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ARTICLE

Role of optimization algorithms based fuzzy
controller in achieving induction motor
performance enhancement
M. A. Hannan 1✉, Jamal Abd. Ali2, M. S. Hossain Lipu3✉, A. Mohamed3, Pin Jern Ker 1,

T. M. Indra Mahlia 4, M. Mansor1, Aini Hussain 3, Kashem M. Muttaqi 5 & Z. Y. Dong 6

Three-phase induction motors (TIMs) are widely used for machines in industrial operations.

As an accurate and robust controller, fuzzy logic controller (FLC) is crucial in designing TIMs

control systems. The performance of FLC highly depends on the membership function (MF)

variables, which are evaluated by heuristic approaches, leading to a high processing time. To

address these issues, optimisation algorithms for TIMs have received increasing interest

among researchers and industrialists. Here, we present an advanced and efficient quantum-

inspired lightning search algorithm (QLSA) to avoid exhaustive conventional heuristic pro-

cedures when obtaining MFs. The accuracy of the QLSA based FLC (QLSAF) speed control is

superior to other controllers in terms of transient response, damping capability and mini-

misation of statistical errors under diverse speeds and loads. The performance of the pro-

posed QLSAF speed controller is validated through experiments. Test results under different

conditions show consistent speed responses and stator currents with the simulation results.
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Three-phase induction motor (TIM) is considered a high
energy consuming appliance used in industrial and com-
mercial applications1–3. TIMs account for ~60% of total

electricity consumption for electrical to mechanical transforma-
tion of energy4,5. High reliability, simple design, ruggedness, low
cost and ease of maintenance are the main advantages of TIM6,7.
However, the dynamic configuration of TIMs is a nonlinear sys-
tem that cannot be easily explained from a theoretical point of
view because of rapid changes in load or speed8–10. Therefore, an
advanced and robust controller is required to enhance the strength
and performance of TIM11,12. The scalar control (i.e., V/F control)
method has been the commonly used technique to achieve rea-
sonable speed under differ load settings of TIM. The scalar control
exhibits simple design, structure and low price. Moreover, this
method does not consider the parameters of motors and can
control medium to the high speed of TIM effectively13.

The conventional controller, namely, proportional–integral–
derivative (PID) has been widely applied to adjust the main
parameters of TIM, including rotor flux, torque, speed, current
and voltage14,15. However, PID has shortcomings in terms of
appropriate parameter selection due to the trial-and-error (TE)
considerations. The artificial intelligence (AI) based controllers
including artificial neural network and adaptive neuro-fuzzy
inference systems have been performing satisfactorily in motor
applications such as fault identification16, speed assessment17 and
harmonics and torque ripple minimization18. However, the AI-
based controllers have drawbacks concerning huge data require-
ment, long learning and training duration. Fuzzy logic controller
(FLC) is extensively utilised in real-time TIM control using
adaptive modelling under sudden19,20. Furthermore, FLC can
operate in highly linear and nonlinear systems without con-
sidering any mathematical model21,22. Nevertheless, the accuracy
of FLC depends on the suitable design and the optimal number of
membership functions (MFs), as well as appropriate fuzzy rule
generation23. Generally, a TE procedure is used to determine
these variables; however, this procedure causes a substantial delay
in control operation24.

At present, the role of optimisation techniques in industrial
applications has attracted massive attention because of their high
accuracy, efficiency and adaptability that provides high-quality
results25–27. Optimisation techniques have been highly explored
in FLC based TIM drives for the appropriate tuning of control
parameters that results in high performance and efficiency28,29.
Ali et al.30 introduced backtracking search algorithm (BSA) based
FLC for controlling an induction motor speed, thus avoiding
exhaustive traditional TE procedure for obtaining MFs. Ranjani &
Murugesan31 proposed particle swarm optimization (PSO) based
FLC to determine the optimal fuzzy parameters for achieving the
minimum value of the objective function (OF). Pan et al.32

developed an optimal FLC utilizing genetic algorithm (GA) and
PSO through the adjustment of control parameters to minimize
the OF. Shareef et al.33 established lighting search algorithm
(LSA) based FLC to overcome the TE process in achieving the
suitable value of MFs. Mutlag et al.34 designed an advanced
controller using differential search optimization based FLC to
obtain the lowest value of OF and best value of MFs. Ochoa
et al.35 deployed Type-1 and Interval Type-2 fuzzy systems to
enhance the performance of differential evolution (DE) algorithm
to achieve dynamic adaptation of the mutation parameters as well
as optimize the MFs. Castillo et al.36 analyzed and compared the
FLC optimization algorithms including bee colony optimization
(BCO), DE, and harmony search algorithms. Melin et al.37

applied shadowed type-2 fuzzy MFs to reduce the computational
cost in control applications. Castillo et al.38 optimized the gen-
eralized type-2 fuzzy logic system with BCO to achieve the
optimal configuration of MFs. However, heuristic optimisation

techniques exhibit performance variation because of the size and
population of their dimension problem in each system39. More-
over, some methods show unequal global and local searching
abilities in obtaining optimal results in search space23. To over-
come these challenges, numerous studies have focused on
improving search performance through quantum mechanics
theories applied in optimisation40–42.

