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ABSTRACT: A medium manganese steel with a high concentration of chromium (0.8 wt.%) 

and other anti-corrosion elements (0.3Ni-0.3Cu-0.2Mo in wt.%) was studied with the aim of 

further characterizing the corrosion feature (via corrosion kinetics, XRD, SEM, EPMA and XPS) 

exposed to a NaCl solution spray. The results reveal that the increased Mn and Cr contents in 

medium Mn steel change the corrosion performance at different stages. The formation of the 

initial corrosion product β-FeO(OH) and high cationic fraction of Mn ions directly cause the 

high corrosion rate. The higher Cr content contributed to providing better protection when the 

barrier formed. 
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1. INTRODUCTION 

During the last two decades, due to the shortage of land resources and energy exhaustion, the 

marine industry has been faced with increasing pressure from environmental groups to reduce 

the service life of facilities and increase oil leakage [1, 2]. On one hand, marine structures must 



possess superior and comprehensive mechanical properties, on the other hand, the cost and the 

service life of raw materials are considered to ensure their products with economic usage and 

reliability. Medium Mn steels (containing 3-10 wt.% Mn) with a thickness specification of 

30~80 mm were proposed and declared to rival HSLA-100 steel (0.005C-1.2Mn-2.1Cu-0.6Cr-

0.6Mo-3.5Ni-0.05Nb in wt.%) because of their excellent homogeneous microstructures, 

superior mechanical properties, and good balance of strength and low-temperature toughness, 

and the medium Mn steels can reduce the cost for additions of alloying elements [3]. A suitable 

quenching and intercritical tempering (Q&T) process allows high-strength ferrite/martensite 

and stable reversed austenite structures to be obtained by increasing the concentration of C and 

Mn in austenite during the partitioning treatment [4, 5]. Nevertheless, low levels of anti-

corrosion elements and high Mn concentrations result in a more unique corrosion performance 

relative to that of the low alloy steel. 

Recently, attempts have been made to clarify the influence of Mn addition on the corrosion 

behaviour of medium/high Mn steel by performing accelerated corrosion testing and 

electrochemical testing [6-8]. Fajardo et al. [6] reported that the corrosion rate increases as the 

Mn content increases in high Mn steel, and the enrichment of Mn oxides in the corrosion 

product was found to increase as the Mn content increased, accompanied by a decrease in the 

Fe oxide content. Therefore, the addition of Mn increases the corrosion susceptibility and 

reduces the corrosion resistance. Moon et al. [7] used an electrochemical method to study the 

effect of the Mn content on the corrosion characteristics of high Mn TWIP steel, it was 

suggested that the corrosion resistance of high Mn steel can be reduced by producing a high 

density of deformation twins and large surface energy grain boundaries. In the case of the 

medium Mn steel, manganese compounds form in the corrosion products in the simulated 

marine splash zone environments but do not form in the simulated marine immersion zones [8]. 

These formed corrosion products can deteriorate the protective ability of the medium Mn steels 

because they have a higher corrosion current density and lower total impedance value. However, 

the effect of Mn on the corrosion behaviour of the medium Mn steel in the neutral salt spray 

condition has not been elucidated. 

In the current work, the corrosion behaviour of the Q&T medium Mn steel containing four low 

level anti-corrosion elements (Ni, Cu, Mo and Cr) exposed to a NaCl solution spray was studied 



by evaluating the corrosion kinetics curves, corrosion phases, surface and cross-sectional 

morphologies and elemental distributions, as well as the valence state. These new insights into 

the corrosion behaviour of the medium Mn steel may provide the valuable data necessary to 

develop a medium Mn steel with relevant corrosion protection. Furthermore, the effect of 

increasing the concentration of Mn (5.9 wt.%) and Cr (0.8 wt.%) in the corrosion process of the 

medium Mn steel has been studied and compared with that of the medium Mn steel described 

in the previous study and exposed to the same environment [9]. 

