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Abstract 
 

The application of medicinal chemistry drug design and development principles has 

been undertaken in the current thesis towards the development of antivirals, 

fluorescent anion transporters and carbonic anhydrase inhibitors.  

Chikungunya viral infection is an increasing concern with no current treatments 

available beyond supportive measures. In the absence of detailed viral molecular 

information, phenotypic screening of compounds has provided leads for anti-

chikungunya agents. Chapter 2 discusses the application of hybridization of two 

fragments, namely pyrimidine and thiazolidine, with reported anti-CHIKV activity. 

Convergent and convenient regioselective synthesis of novel thiazolo[2,3-

a]pyrimidine derivatives was accomplished using the one-pot reaction of 6-

ethylthiouracil, bromoacetic acid, anhydrous sodium acetate, acetic anhydride, 

acetic acid and a suitable aldehyde. X-ray crystallographic studies reveal the 

presence of the Z configuration of only one regioisomer confirmed by 

computational studies as being the most likely isomer present. Anti-CHIKV 

activity evaluation showed the tailed thiazolopyrimidine (Z)-7-ethyl-2-((4'-methyl-

[1,1'-biphenyl]-4-yl)methylene)-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-dione as a 

candidate for future development with EC50 = 42 μM, and IC50 > 250 μM against 

the breast cancer cell line MCF-7 and the endothelial human sapiens cell line 

EA.hy926.  

Chapter 3 reports the synthesis and chikungunya antiviral activity of 1-aryl-

[1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-ones as bioisosteres for the 5-ethyl-3-(3-

isopropoxyphenyl)-3,6-dihydro-7H-[1,2,3]triazolo[4,5-d]pyrimidin-7-one related 

antiviral series. Importantly, this new scaffold features increased scope for 



 

x 

 

derivatisation, exhibits low cytotoxicity, is efficiently and scalably synthesised and 

is relatively inexpensive. Compound, 3-acetyl-5-ethyl-1-(3-isopropoxyphenyl)-

[1,2,4]triazolo[4,3-a]pyrimidin-7(1H)-one 3.33, being the 3-acetyl analogue of the 

protype 3.1 emerged as having the most promising antiviral activity among the 

tested series 3.29-3.39 with EC50 = 38 μM, and IC50 > 300 μM against breast cancer 

cell lines, MCF-7 and MDA-MB-231 and normal cell line EA.hy926. Analysis of 

the bioactivities of several compounds including the related 2-anilino-pyrimidones 

using Density-Functional Theory (DFT) modelling provides insights into salient 

ligand-target interactions necessary for antiviral activity and allows for the drafting 

of a general pharmacophore 

Chapter 4 discusses the development and derivatization of the hit compound 

NCI_37168 (3-hydroxy-N-(3-nitrophenyl)-2-naphthamide) discovered from virtual 

screening search using the NCI Diversity Set II database (1541 compounds). A 

small library of 3-hydroxy-N-(3-nitrophenyl)-2-naphthamides were synthesized 

and biologically evaluated for their anti-CHIKV activity. These compounds were 

toxic to Vero cells at the tested concentration (20 µg/mL). Further development and 

anti-CHIKV testing at lower concentration are planned be done to investigate their 

antiviral activity, while lowering their cytotoxic effect. 

The second part of this dissertation was the development of fluorescent anion 

transporters for pharmacological evaluation. Anionophores are small organic 

molecules that facilitate anion transport across lipid bilayer membranes. Chapter 

5 discusses developing a method to switch on the anion transport function under 

specific conditions that would dramatically widen the scope of compounds. 

Therefore, they could be employed as potential therapeutics. This chapter presents 

the design, synthesis of fluorescent anion transporters and investigation of their 



 

xi 

 

anion transporter and binding properties. Further, we developed four switchable 

complexes that are switched on in the presence of the physiologically reducing 

agent GSH and non-physiological reducing agents DTT and TCEP.  

In chapter 6, a series of coumarin-based bisureas have been synthesised and their 

anion transport properties studied. The transporters function as highly potent HCl 

co-transport agents in lipid bilayer membranes. These compounds elicited a H+/Cl- 

co-transport activity and a superior Cl-/NO3
- exchange ability in ISE-based affinity 

than the previously reported fluorescent anion transporters. The fluorescence nature 

of these compounds will allow them to be localised within cells. A study of their 

potential cellular localisation, partitioning, and action using fluorescence imaging 

techniques is currently undergoing. 

The third part of this thesis (Chapter 7) is the development of potent dual-tailed 

benzenesulfonamide inhibitors of human carbonic anhydrases implicated in 

glaucoma. The study investigated the in vivo profiling of their intraocular pressure 

lowering action. The design and synthesis of three dual-tailed sulfonamide series 

as carbonic anhydrase inhibitors are presented. All synthesized compounds were 

evaluated for their inhibitory action against pharmacologically relevant human (h) 

