116). In epidemiological studies, there is also a higher
incidence of non-encephalitic HSV-1 infections in patients
with NMDAR antibody associated AIE as compared with
controls (117).

HSV-1 encephalitis produces a pro-inflammatory CNS
environment.Mousemicroglial cells have been shown to produce
high amounts of TNF-α, IL-1β, IL-6, CCL2 during HSV-1
infection. This occurs via TLR2 expressed on microglial cells
(118). This microglial activation and cytokine production could
drive upregulation and infiltration of innate cells such as
monocytes into the CNS, lead to BBB dysfunction as well as
recruitment of adaptive immune components such as B cells to

produce antibodies. This provides the ideal CNS environment for
the genesis of CNS autoimmunity.

The temporal pattern of cytokine production in AIE patients
is also informative regarding changes in BBB permeability and
potential recruitment of innate cells, followed by recruitment
of adaptive immune cells. In a documented case of post HSV-1
NMDAR antibody associated AIE there were three consecutive
phases of immune-related molecules seen. First there was an
initial spike of pro-inflammatory cytokines in the CSF including
IL-1β, TNF-α, interferon-γ and CCL2, as well as CXCL10
and CXCL13, during the HSV-1 phase (119). This first phase
suggests both innate and adaptive immune infiltration with
BBB dysfunction, consistent with a viral encephalitis. This peak
had subsided 2 weeks post first diagnosis. The second phase
was characterized by a second peak of CXCL10, CXCL13, and
CCL2 in the CSF during the prodromal period (19 days post
diagnosis of HSV-1 encephalitis). During this phase there was
no NMDAR antibody detected in the CSF. This second phase
suggests largely innate immune activation. At the onset of
neurological symptoms (day 31), the CSF NMDAR antibody
levels peaked while cytokine/chemokine levels dropped off
aside from CXCL10 and CCL2 (119). During this third phase
the humoral response appears to be playing a large role.
These three phases of immune profiles generate a potential
hypothesis for the pathogenesis of AIE. First an initial insult
altering BBB permeability allowing microglial activation and

FIGURE 2 | Potential innate contribution to the pathogenesis of autoimmune encephalitis. 1. An exogenous factor (i.e., herpesvirus) infiltrates the CNS resulting in 2.

blood brain barrier dysfunction and infiltration of innate and adaptive cells. 3. Activated innate cells (i.e., Macrophages and microglia) release pro-inflammatory

cytokines (IL-1β, TNF-α, Interferon-γ) and chemokines (CCL2) to 4. recruit more innate cells and contribute further to BBB dysfunction. Pro-inflammatory cytokines

and chemokines also recruit lymphocytes and innate cells act as 5. antigen presenting cells to activate T cells and initiate a specific response against neuronal

antigens. 6. T cells interact and activate B cells to produce an antibody response 7. directed against neuronal targets resulting in neuronal dysfunction while 8.

directing a cytotoxic response against neuronal tissue (and contributing to the pro-inflammatory cascade) resulting in 9. neuroinflammation. CNS, Central nervous

system; IL-1β, Interleukin-1β; TNF-α, Tumor necrosis factor-α; CCL2, C-C motif chemokine ligand 2; BBB: Blood brain barrier.
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monocyte/macrophage infiltration. This would then instigate
further neuroinflammation, recruitment of B and T cells and
subsequent antibody production.

There is other indirect evidence for this hypothesis. In patients
NMDAR antibodies appear in the CSF before the serum (120).
In the animal models of NMDAR antibody mediated neuronal
injury discussed previously, the changes in NMDA receptors
on rat neurons only occurred when the patient serum was
infused into the ventricles or when using ApoE knockout mice
[who have impaired BBB function (121)] compared with wild
type mice (122). This highlights the requirement for an initial
neuroinflammatory event to drive the adaptive response. A
potential mechanism for pathogenesis is proposed in Figure 2.