2. EXPERIMENTS 

2.1 Materials 

The chemical compositions of the experimental medium manganese steel are listed in Table 1. 

The medium manganese steel was melted using a vacuum furnace, cast and forged into a billet 

with an ~140 mm thickness. The hot rolling and heat treatment process are illustrated in Fig. 1. 

The billets were homogenized at 1,200 °C for 2 h and then hot rolled to 30 mm via eleven 

passes. The start and finish temperatures during the hot rolling process were 960 °C and 900 °C, 

respectively. The phase transformation temperatures were measured using a DIL 805 A/D 

dilatometer in a nitrogen atmosphere. Test coupons with dimensions of 10 × 4 × 2 mm3 were 

cut from the directly water-quenched steel plate. The coupons were heated at a heating rate of 

0.1 °C/s to 1,000 °C to simulate the slow heating process and were then quenched to room 

temperature at 20 °C/s. The critical temperatures Mf, Ms, Ac1 and Ac3 were measured by the 

dilatometer, which were 258 °C, 377 °C, 594 °C and 796 °C, respectively. Based on the phase 

transformation temperature, the directly water-quenched plates were reheated for 50 min to an 

intercritical tempering temperature of 650 °C. Then, the plates were air-cooled to room 

temperature. 

2.2 Neutral salt spray tests 

The neutral salt spray tests were performed in a salt spray test chamber (YWX/Q-020; Beijing 

Yashilin Testing Equipment Co., Ltd.; Beijing, China) for 24 h, 72 h, 168 h, 288 h 432 h and 

600 h according to DIN EN ISO 9227 [10]. The test solution was a 5 wt.% NaCl solution. 

Coupons with two sizes of 40 mm × 40 mm × 4 mm and 10 mm × 10 mm × 4 mm were cut 

from the tested medium manganese steel for corrosion rate calculation and corrosion products 

analysis. A burnishing process was carried out of the coupons surfaces using 240, 400, 600, 800, 



and 1200 grit silicon carbide sand papers. Grease and dust on the coupons were removed with 

acetone and alcohol using an ultrasonic cleaner, and the coupons were dried with clean air at 

room temperature. In order that only one larger side encounters corrosion, the rims and 

backsides of the coupons were sealed with an anti-salt fog varnish (PLASTIK 70, Kontakt 

Chemie) [11]. Five replicate coupons were used for each corrosion cycle. The test conditions 

were as follows: the tested temperature, pH value and deposition rate of the NaCl solution were 

35 °C, 6.5, and 1.6 ml/h, respectively. 

The description of the corrosion kinetics is based on the weight loss of the coupon after each 

corrosion cycle. First, corroded coupons were carefully rinsed and dried. The anti-salt fog 

varnish on the coupon was removed by a hard plastic piece. The corrosion products were 

visually removed after the corroded areas were carefully cleaned by an electrochemical 

treatment. Hexamethylenetetramine (10 g) and 37 (vol) % hydrochloric acid (100 mL) were 

dissolved in 1,000 mL distilled water. This procedure did not result in any further 

electrochemical reaction of the steel matrix [12]. 

2.3 Morphology observation and corrosion products analysis 

Transmission electron microscopy (TEM; FEI Tecnai G2F20) was used to observe the 

microstructure of the medium manganese steel. The mechanical properties of the medium 

manganese steel were evaluated using a Shimadzu AG-X universal tensile machine with a 

crosshead speed of 3 mm/min and an Instron Dynatup 9200 series drop weight impact tester. 

After the salt spray test, the surface and cross-sectional morphologies of the corrosion products 

were studied using a field emission scanning electron microscope (SEM; ZEISS ULTRA55) 

and a JEOL-8530F electron probe micro-analyser (EPMA) equipped with an energy dispersive 

X-ray spectrometer (EDX). Furthermore, a D/max 2400 X-ray diffraction (XRD) system 

equipped with CuKα radiation (λ = 0.154 nm) was used to study the phases and corrosion 

product composition of the tested medium manganese steel. XRD data were collected from 40° 

to 100° and 10° to 70°. In addition, X-ray photoelectron spectroscopy (XPS; ESCALAB 250) 

was carried out to identify the valence state of the elements in the formed corrosion products. 