The execution of TIM drive through the experimental platform
is carried out using dSPACE, field-programmable gate array
(FPGA), or digital signal processor (DSP). The dSPACE and
FPGA have illustrated effectiveness in the implementation of
grid-integrated voltage source inverter43 and five-phase voltage
source inverter44, respectively. Nevertheless, dSPACE and FPGA
have shortcomings in terms of cost and working method that
cannot operate on a standalone basis. In contract, DSP offers
benefits with regard to cost-effectiveness, low power consump-
tion, fast computational capability, and embedding processor45,46

and has been excellent in operating TIM drive47 and permanent
magnet synchronous motor48.

In this study, we propose quantum-inspired lightning search
algorithm (QLSA) to avoid the exhaustive conventional heuristic
technique in obtaining the suitable value of the MFs. We apply
the QLSA to a group of fourteen benchmark functions and
compare with other optimisation techniques by using different
benchmark functions. We present an optimal QLSA-based FLC
(QLSAF) speed controller to tune and minimise the OF under
different speed and load conditions. We implement the prototype
of the QLSAF speed controller using V/f control with pulse width
modulation switching technique and low-cost single-chip DSP-
TMS320F28335 control board. We validate the proposed method
by experiments and compare with the simulation results. The
results validate and confirm the implementation of the proposed
algorithm in a multi-induction motor drive.

Results
QLSA performance evaluation. The accuracy, adaptability and
efficiency of QLSA are assessed using the 14th benchmark
functions towards obtaining the global minimum value. The
results are presented in the box plot and compared with the LSA,
BSA, gravitational search algorithm (GSA) and PSO (Fig. 1).
Details of the comparative optimisation algorithms are depicted
in the Supplementary File. The accuracy of QLSA is nearly
adjacent to the global minimum in group 1 benchmark functions
for Sphere (F1), Step (F2) and Quartic (F3). The second test is
implemented using group 2 benchmark functions, and results
indicate that the QLSA reaches the best global minimum for
Schwefel 2.22 (F4), Schwefel 1.2 (F5), Schwefel 2.21 (F6) and
Rosenbrock (F7). QLSA is also verified under group 3 benchmark
functions, where the complexity level of the optimisation problem
increases. QLSA reaches the best global minimum for F8 and the
near-global minimum for F9 and F10. These results demonstrate
the strong computational capacity of QLSA in obtaining any local
minimum. The proposed QLSA is tested through the benchmark
functions of group 4 including F11, F12, F13 and F14 (Supple-
mentary Fig. 6). The results illustrate that the best global mini-
mum for QLSA is found in F11 and F12, and the near-global
minimum is achieved in other functions. In summary, the results
shown in the box plot demonstrate that QLSA performs satis-
factorily in most of the tested functions (Supplementary Tables 3–
6). The results are further elaborated using convergence char-
acteristic curves (Supplementary Fig. 7). QLSA reaches the global
minimum rapidly in comparison with the other optimisation
methods. Thus, the proposed algorithm exhibits excellent con-
vergence characteristics under different function optimisations
Fig. 2.
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Simulation results of optimal control system in TIM. The
QLSAF controller is designed and implemented under MATLAB/
Simulink environment. To verify the effectiveness of QLSAF, the
results are compared with various fuzzy speed controllers,
including LSA-based fuzzy (LSAF), BSA-based fuzzy (BSAF),
GSA-based fuzzy (GSAF) and PSO based fuzzy (PSOF) speed
controllers. The accuracy of the proposed QLSAF controller is
tested under three test cases, namely, sudden changes in step
response, down-to-up-to-down (DTUTD) step SR and ramp
response (RS)49. The convergence characteristic curves are gen-
erated by the different optimised controllers that illustrate the OF
(Fig. 3a). The results demonstrate that the QLSAF speed con-
troller rapidly responds towards obtaining the lowest value of the
OF in comparison with the other optimal controller methods. In
this research, the maximum border and change of errors for MFs
is between −3 and 3, and the output of MFs is located between
−6 and 6. The QLSAF optimisation technique is used to deter-
mine the optimal MF values between the maximum borders of
each TIM. The optimised values of MFs for error, change of error
and output from the QLSAF speed controller are depicted in
Fig. 3b–d, respectively. A 3D diagram (Fig. 3e) indicates the
relationship between the inputs (error and change of error) and
the output (slip speed).

