European Journal of Chemistry 6 (3) (2015) 248-253

European Journal of Chemistry

Journal webpage: <u>www.eurjchem.com</u>

Molecular structure, vibrational spectroscopic and HOMO/LUMO studies of some organotellurium compounds by quantum chemical investigations

Rafid Hmedan Al-Asadi, Bahjat Ali Saeed * and Tarik Ali Fahad

Department of Chemistry, College of Education for Pure Sciences, University of Basrah, 61004, Iraq

* Corresponding author at: Department of Chemistry, College of Education for Pure Sciences, University of Basrah, 61004, Iraq. Tel.: +964.60. 0107802410050. Fax: +964.61.0013203062957. E-mail address: <u>bahjat.saeed@yahoo.com</u> (B.A. Saeed).

ARTICLE INFORMATION

DOI: 10.5155/eurjchem.6.3.248-253.1060

Received: 25 March 2015 Received in revised form: 31 May 2015 Accepted: 10 June 2015 Published online: 30 September 2015 Printed: 30 September 2015

KEYWORDS

DFT DNP Organotellurium Vibrational spectra Computational study HOMO-LUMO energy gap

ABSTRACT

Quantum mechanical calculations of geometries, energies and vibrational frequencies of organic mercury and tellurium compounds containing azomethine group, molecules a1-a5 and containing azo group, molecules a6-a10 have been undertaken using density functional theory. The optimized geometrical parameters such as bond lengths, bond angles and dihedral angles showed that only organomercuric compounds have planer structures. The calculation of the total energy and HOMO-LUMO energy gap were showed that organotellurium compounds have higher reactivity than the corresponding organomercuric compounds. As well it showed the HOMO orbitals are localized mainly on tellurium, nitrogen and bromine atoms moieties, while the LUMO of π nature are mostly located on the phenyl ring. The calculated vibrational frequencies of molecules a1 and a7 are in good agreement with experimental frequencies with correlation coefficient r^2 value is 0.9875 and 0.9987, respectively.

Cite this: Eur. J. Chem. 2015, 6(3), 248-253

1. Introduction

Tellurium chemistry has been the subject of intensive research in the last three decades due to the interest of several research groups in organometallic and supramolecular chemistry of organotellurium compounds [1,2]. There is increasing interest in the synthesis of aromatic organotellurium compounds containing electron donor nitrogen atom at position *ortho* to the tellurium atom [3,4], such as azo group [5] and azomethine group [6,7]. These compounds have high stability due to intra-molecular interaction between tellurium and nitrogen atoms [8,9]. Calculations performed with the use of Density Functional Theory (DFT) have been successfully employed in a number of previous theoretical studies of organotellurium compounds [10-12].

In this study, we report molecular geometry, HOMO-LUMO energy gap and the assignments of IR spectra of some organomercuric and organotellurium compounds containing azo or azomethine groups.

2. Experimental

2.1. Instrumentation and materials

The compounds **a1-a10** were prepared according to previously published procedure [13,14]. Infrared spectra were

recorded as KBr discs in the range of 4000-400 cm⁻¹ using a Shimadzu FT-IR spectrophotometer at Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Iraq.

2.2. Computational details

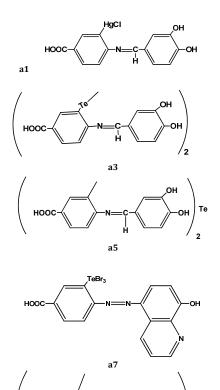
All calculations of studied molecules (Figure 1) were performed with Material studio/DMol3 Version 5.5 program [15-17] and using the DFT method [15-17], at the PBE level of theory [18,19] along with standard DNP basis set [17].

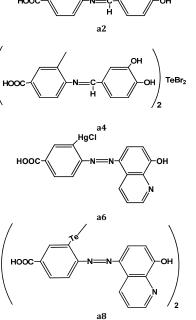
3. Results and discussion

3.1. Optimized structure

The important structural parameters of the optimized geometries such as bond lengths, bond angles and dihedral angles of the studied molecules **a1-a10** are summarized in Table 1, the optimized structures of these compounds are shown in Figure 2.