3. RESULTS 

3.1 Microstructure and mechanical properties 

It is well known that reversed austenite can form in medium manganese steels via an 



intercritical annealing/tempering treatment [13, 14]. Reversed austenite plays an important role 

in the comprehensive properties of steels [15-17]. After intercritical tempering was performed 

at 650 °C for 50 min, the microstructure of the tested medium manganese steel consisted of 

lath-like martensite and oval-like reversed austenite (as shown in Fig. 2a). The reversed 

austenite was distributed along the boundary of the lath-like martensite, which was confirmed 

by the dark field micrograph and selected area electron diffraction (SAED) pattern shown in 

Fig. 2b and its inset map. The phase composition was determined based on the XRD pattern 

shown in Fig. 2c. The volume fraction of the reversed austenite was quantified by a calculation 

reported by Hu et al. [18] using the integrated intensities of (200), (211), (200), (220) and 

(311). Approximately twenty-five percent of austenite was obtained after intercritical 

tempering.  

By using the EDX results obtained from TEM, the main chemical composition of Mn, Ni and 

Cr was 8.85Mn-0.51Ni-0.89Cr (wt.%) in the reversed austenite and 4.51Mn-0.44Ni-0.57Cr 

(wt.%) in the martensite (Fig. 2d). The EDX results indicated that the distribution of Mn and 

Cr significantly increased in the austenite during the intercritical tempering process, along with 

the reverse transformation of austenite. Therefore, the partitioning of Mn and Cr during 

intercritical annealing was consistent with that expected from the tested medium manganese 

steel. Elemental Mn can provide a strong interfacial segregation effect and can stabilize 

austenite, while the anti-corrosion effects of elemental Cr offset the adverse effect of Mn to 

balance the corrosion process [9].  

A good combination of strength and toughness was obtained in the medium manganese steel 

after intercritical tempering. The mechanical properties are presented in Figs. 3a and 3b, the 

yield and tensile strength of the tested steel were 710 MPa and 842 MPa, respectively, and the 

Charpy absorbed energy values at 0 °C, -20 °C, -40 °C and -60 °C were 211 J, 192 J, 143 J and 

105 J, respectively. It is reasonable to infer that the transformation-induced plasticity (TRIP) 

effect induced by the reversed austenite can reinforce the strength and toughness under the 

stress loading condition. 

3.2 Corrosion kinetics and corrosion product 

Based on the standard ASTM G1-03 [19], the weight changes (Δm) of the medium Mn steels 

were determined based on the differences between the original weight of the coupon and the 



weight after removing the corrosion products. The corrosion kinetics curve (Fig. 4) was 

characterized by determining the value of the average corrosion rate. The average corrosion 

rate (ACR, mm·y-1) was calculated according to Eq. (1). 

 ACR =
87,600∆m

tρS
 (1) 

where Δm is the weight change in g, t is the corrosion time in hours, ρ is the physical density 

of the tested steel, and S is the area of the largest surface of the coupon in cm2. 

The average corrosion rate obtained for the tested medium Mn steel for different bathing times 

in the neutral salt spray condition is connected to the plot of the corrosion kinetics curve. The 

corrosion curve (see Fig. 4) trends continuously to decline. The initial stage involves the 

average corrosion rates sharply reducing from 24 h to 288 h. However, the average corrosion 

rate slightly decreases after the next bathing time node. Then, the corrosion curve from 432 h 

to 600 h is stable. The relative stable value of the corrosion rate in the neutral salt spray is 0.77 

± 0.02 mm·y-1. 

