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Abstract

A major problem for radiation therapy of lung cancer is respiration-induced motion,

which causes both the tumour and surrounding normal tissue to move during treatment.

This motion often results in inadequate target coverage and increases the likelihood of

additional healthy tissue exposure; therefore detracting from the therapeutic benefits

and increasing the risk of radiation induced toxicity. Some motion-management

techniques include additional treatment margins to encompass the range of tumour

motion, monitoring the respiratory cycle and treating only when in a particular phase i.e.

respiratory gating, or imaging the tumour during treatment and adapting the radiation

beam aperture to follow the tumour i.e. image guidance and tracking.

Magnetic-Resonance-Imaging (MRI)-linacs are a form of image guided radiotherapy,

these systems offer high soft-tissue contrast imaging (with MRI) while simultaneously

treating with a therapeutic radiation beam (linear accelerator or linac). The effects of

the magnetic field on dose deposition and detector response should be well understood

to safely translate this technology to clinical treatments. For MRI-linacs where the

magnetic field is inline with respect to the beam, the effects of the magnetic field on

electron trajectories in lung can be significant and therefore it is important to study the

impacts of this on dose distribution in order to treat lung SBRT on these systems.

In this thesis, a 4D Monte Carlo dose calculation tool is developed and implemented

for assessing current radiotherapy techniques for lung Stereotactic Body Radiotherapy

(SBRT). In recent years there has been an increasing interest in MRI-guided radiotherapy

and its potential to be used for lung SBRT. With the higher doses per fraction used for

SBRT there is an increased need for highly accurate dose calculations and localised

delivery; particularly for MRI-linac lung treatments, where the magnetic field strongly
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influences lung tissue and tumour dose distributions. This thesis also presents work

towards translating the 4D Monte Carlo method for inline MRI-linacs.

A preliminary study was performed to assess the accuracy of the 4D Monte Carlo

dose calculation tool for current treatments using a dynamic lung phantom. Comparing

the dose from different calculation methods, the 4D Monte Carlo dose was in closest

agreement to measurements. The study was extended further to investigate both motion

and delivery tolerances for these treatments. Multi-leaf collimator (MLC) tolerances

were shown to be specific to the motion-management treatment technique used for the

phantom study. A lung patient study which considered varying tumour volumes and

motions showed the impact of the interplay effect on treatment plans was minimal. MLC

tolerances had a larger impact on these plans however no obvious trends were observed

in relation to the size or motion amplitude of tumours. A similar study was translated

to inline MRI-linac systems, considering in the first instance uniform magnetic fields of

varying strengths. MLC tolerances did not vary with magnetic field strength for the plans

considered, that is they remained the same as the 0 T plans.

In order to translate this 4D Monte Carlo tool to an MRI-linac system, the magnetic field

and its effects on the dose deposition should be well understood and accurately modelled.

To achieve this it is essential to perform measurements to characterise the radiation beam

in the presence of the magnetic field using appropriate dosimeters. The microDiamond

(PTW, Freiburg, Germany) and MOSkinTM (CMRP, Wollongong, Australia) detectors

were used to measure the magnetically focused electron contamination region that is

inherent to the Australian MRI-linac system. The skin dose, as measured with the

MOSkinTM, was 369.1% for a 11.8 × 11.5 cm2 field. Techniques using Gafchromic R©

film were also developed in order to acquire accurate percentage depth doses (PDDs)

and profiles. Using the experimental data, beam modelling was then carried out in

a convolution-based treatment planning system (Pinnacle3) and with Monte Carlo

(Geant4). Initial results showed that Monte Carlo should be used alongside the treatment

planning system to accurately model the dose distributions.

Overall, a 4D Monte Carlo dose calculation tool was developed which can be used
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for quality assurance of treatment plans for current techniques of dynamic tumours and

MRI-guided radiotherapy treatments. Methods were developed to experimentally and

computationally characterise the Australian MRI-linac in order to translate the 4D tool

for this system in future. This thesis constitutes steps towards the clinical implementation

of an inline MRI-linac for lung SBRT.
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Chapter 1

Introduction

1.1 Motivations

Radiotherapy aims to deliver ionizing radiation to the tumour while minimising the

radiation dose to healthy tissues. Currently margins are added to target structures

to account for treatment uncertainties, however this can result in nearby organs at

risk (OARs) and surrounding normal tissue volumes receiving additional radiation

dose. The treatment is further complicated when tumour motion is present, such as

respiratory-induced motion during lung cancer treatments, which introduces additional

uncertainties [1]. The position and shape of the tumour and surrounding OARs may also

vary over the course of the treatment session. In this instance additional margins are

typically placed around the target to account for motion which increases the chance of

normal tissue toxicity [2]. Several techniques have been proposed to correct for motion,

each of which may reduce the likelihood of normal tissue complications, however there

is always an increased risk of missing part of the tumour. For improved accuracy of these

treatments the dose calculation method should take into account motion, particularly

when evaluating different motion management strategies and associated risks. This is

particularly important for therapies such as Stereotactic Body Radiotherapy (SBRT),

which utilises steep dose gradients with high doses delivered over fewer fractions

compared to conventional radiotherapy and is therefore considered more complex.

Firstly, this thesis evaluates current SBRT treatments for lung tumours using a novel

four-dimensional (4D) Monte Carlo dose calculation tool, developed and implemented

for this purpose.
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CHAPTER 1. INTRODUCTION 2

An emerging technology which presents one solution to motion uncertainties are

MRI-linacs. These systems offer high soft-tissue contrast imaging while simultaneously

treating with a therapeutic radiation beam. MRI-linacs have the potential to adapt the

treatment beam in response to changes in tumour position and shape; implementation

of these systems should lead to reduction of tumour margins with subsequent reduction

in normal tissue toxicity to surrounding organs [3]. However, the combination of a

magnetic resonance imaging (MRI) scanner and a linear accelerator is non trivial due

to the magnetic coupling between the two systems which compromises each systems

performance. The presence of the magnetic field affects the trajectories of electrons

via the Lorentz force and thus the dose deposited from contaminant and secondary

electrons differs. These variations are more pronounced at air-tissue interfaces [4]

which poses challenges for treatments of lung cancer sites. These differences in dose

deposition in lung are also dependent on the radiation beam orientation with respect to

the magnetic field, i.e. inline or perpendicular. Since MRI-guided lung SBRT could

reduce treatment margins or provide individualised dose escalation it’s potential should

be further investigated. The second focus of this thesis is to set up a platform to perform

such assessments for MRI-linacs, specifically for the Australian program.
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Figure 1.1: Diagram showing the processes of the (4D) radiotherapy treatment chain of
interest in this thesis, each chapter is shown next to the process it addresses.

Overall, this thesis aims to improve our understanding of current treatment techniques and

inline MRI-guided radiotherapy for lung SBRT of moving targets. This will be achieved

through the development of 4D modelling and dosimetry methods. Figure 1.1 shows a

diagram of the processes of the (4D) radiotherapy treatment chain, each chapter is shown

next to the process it addresses.

1.2 Aims and Objectives

The aims of this thesis are:

Aim 1: To incorporate temporal information (4D) into an in-house Monte Carlo

dose calculation system in order to take into account respiratory motion and the dynamic

delivery of radiation.

Research Questions: Does modelling the complexities of motion and dynamic radiation

delivery with a Monte Carlo dose engine improve agreement between measured and

calculated dose?

This is addressed in Chapter 3.
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Aim 2: To assess motion and radiation beam delivery uncertainties for lung volumetric

arc therapy (VMAT) stereotactic body radiotherapy (SBRT) for current treatments and

on inline MRI-linacs.

Research Questions: What is the impact of motion and delivery uncertainties on

dosimetric endpoints? Does the impact vary for different motion management treatment

techniques? Does the impact vary for different respiratory motion amplitudes and tumour

geometries? Does an inline magnetic field improve or diminish the sensitivity of delivery

uncertainties for lung treatments?

This is addressed in Chapters 3, 4 and 5.

Aim 3: To assess different methods of acquiring dosimetric data on an inline MRI-linac;

the data should be suitable for beam modelling.

Research Questions: Which dosimeters are useful for acquiring specific measurements

in MRI-guided radiotherapy (MRIgRT) environments? Do the effects of the magnetic

field on dose depositions further challenge the choice of detector for beam data

measurements? How can measurement limitations for these systems be addressed?

This is addressed in Chapters 6 and 7.

Aim 4: To model the Australian MRI-linac radiation beam in a convolution-based

treatment planning system and with Monte Carlo.

Research Questions: Can we accurately model the beams behaviour using a

convolution-based treatment planning system? Will the Australian MRI-linac system

require Monte Carlo for dose verification?

This is addressed in Chapter 8.



Chapter 2

Literature Review

This chapter provides a brief overview of the stages or processes involved in radiation

therapy. This is then followed by a review of the different strategies used for imaging and

treating moving lung targets. The last section includes a summary of MRI-linac systems

with focus on dosimetry and the associated challenges.

2.1 External Beam Radiation Therapy

External Beam Radiation Therapy (EBRT) involves delivering high doses of ionising

radiation to the tumour by a linear accelerator (linac) while sparing the surrounding

healthy tissues. Typically the machine rotates around the patient and the radiation beam

is shaped by a multi-leaf collimator (MLC) to achieve the prescribed tumour dose and

satisfy normal tissue dose constraints [5]. Each stage of the treatment process, to be

described below, is important for ensuring the safe delivery of EBRT.

2.1.1 Imaging

In the first stage the patient is imaged in the intended treatment position. A

three-dimensional (3D) image is acquired which accurately represents the patients

anatomy and the tumour. It is important that the image has high spatial resolution

and that contrast between different tissues is adequate. The main imaging modality

used for EBRT is Computed Tomography (CT); however combining CT with other

imaging modalities such as Magnetic Resonance Imaging (MRI) or Positron Emission

Tomography (PET) is becoming increasingly widespread. CT uses the attenuation of

x-rays through the body to generate an image. In short, a CT gives information on

5
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the electronic cross sections of tissues in the body however at the expense of exposing

the patient to low doses of ionising radiation. The workings of an MRI machine are

quite complex and will not be described in detail here, for more information readers

are referred to textbooks [6, 7]. MRI uses strong magnetic fields and radio waves

to manipulate protons (hydrogen nuclei) in the body, more specifically their nuclear

spins are magnetised. The radiofrequency signals produced by tissues in response to

these magnetic fields are measured (using the technique of nuclear magnetic resonance

analysis [8]) and from this information a 3D image can be generated. MRI offers

improved soft tissue contrast compared with CT, without additional imaging dose. For

these reasons there is increasing interest in using MRI in radiation therapy for the

delineation of tumours [9]. However there are drawbacks in using MRI as a stand-alone

imaging modality such as a lack of electron density information, which is necessary for

dose calculations, and image distortion resulting in geometrical uncertainties (discussed

more in section 2.3.2).

2.1.2 Delineation and Treatment Planning

Once an image is obtained, the tumour and organs at risk (OARs) are identified by

contouring or delineating the structures on the 3D image. ICRU reports [10–12] define

several tumour volumes that need to be delineated for tumour tissue; gross tumour volume

(GTV) contains the visible tumour, this volume is expanded to the clinical target volume

(CTV) which includes microscopic malignant tissue. An additional margin is added to

the CTV to form a planning target volume (PTV), this margin incorporates geometric

uncertainties in treatment e.g. patient setup errors. Uncertainties in volume delineation

in radiation oncology, particularly variations between observers (or “delineators”), is an

active area of research [13]. Subsequent to delineation of structures, tumour dose is

prescribed along with maximum dose levels to surrounding critical structures. With this

information the treatment planning systems (TPSs) algorithm creates a plan so that all

these objectives are met. An optimised plan for treatments such as Intensity Modulated

Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) include varying beam angles,

field sizes and dose rates.
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2.1.3 Dose Calculations

Dose prescriptions are generally based off previous patient outcomes for that cancer type.

It is therefore important that dose calculations of treatment plans are accurate to further

our understanding on the biological response of certain tissues to radiation therapy [14]

and thus maximize the therapeutic ratio [15]. Accuracy is also important to ensure safe

treatments since a 5% difference in dose could lead to a 10-20% change in tumour

control probability (TCP) and 20-30% on normal tissue complication probabilities

(NTCP) [16]. The dose calculation algorithm used should not only be highly accurate

but also computationally fast in order to maintain an efficient clinical workflow. The

development of dose calculation algorithms has been ongoing since the late 1940s [17],

and have seen a vast improvement due to advancements in computer-processing speed,

medical equipment (e.g. dosimeters, CT scanners) and our knowledge of radiation

physics. Some different types of dose calculation algorithms are discussed below.

Correction based algorithms require measurements of a range of photon beams in

a water phantom which are then corrected to take into account factors such as beam

modifiers (e.g. wedges) and patient composition (e.g. shape and inhomogeneities).

Some patient inhomogeneity corrections include the equivalent path length method,

power-law correction (Batho), equivalent tissue-air ratio and differential scatter-air ratio

methods. The details of these corrections will not be discussed in this thesis however

comprehensive overviews can be found in [18, 19].

Convolution algorithms (widely used in clinical TPSs) require a model of the beam

fluence from the linear accelerator head, TERMA (total energy released per unit mass)

and dose kernels to calculate dose deposited inside the patient [20]. Some examples

include pencil beam convolution (PB), anisotropic analytical algorithm (AAA) and

collapsed-cone convolution (CC). These algorithms can be further subdivided into

those that do not consider changes in lateral transport of electrons (PB) and those that

approximate the changes (CC, AAA) [21]. Collapsed-Cone Convolution [22] reduces

computation time by collapsing all point-spread kernels from a cone along the central

axis. Adaptive Convolution (AC) is a variation of this algorithm and is used for TPS

calculations in this thesis. It reduces the calculation time even further by initially
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assessing TERMA gradients; in regions where there is a low gradient, a coarse dose

grid resolution is used and in regions of high TERMA gradients, a finer resolution is

used [23]. Heterogeneities in both AC and CC algorithms are accounted for by density

scaling of the energy deposition kernels. More detailed information on these algorithms

can be found in the following [14, 24, 25].

The most accurate dose calculation methods solve the linear Boltzmann transport

equations (LBTE). Monte Carlo indirectly solves these equations using stochastic

methods. This method is considered to be the gold standard for dose calculations

however is computationally intensive as it simulates the trajectories of individual

particles [16]. Historically it was used to calculate the dose kernels used in other TPS

algorithms [26]. The different Monte Carlo dose engines which are used in this thesis

will be discussed in more detail in section 2.3.4. Another method is to explicitly solve

these equations which is a relatively recent approach, a topical review of which can be

found in [27]. Acuros R© XB is an example of a commercial dose calculation algorithm

classified as a LBTE solver.

2.1.4 Treatment Delivery

The delivery of radiation therapy involves setting the patient up on the treatment couch in

the same position as treatment planning. Any variation of the patient position compared

with planning (inter-fraction motion) may then be quantified and corrected prior to

treatment delivery using on-board imaging systems such as kilovoltage (kV) cone beam

computed tomography (CBCT) [28] or megavoltage (MV) portal imaging [29]. After

the patient is correctly set up the treatment plan is delivered. For treatment sites which

undergo motion during treatment delivery (intra-fraction motion), i.e. thoracic tumours,

real-time imaging guidance may be necessary. Such methods are discussed further in

section 2.2.5.

2.1.5 Lung SBRT

Stereotactic Body Radiotherapy (SBRT) is defined as delivering high radiation doses in

fewer fractions (typically less than 10) so to disrupt tumour cell proliferation [30]. It

is a promising treatment for early stage inoperable non-small cell-lung cancer [31] with
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numerous clinical trials reporting improved local tumour control rates [32–34]. However

increasing the dose per fraction results in an increased likelihood of radiation pneumonitis

or pulmonary complications should lung tissue be irradiated [35]. Timmerman et al

reported patients with grade 3 (12.7%) and 4 (3.6%) toxicities [34] following a phase

2 lung SBRT clinical trial. The treatment can be further complicated by target and lung

motion and dose calculation accuracy (section 2.2.3). To safely deliver these treatments,

every stage from imaging through to delivery should be highly accurate. In particular,

to minimise toxicities, the dose gradient around the target should drop off rapidly and

any motion of the tumour needs to be accounted for in planning, dose calculations and

delivery.

2.1.6 Commissioning of a Linear Accelerator

Prior to being able to treat patients, commissioning of a treatment machine for clinical

use must be performed. This is a process by which detailed measurements are taken

to characterise the beam. It involves data acquisition (performed in water-equivalent

phantoms), modelling the beam (in the TPS) and verification (compare measurements

to TPS for more complex scenarios) [36]. This process is important for ensuring the

safe delivery of radiotherapy; the procedures will be outlined here since this is a focus of

chapters 7 and 8 (in the context of MRI-linacs).

AAPM Task Group 106 [37] reports on the equipment (phantoms and detectors)

and procedures for collecting accurate beam data for linear accelerator commissioning.

Data required for photon beams includes percentage depth doses (PDD) and profiles at

various depths for all field sizes and wedge fields, MLC data (e.g. inter- and intraleaf

leakage, penumbra, tongue and groove effects), scatter factors (collimator and total) and

tray and wedge factors. The detector used for each measurements should be chosen

carefully; it depends upon the resolution required and its suitability to the application and

field size. Ion chambers (of size 4-6 mm in diameter) are commonly used for scanning

water tank measurements however for small fields, the dose gradient is high and the

comparatively large active volume of the detector leads to incorrect readings. For these

field sizes detectors with small active volumes (e.g. stereotactic field diode) should be

used [37].
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2.1.7 Routine Quality Assurance and Treatment Tolerances

An integral part of each stage of the radiotherapy process is quality assurance (QA).

QA in radiotherapy ensures accurate treatments by checking dosimetric and geometric

accuracy. The equipment used for both imaging and treatment is routinely checked to

verify that the output is within tolerance limits. These limits are set by a department and

are typically based off recommendations in the literature. For complex treatment plans in

which machine delivery parameters (e.g. gantry, MLC) are continuously varying such as

VMAT, pre-treatment QA is essential to confirm the robustness of the plan to delivery.

Tolerances and action levels are in place for treatment machines to ensure safe

deliveries; if a parameter falls out of the specified tolerance the treatment is halted.

Recommendations for tolerances are given in AAPM Task Group 142 [38] and are

specific to the machine type and the treatment techniques it delivers. A thorough

understanding of the uncertainties associated with a treatment and the consequences is

crucial in determining the tolerance levels for particular treatment parameters.

Delivery Uncertainties

Various studies have investigated the consequence of machine parameter errors on plan

quality [39–45]. Mu et al. [40] demonstrated on average changes of 4% in D0.1cc of the

spinal cord and brain stem for simple plans when introducing a 1 mm systematic error

and a 12% difference for complex plans for head and neck patients. Blake et al. [45]

investigated delivery uncertainties for lung SBRT and found an average difference of

4.5% for D0.1cc (Spinal Cord) for a 1 mm systematic leaf gap error and a 9.2% change for

V20Gy (Lung - PTV). Generally, MLC systematic errors were shown to have the greatest

impact on treatment plans, and OAR DVH metrics were more sensitive to MLC errors

than target metrics. In this thesis the sensitivity of lung SBRT for moving targets to MLC

uncertainties are explored.

2.2 Radiation Therapy for a Moving Target

During the treatment of lung tumours, respiration-induced motion further complicates

the therapy [46]. The position and shape of the tumour and surrounding tissues will
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vary over the treatment time. Several methods have been proposed to correct for motion

which include motion-encompassing margins, gating, breath-hold, image-guidance and

real-time tracking [2]. Generally, methods used to treat moving targets involve the

inclusion of temporal information, otherwise referred to as the 4th dimension.

2.2.1 Imaging

Four-dimensional Computed Tomography (4DCT) sorts CT images into phases of the

breathing cycle, thus reducing motion artefacts in the images. The respiratory cycle is

monitored during imaging by placing devices on or around the patients thoracic region,

some examples include bellows and infra-red sensors. During image reconstruction,

binning of CTs can be either phase- (based on percentage of the breathing cycle) or

amplitude-binned (based on amplitude of the breathing cycle). 4DCT images may then

be post-processed; a 3D minimum (MinIP), average (AIP) and/or maximum intensity

projection (MIP) image can be calculated from the 4DCT dataset and used for delineation

of structures or planning the treatment.

Other methods of imaging a moving target include breath-hold CT (the patient

holds their breath during image acquisition of a three-dimensional CT (3DCT)), gated CT

(the patient is imaged at a distinct period of the breathing cycle), and slow scan CT (the

CT is acquired very slowing in order to include multiple phases therefore a time-averaged

image is obtained).

