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ABSTRACT

A magnetic field sensor is designed and fabricated using a piezoelectric face shear mode Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT)/Metglas
magneto-electric (ME) composite. An outstanding ME coupling coefficient up to 1600 V/(cmOe) was experimentally achieved, being ∼50%
higher than the value from the extensional PMN–PT/Metglas ME composite with the same volume. The detection limit was found to be
2 × 10−6 Oe for the DC magnetic field, while it was 2 × 10−8 Oe for the AC magnetic field. The sensitivity of the face shear mode
PMN–PT/Metglas ME composite is about one order of magnitude higher than that of a 32 extensional mode PMN–PT/Metglas based ME
composite in sensing a weak DC magnetic field. A sensing array was also designed based on the ME composite to image weak DC magnetic
fields, demonstrating a great potential promising for sensing weak magnetic fields.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011931

I. INTRODUCTION

Magnetoelectric (ME) coupling devices have been actively
studied for potential tools as weak magnetic field sensors, as alterna-
tives to low-sensitivity Hall-base magnetometers, and expensive super-
conducting quantum interference devices (SQUIDs), for example,
bio-magnetic sensing,1,2 where the sensitivity is a key challenge.
Although SQUIDs can be used for weak magnetic field measure-
ments, they require liquid helium cooling with obvious disadvantages
in terms of cost, temperature isolation, and a considerable amount of
energy during the operation.

Magnetic sensors in the form of composites with laminated
piezomagnetic (PM)/piezoelectric (PE) layers have recently
reported to possess many advantages due to their excellent magne-
toelectric coupling characteristics, high sensitivity, and wide operat-
ing temperature range.3,4 In addition, the 2–2 layer-structured ME
composite exhibits a low equivalent noise level of ∼1 pT/Hz1/2 in
an AC magnetic field of 1 kHz.5 The ability to sense a weak mag-
netic field is as low as 8 × 10−6 Oe,6 in stark contrast to the value of
3.5 × 10−2 Oe achieved by a commercially available Hall effect mag-
netometer.7 Due to the low piezoelectric coefficient in many piezo-
electric materials, however, the ME composite could only provide

limited sensing resolution, which limited its ability to sense weak
magnetic fields.

Compared to ferroelectric polycrystalline ceramics, the Pb
(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) relaxor ferroelectric single
crystal provides outstanding PE characteristics [piezoelectric charge
coefficient, d32≈− 1200 pC/N vs d31≈ 300 pC/N in lead zirconate
titanate (PZT) ceramics].8,9 The ME composite based on mechani-
cally coupled PMN–PT and Metglas shows a remarkable enhance-
ment in its capability to convert a magnetic field into electric
signals.10 A longitudinally magnetized, transversely poled (L-T)
PMN–PT/Metglas composite was found to have a ME coupling coef-
ficient as large as 1100 V/(cmOe) at its resonant frequency.11 The
highest piezoelectric charge coefficient of 3000 pC/N has been
reported in the thickness shear mode of PMN–PT;12 however, its
low mechanical quality factor (Qm of 20–30) 13 will lead to a high
mechanical loss,14 which greatly limits its ME coupling performance.

It is interesting to note that the face shear mode can be
achieved in a Zt ±45° cut [011] oriented PMN–PT single crystal,
possessing high piezoelectric charge coefficients (d36 of up to
1700 pC/N)15 and a good mechanical quality factor (Qm≥ 120),16

thus attracting extensive attentions for actuator,17 sensor,18 and
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motor applications.19–21 Recently, an ME sensor based on a face
shear mode Pb(Mg1/3Nb2/3)O3–Pb(ZrTi)O3 (PMN–PZT)/Metglas
composite sensor was recently reported to possess outstanding sen-
sitivity to AC magnetic fields.22 However, the potential sensing
capability of the face shear mode ME sensor to both AC and DC
magnetic fields needs further comprehensive investigation, where
the anisotropic characteristic and its application have not been
reported.