A step response test is performed to assess the adaptability of
the QLSAF controller under rapid variation in speed response

(SR) and load difference. The step SR consists of three cases for
each TIM, namely, sudden change from three quarters to full
speed, half speed to full speed and quarter speed to full speed with
no-load and load conditions. The SR of the motor increases from
105 rad/s to 140 rad/s at 0.3 s, and then the speed drops to 105
rad/s from 140 rad/s at 0.6 s without loading, as shown in Fig. 4a.
Accordingly, the peak stator currents (SCs) increase from 0.6 A
with 37.5 Hz to 0.65 A with 50 Hz. Similar speed variation is
further applied under 2 Nm load conditions, thereby increasing
the peak SCs from 1.05 A to 1.15 A (Fig. 4b). The mean absolute
error (MAE), root mean squared error (RMSE) and standard
deviation (SD) are 3.4720%, 16.5700% and 16.2653%, respectively
(Supplementary Table 7). In Fig. 4c, a change in speed is observed
from 70 rad/s to 140 rad/s at 0.3 s and then from 140 rad/s to
70 rad/s at 0.6 s under the variation in SCs from 0.55 A with
25 Hz to 0.65 A with 50 Hz at no-load condition. In Fig. 4d, the
SCs change from 0.95 A to 1.15 A under 2 Nm load condition; the
figure shows SRs that are similar to those in Fig. 4c. The MAE,
RMSE and SD of QLSAF are 2.1009%, 10.4828% and 10.2860%,
respectively (Supplementary Table 7). In Fig. 4e, the SR initially
increases from 35 rad/s to 140 rad/s at 0.3 s and then declines to
30 rad/s from 140 rad/s at 0.6 s without applying load. The peak
SCs rise from 0.45 A to 0.65 A at 12.5 and 50 Hz, respectively.
A similar SR is shown in Fig. 4f. Nevertheless, a change in SCs
from 0.85 A to 1.05 A is monitored at 1 Nm load conditions.
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Consequently, the MAE, RMSE and SD of QLSAF are 1.6872%,
6.5379% and 6.4662%, respectively (Supplementary Table 7). In
summary, QLSAF has enhanced overshoot (OS) and settling time
(ST) compared with other methods under different speeds and
load operations. Furthermore, QLSAF achieves lower MAE,
RMSE and SD than other controllers under different load
conditions.

The DTUTD step SR under different load conditions is a
challenging test to explore. Figure 4g shows the step DTUTD SR,
where the speed is altered from 35 rad/s to 70 rad/s at 0.25 s, from
70 rad/s to 105 rad/s at 0.5 s and from 105 rad/s to 140 rad/s at
0.75 s at no-load condition. Meanwhile, the peak SCs vary at 0.45
A with 12.5 Hz, 0.55 A with 25 Hz, 0.6 A with 37.5 Hz and 0.65 A
with 50 Hz. Figure 4h shows SRs that are identical to those in
Fig. 4g. However, the peak SCs change at 0.7 A with 12.5 Hz, 0.9
A with 25 Hz, 1 A with 37.5 Hz and 1.05 A with 50 Hz at 1 Nm
load condition. The MAE, RMSE and SD achieved by QLSA are
0.7977%, 4.6566% and 4.6430%, respectively (Supplementary
Table 8). In Fig. 4i, the DTUTD step SR changes from 70 rad/s to
105 rad/s at 0.3 s, from 105 rad/s to 140 rad/s at 0.6 s and returns
to its original speed at 2 Nm condition at 0.9 s. Meanwhile, the
peak SCs vary at 0.95 A with 25 Hz, 1.05 A with 37.5 Hz and 1.15
A with 50 Hz. Accordingly, QLSA obtains low steady state error,
indicating that the MAE, RMSE and SD values are 1.1879%,
7.7192% and 7.6507%, respectively (Supplementary Table 8). In
all cases, the SCs change with the variation of speed and load

under the identical SR. The proposed QLSAF controller is also
observed to be superior to other controllers in terms of achieving
low MAE, RMSE and SD under each step change in speed or load.