2.2.2 Delineation and Treatment Planning

A visual representation of different methods used in delineation and treatment planning

of moving targets is shown in figure 2.1 as compared to conventional techniques.

Conventional free-breathing does not take the breathing trace into account while imaging

or planning, this method leads to artefacts in the image and consequentially delineation

errors [47]. The internal target volume (ITV) approach defines a treatment margin

which encompasses the whole range of motion ensuring tumour coverage at the expense

of increased dose to the lung volume [10]. This method may define the ITV on the

MIP image or taking the union of the GTVs defined on individual phase CTs. The

mid-ventilation method on the other hand uses a CT which represents the tumour in
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the time-weighted average position and therefore allows for reduced treatment margins

compared to the ITV method under the circumstances that individual patient tumour

motion is considered [48]. Target definition for a gated treatment plan involves the

union of GTVs within a 30%-duty cycle around the phase chosen for gating (typically

the end-exhalation or end-inhalation positions) [49]. For the case of treating using the

breath-hold technique, the structures are defined on the 3DCT obtained while the patient

holds their breath and additional margins are added to account for uncertainties in tumour

location for this method.

Time-weighted
average position

Maximum exhale

Maximum inhale

Geometrical
average position

Conventional
free-breathing

Internal Target
Volume

Gated at exhale Mid-position

GTV
(blue)

CTV
(yellow)

PTV
(orange)

ITV
(red)

Figure 2.1: Different methods of delineation for treatment-planning of moving targets.
Figure taken from Wolthaus et al. [50]. GTV = gross tumour volume; CTV = clinical
target volume; PTV = planning target volume.

For lung treatment planning it is important to use an accurate dose algorithm for

optimisation, as well as for the dose calculation, in order to obtain a high quality

plan [51]. The image which is used for optimisation will also influence the resulting

plan [52].

2.2.3 Dose Calculations in Lung

Dose calculations for lung cancer sites are the most challenging due to the low density

of lung tissue surrounding the high density tumour which leads to lateral electronic

disequilibrium conditions. The lateral range of secondary electrons in lung is large and



CHAPTER 2. LITERATURE REVIEW 13

when the ranges are similar to the field size, charged particle equilibrium no longer

exists. Many dose algorithms used in TPSs use approximations for lateral transport of

electrons and therefore lack the accuracy required to calculate dose under electronic

disequilibrium conditions. Numerous studies have shown differences between dose

calculation algorithms for lung phantoms and patients [53–56], with Monte Carlo

calculations being the most accurate [16].

For lung SBRT the accuracy of an algorithm needs to be investigated prior to clinical use

owing to the small fields used in this treatment technique. Figure 2.2 is from a recent

review on the accuracy of dose calculation algorithms for lung SBRT by Fogliata et

al. [57]. Panettieri et al. [58] showed an underestimation by CC at the lung/GTV interface

in a phantom geometry. Li et al. [59] and Hardcastle et al. [60] performed calculations

with patient data; both results showed lower target and lung doses for CC compared to

Monte Carlo.

Figure 2.2: Comparison of dose calculation algorithms in a cubic lung phantom using
SBRT field sizes. Figure taken from Fogliata et al. [57]. Grey shaded area is lung
material. Type ’a’ refers to algorithms which don’t consider lateral transport of electrons
(e.g. Pencil Beam). Type ’b’ refers to algorithms which approximate lateral transport of
electrons (e.g. Collapsed Cone Convolution). Type ’c’ refers to principle based algorithms
(e.g. Monte Carlo).

The physics of lung SBRT is further complicated by respiration-induced motion. The

effects of motion on dose distributions include blurring (leads to reduction of PTV dose

conformity), interplay effects (tumour moves out of the beam aperture which is shaped
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by moving MLC) and deformation effects (the changing density of the tumour effects the

probability of interactions of radiation) [61]. For improved accuracy the dose calculation

stage should take into account motion, particularly when evaluating different strategies

for treating a moving target.

2.2.4 4D Dose Calculations

Four dimensional dose calculations is a term that can imply any method which considers

tumor motion information when calculating the dose distribution; typically these

calculations use 4DCT images. These calculations have previously been performed by

computing the dose from the whole plan on each phase and scaling by the number of

phases [62–65] or by the time weight for each phase [66]. These methods have limited

consideration of temporal components in their calculations and therefore cannot be used

to assess effects of interplay between the beam delivery system and tumor motion. 4D

dose calculations for post delivery verification have been proposed [67–70] whereby

treatment log files from the machine and respiration monitoring device are used to

simulate the control points delivered to each CT phase. Rao et al. [71] performed 4D

calculations by splitting up the treatment plan among phases and calculating the dose

in Pinnacle3. Ehrbar et al. [72] presented a similar method where they assigned control

points to the respiratory phases in Eclipse (Varian Medical Systems, CA, USA) assuming

that each phase was equivalent to the duration of one control point and all patient cases

had the same steady respiratory cycle.

Although commercial TPSs are improving their ability to incorporate 4D information

into the dose calculation, they have limited ability to account for the interplay between

temporal variables such as those that occur during a VMAT SBRT lung delivery. With

higher temporal resolution, the accuracy of the dose calculation should improve; in this

thesis the Monte Carlo dose engine is used for VMAT pre-treatment time-resolved 4D

dose calculations by assigning parts of the dynamic plan to different 4DCT phases using

temporal information.
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2.2.5 Treatment Delivery

Some treatment techniques for moving tumours include the ITV approach, gating and

breath-hold which have been discussed in sections 2.2.1 and 2.2.2. A step further in

improving the treatment of moving tumours is to use image guidance and real-time

tracking techniques [73–77]. Tracking techniques typically include the use of internal

fiducials or external surface markers to track the location of the tumour, and the couch or

MLC will shift position to ensure the treatment plan is mimicked. The image guidance

systems currently used for tracking have low soft tissue contrast, deliver extra radiation

dose to the patient and involve an invasive procedure when used in conjunction with

internal fiducial markers. MRI on the other hand offers excellent soft tissue contrast

while not delivering additional radiation dose.

2.2.6 Treatment Uncertainties

It is important to evaluate uncertainties for the motion-management techniques used

in a radiotherapy department. The imaging modality used can lead to localisation

uncertainties caused by artefacts resulting from variations in the breathing cycle during

the acquisition, this is in addition to other limitations of the modality for example

geometric distortions observed in MRI (see section 2.3.2). For tumour tracking

techniques using external or internal markers as a surrogate, uncertainties in tumour

position arise as well as latency between the systems. The time between registering the

surrogates position and for the MLC or couch position correction needs to be evaluated.

Both geometric and latency tolerances should be implemented in QA programs for these

treatment techniques [78].

2.3 MRI-linacs

The concept of MRI-linacs is to adapt the radiation beam to deliver a more precise

treatment by utilising knowledge of tumour position and shape obtained from the MRI

in real time. This should allow for tighter dose margins with a subsequent reduction

in dose to healthy tissue surrounding the target [79]. Currently there are four different

MRI-linac designs in the world, two which are used clinically [80, 81] and two research

systems [82,83]. Each design has a unique variation of the radiation beam with respect to
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the magnetic field, the magnetic field strength and the MRI bore design. The two possible

beam to magnetic field orientations are perpendicular (transverse) and parallel (inline or

longitudinal). The specific features of each system are summarised in table 2.1.

Table 2.1: The different features of the MRI-linac systems available

System Linac B0 Orientation B0 Strength Bore Design

ViewRay [80] 6 MV (replaced
previous Co60

sources)

Perpendicular 0.35 T Split

Elekta-Unity [81] 7 MV Perpendicular 1.5 T Closed

Cross Centre
Institute,

Canada [82]

6 MV Perpendicular and
Inline

0.5 T Split

Ingham Institute,
Australia [83]

6 MV Perpendicular and
Inline

1 T Split

While there are many potential advantages to these systems, there are many engineering

and dosimetric challenges to overcome.

2.3.1 Challenges of Integrating MRI and Linac Technology

Linac Induced Distortion and Interference on MR Imaging

Linacs can affect the operation of the MRI in three ways (1) magnetic materials in the

linac cause inhomogeneities in the magnetic field, of most concern is the MLC [84], (2)

RF noise produced from the magnetron interferes with the gradient coils [85] and (3)

radiation causes eddy currents in the gradient coils [86]. All three reduce image quality

and thus degrade the geometric accuracy of the system. Solutions to reduce these effects

have been proposed; some examples include, RF decoupling by using a Faraday cage /

RF shielding [87–90], increasing the distance between the two components [90, 91] and

actively shimming the magnet [90].
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Magnetic Field Effects on Linac Components and Dose Deposition

The magnetic field affects the trajectories of electrons via the Lorentz force resulting

in changes in electron transport in the linac gun, waveguide and target as well as

dose deposition in the patient. The influence of the magnetic field on the electron

gun (e.g. output loss) has been well studied [91–93] as have alternate electron gun

designs to resolve the issue [91, 94, 95] or magnetic shielding of the electron gun [96] or

linac [97,98]. Any form of shielding distorts the MRI scanners magnetic field and in turn

affects imaging. Compromises must therefore be made between the design of the two

systems.

The changes to the dose deposited in the patient for MRI-linacs can be divided

into the characteristics observed in the perpendicular and inline orientations. In the

perpendicular systems, the curved trajectory of electrons results in asymmetric point

spread kernels with less depth penetration [99, 100], thus laterally shifted profiles and

shallower build-ups are observed [101]. Increased dose occurs at material interfaces with

high variation in density due to electrons curving back around in the low density material,

termed the electron return effect (ERE) [4] (see figure 2.3), which is also dependent on

the orientation of the interface [102]. For moving lung tumours this poses challenges

as changes in tumour shape or orientation will effect the dose deposited, increasing

uncertainty in dosimetry. Also observed on these systems are differences in entrance skin

dose in [103] and out [104] of the primary beam due to these deflections. The magnitude

of the aforementioned effects are strongly dependent on the field strength [99].
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(a) (b)Simulation Setup. Central x−z plane
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Figure 2.3: The electron return effect that occurs for perpendicular MRI-linac systems.
Electrons curve back round in a low density material and results in increased dose at the
surface of the high density material. Figures taken from Raaijmakers et al. [4].

For the case of inline systems the changes in dose distributions are minimised; with

the field in the same direction as the beam ERE is mitigated. Instead increases in dose

along the central axis are observed as the electrons are forward-directed. A reduction in

lateral scattering of the electrons subject to an inline magnetic field results in penumbral

trimming [105]. However, this orientation can lead to higher dose to the patient surface

due to the magnet’s fringe field [90, 103, 105–108]. Contaminant electrons produced

in the linac head and air volume between the patient and linac would typically diverge

with only some reaching the patient. The fringe field of the MRI focuses these electrons

along the central axis resulting in high electron contamination at the surface. This

effect can be lessened with the inclusion of a yoke to reduce the size of the fringe

field [103, 108, 109]. The intensity and size of the high electron surface contamination

is not only dependent upon the magnetic field’s footprint but also the strength of the

magnet (B0), the radiation field size and the proximity of the linac components to the

MRI. Measurements on the first prototype of the Australian MRI-linac system (a 1.5 T

ex-clinical MRI) showed an approximate 300% increase in near surface dose for a 3 ×

3 cm2 field with a source-to-MRI-isocenter distance of 2.87 m [90]. Characterisation of

these magnetically focussed contaminant electrons on the Australian MRI-linac system

is the subject of chapter 6.
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2.3.2 Lung SBRT for MRI-linacs

MRI-guidance could deliver lung SBRT with higher accuracy and precision [110] due to

its potential to continuously track the tumour, resulting in a reduction of motion margins

thus minimising dose to lung tissue. However there are challenges which need to be

addressed with both radiation delivery and imaging.

Radiation

For perpendicular systems the ERE can be problematic at air-tissue interfaces [79]

although it can be compensated for by using opposing beams [102, 111]. Bol et al [112]

investigated ERE compensation for moving air cavities and concluded that IMRT plans

optimised at 0 T can be used as the ERE is not prominent when the air cavities are fully

covered by cross beams. An exception to this is for situations where air cavities appear

and disappear during treatments in which case plans should be gated or re-optimised.

On the other hand, for inline magnetic fields the electrons are forward-directed.

This means the dose kernels are elongated, and in lung substantial changes to penumbral

widths are observed [113] as well as potential dose enhancement effects for lung

tumours [114, 115] which has been demonstrated experimentally [116]. Oborn et

al. [115] showed this enhancement was dependent on the tumours location, density and

size. It is important that the dosimetry of dynamic lung tumours is well understood for

progression towards inline MRI-linac lung SBRT patient treatments.

Other than the variations in dose distributions there are also uncertainties with dose

calculations using MRI images as they do not provide information about electron density

and attenuation coefficients. Dose calculations can only be performed by generation of

synthetic or pseudo CTs [117] or registering the MR image to a planning CT [118], both

methods which contribute uncertainties to the treatment process. The former is difficult

in the thoracic region since the MR signal in lung is low (due to its low proton density)

and therefore assigning densities to regions becomes problematic [110].
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Imaging

The quality of MR images depends on the homogeneity of the main magnetic field

as well as linearity in gradient fields [119], with the latter being the main contributor

to systematic geometric distortions. To reduce these distortions the main magnetic

field can be shimmed and algorithms are applied to correct for non-linearities in the

gradients [120]. In addition to scanner specific distortions, the object or patient that is

being imaged induces distortions. In terms of imaging in lung, magnetic susceptibility at

lung-air interfaces contributes to significant artefacts in the image [121]. Due to the large

differences in the magnetisation properties of air and lung, static local field gradients

are formed at these interfaces which opposes the main magnetic field. The resulting

distortions introduce artefacts.

Another challenge in MR imaging for lung are motion artefacts [122]. One solution,

which is similar to 4DCT, is to monitor the patient’s respiratory signal with pneumatic

bellows and synchronise image acquisition with the breathing cycle [121]. Alternatively

a navigator signal from MRI can be used to monitor motion. Imaging techniques

used to overcome motion artefacts can be split into multi-slice 2D [123, 124] and 3D

acquisitions [125, 126]. 4D-MRI refers to respiration-correlated, it is not time resolved

as the speed of acquisitions is currently not fast-enough, a comprehensive review on

4D-MRI for radiotherapy is given by Stemkens et al [127].

2.3.3 Dosimetry for MRI-linacs

In addition to the physical changes in dose deposition, the dose response of detectors can

also be influenced by the magnetic field. The density of the detector becomes important

as to how it will affect the dose reading, also to note is the orientation of the detector in

the magnetic field [128–130] and the presence of air gaps surrounding the detector [131].

Therefore, the choice of detector and its setup for specific dosimetry measurements

should be considered even more carefully (than conventional radiotherapy) for these

systems.

Ionisation chambers are the most widely used type of dosimeter for radiation

measurements [132], particularly for reference dosimetry. However in magnetic
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fields, the trajectories of secondary electrons in air (being low density) are significantly

altered and therefore the response of ion chambers are affected. Many groups have

explored ion chamber correction factors in these conditions [128, 129, 133–137] showing

a strong dependence on chamber shape and orientation with respect to the magnetic field

and beam. Other groups have investigated the dose response of point diodes [130] and

diamond detectors [130, 138] in fields of both orientations and varying strengths.

Smit et al. [134] presented a prototype MRI compatible scanning water tank and

evaluated CC01, CC04 and CC13 ion chambers for relative dosimetry. They found that

it was possible to use these ion chambers with the prototype water tank for scanning

measurements which is important for beam commissioning. O’Brien et al. [139]

examined changes in the relative response for shielded and unshielded diodes, diamond

and three different sized ionization chambers. This study concluded that the diodes and

diamond were underestimating the lateral shift in profiles characteristic of perpendicular

MRI-linacs. The diamond, however, was shown to be suitable for commissioning and

output measurements provided that a correction was applied for this underestimation.

The microDiamond (PTW, Feriburg, Germany) was characterised in a 1.5 T MRI-linac

by Woodings et al. [140]. It was found that the effective point of measurement was

in agreement with the vendor specification and depth dose and profiles agreed with

CC04 ion chamber measurements. Additionally, depth dose measurements performed

by Wegener et al. [141] for a range of different magnetic field strengths showed closest

agreement between microDiamond and radiochromic film. These studies were all

performed on systems with the magnetic field perpendicular to the radiation beam, the

microDiamond’s relative response in an inline system was not observed.

2D dosimetry is important for machine and patient QA therefore 2D detector devices

should be tested in magnetic fields to validate their use for MRI-linacs. The IC

PROFILERT M (Sun Nuclear Corporation, Melbourne, FL) was characterised in a 1.5 T

perpendicular MRI-linac system [142] and shown to be suitable for measuring profiles.

Perik et al. [143] investigated the STARCHECKMAXI MR (PTW, Feriburg, Germany) in

a perpendicular system and found it was suitable however should only be used when

stationary. 2D silicon diode array detectors have been characterised in magnetic field
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environments (both inline and perpendicular) [144, 145]. EPIDs have also been studied

for MRI-linac dosimetric applications [146, 147] and shown feasibility as long as certain

corrections are in place e.g. gantry angle dependence.

Radiochromic Film Dosimetry

Radiochromic films are used extensively for 2D dosimetry in radiotherapy clinics. The

chemical principle of these films is polymerisation, which occurs when ionizing radiation

interacts in the film emulsion (pentacosa-10,12-diyonic acid (monomers) immersed in

a gelatin matrix) polymers are formed resulting in colourisation. The degree of colour

formation is dependent on dose delivered however this is not a linear response and varies

between film batches. Gafchromic R© EBT film (Ashland, Covington, USA) is often used

for megavoltage beams as it has minimal energy dependence, a high tissue equivalence

for clinically relevant energies [148] and a high spatial resolution making it desirable

for SBRT dosimetry [149]. These characteristics also make it a promising candidate for

MRI-linac dosimetry. There is however concern that the polymerisation process would

be effected by the magnetic field [150–153]. Reynoso et al. [150] found significant

differences (up to 15%) in absolute dose for EBT2 film and, using scanning electron

microscope imaging, visualised changes in the crystal structures orientation in the film.

Barten et al. [152] studied film in a low magnetic field (0.35 T) whereas Billas et al. [153]

investigated magnetic fields up to 2 T, both concluded that the changes caused by the

magnetic field were small and that EBT3 is suitable for relative and absolute dosimetry.

2.3.4 Treatment Planning and Dose Calculations for MRI-linacs

The theory of algorithms used for treatment planning and dose calculations is quite

involved, some details were included in sections 2.1.2, 2.1.3 and 2.2.3. This section is

included to give a brief overview of the algorithms used for each MRI-linac system.

The ViewRay system uses a fast Monte Carlo based algorithm and a convex-nonlinear

inverse optimisation algorithm for the TPS [154, 155] with the option to account for the

magnetic field in secondary electron transport calculations. During the development of

the Elekta-Unity system the optimisation procedure that was proposed used Geant4 to

calculate beamlet dose kernels and optimise the beamlet weightsgeometrical using the
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ORBIT algorithm [111]. The current commercial TPS for the Elekta-Unity (Monaco)

uses GPUMCD, which is a fast GPU-oriented dose calculation platform [156] to

calculate anatomy specific beamlets. Beamlets for each gantry angle are calculated if

they intersect the target using a ray casting algorithm, and for beamlet weighting the

optimisation algorithm FIDO is used [157]. The Alberta group have proposed using

LBTE solvers for dose calculations instead of Monte Carlo, this is allows for the inclusion

of electromagnetic fields in the first order LBTE [158–162].

The effects of the inline magnetic field on optimisation for lung plans were shown

by Schrenk et al. [163] to reduce mean dose to lung however had no detrimental effects

on PTV coverage. Current commercial TPSs are not capable of modelling the complete

magnetic field, including the fringe field. Begg et al. [164] have shown that beyond the

electron contamination region of the Australian MRI-linac, the relative dose deposition

in water along the central axis remained unchanged with different inline magnetic fields

strengths. Although there are small changes to penumbral widths in water [113], these

changes could be modelled in the TPS. Therefore, it is expected that current commercial

TPS systems will be able to model an inline MRI-linac if the magnetically focussed

electron contaminants are somehow removed. Differences in lung tissue will be more

significant than water [113]. To ensure that deviations caused by the magnetic field are

minimal the Australian MRI-linac program has proposed a Monte Carlo dose verification

system to calculate patient dose distributions with and without the magnetic field. A focus

of this thesis is to test the feasibility of using a convolution-based TPS, Pinnacle3 (Philips

Healthcare, Fitchburg, USA), to model the radiation beam. A Monte Carlo model is also

developed alongside the TPS model for the aforementioned dose verification system.