In this research, we systematically study the property of the
face shear PMN–PT/Metglas ME composite. The sensitivity and
ME coupling property were theoretically calculated and experimen-
tally confirmed. Then, an ME sensor array was designed and fabri-
cated using the proposed face shear mode PMN–PT/Metglas ME
composite. The ME composite array is able to determine the accu-
rate spatial location of a weak static magnetic field, by using the
anisotropic property of the ME composite. This work suggests
great potential of our piezoelectric ME composite array design for
sensing of weak magnetic signals, in both DC and AC magnetic
fields.

II. EXPERIMENTAL SETUP

To prepare the face shear ME composite, the PMN–PT single
crystal sample was prepared by rotating at a 45° angle along the
z axis [011] direction, cutting into a square-shaped plate with
dimensions of 10 × 10 × 0.5 mm3, as shown in Fig. 1(a). The specif-
ically designed dimensions were to ensure that the crystal could
operate in the 36-face shear mode to utilize its outstanding piezo-
electric properties.15 Silver electrodes were deposited on the two
[011] surfaces, and then the crystal was poled at the electric field of
10 kV/cm at room temperature. The poled PMN–PT single crystal
was bound with Metglas foil (2605SA1) using an electrically con-
ducting epoxy (MG Chemicals silver conductive epoxy adhesive
8330) and then cured for 24 h at room temperature. The impedance
spectrum of the fabricated ME composite was characterized using
an impedance analyzer (HP4294A, Agilent Technologies Inc.). The
ME composite, shield, and solenoid coil were integrated into the
sensing element as shown in Fig. 1(b). The ME composite was
placed in the nonmagnetic non-conducting shield to isolate it from
the electric noise of the environment. A solenoid coil was employed
to generate an AC magnetic field. When the AC magnetic field
alternately changes along the diagonal direction of the composite,
the Metglas foil will generate in-plane displacement in the
PMN–PT crystal to move along the AC magnetic field, leading to
in-plane displacement, from which electric charge will be induced
on the two surfaces of the PMN–PT crystal based on the piezoelec-
tric effect.23,24 The output AC voltage signal is measured by a
lock-in amplifier (SR 830, Stanford Research).

III. RESULTS AND DISCUSSION

A. Operation mode and the calculated equivalent
magnetic noise density (EMND)

Figure 1(c) shows a measured impedance spectrum of the ME
composite operating in the free vibration mode over the frequency
range of 40 Hz–120 kHz at room temperature. The resonant
frequency and anti-resonant frequency were found to be 85 kHz

and 107 kHz, respectively. For a rectangular shaped composite, the
resonant frequency can be evaluated by15

fr ¼ F
aþ b

ffiffiffiffiffiffiffiffi
1

�ρ ��s
r

, (1)

where F∼ 1.28 is a correction constant, a is the length and b the
width of the composite, �ρ � 8 g/cm3 is the equivalent density of
the composite, and �s � 65 pm2/N is the equivalent elastic compli-
ance of the composite, which can be estimated by25

1
�s
¼ nc

sc
þ nl

sl

� �
, (2)

where nc and nl are the volume ratios of the crystal and load compo-
nents (epoxy and Metglas), respectively, and sc and sl are the elastic
compliance values of the crystal and load components (epoxy and
Metglas), respectively. For the proposed design, the calculated reso-
nant frequency is 87 kHz, which is very close to the measured value
of 85 kHz. The minor difference is attributed to the composite fabri-
cation process and the error in calculating the equivalent parameters.
The dielectric loss tangents tan (δ) is found to be ∼1.6% due to the
epoxy adhesive, while the mechanical quality factor of the composite
can be evaluated by Q ¼ fr/Δf , which is found to be ∼110. The
details of parameters of the composite are given in Table I.

The theoretical sensitivity of the fabricated sensor can be
evaluated by determination of the equivalent magnetic noise
density (EMND),26 which consists of the dielectric loss noise and
the impedance thermal noise, and it can be calculated from the
following equation:27,28

EMND ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � k � T � Cp � tan δ

2 � π � f

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � k � T

(2 � π � f )2 � Z0

s

tp � αME
, (3)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�k�T�Cp�tanδ

2�π�f
q

is the dielectric loss noise,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�k�T
(2�π�f )2�Z0

q
is the

impedance thermal noise, and tp and αME represent the thickness
of the crystal and the ME coupling coefficient, respectively. For the

noise due to the dielectric loss
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�k�T�Cp�tanδ