In the ArHgCl moiety **a1** and **a6** each mercury atom is linearly coordinated to a chloride and a carbon atom (Angle C-Hg-Cl = 177.307 and 179.451°), which is fully characterized structurally.


European Journal of Chemistry


ISSN 2153-2249 (Print) / ISSN 2153-2257 (Online) © 2015 Atlanta Publishing House LLC - All rights reserved - Printed in the USA http://dx.doi.org/10.5155/eurjchem.6.3.248-253.1060

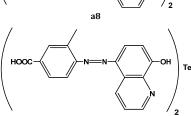

Compound	Bonds	lengths (Å)		Angles bor	ıds (º)		Dihedral angles	5 (º)	
	C1-Hg		Hg-Cl		C1-Hg-Cl		Hg-C1-C2	N=C3-C4-C6		C1-C2-N=C3
1	2.244		2.449		177.307		105.940	178.939		177.437
	C1-Hg		Hg-Cl		C1-Hg-Cl		Hg-C1-C2	N1=N2-C3-C4		C1-C2-N1=N2
a6	2.190		2.475		179.451		101.706	180.000		180.000
	Bonds lengths (Å)		Angles bonds (°)			Dihedral angles (°)		5 (º)		
Compound	C1-Te	Te-Br1	Te1-Te2	C1-Te-Br1	C1-Te-C1	C1-Te-Te	Te-C1-C2	N=C3-C4-C6	C1-C2-N=C3	C-Te-Te-C
a2	2.165	2.601		94.845			106.311	170.624	166.484	
13	2.164		2.770			103.000	122.107		134.502	66.470
	2.166					106.063	123.758		-131.369	
14	2.174	2.724		90.419			108.223		160.184	
	2.192			93.095	107.389		127.836		129.806	
15	2.171				106.070		128.554		106.614	
	2.160						120.409		94.521	
Compound	C1-Te	Te-Br1	Te1-Te2	C1-Te-Br1	C1-Te-C1	C1-Te-Te	Te-C1-C2	N1=N2-C3-C4	C1-C2-N1=N2	C-Te-Te-C
17	2.188	2.596		106.100			121.829	-167.505	-164.770	
18	2.169		2.842			97.263	115.156		-167.761	92.534
	2.153					98.903	118.392		-14.995	
19	2.172	2.756		93.175	90.360		127.410		141.818	
	2.232			86.790			119.667		65.906	
a10	2.150				93.926		119.968		159.255	
	2.157						121.197		154.019	

Table 1. Bonds lengths, bond angles and dihedral angles of the studied compounds *.

* Experimental values: C-Te : 2.158 Å , Te-Br : 2.65 Å , Te-Te: 2.77 Å.

a10

Figure 1. Molecular structure of studied molecules.

The Hg-C distances are 2.24 and 2.19 Å, respectively, are in close agreement with experiment value 2.065 Å [20] for almost linear Ar-Hg-Cl. Similarly, Hg-Cl distance, which are 2.449 and 2.475 Å are close agreement with experiment value 2.326 Å [20].

a9

он

/ 2

TeBr₂

HOOC

As could be seen from Table 1, there is fair agreement between the calculated bonds lengths of C-Te, Te-Br and Te-Te bonds with the measured bond lengths [21-26]. Generally,

there is no significant difference between the calculated bond lengths. Only a slight increase in N=N length from 1.243 to 1.278 Å on going from molecule **a2** to molecule **a7**. This may be due to intramolecular coordination between tellurium and nitrogen atom [27]. This interaction can be attributed to the overlap of p-orbital on the nitrogen atom with the σ^* (Te-C_{trans}) molecular orbital (partly responsible for such an interaction) feasible [2].

