
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2020 

Thermionic emission in nodal-ring semimetals Thermionic emission in nodal-ring semimetals 

Suguo Chen 
suguo@uow.edu.au 

Sunchao Huang 
sh676@uowmail.edu.au 

Wenye Duan 

Wei Shi 

C Zhang 
University of Wollongong, czhang@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Chen, Suguo; Huang, Sunchao; Duan, Wenye; Shi, Wei; and Zhang, C, "Thermionic emission in nodal-ring 
semimetals" (2020). Faculty of Engineering and Information Sciences - Papers: Part A. 6805. 
https://ro.uow.edu.au/eispapers/6805 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F6805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F6805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F6805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/6805?utm_source=ro.uow.edu.au%2Feispapers%2F6805&utm_medium=PDF&utm_campaign=PDFCoverPages


Thermionic emission in nodal-ring semimetals Thermionic emission in nodal-ring semimetals 

Abstract Abstract 
© 2020 Author(s). We theoretically investigate the thermionic emission from nodal-ring semimetals. The 
thermionic emission is found to be anisotropic in the x- and y-directions. The anisotropic emission can be 
enhanced by increasing the radius of nodal-ring b. The main feature of nodal-ring semimetals not only 
results in anisotropic thermionic emission but also affects the value of thermionic emission current 
density (TECD). The TECD of the lower branch of the energy-momentum dispersion increases with b, 
while the TECD of the upper branch decreases with b. Unlike in conventional materials, the TECD in nodal-
ring semimetals depends on Fermi energy that is similar to the situation in Dirac semimetals. The 
underlined reason is that Dirac semimetals and nodal-ring semimetals have a linear or a linear-like energy-
momentum dispersion while conventional materials have a parabolic energy-momentum dispersion. The 
TECD of nodal-ring semimetals depends strongly on work function and temperature. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Chen, S., Huang, S., Duan, W., Shi, W. & Zhang, C. (2020). Thermionic emission in nodal-ring semimetals. 
Journal of Applied Physics, 128 (6), 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/6805 

https://ro.uow.edu.au/eispapers/6805


J. Appl. Phys. 128, 065108 (2020); https://doi.org/10.1063/5.0007139 128, 065108

© 2020 Author(s).

Thermionic emission in nodal-ring
semimetals
Cite as: J. Appl. Phys. 128, 065108 (2020); https://doi.org/10.1063/5.0007139
Submitted: 11 March 2020 . Accepted: 29 July 2020 . Published Online: 13 August 2020

Suguo Chen, Sunchao Huang , Wenye Duan, Wei Shi , and Chao Zhang 

ARTICLES YOU MAY BE INTERESTED IN

Active control of the transmission of Lamb waves through an elastic metamaterial
Journal of Applied Physics 128, 065107 (2020); https://doi.org/10.1063/5.0017526

Significant enhancement of near-field radiative heat transfer between black phosphorus-
covered hyperbolic metamaterial
Journal of Applied Physics 128, 065109 (2020); https://doi.org/10.1063/5.0012878

Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors
through time-dependent magnetic field
Journal of Applied Physics 128, 064503 (2020); https://doi.org/10.1063/5.0015957

https://images.scitation.org/redirect.spark?MID=176720&plid=1087013&setID=379065&channelID=0&CID=358625&banID=519893970&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=57e4c7c5d61d2e24fc5b8ebca62dd8558e24a82c&location=
https://doi.org/10.1063/5.0007139
https://doi.org/10.1063/5.0007139
https://aip.scitation.org/author/Chen%2C+Suguo
https://aip.scitation.org/author/Huang%2C+Sunchao
http://orcid.org/0000-0003-3456-1116
https://aip.scitation.org/author/Duan%2C+Wenye
https://aip.scitation.org/author/Shi%2C+Wei
http://orcid.org/0000-0003-3969-1470
https://aip.scitation.org/author/Zhang%2C+Chao
http://orcid.org/0000-0002-2817-0488
https://doi.org/10.1063/5.0007139
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0007139
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0007139&domain=aip.scitation.org&date_stamp=2020-08-13
https://aip.scitation.org/doi/10.1063/5.0017526
https://doi.org/10.1063/5.0017526
https://aip.scitation.org/doi/10.1063/5.0012878
https://aip.scitation.org/doi/10.1063/5.0012878
https://doi.org/10.1063/5.0012878
https://aip.scitation.org/doi/10.1063/5.0015957
https://aip.scitation.org/doi/10.1063/5.0015957
https://doi.org/10.1063/5.0015957