The Monte Carlo dose engines used in this thesis are EGSnrc [165] and Geant4 [166],

the details of each are discussed below.

EGSnrc

EGSnrc is written in MORTRAN (macro from FORTRAN), it is split into BEAMnrc

(which models the linear accelerator head) and DOSXYZnrc (which models the patient).

A phasespace is used when running simulations between the two codes (i.e. BEAMnrc
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and DOSXYZnrc). This is a file which stores information about particles crossing a

defined plane, it will include the particle type, energy, momentum vector, and position. In

recent years EGSnrc have implemented charged particle transport in magnetic fields [167]

and as such studies have used the code to model dosimetry effects in MRI-linac systems

[109, 136, 168, 169].

Geant4

The Geant4 toolkit is written in C++ programming language; it was originally intended

for high energy physics however is now commonly used for medical physics applications.

The user defines physics processes, geometry and tracking parameters allowing

for customisation. The main classes used are Detector Construction (for defining

geometries), Physics List (for defining physics processes) and Primary Generator Action

(for defining the particles to generate including their properties). The user must also

define an output for the simulation (may use additional class: Stepping Action), this

could be the dose deposited in a geometry, or a phasespace of the particles crossing a

specified plane. Geant4 has been previously been used to model radiation in the presence

of magnetic fields [99, 100, 107, 115, 116, 128, 144, 170, 171] and proven to be accurate

for this purpose.



Chapter 3

A 4D Monte Carlo Dose Calculation
Tool for the Treatment of Dynamic
Lung Tumours: a Phantom Study

Some of the results presented in this chapter have been published in the journal Physics

in Medicine and Biology:

N. F. Roberts, M. Williams, L. Holloway, P. Metcalfe, B. M. Oborn, “NOTE: 4D

Monte Carlo dose calculations for pre-treatment quality assurance of VMAT SBRT: a

phantom-based feasibility study”, Phys. Med. Biol. 64 (21), 21NT01 (10pp).

3.1 Overview

SBRT utilises steep dose gradients with high doses delivered over fewer fractions

compared to conventional radiotherapy [172], and is a promising treatment for inoperable

non-small cell-lung cancer [31]. VMAT can be used in SBRT to deliver highly

conformal dose distributions with faster treatments times [173], however it involves

gantry rotation, dynamic MLC motion and variable dose rates which increases the

complexity of the treatment. Typically for lung cancer sites, respiration-induced motion

can further complicate the therapy [46]. Several methods have been proposed to correct

for respiration-induced motion which include motion-encompassing margins, gating

and breath-hold techniques [2]. The ITV approach defines a treatment margin which

encompasses the whole range of motion ensuring tumour coverage at the expense of

higher lung dose. The use of image guidance and real-time tracking techniques is

25
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also of interest [73–77]. Dynamic treatment-couch tracking is a method whereby the

tumour motion is corrected for by moving the couch in the opposite direction. This

method has not yet been used clinically however there are promising research systems

available [174–176]. For improved accuracy of these treatments the dose calculation

method should take into account motion, particularly when evaluating different motion

management strategies and associated risks.

Dose calculations for lung SBRT are complicated by electronic disequilibrium conditions

which exist in low density media (lung) and for small fields used in SBRT. The accuracy

of algorithms available in commercial TPSs should always be evaluated prior to clinical

use for these types of treatments [57]. Monte Carlo dose calculations are considered

the gold-standard [16] and will inherently provide the most accurate dose calculation

for small fields in lung tissue. The Monte Carlo dose engine is used in this chapter to

inform on any deficiencies with the TPS algorithm, Adaptive Convolution. Commercial

treatment planning systems (TPSs) are also limited in their ability to account for the

interplay between temporal variables such as those that occur during lung VMAT SBRT

delivery.

An in-house Monte Carlo system developed at the Illawarra Cancer Care Centre

(Wollongong, Australia) for calculating radiotherapy dose distributions has been

previously benchmarked [177]; it offers a flexible framework for incorporating 4D

information into the dose calculation. This chapter reports on the development

and implementation of a 4D Monte Carlo (4DMC) calculation method for use as

pre-treatment quality assurance of lung VMAT SBRT plans. The 4DMC method was

compared with 3D Monte Carlo (3DMC) and a 3D and 4D TPS approach. Experimental

measurements were performed with radiochromic film in a dynamic thorax phantom.

Additionally, the method was used to explore uncertainties in motion and delivery of

lung VMAT SBRT with the phantom.
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3.2 Materials and Methods

3.2.1 Phantom Imaging

A 4D CT dataset of a CIRS Dynamic Thorax Phantom Model 008A (CIRS Inc., Norfolk,

VA, USA) was acquired. For this study the 3 cm diameter target insert was used and

simple 1D sinusoidal motion in the superior-inferior direction was set with an amplitude

of ±15 mm and cycle time of 5 seconds. This direction of motion was chosen as it

is the most prominent for thoracic tumours [178] and ±15 mm amplitude was used

to evaluate an extreme case. The 4D image dataset was acquired using a SIEMENS

Sensation Open CT scanner with a spatial resolution of 0.98 × 0.98 × 2 mm3. The

real-time position management (RPM) block (Varian, Medical Systems, CA, USA) was

placed on the breathing platform to obtain a respiratory signal, the images were then

sorted using phase-based binning into 8 phases and imported into the treatment planning

system (TPS).

3.2.2 Treatment Planning

Two types of plans were generated in Pinnacle3 V14. The first plan uses an ITV approach,

where the treatment margin encompasses the whole range of motion. The ITV was

contoured on the MIP dataset and transferred to the AIP dataset for optimisation; this

will be referred to as the ITV-plan. An additional 5 mm isotropic margin was added

to define the PTV. The second plan was to mimic dynamic treatment-couch tracking, a

method whereby the tumour motion is corrected for by moving the couch in the opposite

direction. The second plan was optimised on a single phase of the 4DCT dataset (the

reference phase); this plan will be denoted as the TRACKING-plan. For this particular

scenario the couch only needs to correct in 1D however for 3D tumour motion with

deformation, planning with the intention of couch tracking would be more complicated.

For the TRACKING-plan the GTV was contoured on the reference dataset and PTV

was set to equal the GTV with an isotropic margin of 5 mm. Lung was defined on all

datasets as the lung region minus the GTV (as defined on the reference phase). The dose

prescription to the PTV was 60 Gy to be delivered over 3 fractions with a dose objective

of D95% ≥ 60 Gy and dose constraint of V20 ≤ 20% to the lungs. Both plans were

optimised using 6 MV (Varian 2100C) dual-arc VMAT techniques with a control point
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Table 3.1: Summary of datasets used for planning, contour definition (including physical
volume), 3D and 4D dose calculations (DC). AIP = Average Intensity Projection, MIP =
Maximum Intensity Projection, RefP = Reference Phase, 4DCT = all phases of the 4DCT
dataset.

Plan Optimisation ITV/GTV
(volume, cm3)

PTV (volume,
cm3)

3D DC 4D DC

ITV- AIP MIP (30.56) AIP (68.11) AIP 4DCT

TRACKING- RefP RefP (12.02) RefP (32.63) RefP 4DCT

gantry spacing of 4◦ (180 control points in total). The total number of MU for each plan

was 7074 and 6824 for the ITV- and TRACKING-plan respectively. A summary of the

datasets used for treatment planning, treatment volume definition and dose calculations is

included in table 3.1.

3.2.3 3D Dose Calculations

3D Monte Carlo

A previously benchmarked, in-house EGSnrc based system developed at the ICCC [177]

was used for the Monte Carlo simulations. The system uses BEAMnrc to model 6 MV

beam production from a Varian 2100C linac. The particles are then stored in an IAEA

phase space file which is read in by DOSXYZnrc to simulate transport through the patient

or phantom. All DOSXYZnrc simulations had a photon cutoff energy of 0.01 MeV

(PCUT) and electron cutoff energy of 0.521 MeV (ECUT) with dose grid resolution of

1.95 × 1.95 × 2 mm3. The number of primary histories was 4 x 1010 (electrons hitting

the target) and at the phase space plane in the DOSXYZnrc simulations the particles were

recycled 29 times giving an uncertainty in dose scored of ±1.5% of the maximum dose.

An advantage of this system is that it is fully automated; a plan is exported from the TPS

to a dedicated cluster and the simulations are built based off the RTPlan, CT and RTStruct

DICOM files. After the simulations are complete the system then analyses the dose files

produced and generates a report which compares the dose from the TPS (RTDose) and

the Monte Carlo simulations.
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3D Adaptive Convolution

Treatment planning system dose was calculated with a dose grid resolution of

2 × 2 × 2 mm3. 3D adaptive convolution (3DAC) dose calculations were performed

on the respective datasets that the plans were optimised on and the DICOM files were

exported for analysis. 3DMC dose calculations were performed on these corresponding

datasets for comparison.

3.2.4 4D Dose Calculations

4D Monte Carlo

To perform 4DMC dose calculations, the RTPlan file for each of the plans mentioned

in section 3.2.2 was modified using MATLAB R© R2017a (Mathworks Inc., Natick, MA,

USA) so that each phase was allocated part of the plan. This was achieved by determining

the duration of each control point and then distributing the control point to the phases

based off the respiration cycle, as shown in figure 3.1. A simulation was performed for

each of the 8 phases, calculating the dose deposited in the phantom with input of the

modified DICOM RTPlan files. For the TRACKING-plan the isocentre was shifted to

match the centroid of the tumour on each phase, this is equivalent to the couch shifting

position by this amount, and so emulates a tracking delivery. The time taken to run

sub-plans for all phases was 2-3 hours performed on a dedicated cluster of 200 CPU

cores.

4D Adaptive Convolution

4D adaptive convolution (4DAC) calculations were carried out by importing the modified

DICOM RTPlan files into Pinnacle3, calculating the dose for each phase and then

exporting RTDose for analysis.

Dose Accumulation

The 4D target dose was calculated by firstly accumulating the dose from all 8 phases

by aligning tumour centroids of each dose distribution to the reference phase centroid,

see figure 3.1(d). A rigid registration is valid for this scenario since the tumour is not

deforming in shape and motion is in the superior-inferior direction, therefore not changing

with respect to edges of the lung.
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Figure 3.1: A breakdown of the 4D dose calculation method and measurements: (a) The
breathing cycle; divided into the 8 phases, showing corresponding CTs (coronal slice
through target). The plan is distributed among the phases using the time of each phase
and the time of the control point to appropriately assign the MUs. (b) The first few
modified CPs assigned to phase 10% are shown in the table. (c) Dose distribution from
select control points for a single phase’s sub-plan. (d) Total dose from select phases, these
are accumulated to the reference phase by rigid tumour centroid shifts. (e) Display of how
measurements were performed for both plan types. GA = Gantry Angle, CP = Control
Point.
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Tumour

Figure 3.2: CIRS Dynamic Thorax Phantom (left) and SBRT insert (right) with
Gafchromic R© EBT3 film (after ITV-plan was delivered) overlaid. The 3 cm diameter
tumour is visible behind the film. Dashed line represents direction of profile taken for
results shown in figure 3.3. The dashed line is along the direction of motion.

3.2.5 DVH Metric Analysis

MATLAB R© was used for all analysis. The DVH metrics that were calculated included

D98% (GTV), D95% (PTV) and Dmean (Lung). For calculations on the 4DCT dataset, DVH

metrics were evaluated using the contours defined on the reference phase. GTV DVH

metrics for all methods were calculated using the GTV as defined on the reference phase

of the 4DCT. PTV DVH metrics were evaluated using the PTV as defined on the dose

calculation dataset e.g. on the AIP dataset the PTV was an expansion of the ITV. Mean

dose to the lung was calculated by summing the mean dose from each phases simulation.

3.2.6 Treatment Delivery

Simulations were verified with Gafchromic R© EBT3 film inside the CIRS SBRT insert

(figure 3.2). This is identical to the imaging insert, however contains a slot for film

placement through the middle of the tumour. Measurements were performed with film

from the same batch, calibrated on the 6 MV linac used for all measurements. The film

was scanned on an EPSON 10000XL flatbed scanner as 48-bit tiff format at 72 dpi using

transmission mode with colour corrections turned off. All analysis was performed using

the red channel and uncertainty was determined by evaluating a 95% confidence limit

across 3 scans.

The ITV-plan was delivered to the moving phantom. A manual synchronisation of

the beginning of the treatment beam with the starting phase (used in simulations)

was performed. The TRACKING-plan was delivered to a stationary tumour to match
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simulations and mimic a perfect tracking delivery i.e. assuming no uncertainties in the

couch or tumour motion in this instance. Performing the delivery this way separates

the effect of ’dose-smearing’ between control points which is not accounted for in the

simulations. The film’s isocenter was aligned with the isocenter of the calculated dose

distributions and global gamma analysis using criteria of 3%/3 mm and 5%/3 mm was

performed to compare dose profiles.

3.2.7 Motion Uncertainties

Interplay between tumour motion and MLC motion can result in dose deviations and is

particularly important to study in hypo-fractionated dose regimens (SBRT). To investigate

uncertainties due to the interplay effect, sets of 4DMC simulations were run with a

different starting phase. The starting phases investigated were at the extreme positions,

begin- and end- exhalation and the mid position, mid-ventilation. This effect was only

investigated for the ITV-plan since for the TRACKING-plan it is assumed that the tumour

and MLC are inline for treatment and therefore the interplay effect is not of concern. It is

recognised that treatment-couch lag for the TRACKING-plan is a source of uncertainty

however this was beyond the scope of this thesis.

3.2.8 Delivery Uncertainties

To explore delivery uncertainties, systematic errors in the MLC leaf positions were

introduced into the plans using MATLAB R© and the dose for the error plan was

recalculated with 4DMC. The leaf errors included shifts in both banks in the same

direction by ±0.5, ±1 and ±2 mm, defined at isocentre plane. The other simulated error

type was a shift which resulted in the field size of the beam closing or opening, i.e. both

banks are shifted inwards or outwards by a total magnitude of 0.5, 1 and 2 mm. Errors

plans were compared to the 4DMC baseline plan by evaluating the relative difference

between DVH metrics described in section 3.2.5. A difference of ±5% in D95% (PTV)

and mean dose to the lungs was considered significant [179].

A subset of error plans were also delivered to investigate the sensitivity of EBT3

in detecting small MLC errors. All open field size error plans that were deemed

unacceptable with 4DMC, including the error plan below the threshold, were delivered.



CHAPTER 3. 4D MC DOSE CALCULATIONS 33

The measured dose from the error plan was compared to the baseline measured plan

by performing gamma analysis. The acceptance criteria of >95% points passing for

3%/3 mm global and >85% of pixels passing 2%/2 mm global was applied [180].

3.3 Results and Discussion

3.3.1 Comparison of Different Dose Calculation Methods

The accuracy of 3D dose calculations for dynamic tumours can be limited for

particular motion-management techniques. When evaluating dose for plans that use

the ITV-approach, differences between calculated and delivered dose can occur due to

motion blurring effects, the interplay effect and differences in density [61]. This work

showed deviations in 3D and 4D calculations when evaluating DVH metrics for the

ITV-plan. Table 3.2 summarises the DVH metrics calculated from all dose calculation

methods. 4DMC was used as the ground truth for the following comparisons and relative

differences are quoted.

Table 3.2: DVH metrics calculated for the ITV- and TRACKING-plan, comparing dose
calculation methods both 3D- and 4D- with AC and MC.

ITV-Plan TRACKING-Plan

3DAC 3DMC 4DAC 4DMC 3DAC 3DMC 4DAC 4DMC

D98% GTV (Gy) 71.9 70.9 70.0 69.5 65.4 64.5 65.6 64.1

D95% PTV (Gy) 61.6 62.0 61.6 62.0 61.2 62.4 61.0 61.1

Dmean Lung (Gy) 9.8 10.1 10.0 10.4 7.9 8.2 7.9 8.1

For the ITV-plan, the 3DAC showed the highest D98% (GTV) overestimating by 3.5%

while 3DMC showed a 2% overestimation. Dmean (Lung) was underestimated for both

3D- and 4D- AC methods compared to the MC methods. Whereas comparing 3DMC to

4DMC there was small variation in Dmean (Lung). The TRACKING-plan showed smaller

deviations than the ITV-plan between calculation methods. D98% (GTV) calculated with

the 3DAC method overestimated by 2.0% and with 4DAC by 2.3%. For this plan Dmean

(Lung) was lower for both AC methods as opposed to calculated with MC, however the

deviations are not as significant. D95% (PTV) for both plan types showed negligible
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differences between calculation methods except 3DMC for the TRACKING-plan

overestimated by 2.1%. This difference is likely due to variation in density between each

phase’s CT at the tumour periphery caused by imaging motion artefacts.

The simulation times of this 4DMC reasonable for clinical implementation. It is

noted that the times will vary for patient datasets depending on the size of the dataset

and the size of the tumour volume as this will determine the size of the beam apertures

and hence the number of particle histories that need to be tracked in the simulation. An

advantage of the 4DMC method over using the TPS approach for 4D calculations is that

it is automated, whereas the TPS approach required manual export, modification and

re-import of the plan parameters and then dose calculation on each phase.

3.3.2 Comparison of Dose Calculations to Measured Dose

Figure 3.3 shows dose profiles from each calculation method and measured data for each

plan type. For the ITV-plan, the film and 4DMC dose profiles showed good agreement

with a 3%/3mm global pass rate of 95.8%, whereas the agreement of the 3DAC with film

was much poorer, and had a pass rate of only 50%. 3DMC also showed poor agreement

to film with a pass rate of only 48.6% while for 4DAC the pass rate was 75%. Applying

a less strict gamma criteria of 5%/3mm yields pass rates of 58.3%, 55.6%, 87.5% and

98.6% for 3DAC, 3DMC, 4DAC and 4DMC respectively. Differences between film and

4DMC profiles for the ITV-plan can be partially attributed to ‘dose-smearing’ that occurs

between control points in the delivery, which the static control point approximations used

in the 4D calculations do not take into account. In the simulations the motion of the

phantom was modelled by 8 static CTs whereas in measurements motion was continuous,

this ‘motion-smearing’ would also contribute to small differences. A large source of

deviation would be due to measurement set-up error.

3D dose calculations, for both algorithms, for the ITV-plan varies from measurements

beyond 15 mm from the isocentre. This variation is due to the higher density on the AIP

dataset between 15-30 mm whereas for the measurements this region is classed as lung.

Within the region of the dotted lines i.e. the GTV on the reference phase CT, the 4D

dose was slightly higher than the 3D dose due to the higher density of the GTV on the
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Figure 3.3: Comparison of measured, 3DAC, 3DMC, 4DAC and 4DMC dose profiles
through the tumour isocenter for the ITV-plan (left) and the TRACKING-plan (right).
Contours are displayed as horizontal lines on the graph. GTV (· · ·) as defined on the
reference phase, ITV (– – –) as defined on the AIP CT dataset shown on the left graph
and PTV (· – · –) as defined on the AIP CT (left graph) and as defined on the reference
phase (right graph). See figure 3.2, the dotted line indicates the location of given profiles.
The isocentre dose is approximately 20 Gy. Estimated uncertainty in film measurements
was ±3% and for 4DMC was ±1.5% of the maximum dose.

phase binned CTs compared to the AIP CT (see table 3.3). The expected tumour density

is 1.06 g/cm3 [181].

The TRACKING-plan showed better overall agreement for both 3D and 4D calculations

with the largest disagreement between measured and calculated doses in the penumbral

region and the PTV margin. For this set-up the tumour was stationary hence

motion-smearing was not an issue. However dose-smearing between control points

would be a contributing factor to the differences as this is not accounted for in the

calculations. The gamma pass rate with 3%/3mm global analysis were 97.2% for 4DMC

compared with measured and 94.4% for 3DMC. 3DAC and 4DAC compared with film

both gave a 95.8% pass rate, for this plan the different dose calculation methods using

AC made negligible difference to the profiles through isocentre. For a gamma criteria of

5%/3mm the pass rates were 100% for all dose calculations except 3DMC which was

95.8%.

Overall the estimated uncertainty was±3% and±1.5% of the maximum dose for the film
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Table 3.3: GTV average density for each phase on the AIP CT dataset and the CT dataset
corresponding to that phase, error calculated was 1 SD.