CAs isoforms (I, II, IV, and VII). The (E)-2-arylidene-3-oxo-N-(4-

sulfamoylphenyl)butanamides emerged as the most potent CA inhibitors against 

the four tested isoforms with a significant selectivity to CA II, which is implicated 

in glaucoma (Ki values spanning the range 0.36 - 6.9 nM). X-ray crystallographic 

analysis of three compounds bound to CA II showed the validity of the adopted 

drug design strategy as specific moieties within the ligand structure interacted 

directly with the hydrophobic and hydrophilic halves of the CA II active site 

enhancing the inhibition efficiency. Compounds (E)-2-(4-chlorobenzylidene)-3-



 

xii 

 

oxo-N-(4-sulfamoylphenyl)butanamide and (E)-2-(4-methoxybenzylidene)-3-oxo-

N-(4-sulfamoylphenyl)butanamide showed significant anti-glaucoma efficacy 

when compared to the clinically used drug dorzolamide, presenting potential for 

the development of new therapeutic options against glaucoma.  
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Context Statement 

This thesis is presented as a compilation of manuscripts from published and 

unpublished work. The science is both multi-disciplinary and collaborative in 

nature. Chapters either stand separately or together to present the science achieved 

in the field of drug design and development of antivirals targeting chikungunya 

virus, anion transporters and carbonic anhydrase inhibitors. At the start of each 

chapter is a foreword with references added at the end of each chapter. 

The outcomes of this dissertation are presented in Chapters 2-7 with overarching 

conclusions and future directions in Chapter 8. Appendices are provided at the end 

of this thesis including NMR spectra of the synthesized compounds, Figures of 

NMR binding and anion transport studies, and protein X-ray crystallography data. 

From the beginning of the project it was thought that the anti-chikungunya virus 

project (Chapters 1-4) was challenging, and therefore a component of the 

dissertation plan was to investigate alternative topics. To this end, an internship at 

the University of Sydney was available in the fields of supramolecular chemistry 

and anion transporters. The outcomes from this internship are described in 

Chapters 5 and 6. Further, arising from an established collaboration in the design 

of carbonic anhydrase inhibitors, this dissertation also explored a new direction in 

this area (Chapter 7).  

 

A detailed description of each topic follows: 

A) Anti-chikungunya virus agents: 

Chikungunya virus (CHIKV) (alphavirus genus, family Togaviridae) is one of the 

prevalent arboviruses that is implicated in high fever and severe persistent joint 

pain that may last for weeks to years. In the view of absence of anti-CHIKV and 



 

xvii 

 

the reported multiple re-emergent epidemic outbreaks of the CHIKV in the last 70 

years, there is a pressing need to discover new anti-CHIKV agents. A literature 

review of the chikungunya virus biology and previous approaches used towards the 

development of anti-chikungunya agents is presented in Chapter 1.  

In this dissertation, considerable efforts were directed towards the development of 

potential anti-CHIKV therapeutics via applying medicinal chemistry concepts 

(Chapter 2 and 3) and structure-based drug design approaches (Chapter 4). 

Chapter 2 describes the application of the hybridization of existing CHIKV 

inhibitors towards the development of unprecedent anti-CHIKV agents. Molecular 

hybridization is fundamentally based on the fusion of two or more pharmacophoric 

moieties. Recently, hybridization of two or more bioactive fragments has emerged 

as a concept for the exploration of novel multitarget acting inhibitors as well as 

novel anti-CHIKV agents. This chapter discusses a molecular hybridization 

approach with the fusion of uracil and rhodanine pharmacophoric moieties and 

investigation of the biological activity against CHIKV. Uracil-rhodanine hybrids 

were synthesized using the state-of-art organic chemistry starting from 6-ethyl-2-

thiouracil and by optimization of the multi-component collective reaction 

conditions via replacing chloroacetic acid with the more regioselective bromoacetic 

acid, lowering reaction temperature and changing the mode of addition. X-ray 

crystal structure analysis and computational studies showed that only one 

regioselective isomer formed with the Z configuration that is potentially stabilized 

by two intramolecular hydrogen bonds. The synthetic phase was followed by 

biological evaluation of the compounds as anti-CHIKV agents. The compounds 

demonstrated different percentages of viral replication inhibition at 20 µg/mL-1 

with (Z)-7-ethyl-2-((4`-methyl-[1,1`-biphenyl]-4-yl)methylene)-5H-thiazolo[3,2-



 

xviii 

 

a]pyrimidine-3,5(2H)-dione showing the best activity with 58% inhibition of 

CHIKV replication. Anti-CHIKV activity evaluation showed the (Z)-7-ethyl-2-

((4`-methyl-[1,1`-biphenyl]-4-yl)methylene)-5H-thiazolo[3,2-a]pyrimidine-

3,5(2H)-dione as a promising lead compound for future development with EC50 = 

42 μM, with IC50 > 250 μM against the breast cancer cell line MCF-7 and the 

endothelial human sapiens cell line EA.hy926. This compound is bearing p-

methylbiphenyl tail functionality which might interact favourably with the target. 

This chapter is published in RSC Adv. 2020, 10, 5191-5195 (doi: 

10.1039/D0RA00257G). 

Chapter 3 discusses drug design and development of potential antiviral agents 

using synthetic modification including lead simplification and bioisosteric 

replacement. Using 6-ethyl-2-thiouracil as a starting material, two series of fused 

1-aryl-[1,2,4]triazolo[4,3-a]pyrimidines and 2-anilinopyrimidines were designed 

and synthesized using the state-of-art organic chemistry. Single X-ray crystal 

structure of two target compounds confirmed the formation of the desired isomer. 