2�π�f
q

, where k, T, Cp, tan (δ),

and f represent Boltzmann’s constant, the temperature in kelvin,
the capacitance of the composite, the dielectric loss, and the fre-

quency, respectively. For the impedance thermal noise
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�k�T
(2�π�f )2�Z0

q
, Z0

is the real part of the impedance. EMND was calculated based on
the measured impedance as function of frequency at room temper-
ature, where the measurement was performed in the grounded
noise isolation box to avoid external electromagnetic noise.
Figure 1(d) displays the calculated EMND curve of the ME com-
posite. The corresponding magnetic noise density is found to be
0.1 pT/Hz1/2 at the antiresonant frequency of 107 kHz, which is
much improved compared to the resolution of the reported ME
magnetic field sensor (0.5 pT/Hz1/2).29 The low EMND allows the
fabricated ME sensor to give a clear signal at a weak magnetic field,
contributing to the improved sensitivity of the device.
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B. ME coupling properties of the face shear mode ME
composite

The ME coupling property at the off resonant condition is
tested at a quasi-static frequency of 1 kHz. The magnetic field is
generated by Helmholtz coils. The detailed parameter of the

Helmholtz coils is listed in Table II. Figure 2(a) shows that the
room temperature ME response depends on the DC magnetic field
with the AC magnetic field fixed at Hac of 0.1 Oe (1 kHz). The
output AC voltage shows a near-linear increase with an increasing
DC bias magnetic field up to 6 Oe. The maximum output voltage

FIG. 1. (a) Schematic view and operation principle of the face shear mode ME composite. (b) Schematic view and photograph of the sensing element. (c) Impedance
spectrum of the face shear PMN–PT/Metglas composite, with enlargement in the inset. (d) Calculated equivalent magnetic noise density (EMND) of the magnetic field sensor.
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of ∼30 mV (1 kHz) was acquired at Hdc of 6 Oe. The equivalent
ME coupling coefficient was calculated by αME ¼ @E

@H,
23,30–33 leading

to the maximum quasi-static αME being on the order of
∼6 V/(cmOe). From this experiment, it is obvious that the inten-
sity of the DC magnetic field can be measured by the generated
voltage in the ME composite. The ME coupling coefficient tends to
decrease at higher magnetic field, due to the magnetostriction of
the Metglas as it approaches saturation.34 The inset gives the first
derivative of the αME, which is calculated by DME ¼ ΔαME/ΔH. Note
that the maximum DME and the maximum voltage are not simulta-
neously achieved at the same magnetic field. In this case, the
maximum DME is acquired at the DC magnetic field of Hdc = 2.2 Oe.
This can be attributed to the increase of magnetic saturation in the
Metglas foil under a DC magnetic field larger than 2.2 Oe.

The dynamic ME coefficient was measured as a function of
excitation frequency under the fixed DC bias magnetic field,
Hdc = 6 Oe. As shown in Fig. 2(b), a giant ME coupling coefficient
calculated based on αME ¼ @E

@H was found to be ∼1600 V/(cmOe) at
the anti-resonant frequency of 107.6 kHz, which is ∼50% higher
than that reported for a 32 extensional mode PMN–PT based ME
composite with the same volume.11 The enhancement of the ME
coupling coefficient is attributed to the improved piezoelectric
charge coefficient (d36∼ 1700 pC/N vs d32∼ 1200 pC/N) and
mechanical quality factor for the face shear mode.

C. Anisotropic characteristic of the ME composite and
the magnetic sensitivity

In order to determine the sensitivity of the ME sensor, the
voltage output of the 10 × 10 × 0.5 mm3 face shear PMN–PT/
Metglas ME composite was measured under different amplitudes of
AC and DC magnetic fields at its anti-resonant frequency.
Figure 3(a) displays the measured AC voltage as a function of Hac

with a DC magnetic field Hdc = 6 Oe. Note that the magnetic field
sensor exhibits a clear ME response to a weak AC magnetic field as
low as 2 × 10−8 Oe at an anti-resonant frequency of 107.6 kHz with
the ME voltage output being on the order of ∼4.5 μV. The detec-
tion limit 2 × 10−8 Oe of the studied sensor is much improved than
the reported ME composite sensor (9.2 × 10−8 Oe).35 The voltage
output increases linearly as the AC magnetic field increases with a
slope of ∼80 V/Oe. The calculated ME coupling coefficient is
found to be ∼1600 V/(cmOe), which is in a good agreement with
the measured dynamic ME coupling coefficient. Figure 3(b)