The evolution of the corrosion products directly indicates the change in the average corrosion 

rate [20]. Fig. 5 indicates that the main surface corrosion products are lepidocrocite, γ-FeO(OH), 

iron oxide, Fe2O3 or Fe3O4, manganese oxide, Mn2O3 or Mn3O4, and small amounts of goethite, 

α-FeO(OH), and akageneite, β-FeO(OH). The XRD patterns (Figs. 5a and 5b) reveal that 

FeO(OH) actually presents as three polymorphs (γ-FeO(OH), α-FeO(OH) and β-FeO(OH)). 

However, β-FeO(OH) was not observed in the corrosion products when the corrosion time was 

longer than 168 h. As a result, the average corrosion rate of the tested medium Mn steel is 

constantly high in the initial corrosion stage. Furthermore, the sharp fluctuation of the 

diffraction intensities of γ-FeO(OH) with increasing corrosion times is caused by the reduction 

of the reaction of γ-FeO(OH) during the corrosion process. As the main corrosion phase, γ-

FeO(OH) is deposited in the corrosion product, and upon thickening of the corrosion product, 

these γ-FeO(OH) can also regenerate as the corrosion time increased [21]. Additionally, the 

critical peak of more stable corrosion products α-FeO(OH) became intense after corrosion 

testing times of 432 h and 600 h. As mentioned above, it can be seen that the variation trend of 

FeO(OH) in the corrosion products corresponds to the corrosion kinetics curve and 

synchronously changes with increasing corrosion times. Besides, the content of iron oxide and 



manganese oxide are changed in the surface corrosion products of the tested medium Mn steel. 

The phase content of the iron oxides reaches its maximum value after 72 h of corrosion testing 

time. Similarly, the peak intensity corresponding to the manganese oxides starts to decrease and 

become more stable after the initial two corrosion durations. 

3.3 Surface and cross-sectional observations  

The surface morphology of the corrosion products, specifically, the characteristic morphology 

and compactness, can be used to study the corrosion process [22, 23]. The crevices in the initial 

corrosion products (Figs. 6a and 6b) mean that the salt spray deposition process occurs by local 

condensation. The excessive concentration of chloride ions in the localized areas causes cloud-

like β-FeO(OH) to form in the initial corrosion products. Globular and lamellar formations exist 

in most areas on the surface. These morphologies corresponding to γ-FeO(OH) are mentioned 

by other publications [24-26]. As γ-FeO(OH) forms, the corrosion products become more 

compact. In addition, some needles or whiskers typical of α-FeO(OH) appear around the 

periphery of γ-FeO(OH) [27-29]. With increasing corrosion testing time, the FeO(OH) 

morphology presents with the main phases and corresponds to a mixture of globular γ-FeO(OH) 

and α-FeO(OH) needles/whiskers, where the latter forms from the transformation of the former, 

which causes the compactness of the corrosion product to gradually increase (Figs. 6c-6e). 

During the final corrosion, the surface morphology did not significantly transform (Fig. 6f). 

The innermost surface characterized by exfoliated formations was a blackish colour, possibly 

corresponding to magnetite, Fe3O4, which agrees with the XRD patterns (Fig. 5f). It seems to 

be confirmed that FeOOH is located on the outermost surface, and Fe3O4 mainly exists on the 

innermost surface. 

Fig. 7 shows the cross-sectional morphologies of the corrosion products that formed on the 

tested medium Mn steel after its corrosion for different times in the neutral salt spray condition. 

The values on the red line and bottom marking in Fig. 7 are the maximum thickness values of 

the selected corrosion products and the loss in thickness of the steel matrix, respectively, which 

was calculated using the data of the average corrosion rate. A monolayer structure with a 

maximum thickness of 7.5 μm appears above the matrix after a corrosion testing time of 24 h 

(Fig. 7a). The initial corrosion product presents with an uncompacted state, is poorly protected 

against corrosive media and has a high average corrosion rate. After a corrosion testing time of 



72 h, the maximum thickness of the corrosion product is 31.3 μm, and the compactness 

increases. Furthermore, cracks appear in the corrosion products near the side of the steel matrix 

(Fig. 7b). As the corrosion testing time increases to 288 h, the maximum thickness of the 

corrosion product is 83.2 μm, and the compactness of the corrosion product becomes better (Fig. 