Tested compounds showed promising in silico pharmacokinetic properties 

calculation and drug likeness scores. Compounds [1,2,4]triazolo[4,3-a]pyrimidin-

7(1H)-ones and 2-anilinopyrimidin-4(3H)-one were screened for their antiviral 

activities in a viral-cell based assay against chikungunya virus (Indian Ocean strain 

899). The most active compounds were further tested for their cytotoxic activity 

against the normal cell line, EA.hy926, the endothelial human cell line, and two 

human breast cancer cell lines, namely, MCF-7 and MDA-MB-231. Whilst the 

series 2-anilinopyrimidines, proved to only exhibit weak anti-CHIKV activity, 

derivative 3-acetyl-5-ethyl-1-(3-isopropoxyphenyl)-[1,2,4]triazolo[4,3-

a]pyrimidin-7(1H)-one emerged as the most active antiviral agent (EC50 = 38 μM) 



 

xix 

 

and the least cytotoxic with IC50 > 300 μM against breast cancer cell lines, MCF-7 

and MDA-MB-231 and normal cell line EA.hy926. Comparisons of the geometries 

and electrostatic potential-mapped surfaces (EPS) of the active CHIKV inhibitors 

has allowed for a consensus model for effective target binding. A manuscript based 

on the results from Chapter 3 is in preparation for submission to RSC Med. Chem. 

Chapter 4 presents the application of structure-based drug design concepts towards 

anti-CHIKV agents. In silico screening of the NCI Diversity set II database (1541 

compounds) in our laboratory against three viral proteins, namely nsP2, nsP3 and 

envelope glycoproteins identified eleven potential inhibitors. The selected ligands 

were requested from Developmental Therapeutics Program Databases and Search 

Tools, National Cancer Institute, USA and were tested in Rega Institute, KU 

Leuven, Belgium for their anti-CHIKV activity. Three CHIKV agents were 

identified possessing naphthalene and quinoline scaffolds. A small library of 

molecules based on the naphthalene scaffold was synthesized and tested for its anti-

CHIKV activity. The naphthalene scaffold showed considerable toxicity to Vero 

cells, which might impede the antiviral activity. Further development of the 

quinoline scaffold could be undertaken with planned iterative cycles of 

optimization. 

 

B) Fluorescent anion transporters: 

The transport of ions via phospholipid bilayer membranes is involved in diverse 

physiological functions including, neuroexcitation, muscle contraction, cell 

migration and proliferation, and maintaining cellular pH, membrane potential and 

cellular secretions. Channelopathies are a group of diseases characterised with ion-

channel impairment, including cystic fibrosis, epilepsy and cancer. For example, 



 

xx 

 

cystic fibrosis transmembrane regulator (CFTR) is a protein responsible for 

maintaining cellular chloride and bicarbonate levels and is implicated with cystic 

fibrosis, while impairment of sodium, potassium and T-type calcium channels is 

linked with epilepsy. Ionophores are transmembrane ion transporters that have 

been recognised for diverse applications in ion sensing, catalysis and in medicinal 

chemistry. Anionophores are a subclass of the ionophores that are capable of 

transporting anions and they demonstrated a cytotoxic effect against stem cancer 

cells by facilitating the transport of chloride and bicarbonate anions so changing 

cellular pH, causing cellular differentiation and death.  

One of primary aims of this PhD work was to design and synthesise fluorescent 

anionophores and to investigate the mechanism of action of their cytotoxic effect 

in living cells. A literature review of the fluorescent anion transporters (Chapters 

5 and 6) is included in the beginning of these chapters. 

 

Chapter 5 describes the development of stimuli-responsive cycloaurated ‘OFF-

ON’ switchable fluorescent anion transporters. Inspired by the high affinity of 

thiols, such as GSH, for gold, and by the reported efficient anion transport activity 

of 1,3-bis(benzimidazol-2-yl)benzenes, we designed and synthesized new 

switchable cycloaurated anion transporters that could be switched under 

physiological conditions such as high levels of GSH. Five 1,3-bis(benzimidazol-2-

yl)benzenes anion transporters have been synthesized by condensation of 

dipicolinic acid or 2,6-pyridinedicarboxaldehyde and phenylenediamine derivative 

under acidic conditions. The structure of one derivative was confirmed by single 

crystal X-ray diffraction. These transporters have been shown to bind Cl- in 

solution with moderate affinity in DMSO-d6/0.5%H2O and CD3CN. A single 
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crystal of anionophore 2,6-bis(5(6)-(trifluoromethyl)-1H-benzo[d]imidazol-2-

yl)pyridine with chloride ion was obtained for X-ray and interestingly showed that 