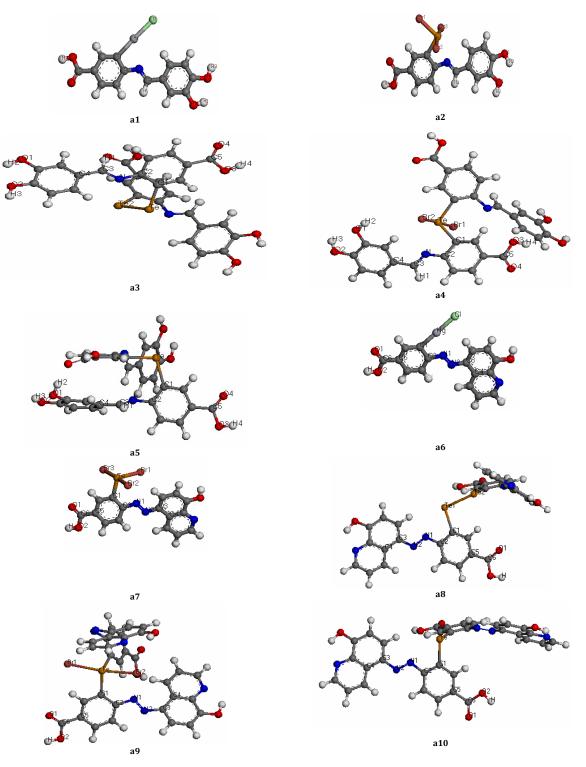


Figure 2. Optimization geometries structures of the studied molecules.

For tellurium(II) compounds **a5** and **a10** both lone pairs of electrons around tellurium should be stereo chemically active according to VSEPR (Valence Shell Electron Pair Repulsion) theory [28], the geometry of the tellurium atom in compound a5 is relative to the tetrahedral geometry, where C-Te-C angle is 106.07°. While geometry of the tellurium atom in compound a10 is a distorted pseudo-tetrahedral [27], C-Te-C angles are

93.9°. This is due to high secondary intramolecular coordination between tellurium and nitrogen atom in this compound [29]. On the other hand, the C-Te-C angle for the tellurium(IV) compounds **a4** and **a9** (covering the range 90.08-107.38°) are significantly lower than the putative value of 120° for trigonal bipyramidal geometry due to the stereo chemical activity of the lone pair on tellurium atom [30].

Compound	Total energy	номо	LUMO	$\Delta E_{(LUMO-HOMO)}$	
		Energy	Energy		
a1	-19767.3034778	-0.20750	-0.11965	0.08785	
a2	-15229.8885967	-0.17632	-0.13959	0.03673	
a3	-15016.6729209	-0.17360	-0.10248	0.07112	
a4	-13550.5167344	-0.20574	-0.12309	0.08265	
a5	-8402.8083298	-0.17584	-0.10006	0.07578	
a6	-19877.6762863	-0.21148	-0.14248	0.06900	
a7	-15334.2428367	-0.21059	-0.16402	0.04657	
a8	-15237.4436071	-0.18269	-0.13639	0.04630	
a9	-2044.5778558	-0.16680	-0.13649	0.03031	
a10	-2017.828634	-0.17381	-0.13448	0.03933	

 Table 2. Values of Total energy and LUMO-HOMO energy gap of studied compounds in Hartree unit.

In the case of aryl tellurium (IV) tribromide **a2** and **a7**, the presence of an electron-rich Br atom of the neighboring molecule (close to Te(IV) atom having a lone pair as per VSERP theory) in the lattice is of particular interest [30]. The overall coordination geometry around the tellurium atom is trigonal bipyramidal. Due to the presence Br group, that will weaken the Lewis acidity of the tellurium atom will further prevent intramolecular interaction, leading to the formation of molecular species with conformation consistent with the VSEPR theory [31], therefore the distance of C1-Te in compound **a7** is longer (2.188 Å) and angle Te-C1-C2 is largest (121.82 °) compared with other compounds. While in the compound **a2** the case is reverse (C1-Te is 2.165 Å and Te-C1-C2 is 94.84 °), this may be due to steric or electronic effects for bromine atoms.