Imaging studies have also demonstrated the importance
of neuroinflammation and altered BBB permeability in AIE.
Imaging of patients with NMDAR antibody mediated AIE
utilizing arterial spin labeling MRI techniques early during the
disease process have demonstrated focal areas of hyperperfusion
prior to T1 or T2 MRI changes (123). This suggests early
increased BBB permeability early in the disease course, prior to
parenchymal neuroinflammation. Fluorodeoxyglucose (FDG)-
PET neuroimaging in multiple studies in various subtypes
of AIE demonstrates areas of both hypermetabolism and
hypometabolism (124). Anatomical patterns are associated with
specific subtypes such as NMDAR and LGI-1 antibody associated
AIE (125–128). While the areas of hypometabolism may be
related to receptor signaling loss due to antibody binding,
the areas of hypermetabolism (as with the hyperperfusion in
the case of MRI) could indicate excitotoxicity due to seizures,
neuroinflammation or early increased BBB permeability.

Finally, there is genetic evidence indicating a significant role
for antigen presentation, the intersection between the innate and
adaptive immune response, in AIE. A number of genetic studies
looking at HLA associations in different subtypes of AIE have
identified some common haplotypes of both MHC-I and MHC-
II molecules (129–132); these are summarized in Table 4. While
the preponderance for certain MHC-II haplotypes suggest an
important role for the interaction between professional APCs (B
cells, macrophages, dendritic cells) and CD4+ T cells, the MHC-
I molecule associations implicate a role for CD8+ mediated
immune responses.

TABLE 4 | HLA haplotypes associated with AIE subtypes.

NMDAR AIE

(129, 132)

LGI-1 AIE

(129–131)

MHC-I HLAB*07:02 HLA-B*57:01

HLA-B*44:03

HLA*C*06:02

HLA-C*07:06

MHC-II HLA-DRB1*16:02 HLA-DRB*07:01

HLA-DQA1*02:01

HLA-DQB1*02:02

NMDAR, N-methyl-D-aspartate Receptor; AIE, Autoimmune Encephalitis; LGI-1,

Leucine glioma-inactivated-1.

Persistent Neuroinflammation and
Antibody Independent Sequelae
A second potential role for the innate immune system is
propagation of the neuroinflammatory state and therefore
ongoing symptoms such as seizures.

There has been increasing awareness that there is
both an increased tendency for seizures in autoimmune
neuroinflammation and that seizures themselves can produce
a pro-inflammatory state. Several studies have demonstrated
that the pro-inflammatory cytokines IL-1β, IL-6, TNF-α
modulate susceptibility to limbic seizures in rodent models
of temporal lobe epilepsy (133). These cytokines are also
upregulated within the CNS during seizures along with markers
of monocyte activation (CD86, HLA-DR, CD14+CD16−) and
T cell activation (CD25, CD69, CTLA-4, and HLA-DR) (134).
One study examining status epilepticus (SE) induced in rats with
kainic acid (KA, a commonly usedmolecule for inducing seizures
in animal models) demonstrated infiltration of blood derived
monocytes expressing CCR2 (135). These cells interact with
resident microglia and increase levels of IL-1β (135). Prevention
of monocyte infiltration in this study was demonstrated to be
neuroprotective (135).

In AIE the seizures are likely driven by the combination of
ongoing neuroinflammation as well as alterations in neuronal
excitability set points due to antibody effects on receptors.
For example, the ability of the NMDAR antibody to generate
seizures in animal models is controversial. In a study by Wright
et al. purified NMDAR antibodies from patients injected into
the brains of mice are able to lower seizure threshold, but
spontaneous seizures are not seen on continuous EEG recordings
(136). Conversely a more recent study by Taraschenko et al.
demonstrated the generation of spontaneous non-convulsive
seizures on continuous EEG monitoring in mice injected with
rabbit Anti-NMDAR IgG or patient CSF compared with a control
group (137). Interestingly in this second study the mice injected
with patient CSF had 4–5 fold more seizures than the group
injected with rabbit Anti-NMDAR IgG (137). It is plausible that
the addition of pro-inflammatory compounds present in the CSF,
such as IL-1β, in the setting of lower excitability thresholds, could
drive epileptogenesis in AIE.