The capability of the proposed controller is further assessed on
the basis of the RS test under different load and speed conditions
(Supplementary Fig. 8). The ramp SR increases from a speed of
105 rad/s to 140 rad/s at 0.2 s under the no-load condition and
then continues with the same repetition speed changes (Supple-
mentary Fig. 8a). Meanwhile, the gradual change in SCs is
observed with respect to frequency. Supplementary Figure 8b
shows an SR similar to that in Supplementary Fig. 8a, except that
the load is changed to 2 Nm. The MAE, RMSE and SD are
3.5827%, 17.4315% and 17.0585%, respectively (Supplementary
Table 9). The RS alters from a speed of 70 rad/s to 140 rad/s
under the no-load condition and then continues at the same
repetition speed change (Supplementary Fig. 8c). In the mean-
time, the gradual change in SC is observed with the change in
frequency. The shape of supplementary Fig. 8(c, d) is relatively
similar in terms of ramp SR. Nevertheless, the SCs operate under
2 Nm load. Accordingly, QLSA achieves MAE, RMSE and SD of
2.0831%, 11.1266% and 10.9286%, respectively (Supplementary
Table 9). The change in ramp speed is executed from 35 rad/s to
140 rad/s under no load and 1 Nm load conditions (Supplemen-
tary Fig. 8e, f). Although the change in ramp SR remains
unchanged without load and at 1 Nm load condition, the SCs
increase with the application of load. Generally, the QLSAF
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Convergence characteristic curves for QLSA, LSA, BSA, GSA and PSO in benchmark function F4 (Schwefel 2.22). e Convergence characteristic curves for
QLSA, LSA, BSA, GSA and PSO in benchmark function F5 (Schwefel 1.2). f Convergence characteristic curves for QLSA, LSA, BSA, GSA and PSO in
benchmark function F6 (Schwefel 2.21). g Convergence characteristic curves for QLSA, LSA, BSA, GSA and PSO in benchmark function F7 (Rosenbrock). h
Convergence characteristic curves for QLSA, LSA, BSA, GSA and PSO in benchmark function F8 (Rastrigin). i Convergence characteristic curves for QLSA,
LSA, BSA, GSA and PSO in benchmark function F9 (Foxholes). j Convergence characteristic curves for QLSA, LSA, BSA, GSA and PSO in benchmark
function F10 (Branin).
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controller is superior to other controllers with respect to OS and
ST under different cases of ramp speed changes. In addition,
QLSAF has lower MAE, RMSE and SD compared with other
controllers under changing speed and load conditions. The
effectiveness and robustness of the proposed QLSAF in
comparison to PID controller is evaluated under two experiments
including constant torque with speed variation and constant
speed with torque variation (Supplementary Note 5, Supplemen-
tary Figs. 10–13 and Supplementary Tables 10, 11).

Experimental results of DSP-based QLSAF speed controller.
The accuracy and effectiveness QLSAF speed controller are
validated under the experimental environment using similar tests
executed in MATLAB/Simulink. The experimental tests resulting
in the step SRs with varying speeds and load conditions are
depicted in Fig. 5. The KEYSIGHT DSO-X2024A oscilloscope is
used to monitor the experimental results using four channels for
1 s/Div. The a, b and c phases of SCs are observed using three
channels with 200 mA/Div, and the SR is recorded using the
fourth channel with 50mV/Div. The experimental test results are
nearly aligned with the simulation results. Figure 5a demonstrates
that the SR of the motor accelerates from 105 rad/s to 140 rad/s at
3 s under no-load condition. Subsequently, the motor speed
returns to 105 rad/s from 140 rad/s at 6 s, and the peak SCs vary
from 0.6 A to 0.65 A at 37.5 Hz and 50 Hz, respectively. This
result proves that a proportional relationship exists between speed
and frequency. A similar type of SR is shown in Fig. 5b, but the
change in SCs is reported from 1.05 A to 1.15 A because of the
execution of the 2 Nm load. Figure 5c illustrates the change in
speed under the no-load condition from 70 rad/s to 140 rad/s at 3
s and then drops to 70 rad/s at 6 s without OS. The peak SCs vary
from 0.55 A to 0.65 A at 25 and 50 Hz. Figure 5c, d are similar
with respect to SRs, except for the peak SCs, which increase from
0.95 A to 1.15 A under 2 Nm load situation. Figure 5 shows the
increase in speed from 35 rad/s to 140 rad/s at 3 s and then
decrease to 35 rad/s at 6 s without any OS under no-load con-
dition. At this time, the peak SCs also increase from 0.45 A to

0.65 A with 12.5 and 50 Hz. The changes in SR in Fig. 5d, f are
analogous. Nonetheless, the increment in peak SCs is from 0.7 A
to 1.05 A because of the 1 Nm loading.

The DTUTD step speed tests are also implemented in the
experimental tests. The oscilloscope image for the experimental
results of the DTUTD step response test is shown in Fig. 5g, i. In
Fig. 5g, the DTUTD step SR changes at 2.5 s as a step response
from 35 rad/s to 70 rad/s, at 5 s from 70 rad/s to 105 rad/s, at 7.5
rad/s from 105 rad/s to 140 rad/s and then return step by step to
quarter speed without applying load. Meanwhile, the SCs change
with the variation of speed and frequency. Figure 5h shows the
same SR as that of Fig. 5g. However, the SCs vary due to the
change in frequency and the implementation of 1 Nm load to the
TIM. In Fig. 5i, the DTUTD step SR changes from 70 rad/s to 105
rad/s at 3 s, from 105 rad/s to 140 rad/s at 6 s and then returns step
by step to half speed with 2 Nm load. In the meantime, the
frequency of the SCs changes with the variation of speed and
increment of loading on the TIM.