7c). Figs. 7d-7f show that the maximum thickness of the corrosion product of the tested medium 

Mn steel does not significantly increase, and the structural continuity of the corrosion product 

is gradually improved, except that some changes in the structural characteristics of the outer 

film of the corrosion product have occurred. The gradual increase in the compactness of the 

outer film has improved the protective ability of the corrosion products, to some extent. 

Additionally, the cracks probably affect the protective ability of corrosion product even if the 

corrosion product is dense. Longitudinal cracks parallel to the matrix and transverse crack of 

the vertical matrix appear in the corrosion products after a corrosion time of 288 h. These cracks 

provide a channel for the penetration of chloride and oxygen ions, which causes an accelerated 

corrosion phenomenon to occur. 

3.4 Elemental distribution and valence state 

Fig. 8 shows the chemical composition maps (Fe, Mn, Cu, Ni, Mo and Cr) of the tested medium 

Mn steel corrosion products, which were obtained by an electron probe micro-analyser (EPMA) 

after all the corrosion cycles. It is evident that the corrosion film contains regions that are 

depleted and enriched in alloying elements and that the degrees of enrichment and depletion 

change somewhat as the corrosion time increases. The enriched regions of elemental Fe and 

Mn are significant. However, the evolution of enrichment with the increase of corrosion testing 

time occurs with different changes. In the initial corrosion testing time stage (24 h), the 

corrosion products are minimally enriched in Fe and Mn. In contrast to the continuous 

enrichment of elemental Fe, less elemental Mn enrichment is observed after the last three 

corrosion cycles, and a depletion phenomenon appears relative to the concentration of elemental 

Mn in the matrix. In addition, except for Ni, which is apparently enriched in the initial stage of 

the corrosion process, the other elements (Cu, Mo and Cr) are enriched in the gap between the 

matrix and corrosion products during the last three cycles. Among Cu, Mo and Cr enrichment, 

elemental Cr enrichment is the most significant, and the enriched region corresponds to the 

region depleted in elemental Mn in the corrosion products. 



The high-resolution XPS spectra of the Fe 2p, Mn 2p and Cr 2p survey scans of the tested 

medium Mn steel after corrosion testing times of 168 h and 432 h are shown in Fig. 9. The 

survey spectra show five peaks assigned to O 1s, C1s, Fe 2p, Mn 2p and Cr 2p at the two 

different corrosion testing times. A small amount of Cr is detected whereas other elements are 

not observable due to low contents in tested steel. The peaks indicate that Fe and Mn play 

essential roles in the corrosion behaviour evolution, while the surface of the medium Mn steel 

was shown to be severely oxidized based on the apparent O 1s peak. The main composition of 

the corrosion product can be observed from the Fe 2p and Mn 2p XPS spectra (Figs. 10a and 

10b). After a corrosion testing time of 168 h, it is found that the peaks at 711.4 eV and 724.6 

eV from the Fe 2p spectra are attributed to Fe 2p3/2 and Fe 2p1/2, which provides clear evidence 

of the existence of Fe(III) in the corrosion product [30]. The deconvoluted Fe 2p spectra also 

show two peaks attributed to an oxide of Fe(II) at 709.8 eV and an oxyhydroxide of Fe(III) 

(FeOOH) at 713.5 eV [31, 32]. When the corrosion testing time is increased to 432 h, the Fe 2p 

spectrum contains two deconvoluted peaks at 710.6 eV and 724.1 eV, which correspond to Fe 

2p3/2 and Fe 2p1/2, respectively, confirming the existence of Fe3O4 in the corrosion product [33]. 