In the ditelluride system **a3** and **a8**, the Te-Te bond is likely to influence the repulsion between loin pairs. The steric interaction between aromatic rings is due to small C-Te-Te-Te dihedral angles (66.47 and 92.53 °). This is a consequence of rotation around the C-Te bonds which take place because of the proximity of the phenyl rings of each other.

Due to a substantial secondary intramolecular coordination between Te and N, it is of interest to note that the twist dihedral angles of both the N-phenyl and C-phenyl ring out of the plane C-C=N-C in the Schiff base moiety, molecules **a1** to **a5** or C-N=N-C in the azo moiety, molecules **a6** to **a7** is less than 15 °. From the dihedral angles measurement, observed two molecules **a1** and **a6** have a planar structure (dihedral angle $\approx 180^{\circ}$), the angle N=C2-C4-C6 is 178.93 ° and C1-C2-N=C3 is 177.43 ° for compound **a1**, while angle N1=N2-C3-C4 is 180 ° and C1-C2-N1=N2 is 180.00 ° for compound **a6**. The rest compounds have non planar structures (dihedral angles are 49-170°), Table 1.

3.2. Energies calculation

Molecular orbital and their properties are very useful for physicists and chemists. In particular, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and their energy gap reflect the chemical activity of the molecule [32,33]. Higher value of HOMO of a molecule has a tendency to donate electrons to appropriate accepter molecule with low energy, empty molecular orbitals [34].

The total energy and HOMO-LUMO energy gaps the studied molecules **a1-a10** are summarized in Table 2. The values of LUMO-HOMO energy gap and total energy of the organomercuric compounds **a1** and **a6**, which are $\Delta E_{LUMO-HOMO}$ energy gap 0.0878 and 0.0690 Hartree; Total energy -19767.3 and -19877.6 Hartree, are relatively higher compared with the corresponding organtellurium compounds. This indicates a high stability and high chemical hardness of these compounds. Molecules **a2** and **a9** showed the lowest gap values (0.0367 and 0.0303 Hartree), reflecting their chemical reactivity compared with other studied molecules. This may be due to presence bromine atoms.

3.3. HOMO LUMO analysis

The HOMO orbitals are localized mainly on tellurium, nitrogen and bromine atoms moieties. Whereas the LUMO of π nature are mostly located on the phenyl ring. The HOMO-LUMO transition implies an electron density transfer to the phenyl ring from tellurium atom. The visualization of HOMO-LUMO gap and HOMO and LUMO orbitals for compound a2 and a8 are shown in Figure 3 and 4.

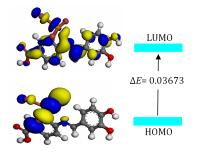


Figure 3. HOMO and LUMO orbitals of compound a2.

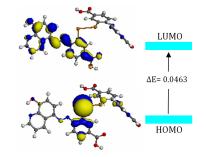


Figure 4. HOMO and LUMO orbitals of compound a8.

3.4. Vibrational frequencies

Assignments for the complex systems can be proposed on the basis of frequency agreement between the computed harmonics and the observed fundamentals.

The calculated frequencies for the optimized geometry and the experimental wave numbers together with the proposed assignments for compounds **a1** and **a7** are given in Table 3 and 4, respectively. The vibrational spectral data obtained from the solid-phase FT-IR spectra based on the results of the normal coordinates calculations. The observed and the calculated spectra reflect a reasonable agreement for the vibrational frequencies. Based on the comparison of the calculated and experimental results, assignments of fundamental frequencies incorporate the observed band frequencies in the infrared spectra of the studied species confirmed by establishing a one-to-one correlation between observed and theoretically calculated frequencies.