The experiments are also conducted on the basis of RS tests
(Supplementary Fig. 9). The experimental reports match the
simulation outcomes. Nevertheless, the results are recorded in the
time scale of 1 s/Div. The ramp SR changes from 105 rad/s to 140
rad/s at 2 s and continues with a similar SR without loading, in
which a gradual change in SCs is observed with its frequency
(Supplementary Fig. 9a). The variation of ramp SR in Supple-
mentary Fig. 9a, b is similar. However, the increment in the SCs is
reported with the execution of 2 Nm load. The ramp SR varies
from 70 rad/s to 140 rad/s at 2 s and continues with a similar result
without loading, in which the SCs change increasingly with
frequency (Supplementary Fig. 9c). The RSs in supplementary
Fig. 9c, d are identical. However, the SC increases under a 2 Nm
load. Similar results are also noted in supplementary Fig. 9e, f, in
which ramp speed changes from 35 rad/s to 140 rad/s at no-load
and 1 Nm load conditions, respectively. Thus, the TIM operated
under no-load and load conditions does not affect the ramp SR.
Nevertheless, SCs differ with the load increment and change of
ramp speed. The experimental results (Supplementary Fig. 9)
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under the ramp SRs are consistent with the simulation results
(Supplementary Fig. 8), thereby validating the satisfactory solution
using the QLSAF speed controller.

Discussion
An advanced optimisation technique called QLSA is designed to
address the optimisation problems of the controller in TIM drive.
In addition, an improved FLC controller has been developed to
control the TIM drive using the QLSA algorithm. The QLSA
controller is implemented on the DSP-TMS320F28335 control
board to carry out the validation processes.

The first contribution of this research is the establishment and
assessment of the reliability and efficiency of QLSA using 14
benchmark functions with different characteristics. The com-
parative validation is performed between QLSA and other notable

optimisation techniques, such as the LSA, BSA, GSA and PSO
algorithms. The results indicate that the developed QLSA delivers
excellent solutions in comparison with LSA, BSA, GSA and PSO
algorithms in terms of exploration, exploitation capability and
convergence speed.

The second contribution reveals that the design of the QLSA-
based FSC achieves high performance in TIM. The optimal
control of TIM is achieved by designing the input and output
MFs of the FSC with the lowest value of the OF. Hence, the
traditional TE method can be avoided. A detailed comparative
analysis between QLSAF and other well-known controllers is
carried out under changing speed and load environments. The
reposts demonstrate that the proposed QLSAF speed controller
exhibits superior performance to other controllers with regard to
robustness, reduction of damping and improvement of transient
responses.
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Fig. 4 Simulation results under step response test and down-to-up-to-down test. a QLSA performance in step response test under the speed varying
from 105 rad/s to 140 rad/s with no-load. b QLSA performance in step response test under the speed varying from 105 rad/s to 140 rad/s with 2 Nm load.
c QLSA performance in step response test under the speed varying from 70 rad/s to 140 rad/s with no-load. d QLSA performance in step response test
under the speed varying from 70 rad/s to 140 rad/s with 2 Nm load. e. QLSA performance in step response test under the speed varying from 35 rad/s to
140 rad/s with no-load and, f. QLSA performance in step response test under the speed varying from 35 rad/s to 140 rad/s with 1 Nm load. g QLSA
performance in down-to-up-to-down test under the speed varying from 35 rad/s to 70 rad/s, from 70 rad/s to 105 rad/s and from 105 rad/s to 140 rad/s
at no-load. h QLSA performance in down-to-up-to-down test under the speed varying from 35 rad/s to 70 rad/s, from 70 rad/s to 105 rad/s, from 105 rad/
s to 140 rad/s at 1 Nm load. i QLSA performance in down-to-up-to-down test under the speed varying from 70 rad/s to 105 rad/s, from 105 rad/s to 140
rad/s at 2 Nm load.
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The third contribution is the implementation of the QLSAF
speed control system using a low-cost single-chip DSP-
TMS320F28335 control board. The QLSAF speed controller for
TIM drive in real-time includes the implementation of analogue-
digital conversion, enhanced pulse width modulation, enhanced
quadrature encoder pulse (eQEP) and space vector pulse width
modulation (SVPWM). Subsequently, the prototype is developed
by utilising the DSP-TMS320F28335 controller board. The real-
time performance of the inverter behaviour is monitored by
developing a graphical user interface programme in code com-
poser studio (CCS) software.