Thermionic emission in nodal-ring semimetals

Cite as: J. Appl. Phys. 128, 065108 (2020); doi: 10.1063/5.0007139

View Online Export Citation CrossMark
Submitted: 11 March 2020 · Accepted: 29 July 2020 ·
Published Online: 13 August 2020

Suguo Chen,1 Sunchao Huang,2 Wenye Duan,3 Wei Shi,1 and Chao Zhang2,a)

AFFILIATIONS

1Department of Applied Physics, Xian University of Technology, Xian 710048, China
2School of Physics, University of Wollongong, Northfield Avenue, Wollongong, New South Wales 2522, Australia
3School of Science, East China University of Science and Technology, Shanghai 200237, China

a)Author to whom correspondence should be addressed: czhang@uow.edu.au

ABSTRACT

We theoretically investigate the thermionic emission from nodal-ring semimetals. The thermionic emission is found to be anisotropic in the
x- and y-directions. The anisotropic emission can be enhanced by increasing the radius of nodal-ring b. The main feature of nodal-ring
semimetals not only results in anisotropic thermionic emission but also affects the value of thermionic emission current density (TECD).
The TECD of the lower branch of the energy–momentum dispersion increases with b, while the TECD of the upper branch decreases with
b. Unlike in conventional materials, the TECD in nodal-ring semimetals depends on Fermi energy that is similar to the situation in Dirac
semimetals. The underlined reason is that Dirac semimetals and nodal-ring semimetals have a linear or a linear-like energy–momentum dis-
persion while conventional materials have a parabolic energy–momentum dispersion. The TECD of nodal-ring semimetals depends strongly
on work function and temperature.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007139

I. INTRODUCTION

Materials with a linear energy–momentum dispersion, such
as graphene,1 Dirac semimetals,2 and Weyl semimetals,3,4 have
received much attention in recent years.5–10 Graphene, a one-layer
atomically thin material, has many unique properties such as uni-
versal optical conductivity,11 ultrahigh electronic mobility
(�200 000 cm2 V�1 s�1),12 and Dirac-like electrons.13 Dirac semi-
metals host massless electrons described by the Dirac equation,
which are protected by the time-reversal and spatial inversion
symmetries.14 If one of the above symmetries is broken, Dirac
semimetals turn to Weyl semimetals.15 Recently, new types of 3D
topological materials, nodal-line semimetals, have been theoreti-
cally predicted16–18 and experimentally realized in ZrSiSe.19

Nodal-ring (nodal-line) semimetals are protected not only by the
time-reversal and the inversion symmetries20 but also by mirror
reflection and nonsymmorphic symmetries.21,22 Their conduction
and valence bands cross each other at many points, forming a
continuous ring. The radius of the ring (b) is a key material
parameter, which can be measured by angle-resolved photoemis-
sion spectroscopy.23 However, direct physical properties measure-
ment associated with b is highly desired. A magneto-optical way
to determine b accurately has been proposed recently.24 By apply-
ing a magnetic field along the ring axis, the axial magneto-optical

response is found to have a giant peak at the position of 2b, which
is independent of the strength of the magnetic field and can be
used to determine the value of b. Magnetic susceptibility,25

Landau quantization,26 Lifshitz transitions,27 and quantum
anomalies28–31 have been investigated in nodal-ring systems.