GTV Mean Density (g/cm3) ± SD

Phase (%) AIP CT Phase binned CT

10 0.63 ± 0.12 1.03 ± 0.04

22 0.69 ± 0.11 1.03 ± 0.04

35 0.62 ± 0.12 1.04 ± 0.04

47 0.55 ± 0.14 1.04 ± 0.04

60 0.63 ± 0.13 1.03 ± 0.04

72 0.69 ± 0.12 1.03 ± 0.04

85 0.61 ± 0.13 1.04 ± 0.04

97 0.55 ± 0.14 1.04 ± 0.04

measurements and Monte Carlo calculations respectively. Taking into consideration all

the aforementioned sources of error and these combined uncertainties, the high gamma

pass rates between measurements and 4DMC dose demonstrate the improved accuracy

of the 4DMC method compared to the considered 3D- and 4D- TPS methods.

3.3.3 Algorithm Accuracy

Comparing 3DMC and 3DAC dose profiles the most noticeable differences are at

the periphery of the ITV for the ITV-plan and the periphery of the GTV for the

TRACKING-plan. The differences between 4DMC and 4DAC occur around the high

dose gradient regions in the profiles for both plan types. A general trend in DVH metrics

was seen, the AC calculated a higher dose for D98% (GTV) and lower dose Dmean (Lung).

The collapsed cone convolution (CC) algorithm has been compared with MC for lung

SBRT in previous studies. Panettieri et al. [58] showed an underestimation by CC at the

lung/GTV interface in a phantom geometry, which agrees with the results presented here.

Li et al. [59] and Hardcastle et al. [60] performed calculations with patient data; both

results showed lower target and lung doses for CC compared to MC. The current work

showed calculations using collapsed cone convolution (AC or CC) for lung SBRT fields

should be used with caution.
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3.3.4 Effect of Motion Uncertainties: Interplay Effect

Profiles through isocenter for each set of 4DMC simulations with a different starting

phase for beam-on are shown in figure 3.4. Differences are observed in the PTV region

(as defined on the phase-binned CTs) of the profiles. DVH metrics calculated for each

starting phase set of simulations showed differences of less than 1% for D98% (GTV), less

than 0.5% for D95% (PTV) and no difference for Dmean (Lung). This investigation of the

interplay effect showed minor dose differences which is consistent with results found in

other experimental phantom studies [182,183]. These results support that the uncertainty

in synchronising the starting phase with beam-on timing for the ITV-plan measurements

would be negligible.
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Figure 3.4: Profiles through isocenter (in direction of motion) for 4DMC dose calculations
for the ITV-plan with different starting phases for beam-on. Starting phases include
extreme positions, begin- and end- exhalation and the mid position, mid-ventilation. Inset
of PTV region (as defined on the phase-binned CTs) showing differences between each
starting phase set. Estimated uncertainty in 4DMC was ±1.5% of the maximum dose.

3.3.5 Effect of Delivery Uncertainties: MLC Error Effects

The dose deviations of each simulated error plan from the baseline plan are shown for

D95% (PTV) in figure 3.5 for the the ITV-plan and figure 3.6 for the TRACKING-plan.

For both plans dose deviations for Dmean (Lung) is shown in figure 3.7. Shifts in MLC

in the same direction of up to 2 mm had no significant dose effects on either plan types.

For the ITV-plan, MLC field size errors of 1 mm resulted in a dose difference of ± 5% or
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greater for the lung mean dose. D95% (PTV) for this error were just below the tolerance

limits. While field size errors greater than 2 mm resulted in differences greater than 5%

for the TRACKING-plan. The higher sensitivity of the ITV-plan to these systematic errors

can be explained by the beam apertures being larger overall for this plan. In this instance

the TRACKING-plan is more robust to MLC uncertainties however further investigation

should be performed with patient datasets in order to make clinically relevant conclusions.
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Figure 3.5: D95% (PTV) for all MLC errors (shift and field size(FS)) for the ITV-plan.
The left y-axis is D95% per phase and is represented by the box plot, on the right y-axis is
D95% Overall and is represented by the green diamond markers. Dashed lines represent
tolerance limits, ±5% dose deviation from baseline plans.
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Figure 3.6: D95% (PTV) for all MLC errors (shift and field size(FS)) for the
TRACKING-plan. The left y-axis is D95% per phase and is represented by the box plot,
on the right y-axis is D95% Overall and is represented by the green diamond markers.
Dashed lines represent tolerance limits, ±5% dose deviation from baseline plans.

3.3.6 Effect of delivery uncertainties: MLC Error Detection

Measurements with gafchromic film of MLC open field size error plans were performed.

The film dose between error and baseline plans were compared using gamma analysis.

In the case of the ITV-plan, the plans failed gamma analysis for systematic open shifts

of 1 mm and greater, these results are included in table 3.4. The film was capable of

detecting the errors greater than 5% for this plan type using commonly applied gamma

acceptance criteria. Isodose distributions for the ITV baseline and 2 mm error plan are

displayed in figure 3.8; this shows expansion of isodose curves caused by the MLC

systematic error as expected.
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Figure 3.7: Dose difference of lung mean dose for all MLC errors (shift and field size(FS))
for both plan types. Dashed lines represent tolerance limits, ±5% dose deviation from
baseline plans.

Table 3.4: Gamma passing rates for different criteria, comparing the film measured
baseline ITV-plan to the film measured error plan. Only systematic open MLC field size
errors were delivered. Criteria is displayed as % dose difference / distance to agreement,
and specifies whether global or local analysis.

Error 3%/3 mm
Global

3%/3 mm
Local

2%/2 mm
Global

2%/2 mm
Local

0.5 mm 98.9% 98.3% 95.2% 92.4%

1 mm 91.3% 86.9% 66.8% 55.7%

2 mm 45.1% 36.9% 33.1% 19.6%
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Figure 3.8: Film Isodose curves of the ITV-plan (baseline) represented by solid lines and
2 mm error plan represented by the dashed lines. This represents a coronal slice through
the tumour isocentre. Dose normalised to the maximum dose of the baseline plan.

The gamma analysis results for the TRACKING-plan are shown in table 3.5, both 1 mm

and 2 mm open systematic shifts failed. From the simulations the 1 mm error plan should

be acceptable however the mean lung dose was just below 5% difference therefore it

is possible that the ’dose-smearing’ between control point during delivery, which is not

accounted for in simulations, results in this plan failing in the delivery.

Table 3.5: Gamma passing rates for different criteria, comparing the film measured
baseline TRACKING-plan to the specified film measured error plan. Only systematic
open MLC field size errors were delivered. Criteria is displayed as % dose difference /
distance to agreement, and specifies whether global or local analysis.

Error 3%/3 mm
Global

3%/3 mm
Local

2%/2 mm
Global

2%/2 mm
Local

1 mm 86.0% 83.8% 76.9% 70.8%

2 mm 69.5% 66.1% 64.5% 50.7%

3.3.7 Limitations of Study and Considerations

A limitation of the study is that only 1D sinusoidal motion and an extreme motion

amplitude was considered. The dosimetric effects of motion will vary with tumour

size and location as well as with motion amplitude, [184] the breathing curve and

irregularities in motion [185]. A phantom is also not anatomically realistic and it is
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expected that with more complex geometries the results could be more significant. The

effects of uncertainties could too vary with these parameters for example a faster period

could result in a more considerable result from the interplay effect.

The approximation of the treatment arc with 4◦ spacing is also a limitation of the

4DMC method, this method mimics the TPS, whereas in reality it is a continuous arc.

The proposed method could be further improved by using a finer CP spacing resolution,

which may reduce differences between measured and calculated. Although, for the

TRACKING-plan, comparing the measurements and 4DMC calculations would indicate

the effects of this approximation. Since the differences are small this would imply the

approximation has minor effects on the result.

Another limitation of the 4D MC method is the use of 8 static CTs rather than

continuously varying anatomy, this is addressed in the methods proposed by

Gholampourkashi et al. [186]. Although such a method would improve the accuracy

of the calculations the increase in time of the simulations should also be considered.

Noting that the differences between the measured and calculated dose for the 4DMC

method proposed here are small, the use of 4DCT phase data for the calculations may be

acceptable.

The work in this chapter has omitted deformation in the first instance so as to

eliminate uncertainties associated with deformable image registration. Chapter 4 includes

translating this method to patient data therefore considers deformation.

3.4 Conclusion

In this chapter a 4DMC dose calculation method intended for pre-treatment lung VMAT

SBRT quality assurance was developed and implemented. The method was compared

with 3DMC as well as 3D- and 4D- convolution calculation methods. This work showed

deviations in 3D and 4D calculations when evaluating DVH metrics for the ITV-plan.

Differences in MC and AC calculations demonstrated collapsed cone convolution (AC or

CC) for lung SBRT fields should be used with caution.
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The 4D simulations were compared with experimental film measurements taken in

a dynamic thorax phantom. Both plans showed better agreement with 4DMC compared

to 3DAC. For the ITV-plan the 3DAC profile varied from film in the ITV periphery region

due to the higher density on the AIP dataset whereas on the 4DCT datasets this region

would be classed as lung. In the GTV region the 3DAC dose was lower than the 4DMC

dose, this was due to the lower density for the AIP dataset in this region. The gamma

pass rate for 4DMC was significantly better than the 3DAC dose comparing both with

film measurements. The TRACKING-plan showed the largest disagreement between

measured and calculated doses in the penumbral region however still displayed high

gamma pass rates. The TRACKING-plan was superior for reducing dose to lung. Future

work should consider a range of motion cases (amplitude, period and more dimensions)

and different tumour sizes. Also of interest would be to study other motion management

techniques using the phantom e.g. MLC-tracking or mid-ventilation, and to investigate

how the 4DCT data affects the dosimetric results.

Uncertainties in motion and delivery were also investigated for these plans. For

the ITV-plan the interplay effect showed minor dose differences whereas delivery errors

were more significant; for MLC field size errors greater than 1 mm there was more than

±5% difference in DVH metrics. The TRACKING-plan exceeded these differences for

2 mm MLC field size error. The higher sensitivity of the ITV-plan to systematic MLC

errors was due to the larger beam apertures present for this plan type. Errors which

resulted in significant differences were delivered and detectable with EBT3 film; future

work with clinical plans is required to further inform on suitable dosimeters for this

purpose.

It is necessary to understand and quantify the limitations of 3D methods when

calculating dose to a moving target, particularly in the case of lung where there are

substantial variations in density. This work will be applied to clinical lung VMAT SBRT

(in chapter 4) in an effort to better our understanding of quality assurance tolerances, for

a range of respiratory motions and tumour volumes.



Chapter 4

Investigating Uncertainties for Lung
SBRT using 4D Monte Carlo Dose
Calculations: a Study with Patient Data

4.1 Overview

The higher doses per fraction in lung SBRT means the treatment is less forgiving of errors.

It is therefore important to evaluate the effects of uncertainties associated with lung

SBRT. A review by Schwarz et al. [187] on geometrical and dosimetrical uncertainties

for lung SBRT describes studies which have investigated mean tumour position

errors [188, 189] and the interplay effect [69, 71, 182–184]. Geometrical uncertainties in

delivery parameters, such as MLCs, have been studied for lung SBRT [45] however no

study has evaluated these uncertainties to a moving target. The 4D Monte Carlo dose

calculation method which was proposed in chapter 3 can be used to evaluate errors in

motion and delivery. This chapter presents 4D dose calculations for patient lung datasets,

investigating the impact of the interplay effect (motion) and systematic MLC (delivery)

uncertainties for different motion amplitudes and tumour geometries.

4.2 Materials and Methods

4.2.1 Patient Lung SBRT Plans

Ten 4DCT datasets (10 phases) from lung cancer patients previously treated with SBRT

at Odense University Hospital, Denmark were used. The patient cohort had variation in

44
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Table 4.1: Respiratory and tumour information for ten patients. The volume of the GTV
and PTV as well as tumour location is listed. The location of the tumours are defined
(by RTOG0915) as: near-rib, the GTV is within 1.5 cm of rib; central, the GTV is within
2 cm of bronchi; and free, the GTV is further than 1.5 cm from rib. The amplitude and
period of the tumour motion is included.

Name GTV / PTV
(cm3)

Tumour
Location

Motion
Amplitude

(mm)

Period (s)

Patient 1 26.2 / 79.8 Central 13.4 2.6

Patient 2 4.3 / 27.0 Central 5.2 5.0

Patient 3 12.4 / 45.6 Central 0.6 2.7

Patient 4 1.0 / 10.8 Central 4.2 4.4

Patient 5 13.1 / 46.4 Free 18.8 3.0

Patient 6 7.6 / 33.4 Central 1.4 2.9

Patient 7 11.5 / 47.9 Free 7.0 3.0

Patient 8 4.2 / 28.4 Central 8.2 4.8

Patient 9 28.2 / 87.4 Central 0.2 2.7

Patient 10 1.4 / 12.7 Near-Rib 9.0 3.2

tumour size and motion characteristics. The mid-ventilation method had been used to

define tumour contours for these patients, with PTV expansion of 5 mm in all directions

except in the cranial-caudal which was 10 mm. VMAT SBRT plans were generated

using Pinnacle3 V16 for a 6 MV Varian TrueBeam. Plans consisted of two 200◦ arcs

with 4◦ control point spacing. The location of the tumours are defined (by RTOG0915)

as: near-rib, the GTV is within 1.5 cm of rib; central, the GTV is within 2 cm of

bronchi; and free, the GTV is further than 1.5 cm from rib. The prescriptions were

48 Gy/4 fx (near-rib), 50 Gy/5 fx (central) and 54 Gy/3 fx (free). Note these datasets

and corresponding plans have been used in previous studies [45, 190, 191]. Respiratory

and tumour information for each patient is included in table 4.1. The motion amplitude

was calculated using
√

CC2 +AP2 +LR2 where CC is cranial-caudal motion, AP is

anterior-posterior motion and LR is left-right motion.
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4.2.2 Monte Carlo Simulations

4DMC simulations of the treatment plans were carried out as described in section 3.2.3

and 3.2.4. A simulation was performed for each of the 10 phases, calculating the dose

deposited in the patient for each phase. The dose from each phase was then deformed and

accumulated on the reference phase dataset (see section 4.2.3).

4.2.3 Deformable Image Registration

Dose accumulation was performed using the VoxAlign Deformation Engine which is

an intensity-based, free-form deformable registration algorithm [192] in MIM-Maestro

v6.8.5 (MIM Software Inc., Cleveland, OH). This algorithm has been used previously

for dose accumulation in lung SBRT [193, 194]. Initially a rigid fusion between CTs

(reference and secondary) was performed and used to assist in the deformable registration

(for each of the phase CTs); the resulting deformation matrices are then used to deform

and accumulate dose on to the reference phase (see figure 4.1).

Figure 4.1: The reference phase CT for patient 5, accumulated dose overlaid with the
PTV outlined in yellow.

4.2.4 DVH Metric Analysis

The accumulated RTDose DICOM was exported from MIM and analysed using

MATLAB R©. The DVH metrics evaluated for comparison were Dmean (PTV), V95%

(PTV), V100% (PTV), Dmean (Spinal Cord), D0.1cc (Spinal Cord), Dmean (Lung - PTV)
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and V20Gy (Lung - PTV). Following the criteria set by the Blake et al. study [45], a

relative difference of 2% in a DVH metric was considered significant.

4.2.5 Motion Uncertainties

Simulations were run with two different starting phases with beam-on, these were the

extreme positions of the breathing cycle. DVH metrics were compared among the two

different simulations to observe if the interplay effect resulted in significant deviations.

4.2.6 Delivery Uncertainties

Systematic leaf position errors that result in a change in field size were investigated here.

The MLC field size shifts simulated were therefore of total magnitude 1 mm i.e. both

banks shift inwards or outwards by 0.5 mm (therefore smaller than that investigated by

Blake et al.). The relative dose difference of DVH metrics (section 4.2.4) between error

plans and the baseline plan were calculated to quantify the impact of MLC uncertainties

on plans.

4.3 Results and Discussion

4.3.1 Motion Uncertainties

Differences in DVH metrics as a result of varying the starting phase with beam-on are

shown in figures 4.2 and 4.3 for the target and OAR metrics respectively. The direction of

tumour motion for these patients is prominently in the cranial-caudal direction which is

perpendicular to gantry and MLC motion therefore it is likely that the interplay effect

would be minimal. For the cohort of lung patients considered, minor differences in

DVH metrics were observed as the result of the interplay effect, with a maximum relative

difference of 1% for D0.1cc (Spinal Cord). The impact of interplay effect was greater for

OAR DVH metrics however still less than 2%. Previous patient studies which used 4D

dose calculations to investigate the effect also observed minor dose differences [69–72].

In this work, no trends were observed for increasing tumour motion amplitude. The

effects of motion uncertainties as a function of period were also investigated as time is

an important factor for the interplay effect. However, no trend was observed even though

there is a significant spread in tumour motion period for this patient cohort.



CHAPTER 4. UNCERTAINTIES LUNG SBRT PATIENTS 48

Figure 4.2: Differences of target DVH metrics in response to varying the starting phase.
Patients are in increasing order of motion amplitude (from left to right).

Figure 4.3: Differences of OAR DVH metrics in response to varying the starting phase.
Patients are in increasing order of motion amplitude (from left to right).
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4.3.2 Delivery Uncertainties

Blake et al. [45] investigated delivery uncertainties for the same patient datasets and

showed ±1 mm MLC field size errors resulted in significant differences in OAR DVH

metrics. It was expected that even greater differences would be observed when taking

into account tumour motion since greater volumes of OARs would be exposed.

Figure 4.4 shows the response of target DVH metrics to 0.5 mm MLC error that

resulted in an increase in field size (of total +1 mm change) and figure 4.5 shows the

response for OAR DVH metrics. For all patients at least one OAR DVH metric exceeded

a 2% difference for this MLC error while the target DVH metrics were exceeded for a

small subset of patients with V100% (PTV) being the most sensitive. The smallest motion

amplitude patient cases appeared to be impacted the most in terms of target DVH metrics

therefore it is possible that the motion decreases the effects of MLC increase field size

errors on target coverage. This should be evaluated further on a larger patient cohort in

order to draw a statistically valid conclusion.

Figure 4.4: Differences of target DVH metrics for a MLC field size error of +1 mm, i.e.
both banks of MLC shift outwards by 0.5 mm each. Patients are in increasing order of
motion amplitude (from left to right).
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Figure 4.5: Differences of OAR DVH metrics for a MLC field size error of +1 mm, i.e.
both banks of MLC shift outwards by 0.5 mm each. Patients are in increasing order of
motion amplitude (from left to right).

For a 0.5 mm MLC error that resulted in a decrease in field size (of total +1 mm change),

differences are shown in figures 4.6 and 4.7 for target and OAR DVH metrics respectively.

Similarly to the increased field size error OAR DVH metrics were more sensitive to the

error than target metrics. V20Gy (Lung - PTV) was the most sensitive metric. All patient

plans exceeded the 2% tolerance with these deviations observed for two or more OAR

metrics.
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Figure 4.6: Differences of target DVH metrics for a MLC field size error of -1 mm, i.e.
both banks of MLC shift inwards by 0.5 mm each. Patients are in increasing order of
motion amplitude (from left to right).

Figure 4.7: Differences of OAR DVH metrics for a MLC field size error of -1 mm, i.e.
both banks of MLC shift inwards by 0.5 mm each. Patients are in increasing order of
motion amplitude (from left to right).

It was expected that tumour size might effect the sensitivity of the plans to MLC
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uncertainties since this was evident in chapter 3 when comparing plans with different

PTV sizes. In this chapter no trend was observed for dose variations to MLC uncertainties

as a function of tumour size. It is important to note that the planning techniques are

different between the two studies and in chapter 3 the differences in PTV size are greater.

4.3.3 Limitations of Study and Considerations

In the first instance, this study only investigated MLC delivery uncertainties due to

the volume of data per patient. Further work involving other delivery parameters e.g.

gantry and collimator angle should be carried out. This study could be further extended

to experimentally test the sensitivity of different dosimetry systems in detecting these

purposely introduced errors.

Another limitation of the current study is the assumption that each phase was equally

time-weighted; irregular breathing cycles could be considered in future studies. To

create a realistic representation of the treatment 4D online imaging from each fraction

could be used for calculations, as this includes information about variations in tumour

motion compared with only using motion at the time of the planning 4DCT. However it

is recognised that image quality is poorer for CBCT and therefore this could effect the

dose calculations. Some other things to consider would be patient size and conditions of

their lungs e.g. collapsed vs non collapsed, when evaluating the results.

A method to evaluate the uncertainties in accumulated dose using deformable image

registration should be considered. Many different methods of which are proposed in the

literature [195, 196], however this was beyond the scope of this thesis.