Cl- is sandwiched between two molecules of the compound.  Transporters 1,3-

bis(benzimidazol-2-yl)benzenes were investigated for their chloride transport 

property via Cl-/NO3
- exchange assay using a chloride ion selective electrode (ISE), 

cationophore coupled-KCl assay and 8-hydroxypyrene-1,3,6-trisulfonic acid 

(HPTS) assay. At the same concentration, they showed better transport properties 

when transporter loading volume increased from 10 μL to 40 μL. Transporter 2,6-

bis(5(6)-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)pyridine was the most active 

with EC50 = 0.42 mol%. A cationophore coupling assay, using valinomycin (Vln) 

or monensin (Mon) was used to investigate whether these compounds are 

functioning as Cl- uniporter or H+/Cl- symporter. Generally, these transporters can 

facilitate the transport of H+, Cl- and NO3
- in liposomal models. Four switchable 

cycloaurated complexes were constructed from the two most potent anion 

transporters. Single X-ray crystal structure of three cycloaurated complexes 

confirmed their structure. The switch-off the four gold III complexes demonstrated 

higher affinity to DTT, followed by GSH, while TCEP emerged as the weakest 

reducing agent. Finally transport studies showed that these switchable anion 

transporters are highly efficient and can be switched on by all tested reducing 

agents with different rates. DTT emerged as the most potent reducing agent 

followed by GSH and TCEP. This chapter is just accepted in Angew. Chem. 2020, 

(doi: 10.1002/anie.202006392 and 10.1002/ange.202006392) and describes the 

development stimuli-responsive cycloaurated ‘OFF-ON’ switchable fluorescent 

anion transporters. 

Fluorescent labelling of the sub-cellular organelles has become an indispensable 

https://doi.org/10.1002/ange.202006392
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tool of our understanding of the biological functions and it can shed the light on 

the mechanism of action at a cellular level. Chapter 6 describes the development 

of efficient fluorescent anion transporters for biological evaluation. The 

development of these fluorescent anionophores was achieved by linking the 

bisureas-anion transporter moiety and the fluorescent 4-methylcoumarin. Four 

bisurea-coumarin transporters were prepared by nucleophilic addition of the 6,7-

diamino-4-methylcoumarin with the corresponding aryl isocyanate in DCM or in 

absence of solvent. The structure of one derivative was confirmed by single crystal 

X-ray diffraction. The fluorescent anion receptors were tested for their anion 

binding properties in solution and elicited a relatively strong chloride binding 

affinity in DMSO-d6/0.5%H2O with Ka = 81 - 177 M-1. 

The four receptors were investigated for their chloride transport properties across 

the lipid bilayer via liposome-based techniques using a chloride ion selective 

electrode (ISE), cationophore coupled-KCl assay and 8-hydroxypyrene-1,3,6-

trisulfonic acid (HPTS) assay. These receptors showed a superior Cl-/NO3
- 

exchange ability in ISE-based affinity and H+/Cl- co-transport activity than the 

previously reported fluorescent anion transporters. These transporters could be 

considered as better candidates for cellular fluorescent imaging. Chapter 6 is a 

manuscript in preparation for submission to the journal Chem. Comm. 

 

C) Design and synthesis of tailed carbonic anhydrase inhibitors: 

Carbonic anhydrases (CAs, EC 4.2.1.1) constitute a superfamily of ubiquitous 

metalloenzymes which principally act as catalysts in the CO2 hydration reaction. 

Abnormal expression of CAs is implicated in some diseases such as cancer, 

glaucoma and arthritis. A literature review of carbonic anhydrase inhibitors is 
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included at the beginning of Chapter 7. 

 

Chapter 7 describes the design and synthesis of three series of dual-tailed 

sulphonamides CA inhibitors using accessible and low-cost starting materials 

including, sulfanilamide, acetyl acetone and ethyl acetoacetate. The newly 

synthesized compounds were evaluated for their inhibitory profiles against four 

carbonic anhydrase isoforms: hCA I, II, IV, and VII. The tested compounds showed 

selectivity to CA II and one series emerged as the most potent CA II inhibitors with 

low to sub nanomolar Ki values (0.36-6.9 nM). X-ray crystallographic studies of 

the compounds against CA II were performed to further understand and rationalize 

their strong CA II inhibitory profile. X-ray co-crystallographic analysis of the 

adducts of hCA II with three derivatives was achieved at resolutions of 1.32-1.67 

Å. The X-ray crystallographic studies showed defined moieties within the ligand 

structures specifically interact with the hydrophobic and hydrophilic halves of the 

CA II active site. As CA II up-regulation is implicated with glaucoma, four of the 

most active CA II inhibitors (Ki values of 0.36-2.9 nM) were evaluated for their 

IOP lowering action against DRZ as the standard. Compound (E)-3-oxo-N-(4-

sulfamoylphenyl)-2-(thiophen-2-ylmethylene)butanamide showed a comparable 

IOP lowering effect to DRZ (IOP reduction = 8.5 mmHg), while compounds (E)-

2-(4-chlorobenzylidene)-3-oxo-N-(4-sulfamoylphenyl)butanamide and  (E)-2-(4-

methoxybenzylidene)-3-oxo-N-(4-sulfamoylphenyl)butanamide were more potent 

than DRZ with IOP reduction of 12.8 and 12.3 mmHg, respectively. Therefore, this 

study presents compounds (E)-2-(4-chlorobenzylidene)-3-oxo-N-(4-

sulfamoylphenyl)butanamide and  (E)-2-(4-methoxybenzylidene)-3-oxo-N-(4-

sulfamoylphenyl)butanamide as promising candidates for the development of 
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therapeutic anti-glaucoma strategies. Chapter 7 has been accepted to J. Med. 