presents the ME voltage as a function of time in a step-change Hac

from 0 (noise) to 2 × 10−7 Oe at frequency of 107.6 kHz. A noise of
∼2 μV was measured at the frequency of 107.6 kHz. This noise is
attributed to the combination of the impedance noise, thermal
noise from the ME composite, and the noise from the lock-in
amplifier and electric circuit. The experimental result shows a good
repeatable output in response to the AC magnetic field. All these
results demonstrate that the studied magnetic field sensor possesses
a high sensitivity to weak AC magnetic fields with high reliability.
Furthermore, the feasibility of calibrating a weak AC magnetic field
via the output AC voltage of the sensor can be experimentally
proved.

Figure 3(c) shows the maximum voltage output vs the angle
between the x and y directions at Hdc = 6 Oe. The maximum output
is found to be about 30 mV when the rotation angle reached 50°
and 225°, respectively. Meanwhile, the minimum voltage is found
to be ∼8 mV at 120° and 315°, respectively, showing a strong aniso-
tropic characteristic. This result agrees with the anisotropic behav-
ior of the face shear piezoelectric constant d36 of the PMN–PT
crystal.36 Therefore, the relative position between the DC magnetic
target and the sensor can be monitored by measuring the output
AC voltage. Figure 3(d) displays the ME coupling property under a
weak DC magnetic field. The detection limit is about 2 × 10−6 Oe,
which is much improved over that reported for an ultra-sensitive
ME sensor, being on the order of 8 × 10−6 Oe.6 Clearly, the calcu-
lated response of the ME sensor to a weak Hdc field is found to be
∼1 V/Oe at Hdc≤ 1 × 10−4 Oe, being decreased to ∼5 mV/Oe for
Hdc = 6 Oe due to the magnetization saturation of Metglas at
elevated Hdc.

D. Magnet target sensing using the sensing array

Sensing the position of a magnet target is one of the applica-
tions of the ME composite.37–40 To achieve the accurate position of
the magnetic field source, one of the challenges is to isolate
unwanted noise from the original output AC signal. To solve this
problem, a sensing array was developed based on the ME compos-
ite. To build the sensing array, a total 43 pieces of the face shear
mode PMN–PT/Metglas ME sensing elements were arrayed in a
line as shown in Fig. 4(a). A permanent magnet with dimensions
of 10 × 10 × 30 mm3 was used as a target. Figure 4(b) displays the
simulated distribution of the magnetic flux around the magnet and
the sensor array. Because of the relative positions of the array and
the magnet, the angle between the magnetic flux from the magnet
and each sensing element is different. A lock-in amplifier (SR 830)
was used to measure the output voltage from each sensing element
and then the output results were built into a 1D voltage curve. The
small difference in the angle is reflected in the output voltage curve
of the array due to the anisotropic nature of the device. By process-
ing the voltage curve, the contribution of the magnetic field

TABLE I. Parameter details of the face shear mode PMN–PT/Metglas ME composite.

Parameters Length (mm) Width (mm) Thickness (mm) fr (Hz) fa (Hz) d36 (pC/N) tan (δ) (%) Q

10 10 0.61 85 220 107 160 1700 1.6 110

TABLE II. Parameter of the Helmholtz coils.

Parameter Diameter (mm) Turns Max I (A) Resistance (Ω)

70 30 3 5
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FIG. 3. AC magnetic field sensing. (a) Determination of the detection limit for the AC magnetic field and ME voltage output of the magnetic field sensor as a function of
AC magnetic fields. (b) Step-change measurement of the magnetic sensitivity to a small range of AC magnetic field from 2 × 10−8 Oe to 1 × 10−7 Oe. (c) The ME response
depends on the angle between the x direction (i.e., [0–11] direction of the crystal) and the y direction (direction of the DC magnetic field). (d) The detection limit for the DC
magnetic field, with a step-change test of the output voltage as a function of time under different DC magnetic fields given in the inset.