4.4 Conclusion

In this chapter 4D dose calculations for patient lung datasets were performed. The 4D

Monte Carlo method proposed in chapter 3 was used to investigate the impact of motion

and delivery uncertainties for different motion amplitudes and tumour geometries. The

effect of interplay between MLC motion and target motion was minimal for all observed

patient plans implying that for the mid-ventilation technique which was used for these
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patients, is not prone to these uncertainties.

Uncertainties in MLC leaf positions impacted the plans more significantly, in particular

OAR DVH metrics were sensitive to these errors, with at least one of the OAR DVH

metrics varying by more than 2% compared to the baseline plan. Target coverage for the

small motion amplitude cases appeared to be impacted more than extreme motion cases.

It is possible that motion decreased the impacts of MLC leaf position errors however this

should be evaluated further on a larger patient cohort. No trends were observed between

the impacts of MLC uncertainties for varying tumour sizes.

Future work should involve investigating other types of delivery uncertainties. Smaller

MLC errors should also be evaluated since the errors simulated in this study all resulted in

significant differences. Thus in order to determine a specific tolerance for the technique

studied here, further work needs to be carried out.



Chapter 5

4D Dose Calculations of Lung SBRT for
Inline MRI-linac Systems: a Phantom
Study

5.1 Overview

While there has been a great deal of research on delivery uncertainties for standard EBRT,

no studies have investigated these errors on MRI-linac systems. This chapter investigates

the effects of MLC systematic errors for a range of magnetic field strengths for inline

MRI-linac systems. Two planning techniques for lung VMAT SBRT for a dynamic

phantom were considered, an ITV-plan which encompasses the whole range of motion,

and a TRACKING-plan where the couch is shifted to counteract the tumour moving. The

latter being the likely treatment scenario on an MRI-linac. The 4DMC method which was

introduced in chapter 3 was used to simulate the treatment plans. The primary aim of this

study was to understand how or if delivery tolerances differ for inline MRI-linac systems

as a function of the magnetic field strength.

5.2 Materials and Methods

5.2.1 Monte Carlo Simulations

The system as described in section 3.2.3 and 3.2.4 was used however rather than

DOSXYZnrc for the phantom simulation, Geant4 version 10.5 was used. A magnetic

field was included in the last stage of the simulation i.e. surrounding the phantom. The
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assumption here is that the linac components are not affected by the magnetic field

given that shielding can be placed around the electron gun and target. The Geant4

application reads in the phase space file produced by BEAMnrc from the treatment

head simulations it sets the collimator and gantry angle around the patient/phantom.

The Livermore Low-Energy physics models were used with a step limiter set to 1/3

of the voxel resolution. The dose grid resolution was 1.95 × 1.95 × 2 mm3 for the

lung phantom. CT data was modelled as water with varying densities with 0.05 g/cm3

bins ranging from 0.1 to 2.0 g/cm3, similar to calculations performed in Pinnacle3. The

G4NestedParameterisation class was used for parameterisation of voxels as this reduces

memory size and speeds up the simulation [197].

Since the Australian MRI-linac Monte Carlo model was under development at the

time this study was undertaken, a conventional linac beam model was used. For

consistency with the work presented in chapter 3 the same phantom 4DCT images and

plans were used here. That is to say the plans were optimised without a magnetic field

and the source-to-axis-distance (SAD) was 100 cm.

All magnetic fields modelled were uniform and inline with the beam direction.

The strengths considered were 0.5, 1 and 1.5 T, these field strengths are approximately

the same (in field strength) as the current MRI-linac designs. It was expected that for

perpendicular magnetic fields that the differences in lung compared to without a magnetic

field would be considerable due to the ERE [4]. Bol et al has shown that the ERE in

perpendicular MRI-linacs can be compensated for by using opposing beams [112]. The

work presented in this chapter focuses on inline systems since no compensation for the

magnetic field was considered in plan optimisation.

5.2.2 MLC Errors Plans

Systematic MLC errors were deliberately introduced into the plans which included

field size open and close shifts. These were chosen as they were deemed clinically

unacceptable in chapter 3; that is they resulted in differences in D95% (PTV) and/or

Dmean (Lung) of ±5% [179]. The error plan just below the threshold was also simulated.

Error plans for a given magnetic field strength were compared with the baseline plan i.e.
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same field strength with no errors introduced; analysis as described in section 3.2.8 was

performed.

5.3 Results and Discussion

5.3.1 Magnetic Field Strength Effects on Baseline Plans

All error plans were run without a magnetic field to ensure there was no change in results

when running the patient simulations with Geant4 rather than DOSXYZ. The maximum

variation observed in the dose differences between the two Monte Carlo codes without a

magnetic field was 0.3% demonstrating the accuracy of the Geant4 application.

Table 5.1 gives the dose metrics (D95% (PTV), Dmean (Lung)) of the baseline plans

for all magnetic field strengths that were modelled. The mean dose to the lungs does

not change with the magnetic field strength however PTV dose increases. This effect

has been previously observed [115]. The forward focussing of the inline magnetic field

results in reduced lateral scatter (usually prominent in lung) and thus the dose to the

tumour is increased. The trend of increasing PTV dose with increasing magnetic field

strength plateaus at 1.0 T. For the PTV volumes considered, 68.1 cm3 for the ITV-plan

and 32.6 cm3 for the TRACKING-plan, the dose enhancement effect due to the inline

magnetic field was not expected to be as significant as for smaller PTV volumes which

was observed by Oborn et al. [115]. The plateau at 1.0 T was not observed in their

study for smaller PTV volumes. The rate of increase in PTV dose with magnetic field

strength has no strong dependence on plan type, also possibly due to the size of the PTV

volume. A larger difference for the TRACKING-plan, as opposed to the ITV-plan, might

be observed for smaller targets since the TRACKING-plan uses smaller fields thus lateral

electronic disequilibrium (as a result of field size) would also take effect.

5.3.2 Magnetic Field Strength dependence for MLC errors

Figure 5.1 shows the dose differences in D95% (PTV) and Dmean (Lung) for the ITV-plan

calculated for varying magnetic field strengths for MLC field size errors. The change in

mean dose to lung for different MLC errors is unaffected by the strength of the magnetic

field. Similar results were seen for the TRACKING-plan in figure 5.2 with no change in
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Table 5.1: Dose metrics calculated for the ITV- and TRACKING-plan, comparing the
baseline plans for different magnetic field strengths.

ITV-Plan TRACKING-Plan

D95% PTV
(Gy)

Dmean Lungs
(Gy)

D95% PTV
(Gy)

Dmean Lungs
(Gy)

0 T 62.7 10.4 60.3 8.1

0.5 T 65.6 10.4 63.4 8.1

1 T 67.9 10.4 65.1 8.1

1.5 T 68.6 10.4 65.3 8.1

the dose difference for Dmean (Lung) when varying the magnetic field strength. For D95%

(PTV) all magnetic field strengths appeared to tighten the dose for a 2 mm field size error

to within the ±5% tolerance limits. However, since Dmean (Lung) for the 2 mm error is

greater than ±5% the plans would be deemed unacceptable regardless.
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Figure 5.1: Dose difference of (a) D95% (PTV) (b) and Dmean (Lung) for MLC field size
errors for the ITV-plan. Dashed lines represent tolerance limits,±5% dose deviation from
baseline plans.
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Figure 5.2: Dose difference of (a) D95% (PTV) (b) and Dmean (Lung) for MLC field
size errors for the TRACKING-plan. Dashed lines represent tolerance limits, ±5% dose
deviation from baseline plans.

5.3.3 Limitations of Study and Considerations

This study only considered MLC uncertainties; since the Australian MRI-linac uses a

fixed horizontal beam, gantry and collimator angle are non-existent. In the case of this

system, any errors in MLC leaf gaps or modelling the leaf ends are magnified due to

the greater SAD. What would be considered an inconsequential error at standard SADs

could result in a significant difference for this system. It would be beneficial to consider

these uncertainties at extended SADs e.g. 1.8 m and 2.4 m since these are the intended

positions of treatment on the Australian system. Moving forward, it would be useful

to model the radiation beam and magnetic field of the Australian MRI-linac. The 4D

MC dose calculation tool could then be validated for MR-guided radiotherapy and used

for quality assurance purposes; noting that to achieve this there are a lot of steps and

procedures which would need to be developed.

Another limitation in the current study is that only one motion pattern and tumour

size was considered. The simplicity of the phantom geometry is also a limiting factor.

After addressing the aforementioned limitations the next steps would be to evaluate plans

from patient data, similar to the work presented in chapter 4.
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5.4 Conclusion

Simulations of two treatment plans for a dynamic lung phantom were performed for

different inline magnetic field strengths. Overall, the inline magnetic field resulted in an

increase in dose to the target while not changing lung dose. Increasing the magnetic field

strength resulted in further increase in target dose, which has been previously observed.

The trend between the dose enhancement and field strength will also vary with field size,

therefore future work should consider smaller PTV sizes.

MLC systematic uncertainties were simulated for the different inline magnetic fields.

The impact of delivery uncertainties did not vary with magnetic field strength however

it is suspected that this might not be the case for smaller target volumes. In terms of the

Australian MRI-linac system, any errors in MLC leaf gaps or modelling the leaf ends are

magnified due to the greater SAD.

Future work should include simulations using the 4DMC framework of with the

Australian MRI-linac beam model at the intended treatment SAD and investigate a

range of different tumour sizes and respiratory motion patterns. In order for this to be

achievable, a model of the Australian MRI-linac beam must be developed in both the

TPS and Monte Carlo.



Chapter 6

High Resolution Dosimetry in Magnetic
Fields for the Characterisation of
Magnetically Focused Contaminant
Electrons

Some of the results presented in this chapter have been published in the journal Medical

Physics:

N. F. Roberts, E. Patterson, U. Jelen, T. Causer, L. Holloway, G. Liney, M. Lerch,

A. B. Rosenfeld, D. Cutajar, B. M. Oborn P. Metcalfe, “Experimental characterization

of magnetically focused electron contamination at the surface of a high-field inline

MRI-linac”, Med. Phys. 46 (12), 5780-5789.

6.1 Overview

The dose response of detectors can be influenced by magnetic fields [128–130, 133,

137, 138]. This chapter investigates the response of solid state detectors, namely

the microDiamond (PTW, Feriburg, Germany) and MOSkinTM (CMRP, Wollongong,

Australia) in MRIgRT environments. While Gafchromic film is a high resolution 2D

dosimeter, solid state detectors are advantageous as they are not single-use and they

have real-time readout systems. The microDiamond is a commercial detector commonly

used for small field dosimetry due to its high spatial resolution and approximate water

equivalence [198]. The microDiamond’s performance in transverse MRI-linacs has been
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previously studied [139–141] and has proven to be suitable for MRI-linac commissioning

and quality assurance. The MOSkinTM is a metal oxide semiconductor field effect

transistor (MOSFET) detector developed by CMRP. It has a high spatial resolution in

the micron range. The effective point of measurement (EPOM) of the MOSkinTM is

equivalent to the radiosensitive layer in the skin defined by ICRP as 0.07 mm [199].

I-V characteristics of this detector system have been tested in a magnetic field [200],

compared with 0 T, differences were shown to be insignificant in a 1 T magnetic field for

both beam to magnetic field orientations. The MOSkinTMs relative response in MRIgRT

environments is still to be tested.

On the Australian MRI-linac a measure of surface dose is important to be able to

characterise the high electron contamination region [107]. This region exhibits a high

dose gradient and therefore dosimetric measurements require detectors with a high spatial

resolution. MOSkinTM has been shown to accurately measure skin dose [201] and the

build-up region [202] on standard clinical linacs which exhibit a steep dose gradient,

electronic disequilibrium conditions and contain electron contaminants. It was therefore

expected that the MOSkinTM would give an accurate measure of the magnetically focused

contaminant electrons on the Australian MRI-linac.

This chapter primarily investigates the relative response of these detectors in magnetic

fields, determining which measurements on inline MRI-linacs they would be most useful.

The second objective was to characterise the high electron contamination region of the

Australian MRI-linac.

6.2 Materials and Methods

6.2.1 Detectors and Film

The detectors and dosimeter used in this chapter were a synthetic microDiamond 60019

(PTW, Freiburg, Germany), MOSkinTM and Gafchromic R© EBT3 film. Some details of

each have been included in table 6.1 while any additional information is given in the text.
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Table 6.1: Characteristics of the detectors and dosimeter used in this chapter, these are
specification given by the vendors. *This is based on the scanning resolution used in this
study.

Detector /
Dosimeter

Spatial
Resolution

(mm)

Sensitive
Volume
(mm3)

EPOM
(mm)

Covering
Layer(s)

≈ Z

microDiamond 2.2 0.004 1 0.3 mm
RW3,

0.6 mm
epoxy,

0.01 mm
aluminum

6

MOSkinTM 0.00065 0.0000015 0.07 0.05 mm
polyamide

14

Gafchromic R©
EBT3

0.35* N/A 0.139 0.125 mm
polyester

substrates,
0.014 mm

active layer

6.71

The microDiamond detector was connected to a UNIDOS electrometer for read out of

measurements with the detector oriented with the long axis parallel to the beam unless

otherwise specified.

The MOSkinTM detector and readout system were developed by CMRP. The operation of

the detector relies on secondary electrons generated from interactions in the polyamide

layer creating electron-hole pairs in the gate oxide, reducing the current across the

source and drain (beneath the gate). The readout system gives a measure of the voltage

required to push a fixed current between the source and drain, defined as the threshold

voltage [203]. The sensitivity of the detector to radiation dose decreases over large

voltage ranges, therefore this was corrected for by taking a reference reading at the

beginning and end of each set of measurements. The MOSkinTM is a silicon detector

and has been shown to over-respond at low energies due to the photoelectric effect being

dominant for higher Z materials [204].
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Gafchromic R© EBT3 film was used as a reference since previous studies have shown

the effect of the magnetic field on the relative response is negligible [152, 153, 170].

The guidelines outlined in AAPM Task Group 55 [205] for using radiochromic film for

dosimetry were followed. The film was scanned on a EPSON 10000XL flatbed scanner

with resolution of 72 dpi, in 48-bit RGB format and colour corrections turned off. Each

film was placed in a consistent location on the scanner for the post and pre scans. The

batch of film used was calibrated on Varian Truebeam (6X FFF) (see figure 6.1). All

analysis was performed using MATLAB R©. Data presented in this chapter takes into

account the EPOM for each detector and film.
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Figure 6.1: Gafchromic EBT3 calibration curve. Equation used to calculate dose (Gy)
from the net optical density.

6.2.2 Measurements and Simulations on MARDOS

MARDOS

A permanent magnet system named Magnetic Apparatus for RaDiation Oncology

Studies (MARDOS), which has been previously described [116] was used to

test the microDiamond’s response in a magnetic field. MARDOS consists of

neodymium-iron-boron magnets with steel focusing cones [116] which are used to
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concentrate the flux over a small volume; a smaller gap results in a stronger magnetic

field. The system is used in combination with a clinical linac, typically positioned at

1.5 m source-to-isocentre with the beam entering horizontally, the setup is shown in

figure 6.2. The magnetic field was 0.95 T for all MARDOS measurements presented in

this chapter. The steel cones can be removed from the system and setup in an identical

jig in order to replicate the scattering conditions for 0 T measurements.

Simulations

The Monte Carlo toolkit, Geant4 (version 10.02.p01) was used to run simulations with a

water-only geometry, allowing for separation of the detector response from effects of the

magnetic field on the radiation beam. The magnetic field and beam model used for these

simulations have been previously benchmarked [116, 144, 177]. The number of electrons

incident on the linac target were 2 × 108 which were scored in a phasespace 0.942 mm

above the magnets isocentre, particles were recycled 199 times at that plane.

Figure 6.2: MicroDiamond in a solid water phantom inside MARDOS with the linac
beam entering horizontally, this shows the perpendicular magnetic field orientation.
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Perpendicular Orientation

The magnet system was orientated perpendicular to the clinical beam. The microDiamond

was positioned at 1.5 cm depth in a solid water phantom (Gammex-RMI, Middleton,

WI, USA) with the long axis perpendicular to the beam and magnetic field. Profiles

of a 0.9 × 0.9 cm2 beam were taken with and without the magnetic field. Simulations

calculating dose to water were performed as a reference, since it was expected that

microDiamond would underestimate the magnetic field induced lateral shift of the

profile [139].

Inline Orientation

Measurements were also performed with the magnetic field inline with the radiation beam;

the microDiamond was at 1.5 cm depth with the detector’s long axis parallel to the beam.

These measurements replicate the conditions and intended setup of the microDiamond

for the Australian MRI-linac. Output factors for a range of square jaw defined field

sizes, from 0.9 to 2.4 cm2, at 0 T and 0.95 T were taken to quantify the dose response

of microDiamond in MRIgRT environments. Simulations were used in this instance to

determine the increase in dose per incident particle as a result of the inline magnetic field.

6.2.3 Measurements and Simulations on the MRI-linac

MRI-linac

The current prototype of the Australian MRI-linac includes a 6 MV flattening filter free

(FFF) linac, Varian Linatron-MP (Varex, UT, USA), a stand-alone multileaf collimator

and a 1 T split-bore MRI (Agilent Technologies, Oxford UK). The linac does not rotate

around the patient as a typical linac would, because the beam must always be parallel

to the magnetic field the only options to achieve different beam angles are to rotate the

magnet with the beam around the patient or rotate the patient with a fixed beam. The

Australian MRI-linac has been setup for the latter, therefore the linac beam is always

horizontal to the phantom/patient. This system has the unique feature that the linac and

MLC are mounted on a rail system so that the source-to-MRI-isocentre (SID) distance

can be varied. This also allows for measurements to be performed with the phantom at

different magnetic field strengths while maintaining a constant source to surface distance

(SSD).
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SIDs of 3.269 m and 1.819 m were used in this chapter which correspond to the

maximum and minimum distances (from the MRI) achievable with the rail system. The

two set ups are shown in figure 6.3 with an overlay of the magnetic field map. With the

linac at the furthest position from the MRI, the phantom was positioned in the region of

the fringe field where there is a point of inflection; the magnet has been actively shielded

to achieve a low fringe field here. This is where the magnetic field is closest to 0 T,

hereon referred to as near 0 T measurements. The field strengths quoted were measured

with a gauss meter. The largest magnitude for near 0 T measurements was at the back of

the phantom reading 0.05 T. The magnetic field strength at the linac target in this setup is

0.0007 T. When the linac source was at 1.819 m from isocenter, the phantom was set up

with the surface in the center of the bore, where the magnetic field is 1 T. For this set-up

the linac is within the fringe field of the magnet with a measured magnetic field strength

around the target of 0.033 T.

To reduce the effect the magnetic field has upon the beam characteristics, magnetic

shielding was placed around the linac target so that beam profile symmetry fulfilled IEC

60976/977 criteria [206, 207]. This criteria states that the ratio of absorbed doses at two

positions symmetrically displaced from the radiation beam axis and within the flattened

area at a standard measurement depth should be less than 103%.
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(a) (b)

Phantom

MLC
Linac

Reference 
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Figure 6.3: Visualization of two different setups. (a-b) Near 0 T setup with
source-to-MRI-isocenter distance of 3.269 m and the phantom positioned at 1.819 m
from the source. (c-d) 1 T setup with source-to-MRI-isocenter distance of 1.819 m and
the phantom position 1.819 m from the source. Magnetic field maps are overlaid (units:
T). The red paths represent the secondary electron tracks between the MLC and phantom
surface. The magnetic focussing of the electrons can be seen in (c-d).

Phantom Setup

The phantom used for all measurements was a 30 × 30 × 30 cm3 solid water block.

A piece of solid water was machined for each detector to minimise air gaps, these are

shown in figure 6.4. Although solid water phantoms are not recommended for MRI-linac

dosimetry, the presence of air gaps in an inline magnetic field is expected to have minimal

impacts as opposed to the perpendicular systems [109].

Angular Dependence

Woodings et al. [140] investigated the angular dependence of the microDiamond in a

perpendicular magnetic field and found variations up to 9.7% for a 60◦ angle. Since the

Australian MRI-linac is a fixed, horizontal beam the detector would only be used in the

face-on orientation, i.e. with the stem parallel to the beam axis, or edge-on with the stem

perpendicular to the beam axis. The detector was at 15 cm depth with measurements

taken at 0◦ (detector face-on) and then rotating the phantom by 90◦ (detector edge-on), in

both rotational directions, see figure 6.5. The SID distance used was 1.819 m and field

size of 10.1 × 9.7 cm2.
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Figure 6.4: (a) 30 × 30 × 30 cm3 phantom outside of the MRI with dedicated stand
to hold vertical solid water slabs, (b) the microDiamond phantom, (c) the MOSkinTM

phantom.