Calculated	Experimental	Assignment	
3544	3321	υ(O-H)	
3499	3225	υ(0-H)	
2949	3095	υ(C-H) aromatic	
2844	2963	υ(C-H) aliphatic	
2818	2876	υ(C-H) aliphatic	
1739	1690	υ(C=O)	
1652	1624	υ(C=N)	
1522	1518	υ(C=C)	
1479	1477	δ(C-H) aliphatic	
1311	1389	δ(C-N)	
1222	1225	δ(C-O)	
1097	935	δ(C-H) aromatic	
840	841	δ(C-H) aromatic	
789	770	δ (0-Η)	
Correlation coefficient = 0.	9875		

Table 3. Calculated vibrational frequencies (cm-1) and the observed frequencies of compound a1.

Table 4. Calculated vibrational frequencies (cm-1) and the observed frequencies of compound a7.

Calculated	Experimental	Assignment	
3511	3550	υ(O-H)	
3465	3435	υ(O-H)	
3018	3150	υ(C-H) aromatic	
2995	3066	υ(C-H) aromatic	
1660	1685	υ(C=0)	
1528	1601	υ(N=N)	
1522	1531	υ(C=C)	
1342	1359	δ(C=C)	
1279	1282	δ(C-N)	
1241	1251	δ(C-O)	
1028	1030	δ(C-C)	
778	775	δ(C-H) aromatic	
668	688	δ (0-Η)	
613	636	δ (O-H)	

The calculated frequencies are slightly higher than the observed values for the majority of the normal modes. Many different factors may be responsible for the discrepancies between the experimental and computed spectra of the compound. Factors such as environment, anharmonicity, intermolecular interaction and limited basis set [34]. The vibrational analyses are summarized in Table 3 and 4. A linearity between the experimental and the calculated wave numbers can be estimated by plotting the calculated vs. experimental wavenumbers, Figure 5 and 6. The values of the correlation coefficients (r²) were 0.9875 and 0.9987; provide good linearity between the calculated and the experimental wave numbers.

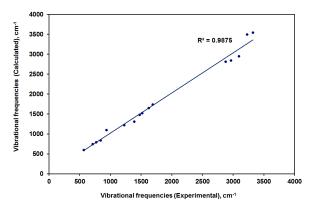


Figure 5. Graphical correlation between experimental and calculated vibration data of compound a1.

4. Conclusions

The molecules containing Hg atom have planer structures. The vibrational frequencies analysis by PBE level agrees satisfactorily with experimental results. The optimized structure of the Te(II) compounds have tetrahedral geometry

and distorted pseudo-tetrahedral, while the Te(IV) compounds have trigonal bipyramidal geometry. The calculations indicate the organotellurium compounds have higher reactivity than organomercuric compounds.

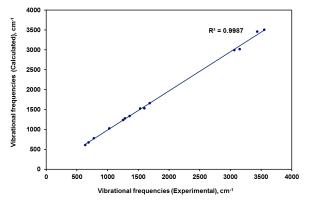


Figure 6. Graphical correlation between experimental and calculated vibration data of compound a7.

References

- [1]. Cozzolino, A. F.; Elder, P. J.; Vargas-Baca, I. Coord. Chem. Rev. 2011, 255.1426-1438.
- [2]. Singh, P.; Chauhan, A. K.; Butcher, R. J.; Duthie, A. J. Organomet. Chem. 2013, 728, 44-51.
- Chauhan, A. K.; Anamika, A.; Kumar, R. C.; Srivastava, R. J.; Duthie, A. J. [3]. Organomet. Chem. 2006, 691, 5887-5894.
- [4]. Torubaev, Y.; Pasynskii, A.; Mathur, P. Coord. Chem. Rev. 2012, 256, 709-721.
- Elder, P. J. Ph. D. Thesis, McMaster University, Hamilton, 2011. [5]. Singh, H. B.; McWhinnie, W. R. J. Chem. Soc. Dalton Trans 1985, 4,
- [6]. 821-825.
- [7]. Minkin, V. I.; Maksimenko, A. A.; Mehrotra, G. K.; Maslakov, A. G.; Kompan, O. E.; Sadekov, I. D.; Struchkov, U. T.; Yufit, D. S. J. Organomet. Chem. 1988, 63, 348-357.
- Kulcsar, M. Ph. D Thesis, Babes-Bolyai University, 2005. [8].