Chem. (doi: 10.1021/acs.jmedchem.9b02090). 
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Chapter 1: 
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1.1 Biology, re-emergence and pathogenesis of chikungunya 

virus 
 

1.1.1 Taxonomy of the chikungunya 

Arboviruses that mainly use arthropod vectors for transmission between hosts are 

known as arthropod-borne viruses.1, 2 They are classified into five distinctive 

classes: the three major classes are the Flaviviridae, Bunyaviridae or Togaviridae 

families, and the remaining two are members of the Reoviridae and 

Orthomyxoviridae families (Figure 1.1).3 Figure 1.1 shows some examples of the 

main five arbovirus families.  

The Togaviridae family is subdivided into two genera, the Alphavirus genus and 

the Rubivirus genus, with the Alphavirus genus categorized fundamentally into 

seven serogroups of which 50% can cause diseases in humans.1 Chikungunya virus 

(CHIKV) (alphavirus genus, family Togaviridae) is one of the prevalent tropical 

alphaviruses and is transmitted by the Aedes mosquitoe (Figure 1.1).4 

 

Figure 1.1. Schematic representation of arbovirus subclasses taxonomy. 

 

1.1.2 Origin, re-emergence and spread of the virus 

The name chikungunya is a Makonde (one of the ethnic Eastern Africa languages) 

word that means harsh joints pain, which are symptoms of pathogenesis of 

chikungunya virus.5 The virus was first discovered in 1952-1953 during an 
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outbreak in eastern Africa.5 Between the 1960s and 1970s, major outbreaks were 

documented in Southeast Asia and India6 and in the past sixty years, many 

intermittent outbreaks re-emerged in Africa and Asia.7, 8 

There was no major re-emergence of chikungunya fever until the epidemic 

outbreak in Kenya in 2004,  which resulted in considerable mortality and morbidity 

and infection spreading to neighboring areas.4 The spreading of the virus 

throughout Europe and the Americas arose from the number of adaptive mutations 

of the virus that allowed exploitation of a new vector (Aedes albopictus).9 

After spreading in Africa and Asia, the virus continued to spread globally 

throughout Asia, Europe and regions of the Americas.10 Moreover, some countries 

in the Pacific have documented epidemics of chikungunya since 2013.11 In late 

2014, more than 150 deaths and 750,000 suspected cases were reported in both the 

north and south American continents, Latin America and Caribbean islands.11 

United States of America and Mexico have also documented new cases. In October 

2014, there were 4 domestically acquired chikungunya infection patients diagnosed 

in Southern France.11 In 2018, around 14,000 cases of CHIKV were reported in 

Sudan, with 95% in Kassala state.12 

Between Jan-Dec 2019, 56 cases of the virus were diagnosed in Australia according 

to statistics from the Australian National Communicable Diseases Surveillance 

(NCDS) report.13 Zika and Dengue viruses are also arboviruses in the family 

Flaviviridae and share the same vectors with chikungunya virus.14 All are 

transmitted to the human through the bite of an infected Aedes aegypti or Aedes 

albopictus mosquito. The spread of these viruses may also trigger the re-emergence 

of chikungunya virus. During 2019, 1357 Dengue virus infection cases were 
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diagnosed and at least 13 cases with Zika Virus infection were reported in Australia 

during 2019 until the date of the report.13 

1.1.3 Virus lifecycle 

CHIKV is a small diameter (about 60–70 nm) positive strand RNA virus that 

attaches to the host cell by endocytosis in vesicles coated with clathrin (Figure 

1.2).15-17 Under the acidic conditions of the endosome, a cascade of conformational 

changes of the viral envelope results in dissociation of the E2-E1 heterodimers to 

assemble the E1 homotrimers that catalyse the fusion to host cell membrane.18 The 

viral genome and the core are then delivered into the host cell. Translation of the 

viral m-RNA produces two precursors of non-structural proteins (nsPs) that are 

cleaved to non-structural proteins nsP1, nsP2, nsP3 and nsp4.19 These proteins form 

a replication complex that serves as the template for the synthesis of 26S 

subgenomic RNAs and genomic 49S (Figure 1.2).20 

The expression of the polyprotein precursor (C–pE2–6K–E1) is encoded in 

the positive strand of the 26S subgenomic RNA. Subsequently, serine protease in 

the Golgi complex catalyses the formation of the capsid (C), while the pE2 and E1 

glycoproteins are produced by further processing.21 The pE2 and E1 are assembled 

in the Golgi and moved to the plasma membrane and further pE2 is processed into 

E2 and E3.22 The assembly of the viral cell is initiated in the cytoplasm, where the 

nucleocapsid is generated and contains 120 dimers of the C protein (Figure 1.2).23 

The assembled virion is formed by the binding of the viral nucleocapsid to the viral 

RNA and released from the host cell by budding (Figure 1.2).24 
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Figure 1.2: Schematic diagram of alphavirus life cycle. Reproduced with permission 

from reference 4.4 

1.1.4 Chikungunya fever (CHIKF) 

After an incubation period of about 2-4 days, symptoms start with the onset of high 

fever and severe persistent joint pain that may last for weeks to years.24 Other 

symptoms of CHIKF include headache, vomiting, rash, myalgia (muscle pain), 

photophobia and maculopopular rash.4, 24, 25 Unlike other arbovirus infections, only 

around 15% of the patients may encounter “silent infections”. The acute phase of 

CHIKV infection may last from 1-10 days, while 30-40% of the cases might have 

recurrent joint pain that can last for years in some cases although this is not likely 

a result of chronic infection.26 After infection, CHIKV disseminates through the 

blood stream, replicates in the fibroblasts of the skin, and can affect liver, muscles, 
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joints, lymphoid tissues (lymph nodes and spleen) and brain. The target cells in 

each organ are indicated in Table 1.1.24 

Table 1.1: Target cells of CHIKV. 