The fourth contribution demonstrates the validation and ver-
ification between the simulation and experimental systems. The
outcomes under simulation and experimental environments
confirm that the proposed QLSAF-based TIM drive system can
efficiently handle the changes in the load and speed conditions
smoothly. Indeed, the simulation results are better than the
experimental results due to the ideal aspects of the simulation.
Therefore, the simulation results are perfectly matched with the

experimental results. Therefore, the proposed QLSAF speed
controller, with its low-cost prototype, could be a potential can-
didate for industrial multi induction motor drive systems. It will
be interesting to extend this approach to other controllers such as
fuzzy type-2 control or hybrid FLC-PID control in the multi-
induction motor drive system.

Methods
QLSA development process. LSA50 is a modern and enhanced optimisation
technique, which is designed using the concept of the natural phenomenon of
lightning. This research has enhanced the LSA computational capability on the
basis of quantum mechanics. We have studied the fundamental principle of LSA
and then further improved the searching capability by defining a new position for
the population to achieve the best solutions. Global step leaders ðGsltijÞ of QLSA are
initially determined by assessing the average values of the best locations, leading to
the lowest value of the assessment. The global minimum and best position of QLSA
are achieved through the attraction and convergence of each step leader. The
equation for stochastic attractor of step leaders pj is as follows:

ptij ¼
atij:P

t
ij;best þ btij:Gsl

t
ij

ctij:SF
; ð1Þ
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Fig. 5 Experimental results under step response test and down-to-up-to-down test. a QLSA performance in step response test under the speed varying
from 105 rad/s to 140 rad/s with no-load. b QLSA performance in step response test under the speed varying from 105 rad/s to 140 rad/s with 2 Nm load.
c QLSA performance in step response test under the speed varying from 70 rad/s to 140 rad/s with no-load. d QLSA performance in step response test
under the speed varying from 70 rad/s to 140 rad/s with 2 Nm load. e QLSA performance in step response test under the speed varying from 35 rad/s to
140 rad/s with no-load and, f QLSA performance in step response test under the speed varying from 35 rad/s to 140 rad/s with 1 Nm load. g QLSA
performance in down-to-up-to-down test under the speed varying from 35 rad/s to 70 rad/s, from 70 rad/s to 105 rad/s and from 105 rad/s to 140 rad/s
at no-load. h. QLSA performance in down-to-up-to-down test under the speed varying from 35 rad/s to 70 rad/s, from 70 rad/s to 105 rad/s, from 105
rad/s to 140 rad/s at 1 Nm load. i QLSA performance in down-to-up-to-down test under the speed varying from 70 rad/s to 105 rad/s, from 105 rad/s to
140 rad/s at 2 Nm load.
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for i= 1,2,…,N, j= 1,2,…,D, and t= 1,2,…, T, where N, D and T represent the
population size, the problem dimension and the maximum number of iteration,
respectively; a, b and c define the random numbers between 0 and 1, which are
uniformly distributed; Pt

ij;best is the best step leader for each population; SF is the
scale factor, which is recommended to assign between 4 and 20. We set the scale
factor SF to 10 to execute QLSA.

Each step leader of LSA is assumed to hold a quantum behaviour and its
quantum state is expressed by a wave function ðψwÞ. The probability density

function is denoted by ψw

�� ��2, which has a potential that is subject to the potential
field, where the step leader lies. The centre point of search space in each step leader
is located between Pt

ij;best and Gsltij. The mathematical expression of wave function
after (t+ 1) iteration is denoted as51,52,

ψ Ptþ1
ij

� �
¼ 1ffiffiffiffiffi

Ltij
q exp � Pt

ij � ptij

���
���=Ltij

� �
; ð2Þ

where Ltij stands for the SD of the double exponential distribution, which changes
after each iteration number t. The double exponential distribution is characterised
by the probability density function Q, which can be written as follows:

Q Ptþ1
ij

� �
¼ ψ Ptþ1

ij

� ����
���2¼ 1

Ltij
exp �2 Pt

ij � ptij

���
���=Ltij

� �
: ð3Þ

In turn, the probability distribution function Mf can be formulated as follows:

Mf Ptþ1
ij

� �
¼ 1� exp �2 Pt

ij � ptij

���
���=Ltij

� �
: ð4Þ

The jth component of position Pi after the iteration (t+ 1) can be obtained on
the basis of the Monte Carlo method, as expressed in the following equation:

Ptþ1
ij ¼ ptij ±

1
2
Ltij ln 1=uij

� �
; ð5Þ

where μij denotes a random number, which is distributed uniformly between 0 and
1. The SD ðLtijÞ of each step leader is estimated using the following equation:

Ltij ¼ 2β Mbesttj � Pt
ij

���
���; ð6Þ

where the mean best position for the step leader is represented by MeanBesttj and
can be defined as the mean value of the Pt

ij;best positions of all step leaders.Mbesttj of
the step leader can be written as follows:

MeanBesttj ¼
1
N

XN
i¼1

Pt
ij ¼

1
N

XN
i¼1

Pt
i1;