At the same time, the deconvoluted peak at 713.5 eV in the Fe 2p3/2 spectrum indicates that 

FeOOH is still a primary compound in the corrosion product. Fig. 10b presents the 

deconvoluted Mn 2p spectrum obtained at the same corrosion testing time as the Fe 2p spectrum. 

At a corrosion testing time of 168 h, as seen in the fitted Mn 2p3/2 spectrum, two kinds of Mn 

oxides are detected: MnO and MnO2 (Mn 2p3/2 centred at 640.7 eV and 642.5 eV) [34, 35]. The 

satellite peak of Mn(II) at 645.4 eV is detected as well. However, after a corrosion testing time 

of 432 h, it is observed that the Mn 2p spectrum only shows two components assigned to Mn 

2p3/2 at 643 eV and Mn 2p1/2 at 654.5 eV, indicating that the Mn oxides (Mn2O3, MnO2 and 

Mn3O4) are combined together in the corrosion product [6, 34]. 

4. DISCUSSIONS 

The calculated corrosion kinetics, surface and cross-sectional observations made by SEM and 

the composition and elemental analyses of the corrosion products performed by XRD, EPMA 

and XPS in the present work indicate that the corrosion process that occurs on the surface of 

medium Mn steel after the salt spray tests comprises two different stages, suggesting that the 

effects of the alloying element on corrosion performance during the corrosion test are different. 



A high concentration of Mn can accelerate the corrosion of the medium Mn steel in a neutral 

chloride solution, which is attributable to the increase of the dissolution current densities [6]. 

Similarly, adding Mn to the medium manganese steel also accelerates the corrosion rate, and 

the results from the calculation and characterization show that manganese agglomerates in the 

corrosion products obtained during the first three cycles. According to the neutral salt spray 

corrosion test results described in this paper, the mechanism responsible for the effects of the 

alloying elements on the corrosion process of the medium Mn steel is shown in Fig. 11.  

Previous studies have reported that anti-corrosion elements such as Cr, Mo, Cu and Ni have a 

synergistic effect on the corrosion behaviour of the medium Mn steel [9]. Anti-corrosion 

elements play different roles in the different corrosion stages of the medium Mn steel. As 

mentioned in section 3.4, the enrichment of elemental Ni and Cu in the corrosion product occurs 

twice during the early and late stages of corrosion, while the other elements, Mo and Cr, are 

only gradually enriched at the matrix/product interface during the later stages of corrosion. The 

roles of the anti-corrosion alloying elements during the corrosion process of the medium Mn 

steel were summarized in the schematic. Low Ni (0.3 wt%) was substituted with Fe(III)/Mn(IV) 

in the corrosion products, thereby adversely affecting the electrical properties of the corrosion 

products during the whole corrosion process, and the characteristics showed that varying Fe/Mn 

ion contents were uniformly distributed throughout the corrosion products, as shown in Fig. 8 

[36, 37]. However, the preferential nucleation property of Cu at the initial stage of corrosion 

increases the corrosion resistance, and Cu also enriches the inner layer of the corrosion product 

during the second corrosion stage, enhancing the density, which is similar to the effect of Cr 

[37, 38]. In addition, the insoluble Mo oxide acts to reduce the cation permeability in the second 

corrosion stage [39]. 

The present results of the corrosion process observed in the neutral salt spray test relative to the 

previous parallel test result [9] shows that the final corrosion rate decreases in the medium Mn 

steel when the Cr content is increased from 0.4 to 0.8 wt.%, whereas the initial corrosion rate 

increases when the Mn content is increased from 5.6 to 5.9 wt.%. Note that in the previous 

parallel test results, the medium manganese steel contained comparatively lower Mn contents 

and lower Cr contents than the presently studied medium Mn steel, which is the main cause for 

the different corrosion rates. Another aspect to consider is the volume fraction of austenite in 



the medium Mn steel tested in this study, approximately 25%, which is more than that in the 