 Brain Joint Lymphoid 

tissue 

Muscle Liver 

Affected 

cells 

Epithelial 

and 

Endothelial 

cells 

Fibroblasts Stromal cells 

Macrophages 

 

Satellite 

cells 

Fibroblasts 

Endothelial 

cells 

 

1.1.5 Possible drug targets 

There are multiple druggable targets of the CHIKV that can be categorized into six 

classes: 

a) Structural proteins E1-E3: E1 and E2 CHIKV glycoproteins constitute the 

icosahedra shell and are involved in the attachment and interaction with the host 

cell.27, 28 The structural protein E3 prevents the earlier attachment of E1-E2 

heterodimer with the cell membrane.29 Many studies revealed the importance 

of 4 conserved amino acid residues in E1, namely Gly91, Val178, Ala226 and 

His230 to the membrane fusion.30 Mutation of Gly91 or His230 is reported to 

diminish the attachment of E1 to the host cell.30 Previous computational studies 

in our laboratory revealed the presence of druggable pockets in these structural 

proteins.31 

b) Receptors for CHIKV entry: Viral receptors available as drug targets 

include prohibitin and glycosaminoglycan which both mediate the viral 

endocytosis.32,33 In addition, heat shock protein 60 (Hsp60) function in the viral 

cell fusion is not fully studied but could be another conceivable CHIKV 

antiviral targets.32 Furthermore, clathrin was reported to catalyse the 
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endocytosis dependent pH.34 Therefore, inhibiting clathrin-mediated 

endocytosis might be an effective strategy to control viral entry and infection. 

c) Non-structural protein 1 (nsP1): Studies on nsp1 revealed the 

multifunctional roles of this protein.35 It is involved in capping and methylation 

of the newly formed viral genome as well as fusion with endosomes and 

lysosomes at the membrane cytoplasmic surface.36 Moreover, it inhibits the 

bone marrow stromal antigen 2 (BST-2), therefore enhancing the virus 

attachment at the host cell membrane. BST-2 is induced by interferon (INFα) 

and it is one of the defensive mechanisms of the host cell.37  

d) Non-structural protein 2 (nsP2): The nonstructural protein nsP2 (Figure 

1.3) is extensively studied as a possible drug target because of its 

multifunctionality with various enzymatic activity.4, 10 It is a virulence factor 

which represents a potential target for CHIKV inhibitors, due to its ability to 

cause a “transcriptional shutoff” (block cellular gene transcription) and impair 

the host cell defense mechanism.38 

The C-terminus of nsp2 contains the protease activity of the viral cell, 

specifically, cysteine carboxypeptidase activity (cleavage of protein substrates 

from the C termini) that enables the replication of the viral cell.39 The mechanism 

of cysteine protease action is initialized by deprotonation of the thiol group of the 

cysteine residue by a basic amino acid most likely a histidine residue. Cysteines 

Cys1233 and Cys1290 and the four histidine residues, His1222, His1228, His1229 

and His1236 could be associated in the deprotonation mechanism.40  

The nsp2 enzymatic activities within the N-terminus have been 

demonstrated. The N-terminal residues catalyse the first RNA capping via their 
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intrinsic RNA triphosphatase activity. Additionally, the N-terminus exhibits 

nucleotide triphosphatase activity that supplies the RNA helicase with energy.41 

e) Non-structural protein 3 (nsP3): The X-ray structure of nsp3 consists of 

four asymmetric subunits, each composed of six-stranded β-sheets and four α-

helices (Figure 1.3).42 nsP3 was proposed to promote CHIKV replication by 

interaction of the host heat shock protein 90 (HSP90).43 The protein consists of an 

N-domain and C-domain; the N-domain is highly conserved while the C-domain 

is not.44 The C-terminus function was investigated and has been implicated in RNA 

synthesis.44 The N-terminus of nsP3 contains a macrodomain that modulates the 

metabolism of ADP-ribose and regulates the function in the cell. The alpha virus 

macrodomain has a positive charge at the pocket of the ADP-ribose, however, it 

has a negative charge away from the active site (which might interact with the 

RNA).42   

 

a)       b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3: a) CHIKV nsP2 crystal structure (PDB id: 3TRK). Reproduced with permission 

from reference 4. b) The macrodomain (nsP3) of CHIKV (PDB id: 3GPG). Reproduced with 

permission from reference 42. 
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f) Non-structural protein 4 (nsP4): The exact functions of nsP4 remain 

ambiguous. A recent study stated that the alphaviruses nsP4 might downregulate 

the host cell unfolding protein response (UPR) by its RNA-dependent-RNA 

polymerase activity.45 UPR is a defense mechanism of the host cell that inhibits the 

viral replication and protein synthesis.46 Therefore, blocking the nsP4 will retain 

the normal immunological function of the UPR and control the viral infection by 

enhancing the innate immunity.  