(a) (b) (c)

Figure 6.5: Central slice of phantom, looking from above at (a) 0◦ (detector face-on), (b)
-90◦ (detector edge-on), (c) +90◦ (detector edge-on). Linatron not to scale.

Beam Data Measurements

PDDs were collected with each detector for a range of field sizes, these were 2.2 × 1.9,

6.1 × 5.8, 11.8 × 11.5, 23.5 × 23 cm2 (field size at the phantom surface). MOSkinTM

measurements were taken with the solid water phantom placed vertically, the SSD

remained constant while the depth was varied by placing solid water pieces in front of

the detector and shifting it back on a dedicated stand (pictured in figure 6.4a). Skin dose

was measured with the MOSkinTM at the surface layer. The microDiamond detector

was placed in the solid water phantom orientated horizontally, the depth was varied by

shifting the detector inside its machined rectangular block back and placing in front

equivalent sized square pieces (3 × 3 cm2) of solid water (both pictured in figure 6.4b).
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The phantom was set up in the two different magnetic field regions of near 0 T

and 1 T; an SSD of 1.8 m was maintained. Film was placed at selected depths of

1, 10, 15, 20, and 50 mm, whereas MOSkinTM and microDiamond were used to

obtain a high resolution PDD near the surface and depths up to 200 mm. To ensure

the detectors were placed in the centre of the high electron contamination region for

measurements inside the magnetic field, film was placed on the surface and visually

inspected prior to performing the set of detector measurements. All depth dose curves

were normalised at 50 mm depth, this was chosen because for measurements inside the

MRI bore this depth is far beyond the contaminant electron region. However the PDDs

are expressed as the percentage dose of the maximum dose for the near 0 T measurements.

The dose delivered was adjusted depending on the detector type and the depth in

order to maintain a high signal to noise ratio. The linac output was monitored with a

Farmer-type ionisation chamber FC-65G (Scanditronix Wellhöfer) with readout from

the FLUKE 35040 Advanced Therapy Dosimeter. The reference chamber was placed in

air, between the linac and MLC, within the beams field so each measurement could be

corrected for variations in the linac output (see figure 6.3). The reference chamber was

in the same position within the fringe field for the 1 T setup (0.05 T) therefore magnetic

field conditions were consistent across these measurements.

Simulations

The setup with the phantom at 1 T was simulated with Geant4 (version 10.05) in order to

investigate the energy spectra of the contaminant electrons. The Monte Carlo beam model

which will be described in greater detail in chapter 8 was used, with the magnetic field

map (shown in figure 6.3). A phasespace of particles passing through a plane were scored

at various depths in the phantom (position at isocentre), the depths were the surface and

up to 5 mm with a plane at every 1 mm. The field size simulated was the 11.8× 11.5 cm2.
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6.3 Results and Discussion

6.3.1 Measurements and Simulations on MARDOS

Perpendicular Orientation

Profiles of a 0.9 × 0.9 cm2 beam measured with MARDOS setup in the perpendicular

orientation are shown in figure 6.6. The lateral shift measured in water is 0.6 mm on

both the left and right side of the profile. The microDiamond measurements appear

to underestimate the shift however since the uncertainty in positioning the detector is

comparable to the shift, it is difficult to quantify the underestimation for this field size.

In order to accurately acquire profiles with the microDiamond orientation this way it

would be beneficial to use a translational stage in a water tank to increment the detector

position, although such a system would need to be specifically designed to operate in

magnetic fields. The microDiamond was expected to underestimate the shift due to the

high-Z materials in the detector housing [208] which would reduce the path length of

the secondary electrons which are moving in circular trajectories. These results were

previously observed by O’Brien et al. [139].
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Figure 6.6: microDiamond-measured (×) and Water-Monte Carlo (MC) generated (-
- -) profiles of a 0.9 × 0.9 cm2 radiation field, at 0 T (a) and in the presence of a
0.95 T magnetic field (b). Profiles were acquired with MARDOS in the perpendicular
configuration. Uncertainty in detector position of ±0.5 mm.
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Inline Orientation

The microDiamond under non-magnetic field conditions has been shown to over-respond

for small field sizes i.e. less than 2 cm2 [209] due to the detector housing perturbing

the charged particle fluence. The response in an inline magnetic field with the detector

in the orientation intended for the Australian MRI-linac was investigated for a range of

field sizes, as shown in figure 6.7. The response increases as field size decreases for

square fields less than 1.8 cm2, whereas for the larger field sizes it is a relatively constant

over-response of 1.5%. Simulations predict a 1% increase in dose to water along the

central axis in this magnetic field (compared to 0 T), therefore the remaining 0.5% of

the increase measured is an over-response caused by the magnetic field. For field sizes

smaller than 1.8 cm2, the increase in response with decreasing field size is a similar trend

to the over-response seen for small field sizes in non-magnetic field conditions. These

results inferred that for a 1 T inline magnetic field the microDiamond could be used

for field sizes greater than 1.8 cm2 without having to apply field size corrections. The

large uncertainty in the measurements, particularly at the smaller field sizes, is due to the

positional accuracy of the jaws.

6.3.2 Measurements on the MRI-linac

Angular Dependence

The angular dependence of the microDiamond was investigated by measuring the extreme

cases for the system i.e. with the detector at a 90◦ angle, both negative and positive with

respect to the beam direction. Results are expressed as a ratio of the reading at a 90◦

angle to the reading at 0◦. When the detector was at +90◦ the response was 1.015± 0.004

whereas for -90◦ it was 1.003 ± 0.002. Differences in response between the two detector

arrangements could be due to the direction of rotation of the spiralling electrons with

respect to the detector housing. If the detector face is in the direction where the electrons

spiral towards it the response will be higher. When the detector is in the other orientation,

the electrons will be passing through the materials behind the sensitive volume which have

a higher density therefore more electrons will be stopped before reaching it. These results

indicate that the largest possible change as a result of the inline field was 1.5% which is

within the range specified by the manufacturer [198] for measurements taken without

a magnetic field. An angular dependence for the microDiamond has been observed
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Figure 6.7: Ratio of the response of microDiamond in a 0.95 T inline magnetic field
to the response without a magnetic field for a range of field sizes, from 0.9 to 2.4 cm2.
Uncertainties include one standard deviation of measurements.

in a transverse 1.5 T field [140]. On the other hand other studies indicate minimal

dependence for the PTW60003 diamond detector [130, 138] for a low field strength and

inline orientation which is in agreement with the results presented.

Beam Profiles

In order to determine the magnitude of dose and size of the high electron contamination

region, film measurements to encapsulate the entire field were taken at 1 mm depth for

the 11.8 × 11.5 cm2 field size inside and outside the magnetic field. Profiles are shown

in figure 6.8, the 2D dose distribution in the magnetic field is also represented on the

right side. The in field hot spot for this field size, peaking at 306%, has a diameter of

approximately 8 cm and displays a steep dose gradient moving off-axis. Therefore both

longitudinal and lateral electronic disequilibrium exists in this region. The near 0 T profile

has a larger umbra region compared to the 1 T profile which rapidly drops off to zero. The

contaminant electrons produced in the linac head which reach the patient deposit their

energy in the first few millimetres, the dose in the umbra region outside the magnetic field
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is caused by the energy deposition of these contaminant electrons. When the phantom is

inside the magnetic field the contaminant electrons are focused along the central axis and

therefore the dose from the umbra region is shifted to the central region, hence the rapid

drop off at the field edge for the 1 T profile.
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Figure 6.8: Profiles at 1 mm depth for a 11.8× 11.5 cm2 field both inside the magnet (1 T)
and outside the magnet (near 0 T) as measured with EBT3 film. On the right is a 2D dose
distribution from the film inside the magnet, displaying the high electron contamination
region. All film data was normalised at 50 mm depth however expressed as the percentage
dose of the maximum dose for the near 0 T measurements.

Percentage Depth Dose Curves

PDD results for the smallest field size, 2.2 × 1.9 cm2, for both magnetic field setups are

shown in figure 6.9. These measurements were acquired with microDiamond, MOSkinTM

and Gafchromic R© EBT3 film. Both detectors agreed with film within uncertainty for

the near 0 T measurements with the exception of the microDiamond at 1 mm depth. The

MOSkinTM detector showed no change in relative response in a magnetic field for depths

greater than 20 mm. The uncertainties of the MOSkinTM measurements are displayed

as shaded error bands, microDiamond showed minor deviations between repeated

measurements therefore uncertainties are too small to be seen on graphs. The estimated

uncertainty in film results is 3.4%, inclusive of scanner uniformity, film reproducibility

and calibration uncertainties [210]. The film uncertainties within the region of the

high electron contamination region (i.e. the first 20 mm) also include the range of the
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Figure 6.9: Depth dose curves for a 2.1 × 1.9 cm2 field as measured with microDiamond
(×), MOSkinTM (+), and EBT3 film (*) in both magnetic field regions. The top right
graph is the 1 T near-surface data magnified and the bottom right graph is the near 0 T
near-surface data magnified. microDiamond had a maximum uncertainty of 0.4% (near
0 T) and 0.3% (1 T). MOSkinTM uncertainties are displayed as shaded error bands.

maximum doses measured with film. For the 1 T measurements at approximately 1 mm

depth, microDiamond (104.1%) and MOSkinTM (102.9%) agree, film gives a significantly

higher dose (108.2%) however taking into account the uncertainty in film and MOSkinTM

in this region they are in agreement. It should be noted that the effective depth of each

detector and film are different therefore it is not possible to directly compare depth points

between the detectors particularly within high dose gradient regions.

Figure 6.10 displays the 6.1 × 5.8 cm2 PDD results, between 20-200 mm there is good

agreement comparing near 0 T and 1 T measurements for both detectors. Similar trends

in detector response were observed for the 11.8 × 11.5 cm2 PDD, represented in figure

6.11, and the largest field size, 23.5 × 23 cm2, shown in figure 6.12. Overall the relative

response of both microDiamond and MOSkinTM were confirmed to be unaffected by

the magnetic field. This result was shown for the microDiamond in previous studies

for perpendicular systems [140, 141]. Film results at 20 mm depth agreed with both

detectors in all setups, further demonstrating the relative response of these detectors does

not change in the presence of a 1 T inline magnetic field.
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Figure 6.10: Depth dose curves for a 6.1× 5.8 cm2 field as measured with microDiamond
(×), MOSkinTM (+), and EBT3 film (*) in both magnetic field regions. The top right
graph is the 1 T near-surface data magnified and the bottom right graph is the near 0 T
near-surface data magnified. microDiamond had a maximum uncertainty of 0.1% (near
0 T) and 0.3% (1 T). MOSkinTM uncertainties are displayed as shaded error bands.

Overall the biggest differences between the detectors for the 1 T setup were in the near

surface region, seen by graphs in the top right side of figures 6.9-6.12. MOSkinTM

measurements produced a shallower dose gradient near the surface compared to

microDiamond. The dose gradient in the first 5 mm is steep therefore giving rise to

larger uncertainties in this region. These differences could be due to positioning the

detector in the centre of the high electron contamination region, however this is less

likely since measurements performed over multiple days gave consistent results. It is

possible that the microDiamond was over-responding in this region; since there is a high

fluence of low energy electrons the microDiamond detector components could result in

perturbations of the charged particle fluence. In electronic disequilibrium conditions,

it has been shown that high density detectors will over-respond [209, 211]. Although

the sensitive volume of the microDiamond is small, the detector houses high density

materials such as 400 µm thick diamond chip and an aluminium electrode [208], which

could explain why the measurements near the surface at 1 T are higher than film and

MOSkinTM. The spatial resolution of the microDiamond (2.2 mm) could result in volume

averaging in this high dose gradient region, potentially reducing the over-response. The
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Figure 6.11: Depth dose curves for a 11.8 × 11.5 cm2 field as measured with
microDiamond (×), MOSkinTM (+), and EBT3 film (*) in both magnetic field regions.
The top right graph is the 1 T near-surface data magnified and the bottom right graph is
the near 0 T near-surface data magnified. microDiamond had a maximum uncertainty of
0.1% (near 0 T) and 0.5% (1 T). MOSkinTM uncertainties are displayed as shaded error
bands.

response of the microDiamond near the surface for the near 0 T data is lower than film

and MOSkinTM. This difference near the surface compared to other detectors has been

observed by previous studies [141, 212].

Skin Dose

Skin dose measurements, with the MOSkinTM detector, are shown in table 6.2. These

were performed at the two SIDs of 3.269 m (near 0 T) and 1.819 m (1 T). The surface

dose for the near 0 T measurements is higher than standard 6 MV linacs, this can be

attributed to the extended SSD (1.8 m) and the beam being flattening filter free [213]. It

was expected that the relationship between field size and skin dose was linear for the 1 T

measurements as more contamination will pass through the MLC opening and there is a

larger surface area for MLC contaminant electrons to be produced.

The MOSkinTM detector has been previously characterized for measuring skin [201] and

build-up dose [202] for standard linear accelerators. In this region it has been shown
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Figure 6.12: Depth dose curves for a 23.5× 23 cm2 field as measured with microDiamond
(×), MOSkinTM (+), and EBT3 film (*) in both magnetic field regions. The top right
graph is the 1 T near-surface data magnified and the bottom right graph is the near 0 T
near-surface data magnified. Uncertainty in 1 T film at 1,139 mm depth was 6.4% (not
visible due to large y-axis range). microDiamond had a maximum uncertainty of 0.2%
(near 0 T) and 1.0% (1 T). MOSkinTM uncertainties are displayed as shaded error bands.

that electron contaminants have a significant contribution to the dose [214] therefore it is

expected that the MOSkinTM would give an accurate measure of the dose deposited by the

magnetically focused contaminant electrons. Based off simulations which investigated

the energy spectra of electrons crossing the surface and up to 5 mm depth in the phantom

(see figure 6.13), it is known that low energy electrons (with a peak energy at 100 keV)

are depositing dose. Silicon is known to over-respond to low energy (kilovoltage) photons

due to the photoelectric effect being dominant for higher Z materials [204] whereas EBT3

has been shown to under-respond at these energies [215]. In this study, the agreement of

film and MOSkinTM near the surface indicates neither over- or under-respond to the high

fluence of electrons.

A previous simulation study by Oborn et. al. [107] predicted high skin dose as a result

of the large fringe field of the Australian MRI-linac magnet. The current work was

the first experimental measurements of skin dose, defined at 0.07 mm depth, on this

system. Oborn et. al. [107] predicted a skin dose of 250% for a 5 × 5 cm2 field, 550%

for a 10 × 10 cm2 field and 1400% for a 20 × 20 cm2 field which are higher than
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Figure 6.13: Electron energy spectra at different depths in the phantom, obtained from
Geant4 simulations. 4 × 1011 electrons hitting the target.

Table 6.2: Skin Dose for field sizes at near 0 T and 1 T, measured with MOSkinTM

detector. Dose normalised at 50 mm depth, expressed as percentage of maximum dose
for near 0 T measurements.

Field Size (cm2) near 0 T 1 T

2.1 × 1.9 44.5% 104.5%

6.1 × 5.8 47.8% 185.6%

11.8 × 11.5 60.8% 369.1%

23.5 × 23 78.5% 711.1%

the values measured with the MOSkinTM detector (table 6.2). There are dissimilarities

between the simulation and experimental setup which explain these differences. Firstly,

the source-to-isocenter distance is shorter by 20 cm in the simulations, since the linac

head components are in closer proximity to the fringe field electrons are less likely to

naturally diverge and are focused along the magnetic field lines thus the simulation skin

dose would be higher. In order to achieve the same field size at the phantom, an increased

source-to-isocenter distance would require a smaller field size set by the MLC and
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therefore would block more head contamination. The beam modeled in the simulations is

a 6 MV Varian 2100C whereas the Australian MRI-linac is a FFF beam which typically

leads to less head scatter; the system is also jaw-less which would reduce scatter further.

It is also suspected that the magnetic shielding around the target of the linac would

contribute to differences in the beam spectrum.

Increased skin dose has been observed with simulations for another inline MRI-linac

design, although they observed dose increases in the range of 6%-19% for a 6 MV

radiation beam [108]. This group experimentally observed this effect in a low-field

electromagnet using a parallel-plate chamber to measure near-surface dose [109]. For the

Australian MRI-linac, the location of the linac with respect to the magnet as well as the

magnet’s strength and footprint leads to significantly higher surface doses as observed

in this study. The MOSkinTM detector’s small sensitive volume was advantageous for

measuring the high dose gradient electron contamination region on this system.

Detectors that are commonly used in the clinic for measuring surface dose such as

the Attix (GammaX-RMI, Middleton, WI, USA) and Advanced Markus (PTW, Freiburg,

Germany) parallel-plate chambers have large sensitive volumes, 1.25 cm and 0.53 cm

diameter respectively, for this purpose they are too large and would result in volume

averaging. The MOSkinTM detector could potentially be used for measuring the increased

relative surface dose out of the beam caused by spiralling contaminant electrons

reported for perpendicular systems [104] and for measuring increased exit dose on these

systems [216–218].

6.4 Conclusion

In this chapter the microDiamond was tested for use in inline magnetic fields as

well as one application in the perpendicular orientation. Results indicate that the

microDiamond’s response needs to be corrected for field sizes smaller than 1.8 cm2

when used in an inline magnetic field. In order to accurately acquire profiles for small

field sizes with the microDiamond it would be beneficial to use a translational stage to

increment the detector position since uncertainty in manual positioning was large. The

microDiamond proved to be useful for measuring PDDs on the Australian MRI-linac.
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However measurements in the first few millimetres depth showed differences from the

other dosimeters, likely due to the charged particle fluence at these depths causing an

over-response rather than a magnetic field effect.

The high surface dose caused by magnetically focused contaminant electrons on

the Australian MRI-linac was measured for a range of field sizes. The extremely high

dose gradient and electronic disequilibrium conditions of this region pose challenges

to dosimetry. The MOSkinTM was advantageous for obtaining high resolution data to

characterize the effect. The relative response of the microDiamond and MOSkinTM

detectors, beyond the electron contamination region, were shown to be unaffected by the

1 T inline magnetic field since there was agreement between measurements at near 0 T

and 1 T and both agreed with film within uncertainty.

Future work will involve using these detectors while testing methods to remove

the high electron contamination region from the primary beam in order to obtain a

clinically useful beam. Treating off-axis has been shown to separate the photon and

electron components [90] as the electrons remain at isocentre, removing them from the

intended delivery. A simpler approach, which has been used for first rat treatments on

the system [219], is to place a beam spoiler in front of the treatment beam however this

brings Dmax to the surface. Some other methods have been previously simulated i.e.

purging the electrons at the level of the MLC and placing a helium gas region between the

linac and patient in order to reduce the interactions which occur in the air column [107].

These methods offer the benefit that they remove the electrons which are causing the hot

spot rather then absorbing them along with the primary beam. This would also mean the

patient could be treated in the center of the magnet where image quality is highest.



Chapter 7

Experimental Measurements of
Radiation Beam Data for an Inline
MRI-linac

Some of the results presented in this chapter have been published in the Journal of

Physics: Conference Series.

N. Roberts, B. Oborn, U. Jelen, B. Dong, J. Begg, A. George, S. J. Alnaghy, T.

Causer, T. Alharthi, L. Holloway, P. Metcalfe, “Modelling the x-ray source for the

Australian MRI-Linac”, J. Phys: Conf. Ser. 1154, p. 012025, 2019.

Some of the methods presented in this chapter have been published in the Frontiers in

Oncology.

U. Jelen, B. Dong, J. Begg, N. Roberts, B. Whelan, P. Keall, G. Liney, 2020. “Dosimetric

optimization and commissioning of a high field inline MRI-linac”, Front. Oncol., 10:136.

7.1 Overview

Commissioning a radiotherapy machine is an important step to ensure safe patient

treatments. The process to commission clinical linear accelerators is quite detailed and

time consuming [37]. MRI-linac radiation beam commissioning proves to be a further

challenge because of the limitations in equipment which can be used in the presence of a

magnetic field and therefore requires adaptation of standard methods. There are currently

81
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no published guidelines for radiation beam commissioning for MRI-guided radiotherapy,

although many centres have described methods to acquire (or what to avoid when

acquiring) accurate beam data [139, 220–222]. Further, inline systems have different

considerations to those published (for perpendicular systems) owing to differences in

their design.

Collection of radiation beam data for the Australian MRI-linac system is detailed

here. The proximity of the treatment machine to the imaging machine, or SID, can be

varied as described in section 6.2.3. This chapter describes the acquisition of beam

data measurements at three different SIDs. The measured data was intended for the

development of both a convolution-based TPS and Monte Carlo beam models as are

described in chapter 8. The recommendations of AAPM Task Group 106 [37] were

followed to characterise the beam with any limitations of the measurements described

throughout.