In the present work, we shall investigate thermionic emission
in such a system. Thermionic emission is a fundamental process
where electrons are driven by thermal energy to escape from bulk
states, which has been extensively studied in conventional semi-
conductors with a parabolic energy–momentum dispersion due to
its potential applications in thermionic devices such as refrigera-
tors and energy generators.32–34 The practical applications of
thermionic devices are hindered by the lack of low work-function
materials35 and the space charge effect.36 Thermionic emission
receives increasing attention,37–43 thanks to the technology devel-
opments in obtaining low work-function materials and the discov-
ery of new materials such as graphene and Dirac semimetals.44–48

For conventional semiconductors, the thermionic emission current
density (TECD) is described by the Richardson–Dushman law32

JRD ¼ ARDT2 e�W=kBT, where ARD ¼ qmk2B
2π2�h3

¼ 1:2� 106 A m�2 K�2,
q is the absolute charge of an electron, m is the mass of an electron,
kB is the Boltzmann constant, �h is the reduced Plank constant, T is
the dynamical temperature, and W is the work function.35 For 3D
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Dirac semimetals, we found in this work that the TECD is given by

JD ¼ ADT2 e�W=kBT, where AD ¼ qk2B
4π2�h3v2F

(WþEF þ 2kBT). AD is

smaller than ARD. The underlying reason is that the density of states
of 3D semimetals g(ϵ) ¼ ϵ2

π2�h3v3F

49 is smaller than that of 3D conven-

tional semiconductors g(ϵ) ¼ (2m)3=2

2π2�h3
ffiffiffi
ϵ

p
. Although AD is smaller

than ARD, the thermionic emission in Dirac systems has one funda-
mental advantage that the average energy carried by one freedom of
electrons in Dirac systems is twice of that in conventional
semiconductors.41,50

In this work, we study the thermionic emission in 3D
nodal-ring semimetals. In the low energy regime, the density of
states of nodal-ring semimetals is larger than that of 3D Dirac
semimetals. Additionally, the low energy–momentum in nodal-ring
semimetals is anisotropic in the x- and y-directions. These features
make the TECD of nodal-ring semimetals different from its previ-
ous counterparts. In Sec. II, we develop the necessary formulas to
describe the density of states and the TECD. Section III discusses
thermionic emission in different situations.

II. FORMALISM

The energy–momentum dispersion of nodal-ring semimetals
is given as51

ϵ ¼ s�hvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ (k? þ s0b)2

q
, (1)

where s ¼ + and s0 ¼ + are the band indexes and k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
.

The band structure of nodal-ring semimetals is plotted in Fig. 1
according to Eq. (1), where kx ¼ 0, ϵ0 ¼ �hvFb and the dashed hori-
zontal line is the Fermi level. We label the two conduction bands as
lower branch ϵ1 (s ¼ þ, s0 ¼ �) and upper branch ϵ2
(s ¼ þ, s0 ¼ þ), and valance band as ϵ3 (s ¼ �, s0 ¼ �) and ϵ4
(s ¼ �, s0 ¼ þ), respectively. The conduction band ϵ1 touches the
valence band ϵ3 at points (kx ¼ 0 and k? ¼ b) forming a nodal-ring
in the ky–kz plane, and the radius of the ring is b, which results in an
anisotropic energy dispersion along the kx and ky directions and an
isotropic energy dispersion along the ky and kz directions. The
minimum value of ϵ2 is ϵ0, which means there is no density of states
for ϵ2 when ϵ2 , ϵ0. Here, we only investigate the thermionic emis-
sion in conduction bands ϵ1 and ϵ2 since the energy of ϵ3 and ϵ4 is
less than W þ EF and make no contribution to thermionic emission.

The TECD in the m direction (m ¼ x or y) and n band
(n ¼ 1 or 2) is calculated by

Jm,n ¼ 2

(2π)3

ð
qvm,n(ϵ)f (ϵ� EF)dkxdkydkz , (2)

where 2 is the spin factor, f (ϵ� EF) is the Fermi–Dirac distribution
function, q is the charge of electron, and vm,n is the velocity compo-
nent in the m direction for n band, which is calculated by

vm,n ¼ 1
�h
@ϵn
@km

: (3)

The energy dispersion is isotropic in the ky and kz directions,
which results in the same TECD and the same form of energy due
to the momentum component in the y- and z-directions.
Therefore, only the TECD in the x- and y-directions needs to be
calculated. In the integral, kx , ky , and kz should make ϵm,n

� W þ EF so that we only count the electrons that have enough
energy to overcome the surface barrier in the m direction.