previous studied steel [9]. The monolayer of corrosion products formed at the beginning of the 

corrosion process, where the corrosion process proceeds with the highest corrosion rate, 

essentially consists of Fe and Mn and also shares aspects of the elemental composition of the 

medium Mn steel, which is expected when the corrosion product has a low corrosion resistance 

and allows for the direct electrochemical reaction to occur due to β-FeO(OH), especially in 

environments with Cl- ions and when excess Mn exists in the matrix [40]. Mn continues to 

oxidize until the enriched region of Cu, Mo and Cr forms at the matrix/product interface during 

stage one. Therefore, compared to previous studies, the higher Mn and Cr contents cause the 

significant differences in the corrosion rate, which confirmed the accelerated corrosion effect 

of Mn in the first stage. Along with the disappearance of local Mn agglomerates in the corrosion 

product, the chemical shift observed from the XPS results presented in Fig. 10 means that the 

electronic structure of the corrosion products was changed by the presence of the anti-corrosion 

elements. It can be found from the EPMA results presented in Fig. 8 that the absence of Fe in 

the local regions occurs because of the high diffusion rate of the Mn cations throughout the 

corrosion products during stage one, and the less protective character of the Mn oxides is 

another cause of the high corrosion rate [41]. Then, the outward diffusion of Mn and Fe through 

the corrosion product can be observed in Figs. 8d-8f. It is considered that the corrosive medium 

encroaches on the steel matrix, which gradually occurred until the Cr barrier layer formed. This 

is an effective method for enhancing the corrosion resistance of the medium Mn steel.  

An underlying mechanism responsible for the formation of the corrosion products is also 

summarized in Fig. 11. During the first stage, the dissolved Fe ions are hydrolysed and oxidized 

into Fe(II) and Fe(III), accompanied by a good electrochemical activity [42]. The corrosion 

product consists of a large amount of γ-FeOOH, Fe2O3 and Fe3O4 and the small amount of β-

FeOOH and -FeOOH. Meanwhile, γ-FeOOH can form due to the crystallization of β-FeOOH 

and be transformed into -FeOOH/Fe3O4 as the corrosion process proceeds [43, 44]. During 

stage two, as the compact and thick corrosion product forms, the anodic process can be inhibited 

by the synergetic effect of the anti-corrosion elements and the relatively stable γ-FeOOH and 

Fe3O4 products. From the EMPA results, it can be clearly seen that the Mn element is much 

more condensed in the corrosion product than that in the matrix. A semiquantitative analysis 



was carried out using the XPS results of the main elements. The cationic fraction of the main 

elements, Fe and Mn, can be calculated by the following equation: 

 Cx=
I௫ S௫⁄

∑ Ix Sx⁄
 (2) 

where Ix represents the peak intensity corresponding to the area of the Fe and Mn elements, Sx, 

which was set as 10.82 for Fe and 9.17 for Mn, represents the relative sensitivity factor.  

Because the ionization process did not complete in the corrosion product after 1 day of 

corrosion testing duration, the calculation results included only the last five corrosion cycles, 

which are shown in Fig. 12. The cationic fraction in the corrosion product obtained after stage 

one (before 168 h) shows four times the concentration of the matrix. In addition, the oxidized 

Fe content increases as the corrosion testing time is prolonged. At stage two, the oxidized Mn 

content in the corrosion products decreases and stabilizes. The results clearly show the unique 

role of the pseudo-protective properties achieved with high concentrations of Mn in the initial 

corrosion stage of the medium Mn steel. 

5. CONCLUSIONS 

The increase in the manganese and chromium contents in the medium manganese steel changes 

the corrosion performance of the medium manganese steel in neutral salt spray environments. 

The new insights of this study are elaborated as follows: 

 The increased manganese content in the medium manganese steel obviously impacts the 

initial corrosion process. β-FeO(OH) appears, especially in environments containing Cl- 

ions and when excess Mn exists in the matrix, which causes a direct electrochemical 

reaction to occur. 