7.2 Materials and Methods

7.2.1 MRI-linac

The Australian MRI-linac was previously described in chapter 6. The 1 T measurements

presented in this chapter were for three SIDs of 2.869 m, 2.469 m and 1.819 m. The first

distance was, at the time, intended to be used for patient treatments however it became

possible to treat at a closer distance by placing shielding around the linac target. Prior

to shielding, it was hypothesised that the magnetic field was causing the electron beam

to bend and therefore not hitting the target orthogonally. Shielding the target resulted

in higher output and lead to profile symmetry passing IEC60976/ criteria [206, 206] for

the SID 2.469 m and a subset of field sizes at 1.819 m. To resolve the problem of high

electron contamination at the surface (observed in chapter 6), a 2 cm thick beam spoiler

was placed 5 cm in front of the phantom. This was performed for all data collected at

SIDs 2.469 m and 1.819 m for PDDs and profiles. PDDs were also measured without a

beam spoiler for these SIDs to allow for finer tuning of the magnetic field map used for

the Monte Carlo model.
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Table 7.1 gives the field sizes measured for the 1 T setup for the different SIDs.

Many procedures outlined in AAPM Task Group 106 [37] were not applicable to this

system including tray and wedge factors and electron beam measurements. With the

system being jaw-less, the measurements required for TPS modelling were further

reduced. For all field sizes the closed MLC leaves were placed off axis so that dose

from leaf end transmission was not measured on the film. Near 0 T measurements were

performed with the linac at 3.269 m from isocentre and the phantom at SSD 0.743 m, the

field size for this dataset was 9.0 × 8.8 cm2.

7.2.2 Film Dosimetry

Gafchromic R© EBT3 film was used to measure percentage depth dose curves and profiles

of the radiation beam. A standard scanning water tank was not used due to incompatibility

with the magnetic field and size restrictions of the system. Film was chosen for these

measurements as previous studies have shown the effects of the magnetic field on the

relative response is negligible [151, 170], as well as having a high spatial resolution and

near tissue equivalence. The dosimeter was placed within a solid water phantom as shown

in figure 7.1. For measurements with the film parallel to the beam i.e. PDDs, the film was

aligned to the edge of the phantom by placing a slab in front during setup and ensuring

the film edge was straight with the surface. Pressure was applied from the solid water

slabs placed on top of film therefore minimising air gaps [223]. It was also suspected

that the phantom would have been slightly tilted due to the weight on the board it was

placed on and therefore the film would be at an angle to the beam which is recommended

for parallel films [224]. Tests were performed by purposely introducing air gaps into the

phantom and observing the resulting artefacts, such artefacts were not seen in the PDD

data presented here.

The guidelines outlined in AAPM Task Group 55 [205] for using radiochromic film for

dosimetry were followed. An EPSON V700 flatbed scanner (Seiko Epson Corp, Nagano,

Japan) was used to scan film before and after irradiation, orientation was kept consistent

as were scanning parameters. The scanning resolution was 72 dpi with a format of 48-bit

RGB and colour corrections were turn turned off. A black paper template was placed

on the scanning bed to consistently position the film reducing uncertainties in scanner



CHAPTER 7. BEAM DATA FOR INLINE MRI-LINAC 84

15cm

15cm

BEAM

1cm

5cm

10cm 20cm

ISOCENTRE

(a) (b)

Figure 7.1: Setup of measurements with radiation beam (linatron) direction from the left
and solid water phantom with film placed for (a) percentage depth dose curves and (b)
profiles. Side-on view. Linatron not to scale.

uniformity. All analysis was performed using MATLAB R©, taking the red channel from

the scans.

Following conversion of optical density to absolute dose, PDD curves were acquired

from the 2D dose distributions by creating a 10 pixels wide region of interest (in the

direction perpendicular to the CAX) and then calculating median dose across the 10

pixels. This resulted in reduced noise from fluctuations in the data while maintaining the

high dose gradient on films that included the high electron contamination region. PDD

depths were defined by using marks at 10 cm depth on the film. Beam profiles were taken

by a line profile through the laser marks, for X profiles this method was preferred since

the field edge (defined by leaf-ends) would be blurred when taking a region of interest.

The profiles were centred based off the lasers marked in the alternate profile direction.

All data presented in this chapter was normalised to 5 cm depth.

7.2.3 STARCHECKMAXI MR Dosimeter

The STARCHECKMAXI MR (PTW Freiburg, Germany) is an ionisation chamber 2D array

that is MRI compatible, safe for use up to 1.5 T. It consists of 707 air-vented ionisation

chambers with 3 mm spacing, the chambers are 2.5× 8.0× 2.5 mm3. The array has been

characterized on the Australian MRI-linac [225] based on IEC60731 standards [226].

Profiles of the field sizes listed in table 7.1 for an SID of 2.869 m were acquired to validate

film dosimetry methods at 1 T. The STARCHECKMAXI MR was placed at an effective

depth of 10 cm (solid water) for all fields.
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Table 7.1: Summary of data collected at different source-to-MRI-isocentre positions. FS
= Field Size.

Nominal FS Source to MRI Isocentre Distance

x × y (cm2) 2.869 m [FS at
Phantom (cm2)]

2.469 m [FS at
Phantom (cm2)]

1.819 m [FS at
Phantom (cm2)]

1 × 1 3.6 × 3.1 3.2 × 2.6 2.2 × 1.9

2 × 2 6.7 × 5.9 5.8 × 5.1 4.2 × 3.8

3 × 3 9.9 × 9.3 8.4 × 7.9 6.1 × 5.8

4 × 4 13.0 × 12.1 11.0 × 10.3 8.0 × 7.7

5 × 5 16.2 × 15.5 13.7 × 13.2 10.1 × 9.7

6 × 6 - 16.3 × 15.6 11.8 × 11.5

7 × 7 - 18.8 × 18.4 13.9 × 13.5

8 × 8 - - 15.8 × 15.3

9 × 9 - - 17.8 × 17.4

6 × 2 19.3 × 5.9 - -

2 × 6 6.7 × 18.4 - -

7 × 2 - 18.8 × 5.1 -

2 × 7 - 5.8 × 18.4 -

9 × 3 - - 17.8 × 5.8

3 × 9 - - 6.1 × 17.4

7.2.4 CC13 Ionisation Chamber

The CC13 Ionisation Chamber (IBA Dosimetry GmbH, Schwarzenbruck, Germany)

is commonly used clinically for PDD measurements and therefore was used to verify

film measured PDDs. The chamber was positioned vertically in solid water and the

chamber holder was filled with water to avoid air gaps. The dose was measured at select

depths (beyond the electron contamination region near the surface) and normalised to the

response at 5 cm depth. The data for SID of 2.469 m for a nominal field size 7 × 7 cm2

is included.
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7.3 Results and Discussion

7.3.1 0 T measurements

Figure 7.2(a) shows the PDD for the 9.0 × 8.8 cm2 field size measured outside the

magnetic field. Dmax was calculated to be 1.4 ± 0.1 cm for this shorter SSD, this

uncertainty in depth arises from determining which pixel is 0 cm in the film scans. These

measurements were performed for the purposes of Monte Carlo 0 T beam modelling,

when the phantom is closer to the source the electron beam modelling parameters

become more sensitive to variations and therefore a precise model can be developed.

Water tank measurements acquired prior to the installation of the MRI were measured at

SSDs comparable to the distances which would be used for treatments on the Australian

MRI-linac. These 0 T measurements are included in chapter 8 to compare with the beam

models in both Pinnacle3 and Monte Carlo. Figure 7.2(b) shows wider X profiles than

the Y profiles due to the fields being MLC defined and therefore transmission through

the leaf ends results in the larger penumbra for the X profiles. This becomes more

pronounced when moving to extended SSDs, as seen by observing field sizes at the

phantom for different SIDs in table 7.1.
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Figure 7.2: EBT3 film measurements outside of the magnetic field for a 9.0 × 8.8 cm2 at
SSD 0.743 m. (a) PDD and (b) profiles at different depths. Legend in (b) specifies X/Y
profile and the depth (cm) of the profile. Error in film measurements is ± 4%.
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7.3.2 1 T measurements

The high electron contamination dose at the surface, caused by fringe field electron

focusing, was characterised in chapter 6. This effect is evident in PDDs for SID 2.869 m

shown in figure 7.3, the surface dose increases with field size. These contaminant

electrons are absorbed by a depth of 20 mm into the phantom however they travel beyond

Dmax therefore dose was normalised at 5 cm depth. Note that the maximum dose was

not at the surface rather it falls somewhere between 0-1 mm, this was observed with

MOSkinTM measurements in chapter 6. Using this data for modelling in the TPS proved

to be challenging; electron contamination modelling in Pinnacle3 was not capable of

producing this sort of PDD. Initially it was considered to separate the components by

using two models, one for the photon beam dose and one for the electron beam dose

and when calculating the dose for a treatment plan, the two models could be summed

together. However it was decided to collect beam data with a beam spoiler in place,

primarily to remove the high surface dose for patient treatments but also to observe if this

made modelling the beam in Pinnacle3 more feasible.
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Figure 7.3: (a) PDDs for all fields sizes without a beam spoiler measured with EBT3 film
at SID of 2.869 m. (b) A 2D dose distribution of the 4 x 4 cm2 field at 1 cm depth.
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In the profiles at depth 1 cm in figures 7.4-7.6 the electron contamination region is also

visible; for this SID (2.869 m) it appears to be approximately 4 cm in diameter (note at

1 cm depth) in the off-axis plane. In order to verify the film dosimetry methods were

accurate, measurements were taken with STARCHECKMAXI MR and are shown on the

right hand side of figures 7.4-7.6 compared with film at 10 cm depth. It should be noted

that the resolution of the STARCHECKMAXI MR is 3 mm whereas film is 0.35 mm and

therefore differences are seen in the penumbra between measurements. For the 5× 5 cm2

in figure 7.5b the film profile is asymmetric, also observed in figure 7.6b, this was likely

due to the fact that the film was not flat between the solid water pieces i.e. it would bow,

this was difficult to avoid when positioning the slabs and film vertically. To minimise

this, a dedicated stand was manufactured to hold the solid water tightly together. The data

obtained at 2.869 m from the source was not used for beam modelling however was useful

in critiquing the methods for future measurements at closer SIDs.
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Figure 7.4: Profiles measured with film (a,c,e) for varying depths (given in cm in legend)
and X profiles at depth 10 cm comparing film to STARCHECKMAXI MR (b,d,f). The
nominal field sizes are (a-b) 1× 1 cm2, (c-d) 2× 2 cm2, (e-f) 3× 3 cm2. SID of 2.869 m,
without a beam spoiler.
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Figure 7.5: Profiles measured with film (a,c,e) for varying depths (given in cm in legend)
and X profiles at depth 10 cm comparing film to STARCHECKMAXI MR (b,d,f). The
nominal field sizes are (a-b) 4× 4 cm2, (c-d) 5× 5 cm2, (e-f) 6× 2 cm2. SID of 2.869 m,
without a beam spoiler.
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Figure 7.6: Profiles measured with film (a) for varying depths (given in cm in legend)
and X profiles at depth 10 cm comparing film to STARCHECKMAXI MR (b). The nominal
field size was 2 × 6 cm2. SID of 2.869 m, without a beam spoiler.
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Figure 7.7: PDDs for all fields sizes without a beam spoiler measured with EBT3 film at
SID of 2.469 m.

PDDs measured at an SID of 2.469 m without a beam spoiler are shown in figure 7.7.

Similarly to the previous SID, the trend of increasing surface dose with increasing field

size was observed. The depth at which Dmax occurs within the first 1 mm for all field



CHAPTER 7. BEAM DATA FOR INLINE MRI-LINAC 92

sizes however there is a large uncertainty of dose and depth near the surface therefore no

conclusions can be drawn on trends related to field size.
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Figure 7.8: PDDs for nominal field size 7 × 7 cm2 with and without a beam spoiler
measured with EBT3 film and CC13 at SID of 2.469 m. PDD with a beam spoiler was
shifted by 2 cm to align with the PDD without a beam spoiler. Note that some data was
removed at depths as marks on the film were placed to indicate the lasers and therefore
produced spikes in the PDD.

For PDDs with a 2 cm beam spoiler in front of the phantom it was expected that by

shifting the curves to 2 cm depth the PDDs should align with the same field size PDD

without a beam spoiler. An example of two PDD curves compared is shown in figure 7.8

for a nominal field size of 7 × 7 cm2 (the largest field measured for SID of 2.469 m).

Figure 7.8 also includes the PDD measured with a CC13 ion chamber, this data verifies

the methods of acquiring PDD data with film. Note that data was removed at some depths

as this was where marks on the film were placed to indicate the lasers.

Profiles acquired for an SID of 2.469 m are displayed in figures 7.9. The processing

of the data involved removing laser mark artefacts, smoothing using a moving average

function, centring and symmetrising profiles. Overall, profile symmetry (as measured on

the films) was improved when using the dedicated stand to reduce gaps in the vertical

solid water phantom.
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Figure 7.9: Profiles measured with film for varying depths (given in cm in legend). The
nominal field sizes are (a) 1 × 1 cm2, (b) 2 × 2 cm2, (c) 3 × 3 cm2, (d) 4 × 4 cm2, (e)
5 × 5 cm2 and (f) 6 × 6 cm2. SID of 2.469 m, a 2cm beam spoiler was placed 5 cm in
front of phantom.

A range of measurements were performed for an SID of 1.819 m however for brevity
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only PDDs are included. All PDDs without a beam spoiler are shown in figure 7.10 and

a comparison of the PDDs with and without a beam spoiler for a nominal field size of

9 × 9 cm2 is shown in figure 7.11.

The maximum doses for PDDs (without a beam spoiler) can be compared for film

measurements in this chapter and MOSkinTM measurements from chapter 6. With

the data expressed as dose normalised at 5 cm depth (note this is different to how it is

expressed in table 6.2), a maximum dose of 131% from film and 128.8% from MOSkinTM

was measured for a 1 × 1 cm2 nominal field size. For a 6 × 6 cm2 nominal field the

PDD film maximum dose was 409.7% and for MOSkinTM was 414.2%. It was noted

that the PDDs measured with MOSkinTM and parallel film did not agree within the first

2 cm of the phantom, this could be the result of two factors: the uncertainty in film depth

and an over-response of film to the low energy electrons due to its parallel orientation.

The range of these very low energy electrons (energy spectra shown in figure 6.13) could

be decreased when traversing through film, as opposed to water, therefore resulting in

an over-response. For measurements of the high electron contamination region on the

Australian MRI-linac, using film in the parallel orientation to obtain PDDs appears not

as accurate as solid state detectors, since PDDs obtained with these detectors agreed with

each other and film orientated perpendicular to the beam. In the case of measurements

where the electron contamination has been removed, by placing a beam spoiler in

front, the PDD films, once aligned, agree with the MOSkinTM and microDiamond

measurements from chapter 6 as well as the measurements without a beam spoiler (figure

7.8).
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Figure 7.10: PDDs for all fields sizes without a beam spoiler measured with EBT3 film at
SID of 1.819 m.
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Figure 7.11: PDDs for nominal field size 9 × 9 cm2 with and without a beam spoiler
measured with EBT3 film at SID of 1.819 m. PDD with a beam spoiler was shifted by
2 cm to align with the PDD without a beam spoiler. Note that some data was removed
at depths as marks on the film were placed to indicate the lasers and therefore produced
spikes in the PDD.

7.3.3 Near Surface Dose as function of SID

Figure 7.12 shows the near surface maximum dose as a function of field size for the three

different SIDs investigated. The trend of increasing surface dose as a function of SID

was observed. The fringe field as measured with a gauss meter at the MLC were 0.008 T,

0.02 T and 0.05 T for SID 2.849 m, 2.469 m and 1.819 m respectively. These results

show that the magnitude of the high electron contamination region is dependent on the

proximity of the linac components (particularly the MLC) to the MRI and importantly its

fringe field. Note that for the furthest SID the curve plateaus at larger field size.
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Figure 7.12: Measure of the maximum dose near the surface for PDDs without a beam
spoiler as measured with EBT3 film for all approximately square field sizes.

7.4 Conclusion

Methods were developed to acquire radiation data to be used for beam modelling for an

inline MRI-linac system. The initial data obtained (SID of 2.849 m) yielded asymmetric

profiles due to air gaps between solid water slabs therefore a stand was manufactured to

hold the solid water tightly together. TPS beam modelling was challenging with the high

electron contamination present therefore it was decided to remove the contamination (by

absorption) with a beam spoiler and use this beam data for TPS modelling.

Due to this high electron contamination region, acquiring PDDs with film parallel

to the radiation beam proved to be problematic. This method was not as accurate as those

described in chapter 6. However using a beam spoiler and thus removing the electron

contamination, measurements could be performed in this way for beam modelling data.

Electron contamination at the surface increased with increasing field size, the same

trend was observed as in chapter 6. Measurements performed at the 3 different SIDs

showed that the electron contamination was also highly dependent on the proximity of

the linac components to the MRI and importantly its fringe field. The beam data collected
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at SIDs of 2.469 m and 1.819 m with a beam spoiler in place were sufficient for beam

modelling.



Chapter 8

Treatment Beam Model Commissioning
for an Inline MRI-linac

Some of the results presented in this chapter have been published in the Journal of

Physics: Conference Series.

N. Roberts, B. Oborn, U. Jelen, B. Dong, J. Begg, A. George, S. J. Alnaghy, T.

Causer, T. Alharthi, L. Holloway, P. Metcalfe, “Modelling the x-ray source for the

Australian MRI-Linac”, J. Phys: Conf. Ser. 1154, p. 012025, 2019.

8.1 Overview

As a prerequisite for patient treatments, a radiation beam model must be developed

in the treatment planning system in order to generate patient plans. For MRI-guided

radiotherapy, treatment planning and dose calculations should include any significant

effects the magnetic field has on beam characteristics consequently reducing deviations

between planned and delivered dose. Current commercial TPSs are not capable of

modelling the complete magnetic field, including the fringe field. Begg et al. [164]

have shown that beyond the electron contamination region of the Australian MRI-linac,

the relative dose deposition in water along the central axis remained unchanged with

different inline magnetic fields strength. Although there are small changes to penumbral

widths in water, these changes could be modelled in the TPS. Therefore, it is expected

that a convolution-based TPS system should be able to model an inline MRI-linac if the

magnetically focussed electron contaminants are removed. Differences in lung tissue

99
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will be more significant than water [113] and therefore will need to be closely assessed.

To verify deviations caused by the magnetic field are minimal the Australian MRI-linac

program has proposed a Monte Carlo dose verification system to calculate dose with and

without the magnetic field. This chapter describes the development of a beam model with

Geant4 (Monte Carlo) and Pinnacle3 (TPS).

8.2 Materials and Methods

8.2.1 Geant4 Model

The Monte Carlo toolkit, Geant4 [166] version 10.5 was used to model the beam.

The physics processes modelled were compton scattering, photoelectric effect, pair

production, gamma conversion, bremsstrahlung, multiple scattering, ionisation and

annihilation. The range cuts were set to 0.1 mm for all particles and a step limit of

1 mm. The simulations were two stages: an electron beam hitting the target and scoring

all particles in a phasespace that cross a plane before the MLC, in the second stage the

particles pass through the MLC and dose deposited inside the phantoms was stored. The

number of electrons hitting the target were 4 × 1010 and particles were recycled 49 times

in stage 2 of the simulations. Geometry and materials for the model were based upon

manufacturer specifications and physical measurements of some components. The linear

accelerator model includes a tungsten target, a primary collimator, a monitor chamber as

well as the housing of the accelerator. The dose deposited in the phantoms was scored

with voxel size of 2 × 2 × 2 mm3, unless otherwise specified.

Electron beam parameters were varied in order to obtain a match between the simulation

results and measurements. The parameters optimised were mean energy, FWHM of the

energy distribution and focal spot size. The target density was also varied to observe

the effect this had upon beam profiles. To determine a parameter the others were kept

fixed. These fixed values were 6.0 MeV for mean energy, 0.2 MeV for the FWHM of the

energy spread and a Gaussian spatial distribution of 1.3 mm in the x and y direction. The

tungsten target density was 19.3 g/cm3.

For simulations which included the magnetic field delta one step was set to 10 µm, delta
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intersection was 1 µm and the miss distance set to 25 µm. A 3D magnetic field map

was generated using COMSOL Multiphysics (Stockholm, Sweden) software with a finite

element method. The magnetic field component in each direction was stored in a lookup

table which was read in to the simulations.