1.2 Development of chemotherapeutics against chikungunya virus 

1.2.1 Vaccines 

Different methods have been utilised to develop vaccines against CHIKV, 

including the use of inactivated vaccines, live attenuated or live vector virus, virus 

like particle vaccine, consensus-based DNA vaccine, recombinant subunit 

vaccines, passive immunization and plant derived vaccines.47 Despite these 

attempts, only one candidate vaccine is in phase II clinical trials in humans.48 

1.2.2 Hits discovered by virtual screening 

The exploitation of the X-ray structures of the CHIKV proteins in the virtual 

screening of libraries is a promising approach to develop new lead compounds 

against the chikungunya virus.7, 10, 49 Alphavirus nsP2 protein is considered an 

interesting and attractive antiviral drug target due to its crucial rule in the 

replication of the viral cell. In this context, our group discovered NCI_217697 (1.1, 

Figure 1.4), NCI_61610 (1.2, Figure 1.3) and NCI_67436 (1.3, Figure 1.3) as nsP2 

protease inhibitors identified by virtual screening of the NCI Diversity Set II 
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database.10 Agarwal et. al. reported CID_5808891 (1.4, Figure 1.3) as in silico nsP2 

protease inhibitor (Figure 1.4).50 

 

Figure 1.4: Structure of CHIKV nsP2 inhibitors identified by in silico studies. 

In addition to nsP2, other computational studies performed on CHIKV proteins 

identified potential inhibitors for nsP3, nsP4 or/and the envelope glycoprotein 

(Table 1.2).  

Table 1.2: The structures of some hit compounds identified by in silico studies against 

CHIKV proteins. 

 

Compounds 

number or 

name 

Structure Target 

NCI_345647 

 

nsP342 

NCI_37168 

 

nsP342 
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Baicalin 

 

nsP351 

JTK 109 

 

nsP452 

NCI_293778 

 

envelope 

glycoprotein, 

nsP2, nsP331 

 

1.2.3 Anti-viral drugs inhibiting CHIKV 

The screening of known antiviral drugs against emerging viral infections is a 

strategy applied mainly when there is no effective chemotherapeutic agent 

available. Hence, in vitro whole cell phenotypic screening of a selection of known 

drugs revealed examples with anti CHIKV activity (Figure 1.5).17, 53-55  

The approved antimalarial drug, chloroquine (Figure 1.5, 1.10) showed antiviral 

activity among different viruses including CHIKV,56 possibly due to interaction 

with the endosomes eventually preventing viral fusion to the host cell.57 However, 

it showed no significant activity in a small-scale double-blind placebo-controlled 

randomized trial.58 Therefore, further studies are required to evaluate its 

effectiveness against the CHIKV. 

The anti-viral agent ribavirin, (Figure 1.5, 1.11) a triazole guanosine analogue, 

slowed the CHIKV replication in cell culture (IC50 = 83.3 mg/mL), but complete 

suppression of CHIKV particles was not observed (Figure 1.5, 1.11).59,17 
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Sofosbuvir, (Figure 1.5, 1.12), is a uridine nucleoside prodrug approved for 

treatment of HCV in combination with other antiviral drugs.60 Evaluation of the 

antiviral activity of sofosbuvir against CHIKV infection unveiled the potency and 

selectivity of sofosbuvir over ribavirin in human liver cells infected with CHIKV 

(Figure 1.5, 1.12).60 It also showed in vivo prevention of CHIKV-induced paw 

edema at a dose of 20 mg/kg/day and with decreased mortality in neonatal mice at 

doses of 40-80 mg/kg/day.60 Arbidol, (Figure 1.5, 1.13),  (IC50 = 12.2 mg/mL) is 

an approved antiviral drug for treatment of acute respiratory tract infections that 

showed a broad spectrum antiviral activity and inhibited arthropod-borne 

flaviviruses and alphaviruses.61, 62 It inhibited CHIKV entry by  targeting the E2 

viral envelope protein, which is presumably involved in binding to host receptors.63 

 

Figure 1.5: Some known drugs inhibiting CHIKV replication. 

 

1.2.4 Genome-wide loss of function screen 

A work by Karlas et. al. (2016) used a genome wide “loss of function screening” 

to identify druggable CHIKV targets.64 Using a short interfering RNA genome 

wide screen, they identified 156 proviral and 41 antiviral host factors controlling 

the viral replication. The study revealed that 21 small molecule inhibitors have high 
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in vitro antiviral activity along with low toxicity. The screening focused on six 

proviral factors and pathways namely, i) fatty acid synthesis; ii) the vascular type 

H+ ATPase (vATPase); iii) CDC-like kinase (CLK1); iv) fms related tyrosine 

kinase 4 (FLT4 or VEGFR3); v) calmodulin signalling; vi) the k (lysine) 

acetyltransferase 5. An example of some of these inhibitors that emerged are 

represented in Figure 1.6 (1.14 - 1.19). Interestingly, three identified inhibitors 

(TOFA 1.14 and pimozide 1.15, tivozanib 1.16) achieved prophylaxis against the 

viral infection in an in vivo mouse model.64 Tivozanib 1.16, linifanib 1.18  and 

sorafenib 1.19 (Figure 1.6) are clinically approved tyrosine kinase inhibitors that 

elicited anti-CHIKV activity in this study.64  

 