FIG. 2. ME coupling property of the ME composite sensor. (a) Measured quasi-static direct ME coefficient as a function of the magnetic bias Hdc at the AC magnetic field
Hac = 0.1 Oe (1 kHz), while the first derivative of αME is given in the inset. (b) Measured ME coupling coefficient as a function of frequency at the optimal DC magnetic field of 6 Oe.
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intensity can be isolated, and the real position of the magnet target
can be confirmed.

To generate a weak magnetic field, the target magnet was placed
at the A (40, 22) and B (50, 22) positions, as shown in Fig. 4(c).
The numbers 40 and 22 of the (40, 22) coordinate represent the

distances between the sensing array and the magnet target along the
x axis and y axis in centimeters, respectively. By using the finite
element analysis model, the magnetic field was found to be on the
order of 10−5 Oe and 10−6 Oe at the A and B positions, respectively.
The difference in output voltage between the neighboring sensing

FIG. 4. (a) Schematic view of the sensing array. (b) Simulated magnetic flux distribution in the sensing array. (c) The process of magnetic field positioning and imaging.
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elements was calculated by ΔVn ¼ Vn � Vn�1. Then, the standard
deviation of ΔV can be calculated by

σn ¼
ffiffiffiffiffiffi
Dn

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[(xn � �x)2]

q
, (4)

where xn is the ΔV at position n and �x is the mean value of ΔV, so
the position of magnet target can be detected by confirming the
maximum σn. The advantage of using maximum σn is that the inten-
sity of the detected magnetic field has a minimal effect on the exact
position of the magnet target.

Figure 5(a) displays the measured output voltage curve when
the magnet is placed at the A (40, 22) and B (50, 22) positions, and
comparing the scenario without a magnet target. Note that there is
no change in the output voltage curve when the magnet target is
absent in the sensing area. Some minor fluctuation in ΔV and σn
can be neglected. However, a clear change in the ME output
voltage from the sensors can be observed when the magnet source
is placed in the sensing area. The output voltage curve indicates
that the ME coupling output of the sensing array is impacted by
both the magnetic field strength and the position of the magnet
target. For the magnet at position A, the amplitude of the center

FIG. 5. (a) Measured output voltage from the sensing array when the magnet is placed at the (40, 22) and (50, 22) positions, compared to the scenario without a magnet
target. (b) Calculated increment of the output voltage. (c) Calculated standard deviation of the signal and the image of the magnet (inset).
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voltage is ∼79 mV, while the peak output voltage is ∼75 mV for
position B. The difference between the two peak voltages is attrib-
uted to the difference in the weak DC magnetic field intensity being
detected by the sensing array. The curves in Fig. 5(b) present the cal-
culated ΔV, where the maximum ΔV is on the order of ∼1.2mV and
0.6mV for the magnet located at positions A and B, respectively. ΔV
consists of the contributions from the intensity of the magnetic field
and the relative position between the sensor array and the magnet
target. To acquire the accurate position of the magnet, the standard
deviation of ΔV is calculated, as given in Fig. 5(c). As expected, the
peak value of the standard deviation reflects the position of sensed
magnet along the y axis. Clearly, the standard deviation curves can
correctly represent the y position of the magnet, indicating the high
sensing accuracy of the proposed sensing array, which can be easily
recognized via the images shown in the insets.

The proposed sensing array is designed for one-dimensional
(1D) magnetic field positioning; however, the sensing result can be
misled by changing the direction of the magnetic field. To over-
come this limitation, the sensing array can be improved by design-
ing a multi-dimension array, which is capable of achieving 2D or
3D magnetic field positioning.

IV. CONCLUSION

In summary, the design, fabrication, and experimental measure-
ments of a magnetic field ME sensor utilizing a laminated face shear
mode PMN–PT/Metglas were reported. Weak AC/DC magnetic
fields, being on the order of 2 × 10−8 Oe (AC) and 2 × 10−6 Oe (DC),
can be detected. A 1D sensor array was also proposed for sensing the
position of a weak magnetic field of 2 × 10−6 Oe, which demonstrates
its great potential for weak magnetic field sensing and positioning.
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