 The high protective ability of the corrosion product of the medium Mn steel is related to 

the decrease in the Mn cationic fraction in the corrosion product and the formation of the 

anti-corrosion element barrier between the corrosion products and matrix. Moreover, 

forming a barrier layer containing Cr compounds in the dense corrosion products is an 

effective method for enhancing the corrosion resistance of the medium Mn steel in a long 

service situation. 

 An obvious valence transformation of the Mn compounds in the corrosion products occurs 

as the corrosion time is prolonged, while, at the same time, the disappearance of local Mn 



agglomerates in the corrosion product caused by the high diffusion rate explains that the 

adverse effect of Mn is the essential reason for the poor corrosion performance of the 

medium Mn steel incorporated with low contents of anti-corrosion elements. 
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Fig. 1. Schematic diagram of hot rolling and heat treatment process. 
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Fig. 2. (a)-(b) TEM micrographs of tested steel tempered at 650 °C for 50 min of bright-field image, dark-field 

image and SAED pattern of austenite; (c) XRD patterns of tested steel tempered at 650 °C for 50 min; and (d) 

Representative EDX results. 

  



0.00 0.05 0.10 0.15 0.20 0.25
0

200

400

600

800

1000

St
re

ss
, M

Pa

Strain

650 C for 50 min
(a)

0 -20 -40 -60
0

50

100

150

200

250

Im
pa

ct
 e

ne
rg

y,
 J

Temperature, C

650C for 50 min(b)

 
Fig. 3. (a) Engineering stress-strain curve of tested steel; and (b) Charpy impact energy of tested steel at different 

test temperatures (The length of the error bar in Fig. 2b denotes the standard deviation in three tested coupons). 
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Fig. 4. Corrosion kinetic curve of the tested medium Mn steel in the neutral salt spray condition (The length of 

the error bar denotes the standard deviation in five tested coupons). 
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Fig. 5. XRD patterns of surface corrosion products formed after different corrosion durations: (a) 24 h; (b) 72 h; 

(c) 168 h; (d) 288 h; (e) 432 h; and (f) 600 h.  

  



  

  

  
Fig. 6. Surface morphologies of corrosion products formed after different corrosion durations: (a) 24 h; (b) 72 h; 

(c) 168 h; (d) 288 h; (e) 432 h; and (f) 600 h.  

  



   

   

Fig. 7. Cross-sectional morphologies of corrosion products formed after different corrosion durations: (a) 24 h; 

(b) 72 h; (c) 168 h; (d) 288 h; (e) 432 h; and (f) 600 h. 

  



 

 

 

 

 

 
Fig. 8. Elemental distributions of corrosion products formed after different corrosion durations: (a) 24 h; (b) 72 

h; (c) 168 h; (d) 288 h; (e) 432 h; and (f) 600 h. 
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Fig. 9. XPS survey spectrum recorded for the corrosion products formed at the surface of the tested medium Mn 

steel after corrosion testing times of 168 h and 432 h. 
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Fig. 10. XPS patterns of corrosion products after corrosion testing times of 168 h and 432 h: (a) Fe 2p; and (b) 

Mn 2p. 

  



 

Fig. 11. Schematic sketch showing the roles of alloying elements in the corrosion process of the medium Mn 

steel exposed to a neutral salt spray environment. 

  



0

20

40

60

80

100

600 h432 h288 h168 h

C
at

io
n 

fr
ac

tio
n 

(a
t.%

)

Corrosion time

 Fe
 Mn

72 h

 

Fig. 12. XPS cationic fraction (Cx) in the corrosion products after different corrosion durations. 

  



Table 1 

Chemical composition of designed medium manganese steel (wt %). 

Elements C Mn Si P S Al Cu Mo Ni Cr Fe 

Content 0.05 5.9 0.2 0.006 0.003 0.015 0.3 0.2 0.3 0.8 Bal. 
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