Unlike a parabolic dispersion, the energy dispersion
ϵ ¼ �hvFk cannot be easily separated into three directions. To
proceed with our analysis of determining minimum energy in a
given direction, we need to decompose the energy along with
three directions in a reasonable way. For a Dirac system,

ϵ ¼ �hvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
¼ �hvF

k2xþk2yþk2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2yþk2z

p . We then decompose them

along different directions as ϵx ¼ �hvF
k2x
k , ϵy ¼ �hvF

k2y
k , and

ϵz ¼ �hvF
k2z
k . In the limiting case ky ¼ kz ¼ 0, the energy is given as

ϵx ¼ �hvF
k2x
k ¼ �hvFk. The above result can also be equivalently

obtained by using the velocity vi= @ϵ
�h@ki

¼ vF
ki
k , where i ¼ x, y, and z.

The energy along each direction is given as ϵx ¼ �hvxkx ¼ �hvF
k2x
k ,

FIG. 1. The energy–momentum dispersion of nodal-ring semimetals plotted by

using Eq. (1), where kx ¼ 0, k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
, and ϵ0 ¼ �hvFb.
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ϵy ¼ �hvF
k2y
k , and ϵz ¼ �hvF

k2z
k . Due to this equivalence of the two

methods, we use the velocity approach for nodal-ring systems in
assigning energies along with three directions. For the nodal-ring
system, band 1 is made up of many Dirac cones and the origin of
the Dirac cones is (0, kybk? ,

kzb
k?
) instead of (0,0,0) in Dirac materials.

Its energy due to the momentum component is written as

ϵx,1 ¼ �hkxvx,1 ¼ �hvFk2x
M1

, (4)

FIG. 2. Thermionic emission of ϵ1. (a) Temperature dependence of Jx,1 at four values of ϵ0 from 0 to 90 meV. For the limit ϵ0 ¼ 0, Jx,1 is obtained both analytically and
numerically and the results agree with each other perfectly, where W ¼ 300 meV and EF ¼ 0. (b) Temperature dependence of Jx,1 at three values of EF from 0 to
300 meV, where W ¼ 300 meV and ϵ0 ¼ 30 meV. (c) log10(Jx,1) as a function of T at three values of W , where ϵ0 ¼ 30 meV and EF ¼ 0. (d) Density of states of band
1 against ϵ at four values of ϵ0 that is numerically calculated according to g(ϵ) ¼ 2

V

P
k δ(ϵ� ϵk ), where 2 is the spin factor.
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ϵy,1 ¼ �h ky � kyb

k?

� �
vy,1 ¼ �hvF

M1
k2y �

2bk2y
k?

þ bk2y
k2?

 !
, (5)

ϵz,1 ¼ �h kz � kzb
k?

� �
vz,1 ¼ �hvF

M1
k2z �

2bk2z
k?

þ bk2z
k2?

� �
, (6)

where M1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ (k? � b)2

q
. Similarly, the energy due to the

momentum component of band 2 is given as

ϵx,2 ¼ �hkxvx,2 ¼ �hvFk2x
M2

, (7)

ϵy,2 ¼ �h ky þ
kyb

k?

� �
vy,2 ¼ �hvF

M2
k2y þ

2bk2y
k?

þ bk2y
k2?

 !
, (8)

ϵz,2 ¼ �h(kz þ kzb
k?

)vz,2 ¼ �hvF
M2

k2z þ
2bk2z
k?

þ bk2z
k2?

� �
, (9)

where Mz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ (k? þ b)2

q
. It is easy to see that ϵx,1 þ ϵy,1 þ

ϵz,1 ¼ �hvF
M1

(k2x þ k2? � 2bk? þ b2) ¼ ϵ1 and ϵx,2 þ ϵy,2 þ ϵz,2 ¼ �hvF
M2

(k2x þ k2? þ 2bk? þ b2) ¼ ϵ2. In our calculations, the Fermi veloc-
ity vF is set to 106 m/s.