Microglial activation and proliferation may also contribute
to long-term cognitive changes seen in patients with AIE.
In NMDAR antibody associated AIE, >75% of patients are
reported to have cognitive impairment of some degree as part
of their illness, while 76% have cognitive impairment persisting
beyond the acute illness (138). While this is largely thought
to be mediated by antibodies targeting important neuronal
receptors, it is unclear why these deficits should persist beyond
the acute illness. While the cellular mechanisms for ongoing
cognitive dysfunction have not been examined in AIE, there is
similarity with another antibody-associated condition which can
affect the CNS and cause cognitive dysfunction, Systemic Lupus
Erythematous (SLE). In SLE patients can develop antibodies to
the NMDARGluN2A andGluN2B subunits (139). These patients
manifest deficits in executive function, processing speed and
memory even after the antibodies have been cleared from the
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CNS. This is postulated to occur through ongoing structural and
functional changes mediated by microglia (139), which appear to
occur in an antibody independent manner.

Interestingly ongoing cognitive dysfunction in AIE can
have structural correlates in neuroimaging. In LGI-1 antibody
associated AIE, cognitive dysfunction correlated with putamenal
atrophy as well as changes on diffusion tensor imaging in the
white matter tracts of the anterior corona radiate, anterior
internal capsule and anterior third of the corpus callosum
(140). It remains unclear whether these structural and functional
changes are driven by the auto-antibodies or by microglial and
monocyte driven neuroinflammation as suggested in SLE.

FUTURE DIRECTIONS

While there is certainly some evidence to suggest an important
role for the innate immune system in AIE, this area has
generally been overlooked in favor of the adaptive immune
system resulting in a paucity of research in this area.
Immunophenotyping studies focusing on innate components,
more detailed cytokine and cell transcriptome analyses, and
further epidemiological studies examining associations with
other pro-inflammatory states/first-hit events will contribute to
building knowledge in this area. Given the potential for the innate
response to be a conserved pathway across the subtypes of AIE,
an understanding of the role it plays may lead to the detection
and use of common biomarkers across different subtypes of AIE.
This would be particularly helpful in seronegative AIE.

Furthermore, given the high prevalence of seizures in AIE and
the likelihood that this relates to the CNS pro-inflammatory state,
further investigation into these components may also provide
added understanding of a potential pathway of epileptogenesis
and the repurposing of targeted immunotherapy such as IL-6
blockade in certain types of epilepsy.

Finally a greater understanding of the role for innate
immune pathways in AIE may provide additional treatment
options. This could include targeting important molecules
involved in innate cell recruitment and activation such as

IL-1β, TLR4, and CCL2. Anakinra is an existing IL-1R blocking
monoclonal antibody which has been used previously in
a microglia predominant neuroinflammatory disorder (141).
CCL2 blockade targeting myeloid cell infiltration has been
successful in animal models of human cancers (142). There
are also a number of promising TLR4 antagonists that have
been successful in treating inflammatory disease in pre-clinical
trials, although none have been successful in clinical trials
as yet (143, 144). Recent advances in treatment in other
CNS autoimmune disorders may also be re-purposed for AIE.
These include Eculizumab, a monoclonal antibody targeting the
complement cascade, and Inebilizumab, a monoclonal antibody
targeting CD19 expressing cells. Another therapy Satralizumab,
an antibody targeting the IL-6R, has the most potential to
be converted into therapy for AIE, given the potential role
of IL-6 in the pro-inflammatory cascade and the success
with Tocilizumab.

CONCLUSION

While a number of the important interactions between the
innate, adaptive and neural components in CNS autoimmunity
and neuroinflammation have been well-studied, there remains
significant gaps in our knowledge. AIE provides a unique
disorder which can assist us in understanding the mechanisms
of CNS autoimmunity and its genesis. In particular the role
of dysregulated innate cell activity in driving autoreactive
lymphocyte proliferation and maturation to immunoreactive
lymphocytes. This will also provide us with potential
improvements in diagnosis and treatment of AIE, as well
as other CNS autoimmune diseases.
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