- [9]. Rao, G. K.; Kumar, A.; Singh, M. P.; Singh, A. K. J. Organomet. Chem. 2014, 749, 1-6.
- [10]. Davis, W. M.; Goddard, J. D. Can. J. Chem. 1996, 74, 810-815.
- [11]. Minkin, V. I.; Minyaev, R. M. Mendelleev Commun. 2000, 5, 171-173.
- [12]. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.
- [13]. Al-Asadi, R. H.; Fahad, T. A.; Saeed, B. A.; Al-Masoudi, W. A. J. Adv. Chem. 2014, 8, 1464-1471.
 [14]. Al-Asadi, R. H.; Fahad, T. A.; Saeed, B. A. J. Adv. Chem. 2014, 9, 2078-
- 2091.
- [15]. Delley, B. J Chem Phys. 2000, 113, 7756-7764.
- [16]. Delley, B. J Chem Phys. **1996**, 100, 6107-6110.
- [17]. Delley, B. J Chem Phys. 1990, 92, 508-517.
- [18]. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Letters 1996, 77, 3865-3868.
- Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. *Phys Rev B*. **1992**, *46*, 6671-6687.
- [20]. Chandrasekhar, V.; Kumur, A.; Pandy, D. J. Organomet. Chem. 2010, 695, 74-81.
- [21]. Labres, G.; Dideberg, O.; Dupont, L. Acta Crystallogr. B. 1972, 28, 2438-2444.
- [22]. Casagrande, G. A.; Raminelli, C.; Lang, E. S.; Lemos, S. S. Inorg. Chim. Acta 2011, 365, 492-495.
- [23]. Ledesma, G. N.; Lang, E.; Vazquez-Lopez, E. M.; Abram, V. Inorg. Chem. Commun. 2004, 7, 478-480.
 [24]. Srivastava, P. C.; Bajpai, S.; Kumar, R.; Butcher, R. J. Inorg. Chim. Acta
- 2005, 358, 227-232. [25]. Torbaev, Y.; Pasynakii, A.; Mathar, P. Coord. Chem. Rev. 2012, 256,
- [26], Chauhan, A. K.; Bharti, S. N.; Srivastava, R. C.; Butcher, R. J.; Duthi, A. J.
- Organomet. Chem. 2013, 728, 38-43. [27]. Panda, A.; Panda, S.; Srivastava, K.; Singh, H. B. Inorg. Chim. Acta
- 2011, 372, 17-31. [28]. Detly, M. R. The Chemistry of Heterocyclic Compounds, John Wiley &
- Sons, Inc., New York, 1994. [29]. Singh, P.; Chauhan, A. K.; Butcher, R. J.; Duthie, A. J. Organomet. Chem.
- 2013, 731, 49-54. [30]. Chauhan, A. K.; Singh, P.; Srivastava, R. C.; Butcher, R.; Duthie, A.
- [50]. Chaunan, A. K., Singi, T., Strastava, K. C., Butcher, K., Butcher, A., Butcher, K., Butche
- [31] Dakternieks, D.; Connel, J.; Tiekink, E. J. Organomet. Chem. 2000, 598, 49-54.
- [32]. Lewis, D. F.; Loannides, C.; Parke, D. V. Xenobiotica 1994, 24, 401-408.
- [33]. Zhou, Z.; Parr, R. G. J. Am. Chem. Soc. **1990**, 112, 5720-5724.
- [34]. Rajeev, S.; Kumar, D.; Bhoop, S.; Singh, V. K.; Ranjana, S. Res. J. Chem. Sci. 2013, 3, 79-84.