III. THERMIONIC EMISSION

In the present work, we first study TECD of band 1 and 2 sep-
arately and then add them together since TECD of band 1 at the
limit of ϵ0 ¼ 0 can be analytically obtained that helps to verify our
results. Additionally, TECD of bands 1 and 2 has a different
response to the radius of nodal-ring. Now, we consider the limit

ϵ0 ¼ 0, i.e., b ¼ 0 where the energy dispersion of band 1 becomes
ϵ1 ¼ �hvFk which is the energy–momentum of 3D Dirac semimet-
als.7 In this case, x, y, and z directions have the same TECD and
can be analytically obtained as

Jx,1 ¼ Jy,1 ¼ Jz,1 ¼ 2

(2π)3

ð ð ð
qf (ϵ)vz,1dkxdkydkz , (10)

where vz,1 ¼ @(�hvFk)
�h@kz

¼ vF
kz
k ¼ vFcos(θ) should make ϵz,1 � EF þW,

i.e., ϵz,1 ¼ �hkzvz,1 ¼ �hvFk cos2 (θ) � EF þW resulting in
cos2(θmax) ¼ kmin

k with kmin ¼ EFþW
�hvF

, θ is the angle between kz,1 and
k. Since ϵ1 � EF � ϵz,1 � EF � W, where W ¼ 300 meV, the
Fermi–Dirac distribution function can be replaced by the Maxwell–
Boltzmann distribution function f (ϵ1) ¼ 1

1þe(ϵ1�EF )=kBT
� e(EF�ϵ1)=kBT

for T ¼ 350 K (kBT � 30 meV). The integral can be evaluated in
spherical coordinates,

Jx,1 ¼ q
4π3

ðþ1

kmin

ðθmax

0

ð2π
0
e(EF�ϵ1)=kBTvFcos(θ)k

2sin(θ)dfdθdk

¼ qk2B
4π2�h3v2F

(W þ EF þ 2kBT)T
2e�W=kBT : (11)

The analytical and numerical results are shown by a black dashed
curve and solid circles in Fig. 2(a), respectively, which agree with
each other. When ϵ0 = 0, the TECD is calculated numerically by
using Eqs. (2)–(9), and the results at three values of ϵ0 are plotted
in Fig. 2(a), which indicates that the TECD can be enhanced by ϵ0.
A large ϵ0 means a large nodal-ring, which results in a large
density of states [shown in Fig. 2(d)]. This is the underlying reason
for the increase of the TECD.

FIG. 3. The TECD in the ϵ1 band. (a) Jy ,1 and (b) Jy,1=Jx,1 as a function of T at four values of ϵ0 from 0 to 90 meV.
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The TECD depends on Fermi energy (EF) through the density
of states. The thermionic properties of a material are determined
by the electrons near the Fermi level since they are more active and
energetic. Electrons near the Fermi level have higher average
energy, which results in a higher chance to escape from the

material. When EF is increased by doping or an external voltage,
there are more electrons near the Fermi level because the density of
states increases with the energy [see Fig. 2(d)]. Temperature depen-
dence of TECD at three values of EF is shown in Fig. 2(b). At a
fixed temperature, the TECD increases with EF .

FIG. 4. Thermionic emission of the upper branch. (a) Temperature dependence of Jx,2 at four values of ϵ0 from 0 to 90 meV. (b) Temperature dependence of Jx,2 at three
values of EF . (c) Jy,2=Jx,2 against T at three values of ϵ0. (d) Jx,1, Jx,2, and Jx as a function of T , where ϵ0 ¼ 30 meV.
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In a thermionic process, electrons gain thermal energy to
overcome the surface barrier. In this sense, the TECD is dependent
on the height of the surface barrier, i.e., work function W and tem-
perature. Equation (11) shows that Jx,1 decreases with W exponen-
tially when ϵ ¼ 0. When ϵ0 = 0, the decrease still exists, shown in
Fig. 2(c). For T ¼ 250 K, Jx,1 drops nearly five orders when W
changes from 300meV to 400 meV. When the temperature is
increased from 250 K to 350 K, the dropping tendency slows down
slightly. Increasing temperature means more electrons have suffi-
cient energy to overcome the surface barrier.