1
N

XN
i¼1

Pt
i2;

1
N

XN
i¼1

Pt
i3; ¼ ¼ ;

1
N

XN
i¼1

Pt
ij

 !
:

ð7Þ
The contraction expansion coefficient (β) controls the convergence speed of

QLSA, which can be written as follows:

β ¼ β0 þ T � tð Þ: β1 � β0
T

; ð8Þ

where β0 and β1 represent the initial and final values of the contraction expansion,
respectively t and T imply the current and maximum iteration number,
respectively. The value of β1 is set between 0.8 and 1.2, and β0 is set below 0.6 to
achieve satisfactory QLSA performance51. Therefore, the updated position of step
leaders Pt

ij can be formulated as follows:

Ptþ1
ij ¼ ptij ± β MeanBesttj � Pt

ij

���
��� ln 1=uij
� �

: ð9Þ
QLSA has several advanced features compared with the original LSA. Firstly,

the QLSA utilises the exponential distribution function to find the new locations
between the step leaders through the global convergence. Secondly, the original
LSA is enhanced by assessing the mean best position. The new distribution of the
step leader is controlled by the distance between step leaders and MeanBesttj , as
expressed in Eq. (9) (Supplementary Fig. 1).

QLSA verification process. A group of 14 benchmark functions50,53,54 was used
to validate the accuracy and convergence characteristics of QLSA (Supplementary
Table 1). These benchmark functions were characterised into four testing groups.
The first group used unimodal and separable functions, including Sphere (F1), Step
(F2) and Quartic (F3) to check the strength, reliability and strength, respectively.
The second group used unimodal and nonseparable functions, including Schwefel
2.22 (F4), Schwefel 1.2 (F5), Schwefel 2.21 (F6) and Rosenbrock (F7), to assess the
performance and consistency. The third group utilised multimodal and separable
functions, such as Rastrigin (F8), Foxholes (F9) and Branin (F10), to evaluate the
dimensionality problems. The fourth group used multimodal and nonseparable
high- and low-dimensional benchmark functions, including Ackley (F11), Grie-
wank (F12), Penalised (F13) and Penalised 2 (F14), to verify the exploration and
exploitation capability.

The performance of QLSA was compared with four prominent optimisation
techniques, namely, LSA50, BSA55, GSA56 and PSO57 (Supplementary Notes 1–4,
and Supplementary Figs. 2–5). In addition, each benchmark function was tested 50
times. All the optimisation algorithms were operated using a population size of 50

and 500 iterations. In LSA, channel time was set to 10. In BSA, the control
parameter, F, was set to 3. In GSA, the gravitational constant G0 and acceleration α
were 100 and 20, respectively. In PSO, the acceleration coefficients c1, c2 and weight
factor w were 1.5 and 0.5, respectively.

Fuzzy logic speed controller using QLSA. The fuzzy logic speed controller is
well-known because of its simplicity and low implementation cost58–60. In addi-
tion, FLC exhibits strong performance in nonlinear controller systems without
designing any mathematical model61–64. The fuzzy speed control has many para-
meters, such as the MF parameters, number of the rule base and number of the
MFs65–67. The fuzzy speed control can be improved by optimising the value of
these parameters. The FSC is designed using various steps68,69. The first step is the
knowledge-based approach, which is used to select the position of fuzzy MFs and
the number of inputs and outputs. In this research, the input data of FLC for the
TIM speed control included error (e) and change of error (de) for rotor speed
(ωrm), as presented in the following equations:

e tð Þ ¼ ω*
rm � ωrm tð Þ; ð10Þ

de tð Þ ¼ e tð Þ � e t � 1ð Þ; ð11Þ
The second step characterises the inputs with convenient linguistic value or

level; for instance, “big”, “medium” or “small”. The trapezoidal and triangular MFs
re applied to represent the error and change of error for the FSC of MFs. The error
μe(e) and change of error μde(de) are defined by variables, namely, (A0, A1, A2) and
(B0, B1, B2), respectively, which can be written as follows:

μe eð Þ ¼
e�A0
A1�A0

A0 ≤ e <A1

e�A2
A1�A2

A1 ≤ e <A2

8<
: ð12Þ

μde deð Þ ¼
de�B0
B1�B0

B0 ≤ de < B1

de�B2
B1�B2

B1 ≤ de < B2

8<
: ð13Þ

The third stage describes the control rules and linguistic terms of fuzzy logic to
make the appropriate decisions for TIM. Generally, the inference systems are
structured either using Mamdani method or Takagi–Sugeno method. In this study,
Mamdani is applied because of its simple design and structure. The fuzzy rules are
established using the if–then linguistic term, and output MFs are determined
between the inputs (e, de) and the output (ωsl). A total of 49 rules are developed for
controlling TIM (Supplementary Table 2) and illustrated in the following
equations:

Rule 1: If e is ‘Ne3’ AND de is ‘Nde3’ THEN ωsl is “NB”.
Rule 2: If e is ‘Ne3’ AND de is ‘Nde2’ THEN ωsl is “NB”.