Measurements for comparison with modelling data were acquired with different

detectors/dosimeters dependent on the application. 0 T measurements which were used

for Monte Carlo modelling were obtained at an SSD of 164 mm so to fine tune electron

beam parameters. Whereas for 1 T measurements included those collected at the MRI

isocentre both with and without beam spoiler in place.

8.2.2 Pinnacle3 Model

The TPS model was developed in Pinnacle3 (Philips Healthcare, Fitchburg, WI, USA).

When adding a new machine in the physics module, physical machine characteristics

must be included; these are settings for the jaw, couch, collimator, gantry, delivery and

other compensators/collimators. Since many of these components are non-existent on

the Australian MRI-linac system or can not be varied they were set to default values.

For example the gantry angle was set to 90◦ and the jaws were fixed to a 40 × 40 cm2

field. The main machine characteristics of interest were the primary collimator angle

(0.1572 rad) and the MLC settings. The projected width of leaves at isocentre was varied

based on measurements of field size at isocentre. At the SID of 2.469 m the projected

width of the inner leaves were 1.3 and the outer leaves were 2.6. The MLC-to-source

distance was calculated based off these projections and set to 50.6 cm (typically this

value for a Varian linac is 53.9 cm).

Experimental data presented in chapter 7 was converted to the appropriate ASCII

file format and imported into the software. Firstly, the phantom size was set to match

experiments and a grid resolution of 0.4 cm was used; this was later decreased to 0.2 cm

when fine tuning the model.

The process for photon beam modelling allows for variation of the energy spectrum, to

determine the shape of the PDD, and electron contamination, to determine the build-up
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region of the depth dose curve [227]. The energy spectrum was expected to have a

high low-energy component as it is a FFF beam. The electron contamination model in

Pinnacle3 is defined as a function of depth, off axis distance and field size. Exactly how

each parameter contributes to the dose is given in figure 8.1, which is taken from the

Pinnacle3 software [228].

Figure 8.1: The electron contamination equations used in Pinnacle3 [228], screenshot
taken from the software.

To change profile shape, parameters which determine in field and out of field dose

can be modified. In field model parameters include flattening filter attenuation and

spectral off-axis softening [229]. An arbitrary profile was used to model flattening

filter attenuation as this is typical for FFF beams [230]. Out of field parameters include

effective source size which is modelled by a Gaussian, the parameters (in directions X

and Y) influence the penumbra of profiles. While profile tails are determined by scatter

contributions from the flattening filter and jaw/MLC transmission.

A 0 T model was included here as it was used as a building block for the 1 T

model. 0 T open field measured data was collected in a water tank prior to the MRI being

installed (measurements courtesy of J. Begg). Pinnacle3 beam modelling, intended to be

used for patient planning, requires a full set of beam data therefore the measured data

collected at isocentre with SID of 2.469 m was used for the 1 T model. The high skin
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dose of the Australian MRI-linac, discussed in chapter 6, was in the first instance to be

removed with a beam spoiler. The measured data imported into Pinnacle3 was therefore

the data collected with a beam spoiler in place.

Output factors were entered into the 1 T model from measurements performed during

commissioning. These were measured with farmer chamber and microDiamond, the

microDiamond was required for the smallest field as the ion chamber was underestimating

the output. Detectors were placed at 10 cm depth in the phantom, located at isocentre, and

measurements were acquired for all field sizes and normalised to the≈ 10× 10 cm2 field

for that SID. Note that an exact 10 × 10 cm2 field is not achievable as leaf projections in

the Y direction are determined by MLC width in that plane.

8.3 Results and Discussion

8.3.1 Geant4 Model

0 T

Varying the electron mean energy results in changes to the PDD as this will effect the

photon energy spectrum and thus the range of the electrons that deposit dose in the

patient/phantom. The left graph of figure 8.2 shows simulated PDDs with different

electron mean energies compared to the PDD measured with microDiamond. An SSD

of 164 mm was used for this setup as the dose curves are more sensitive to changes in

electron beam parameters when the phantom is closer to the source therefore a more

precise model can be obtained. All simulated depth dose curves agree beyond the

build-up region although differences can be seen around Dmax, the closest match for this

region was a mean energy of 6.0 MeV.
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Figure 8.2: Monte Carlo (—) and measured (o) PDD (left) and profile (right) data.
Comparing variations of initial mean electron energy (left) and focal spot size (right).
Measurements were acquired with microDiamond (PDD) and STARCHECKMAXI MR

(Profiles) at SSD = 164 mm, 0 T conditions.

The focal spot size of the electron beam hitting the target effects the penumbral width of

profiles therefore these are compared in figure 8.2 in the graph on the right. The closest

match to measured data was for a 1.6 mm focal spot size.
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Figure 8.3: Monte Carlo (—) and measured (o) profile data. Comparing variations of the
tungsten target density. Measurements were acquired with STARCHECKMAXI MR at SSD
= 164 mm, 0 T conditions.

Changing the density of the target should have greater impact on the dose profiles [231]

and therefore these are shown in figure 8.3 for different simulated target densities. A

density of 21.3 g/cm3 was shown to have the nearest agreement with measured profiles.

The optimised parameters were mean energy of 6.0 MeV (FWHM of 0.2 MeV), focal spot

size of 1.6 mm and target density of 21.3 g/cm3. Comparing simulations to measurements
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for these settings, more than 95% of points passed when applying a gamma criteria of

2%/2 mm.

1 T

The optimised parameters found from the 0 T simulations were used to generate phase

space files scored at a plane before the MLC. Simulations were then run for different

MLC field sizes, with the magnetic field on. Figure 8.4 shows a simulated PDD of a

3 × 3 cm2 (left) and 6 × 6 cm2 (right) without a beam spoiler at SID of 2.469 m and

the phantom surface 10 cm in front of isocentre. Differences in the first 2 cm can be

attributed to uncertainties in the measured data which were discussed in chapter 7. It is

also suspected that a magnetic field map for each MLC field size should be generated

as the MLCs could be altering the fringe field and will therefore change the amount of

contaminants that are magnetically focussed. The current magnetic field map does not

include the shielding around the target which would also change these conditions.
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Figure 8.4: Monte Carlo (—) and measured (- - -) PDD data for MLC nominal field size
of 3 × 3 cm2 (left) and 6 × 6 cm2 (right) without a beam spoiler. Measurements were
acquired with EBT3 film at SID = 2.469 m, 1 T conditions.

Figure 8.5 shows profiles from simulations of a 3 × 3 cm2 with a 2 cm beam spoiler in

front of the phantom compared to measurements of the same set up. The shape of profiles

agree implying that the MLC model and its location with respect to the source is accurate.

The magnetic field alters the penumbra of profiles measured in water [113] therefore

when the magnetic field map is updated profiles will need to be reassessed, although it is

expected that the magnetic field at the region of the phantom will not vary and therefore

profile penumbra should not be affected.
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Figure 8.5: Monte Carlo (—) and measured (- - -) profile data for MLC nominal field size
of 3 × 3 cm2 with a beam spoiler. Measurements were acquired with EBT3 film at SID =
2.469 m, 1 T conditions.

8.3.2 Pinnacle3 Model

0 T

Only limited measured data was available for modelling the 0 T beam in Pinnacle3. Figure

8.6 shows the match between modelled and measured open field beam data at SSD 2.8 m.

Figure 8.7 includes data for a 10 × 10 cm2 field at SSD 0.8 m. Applying a gamma

acceptance criterion of 2%/2 mm the pass rates for all PDDs and profiles were ≥95% of

points.
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Figure 8.6: Pinnacle3-computed (—) and measured (- - -) PDD (left) and profile (right)
data for open field measured in a water tank. Measurements acquired with CC13 ion
chamber, data courtesy of J. Begg. SSD = 2.8 m, 0 T conditions.
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With the inclusion of a beam spoiler for the 1 T model, it was expected that the build-up

would vary quite a lot therefore there was more of a focus on matching the depth dose’s

shape beyond the build-up region. Due to the limited measured data used for the 0 T

model, it was predicted that the modelling parameters would vary from 0 T for the

1 T model. However, this data was useful for determining the correct physical machine

characteristics e.g. primary collimator angle and MLC settings such as source-to-MLC

distance.
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Figure 8.7: Pinnacle3-computed (—) and measured (- - -) PDD (left) and profile (right)
data for a 10 × 10 cm2 field measured in a solid water phantom. Measured data acquired
with EBT3 film. SSD = 0.8 m, 0 T conditions. PDD measured data near the surface is
noisy, no smoothing was applied as this reduces the dose in this region.

1 T

Figure 8.8 (a-c) shows Pinnacle3 computed profiles for nominal field sizes 2 × 2 cm2,

4 × 4 cm2 and 6 × 6 cm2 compared to measured and the PDD for 6 × 6 cm2 field is

displayed in figure 8.8(d). Computed profiles were in agreement with measured data. To

match these profiles an effective source size of 0.1 cm was used and flattening filter scatter

source was set to a Gaussian height of 0.05 and width of 0.15. The MLC transmission

was set to 0.01187; these parameters changed from the 0 T as a result of including more

MLC data. Electron contamination parameters were also varied in order to try to reduce

the build-up region. However for photon beam modelling it was difficult to completely

remove the build-up region, a very short build-up is still present in figure 8.8(d). This

shows the limitations of using convolution based photon beam model to match data which

is lacking a standard build-up region.
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Figure 8.8: Pinnacle3-computed (solid) and measured (dashed) data for nominal field
sizes (a) 2 × 2 cm2, (b) 4 × 4 cm2 and (c-d) 6 × 6 cm2. The depths of profiles are given
in the legend. Measured data acquired with EBT3 film, with a beam spoiler in place. SID
= 2.469 m, 1 T conditions. PDD measured data in (d) near the surface is noisy, a result of
measuring with film. The computed data in (d) shows the limitations of using convolution
based photon beam model to match data which is lacking a standard build-up region.

8.4 Conclusion

This chapter has described the development of the beam model for the Australian

MRI-linac with Geant4 and Pinnacle3 (TPS). The Monte Carlo incident electron beam at

0 T was characterised with the following parameters: mean energy of 6.0 MeV (FWHM

of 0.2 MeV), focal spot size of 1.6 mm and target density of 21.3 g/cm3. The 1 T

simulations were shown to agree with measurements beyond the electron contamination

region, however the magnetic field map needs to be updated to improve agreement in the

first 2 cm of the phantom.
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The TPS beam model for 0 T was in close agreement to measured data, with more

than 95% of points passing for a 2%/2 mm gamma criteria. For the 1 T model, the

profiles were consistent with measurements, however the PDD in the first few millimeters

was difficult to match due to being unable to remove the build-up region completely for

photon beam modelling.

This work has demonstrated that in order to accurately model dose deposited near

the surface for an inline magnetic field it is necessary to use Monte Carlo alongside the

TPS. Plans could still be created with a commercial TPS however the dose should be

verified with Monte Carlo as the TPS was not capable of removing the build-up region

typically present in PDDs.



Chapter 9

Discussion

Respiration-induced motion can detract from the therapeutic benefits of lung SBRT if

not correctly managed. Despite the fact that many motion-management techniques have

been proposed, there are still challenges for these treatments and areas which could be

improved on. Accurate dose calculations are important for evaluating the different motion

management strategies and their associated risks. The calculations should therefore take

into account motion as well as correctly model electronic disequilibrium conditions

which exist in low density media (lung) and for the small fields used in SBRT. The first

few chapters of this thesis (chapters 3-4) focused on the development of a 4D Monte

Carlo dose calculation tool for lung SBRT and explored some uncertainties for current

treatments. These uncertainties were also briefly explored for inline MRI-linacs, by

modelling a uniform magnetic field in the first instance (chapter 5).

Real time MRI-guidance has the potential to more effectively deliver lung SBRT.

The dose calculation accuracy is highly important for these treatments as the magnetic

field causes significant dose differences at tissue-air interfaces. For inline MRI-linacs,

it has been shown that the changes caused by the magnetic field in lung depend on

tumour size, density and location [115]. It is unknown if tumour motion will significantly

alter the dose for inline systems, a question which could be answered with 4D dose

calculations. To have a complete understanding of lung SBRT treatments for MRI-guided

radiotherapy, it becomes obvious that patient- and machine- specific dose calculations

should be performed. The last section of this thesis (chapters 6-8) was focused on

translation of the 4D Monte Carlo dose calculation tool for the Australian MRI-linac.

This involved developing experimental and computational methods for the system.
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9.1 Research Aims

The aims of this thesis (outlined in chapter 1) and how they were specifically addressed

is described in detail here:

9.1.1 4D Monte Carlo Dose Calculations

Aim 1: To incorporate temporal information (4D) into an in-house Monte Carlo dose

calculation system in order to take into account respiratory motion and the dynamic

delivery of radiation.

In chapter 3 a 4D Monte Carlo method for lung SBRT dose calculations was developed

and implemented. The method was compared with 3D Monte Carlo as well as 3D-

and 4D- convolution calculation methods. This work showed deviations in 3D and

4D calculations when evaluating DVH metrics for one of the treatment techniques

investigated. Differences in Monte Carlo and TPS calculations demonstrated collapsed

cone convolution for lung SBRT fields should be used with caution. The 4D simulations

were compared with experimental film measurements taken in a dynamic thorax phantom.

Overall, the 4D Monte Carlo calculated dose showed closest agreement to measured data

with 3%/3 mm global pass rates greater than 95% for all plans. This tool could be used

in inform on which motion management techniques are appropriate for specific patient

cases.

Aim 2: To assess motion and radiation beam delivery uncertainties for lung volumetric

arc therapy (VMAT) stereotactic body radiotherapy (SBRT) for current treatments and

on inline MRI-linacs.

In chapter 3 motion and delivery uncertainties for current motion management

techniques were also investigated with a dynamic phantom. For the plan which used

a motion-encompassing margin, the interplay effect showed minor dose differences

whereas MLC delivery errors were more significant; for MLC field size errors greater

than 1 mm there was more than ±5% difference in DVH metrics. The plan which was

intended for dynamic couch tracking exceeded these differences for 2 mm MLC field

size error. The higher sensitivity of the motion-encompassing margin plan to systematic
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MLC errors was due to the larger beam apertures it utilised. Additionally, MLC errors

which resulted in significant differences were delivered and detectable with EBT3 film.

In chapter 4 motion and delivery uncertainties were simulated with patient lung

datasets. A range of motion amplitudes and tumour geometries were investigated. The

effect of interplay between MLC motion and target motion was minimal for all observed

patient plans implying that for the mid-ventilation technique which was used for these

patients, is not prone to these uncertainties. Errors in MLC leaf positions impacted the

plans more significantly, in particular OAR DVH metrics were sensitive to these errors,

with at least one of the OAR DVH metrics varying by more than 2% compared to the

baseline plan. No clear trends as a function of motion amplitude or tumour size were

observed for the cohort of patients considered.

In chapter 5 delivery uncertainties for inline MRI-linac systems were simulated for

different magnetic field strengths. The impact of MLC uncertainties did not vary with

magnetic field strength however it is suspected that this might not be the case for

smaller target volumes. For extended source-to-isocentre distances, such is the case for

the Australian MRI-linac, any errors in MLC leaf gaps or modelling the leaf ends are

magnified and therefore should be considered carefully.

9.1.2 Dosimetry for inline MRI-linacs

Aim 3: To assess different methods of acquiring dosimetric data on an inline MRI-linac;

the data should be suitable for beam modelling.

In chapter 6 the microDiamond and MOSkinTM were tested for use in inline magnetic

fields. The high surface dose caused by magnetically focused contaminant electrons on

the Australian MRI-linac was measured with these detectors for a range of field sizes;

dose from the contaminants was shown to increase with field size as was expected. The

extremely high dose gradient and electronic disequilibrium conditions of this region pose

challenges to dosimetry; the MOSkinTM detector was advantageous for measurements

under these conditions. The relative response of the microDiamond and MOSkinTM

detectors, beyond the electron contamination region, were shown to be unaffected by the
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1 T inline magnetic field since there was agreement between measurements at near 0 T

and 1 T and both agreed with film within uncertainty. It was demonstrated that these

detectors were useful for obtaining high resolution PDD data in an inline magnetic field.

In chapter 7 methods were developed to acquire radiation data for Monte Carlo

and TPS beam modelling for an inline MRI-linac system. Due to this high electron

contamination region, acquiring PDDs with film parallel to the radiation beam proved

to be problematic. This method was not as accurate as those described in chapter

6. However using a beam spoiler and thus removing the electron contamination,

measurements could be performed in this way for beam modelling data. Measurements

performed at the 3 different SIDs showed that the electron contamination was also highly

dependent on the proximity of the linac components to the MRI and importantly its

fringe field. The beam data collected was of suitable quality for beam modelling purposes.

Aim 4: To model the Australian MRI-linac radiation beam in a convolution-based

treatment planning system and with Monte Carlo.

In chapter 8 the work demonstrated that in order to accurately model dose deposited

for an inline magnetic field it is necessary to use Monte Carlo alongside the TPS as the

fringe field impacts the dose in the first few centimetres. Plans could still be created with

a convolution-based TPS however the dose should be verified with Monte Carlo as the

TPS is not capable of modelling the high electron contamination region at the surface.

9.2 Future Work

For future work, the 4D Monte Carlo dose calculation system should be used to

investigate a larger cohort of lung cancer patients, different motion-management

techniques and other uncertainties for lung SBRT. It would also be a useful tool in a study

to inform on suitable dosimeters to detect clinically relevant uncertainties for current

treatments of moving targets.

In terms of treatments on MRI-linacs, the next step once the treatment beam is

modelled would be to investigate the effect of tumour motion on the dose distribution.
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More broadly, the 4D tool could be used to inform on the appropriate magnetic field

strength and orientation for lung SBRT. It could be applied to MRI-linac treatments for

other clinical sites e.g. breast, cervix, pancreas, prostate, and rectum. Also of interest

would be to test the accuracy of the convolution-based TPS for optimisation and dose

calculations of plans in lung using the Monte Carlo model.

The high electron contamination region at the surface on the Australian MRI-linac

was observed in chapter 6 and 7, methods to remove this from the primary beam should

be tested experimentally. Treating off-axis is a potential solution or previously simulated

solutions include purging the electrons at the level of the MLC and placing a helium gas

region between the linac and patient in order to reduce the interactions which occur in the

air column. This would also resolve some issues that were encountered when measuring

and modelling the beam (in the TPS). In terms of the Monte Carlo model it is advised

that the magnetic field map is updated for future simulation work for this system.

The assessment of delivery uncertainties for inline MRI-linac systems was somewhat

limited in that it was only observed on a lung phantom for one motion pattern and tumour

size. The beam model used was also for a standard clinical beam and using a uniform

inline magnetic field across the phantom. Simulations using this 4D MC framework

should be performed with the Australian MRI-linac beam model, and the updated

magnetic field map, at the intended treatment SSD. It is recognised that a workflow

would also need to be set up to convert the MRI images to electron density so that the 4D

dose calculations can be performed without having to also CT patients.
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Conclusion

This thesis has demonstrated a functional workflow for 4D Monte Carlo dose calculations

for treatment plans of lung SBRT using both current (dynamic) deliveries and MRI-guided

radiotherapy. The small fields, high dose gradients, varying density in lung and variation

as a result of motion in lung SBRT contribute to differences between planned and

measured dose. The 4D tool improved the agreement to measurements performed in a

dynamic phantom, particularly in regions where significant density variations occur as a

result of motion.

MRI-guided radiotherapy for lung SBRT treatments will require modelling both

the magnetic field and motion as both alter the dose distribution. With this 4D tool it

is recommended that studies be performed which observe various motion patterns and

amplitudes, tumour locations and sizes as well as magnetic fields to investigate how these

variables effect changes in the dose distribution.

4D simulation studies were performed to investigate both motion and delivery tolerances

for lung SBRT. The lung patient study demonstrated that small shifts in MLCs had

significant impact on plans. Considering that for MRI-linac systems the change in dose

distributions is strongly dependent on the field size, translation of this study for these

systems is important. In the first instance this was carried out for a phantom study with

uniform magnetic fields. The study showed negligible variation from 0 T results however

with a more complex geometry i.e. patients, smaller tumour sizes and for realistic

magnetic field models, this could change.
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While transverse MRI-linacs are available commercially, inline MRI-linacs demonstrate

promising qualities, particularly for lung SBRT. In this thesis, methods were developed

to experimentally and computationally characterise an inline MRI-linac. The 4D tool

developed in this work as well as the novel dosimetry methods presented will assist with

future clinical decisions for the treatment of lung SBRT using MRI-linacs.
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