Overall, the TECD depends on EF and ϵ0 weakly. However,
the TECD depends strongly on W and T . In a practical application,
the working temperature is fixed in a specific range and a minimum
TECD, usually in the order of 10 000 A/m2, is required.35 For
example, the working temperature is around 250�320K when
thermionic effect is employed to make air-conditions and refrigera-
tors. This is why our discussion is mainly focused on 250�350K.
The temperature is around 500�1000K when the thermionic effect
is employed to harvest thermal heat. In this sense, a proper work
function should be chosen according to the working temperature
and the minimum TECD. In a thermionic refrigerator, the work
function usually needs to be less than 300 meV.32

Similar to Jx,1, Jy,1 also can be enhanced by ϵ0, shown in
Fig. 3(a). The energy–momentum dispersion of nodal-ring
systems is anisotropic in the x- and y-directions shown in Eq. (1).
This results in that the thermionic emission is different in the
x- and y-directions. To see the anisotropic thermionic emission, Jy,1
and Jy,1/Jx,1 as a function of T are calculated and shown in Fig. 3(b).
In the limit ϵ0 ¼ 0, the value of Jy,1/Jx,1 is equal to one in the
whole temperature range. Indeed, this is the real situation since
the thermionic emission is isotropic in Dirac systems (ϵ0 ¼ 0).
For T ¼ 250 K, Jy,1/Jx,1 decreases with ϵ0 and the minimum value
reaches 0.35, indicating anisotropic thermionic emission. The
value of Jy,1/Jx,1 increases with T , which indicates Jy and Jx having
different temperature dependence.

Now, we discuss the thermionic emission of the upper branch
ϵ2. The thermionic emission current Jx,2 as a function of T at four
values of ϵ0 is plotted in Fig. 4(a). The results are fundamentally dif-
ferent from the results of the lower branch. Jx,2 decreases with ϵ0,
while Jx,1 increases with ϵ0. The decrement also can be understood
by the decrease in the density of states. For the upper branch, the
density of states is zero when ϵ , ϵ0. In this sense, the density of
states near to the Fermi surface (EF ¼ 0) decreases with ϵ0, which
leads to the number of the thermally driven electrons decreasing
with ϵ0 and the decrease of Jx,2. For T ¼ 350 K, the value of Jx,2
drops more than sixfold when ϵ0 changes from 0 to 90meV.
Besides, the zero density of states results in a smaller Jx,2 compared
with Jx,1. To visualize this, Jx,1 and Jx,2 together with Jx ¼ Jx,1 þ Jx,2
as a function of T is plotted in Fig. 4(d). The results show that Jx,2 is
considerably smaller than Jx,1. This indicates that the total TECD is
mainly contributed by the lower branch. For example, Jx,1 contrib-
utes about 75% to Jx when T ¼ 350 K and ϵ0 ¼ 30 meV.

Fermi energy dependent on Jx,2 is investigated and shown in
Fig. 4(b). The results are similar to that in the lower branch, i.e.,
Jx,2 increases with EF . When EF is increased, the density of states
near the Fermi surface increases and the Jx,2 is enhanced. For the
upper branch, the anisotropic thermionic emission is expected due

to the anisotropy of energy–momentum dispersion. Temperature
dependence of Jy2/Jx,2 at four values of ϵ0 is plotted in Fig. 4(c). In
the limit of ϵ0 ¼ 0, Jy2/Jx,2 is equal to one, which is rather reason-
able since thermionic emission in Dirac systems is isotropic. When
ϵ0 is increased, Jy2/Jx,2 is larger than one showing anisotropic
thermionic emission in the x- and y-directions. Additionally, the
anisotropic emission increases with ϵ0.

IV. CONCLUSION

We have investigated thermionic emission in nodal-ring
systems. The thermionic emission shows anisotropy in the x- and
y-directions in both the lower and upper branches of energy–
momentum dispersion. The anisotropic emission can be enhanced
by increasing ϵ0. The TECD increases with ϵ0 in the lower branch,
while it decreases with ϵ0 in the upper branch. However, the TECD
increases with EF for both bands. Although the value of TECD can
be tuned by EF and ϵ0, the change is limited within an order of
magnitude. T and W can significantly change the value of TECD.
If material parameters such as W, EF , and vF have the same values,
TECD of nodal-ring systems is larger than that in Dirac systems
due to their larger density of states. Our results are helpful to
understand the thermionic emission in nodal-ring systems.

We would like to note that although TECD is dependent on
the ring radius, the radius is normally difficult to be varied. For
some nodal-ring semi-metals, the ring property is dependent on
the magnetic field. One possible way to vary b is to attach a ferro-
magnetic layer to the device and the magnetic field effect can be
controlled by temperature, and in turn, the radius can be varied in
a certain range.52
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