..

.

..

.

Rule 48: If e is ‘Pe2’ AND de is ‘Pde3’ THEN ωsl is “PB”.
Rule 49: If e is ‘Pe3’ AND de is ‘Pde3’ THEN ωsl is “PB”.
The final step of the FLC is called defuzzification. This process involves the

adjustment, generation and control of crisp value in the output MFs. In this
research, the centre of gravity is considered to express the crisp values, as shown in
the following equation:

Ocrisp ¼
Pn

i wi:uiPn
i wi

; ð14Þ

where n, u and w denote the number of rules, output MFs and weight coefficient,
respectively. The minimum values of μe(e) and μde(de) are used to define weights,
which can be expressed as follows:

wi ¼ min μe eð Þ; μde deð Þ� �
: ð15Þ

Objective function formulation. The optimal value of MFs is achieved by asses-
sing the minimum value of the OF which in turn enhances the accuracy and
robustness in the FLC output. In this work, the error in TIM was uniformly
distributed, thus MAE was selected as the OF to explain the system performance70.
The MAE function is estimated using the following equation58,

OF ¼ Min MAE ¼ 1
l

XM
m¼1

ω*
rm � ωrm

�� ��
 !

; ð16Þ

where l is the number of samples, and ω*rm and ωrm are the reference speed and
rotor speed, respectively.

Optimisation limitations for FLC. The constraints are selected to enforce the limit
of MFs in FLC. Thus, the updated values of MFs are always inside the boundary
whilst the QLSA attempts to accomplish the preferred OF. For example, the
variable of MFs X2

ij should be located between X1
ij and X3

ij to avoid overlapping. To
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tackle this issue, the limitations are imposed as depicted in the following equation:

XP�1
ij < XP

ij < XPþ1
ij : ð17Þ

After the algorithm development, QLSAF is compared with LSAF, BSAF, GSAF
and PSOF algorithms using step response test, DTUTD step SR test and RS test
with the same population size (30) and iteration numbers (200) to conduct a fair
evaluation. In general, MAE, RMSE, and SD are the common statistical error rate
terms used for the assessment and verification of controller and optimization
algorithms performance. Moreover, the evaluations of uncertainty and statistical
sensitivity analysis are calculated by MAE, RMSE, and SD values obtained under
defined conditions. This paper introduces an optimal fuzzy algorithm for dealing
the uncertainty to obtain the probability distributions for effective uncertainty and
statistical sensitivity analysis. Accordingly, the different statistical error rate terms
including MAE, RMSE and SD are applied to verify the performance of QLSA. The
mathematical expressions of RMSE and SD are as follows70:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

XH
m¼1

e2m

vuut ð18Þ

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

XH
m¼1

em � ηð Þ2
vuut ð19Þ

where em is the error between the reference speed and estimated speed, l is the
number of samples, and η is the average values of error.

Experimental setup. The block diagram of the closed loop scalar control for TIM
drive is provided in Supplementary Fig. 14. Five different capacities of TIMs are
used in this experiment (Supplementary Fig. 15). However, we have only shown the
result analysis and discussion for the Motor 1 (0.5 HP) because of space limitation.
The DSP control programme was written in MATLAB/Simulink in real time and
interfaced with CCS at 1 µs sampling time. In the beginning, the proposed con-
troller sent voltage to the selector motor circuit of the connected TIM. Subse-
quently, the DSP received the measured DC SC of the connected TIM. The QLASF
speed controller then determined the optimal MF parameters for the connected
TIM. The DSP control programme also received the actual rotor position through
eQEP and converted this position into rotor speed. The QLASF speed controller
allowed the actual speed to track the reference speed. The feedback signal of the
rotor speed was provided by the controller to generate the required inverter fre-
quency that drives the TIM. V/f control was fixed to generate a peak voltage and
the required frequency for that speed. Then, the SVPWM technique received two
input voltages (i.e. Vα and Vβ) and generated switching signals for the inverter
insulated-gate bipolar transistor (IGBTs) to facilitate the smooth operation of the
TIM drive. The C-code was generated automatically by MATLAB/Simulink
interfaced by the CCS. Then, this code was built in the DSP-TMS320F28335 chip
and generated the appropriate switching for the IGBTs. The DSP was connected
through eQEP and the actual rotor speed of the TIM was monitored by the rotary
encoder. The DSP generated the six PWM signals and then transferred these
signals to the IGBTs through gate drives, delivering the required power to operate
the TIM.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The software code and the examined cases that validated our method are available from
the corresponding authors upon reasonable request.
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