Figure 1.6: Selected CHIKV inhibitors from genome wide-loss of function screens. CHIKV 

EC50 are in parenthesis. 
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1.2.5 Other inhibitors of the CHIKV 

The recent advances and growing knowledge about arboviruses expand our 

understanding of the CHIKV life cycle, pathogenesis and infection. Intensive 

research has led to the identification of new chemical scaffolds that might be 

potential anti CHIKV agents. In 2012, purine-β-lactam 1.20 and 1.21 and purine-

amino propanol 1.22 (Figure 1.7) were screened against nine different viruses 

including CHIKV. The amino propanol derivative 1.22 (EC50 = 11.51 μM) showed 

relatively higher activity when compared to the purine-β-lactam. Therefore, the β-

lactam is not essential for activity.65 

 

 

Figure 1.7: Purines as of CHIKV inhibitors. 

In an effort to find new leads as CHIKV inhibitors, a random screening identified 

the [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)ones as potential candidates.66 Iterative 

optimization cycles led to the most potent compound (1.23, Figure 1.8) with EC50 

= 3 µM and a selectivity index greater than 600. The 3-isopropyloxyphenyl 

triazolopyrimidine derivative (1.23, Figure 1.8) may be the first step in the process 

of development of a clinical drug candidate.66 Rhodanine is a thiazolidin-4-one 

derivative presenting a promiscuous scaffold exhibiting broad antiviral activity 

against HCV, HIV-1 and chikungunya.67 In a recent study, a series of rhodanine 

derivatives was tested for their anti CHIKV activity by cytopathic effect CPE 
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reduction assay. Among the tested compounds, the 2-methyl analogue (1.24, Figure 

1.8) displayed excellent activity with submicromolar EC50. The docking study 

showed good interaction points between the ligand and CHIKV nsp2 protease.67 

 

Non-steroidal anti-inflammatory drugs (NSAID) have been used to alleviate the 

symptoms of the CHIKF because of the lack of effective prevention or curing of 

the viral infection. Strikingly, NSAID can not only be used as anti-inflammatories, 

but also can be considered as antiviral agents.59 Individually or in combination with 

ribavirin, mefenamic acid (anthranilic acid derivative) (1.25, Figure 1.8) inhibited 

the viral replication.59 The estimated EC50 of the mefenamic acid alone was 13 µM, 

however the combination of mefenamic acid and ribavirin showed 3 µM inhibition. 

Ching et. al. (2015) investigated the synthesis and structure-activity relationship of 

a class of thieno[3,2-b]pyrroles for their antiviral activities and identified 

trisubstituted thieno[3,2-b]pyrrole 5-carboxamide (1.26, Figure 1.8) as a potent and 

broad antiviral agent with limited cytotoxicity. It can effectively inhibit the 

expression of capsid, E2, nsP1 and nsP3 of the  CHIKV.68 

 

 

Figure 1.8: Selected CHIKV inhibitors with different scaffolds. 
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1.3 Thesis plan 

1.3.1 Drug design and development cycle 

Figure 1.9 shows the drug discovery cycles, where many of the current drug 

discovery strategies are relied on. Finding leads, for a certain disease, is the first 

milestone along the way to the introduction of new drug.69  

 

Figure 1.9: Iterative cycle of drug design and lead identification and optimization. 

 

 

Lead identification is usually obtained by optimization of hits.70, 71 A hit is defined 

as an organic or inorganic molecule that maintains reproducible activity and 

selectivity in a relevant bioassay. Hit identification could be achieved by random 

screening of small molecules, including using high throughput screening and 

fragment-based drug design techniques, in silico screening, repurposing of known 

drugs and de novo synthesis.72 A lead could be defined as a hit with defined 

structure activity relationship.69 The most challenging aspects in the lead 

identification include, drug like physicochemical properties, pharmacokinetics 

(absorption, distribution, metabolism and elimination) and toxicity.73, 74 Iterative 
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cycles of synthesis and biological screening would be performed for the potential 

lead molecules, followed by clinical trials of the promising compounds (Figure 

1.9).69 

 

1.3.2 Application to drug design cycle towards anti-CHIKV agents 

Strategies to discover antiviral agents have been described previously, however our 

limited knowledge about the virus impedes drug development and therefore the 

availability of a clinical anti-CHIKV drug.17  

In this dissertation, one aim was to apply the basic concepts of medicinal chemistry 

such as hybridization (Chapter 2), simplification or bioisosterism (Chapter 3) of 

known inhibitors and the use of structure-guided drug design (Chapter 4) as steps 

in the discovery of unprecedented anti-CHIKV agents (Figure 1.9). The antiviral 

project design was aimed to follow the general drug design cycles (Figure 1.9). 
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FOREWORD TO CHAPTER 2  

This chapter is published, in the RSC Advances, 2020, 10, 5191-5195 (impact factor 

3.049) (doi: 10.1039/D0RA00257G). This paper describes the convergent and 

regioselective synthesis of thiazolo[3,2-a]pyrimidines as potential anti-

chikungunya agents. Density functional theory (DFT) calculations were performed 

to investigate the observed preference for the Z isomer, using the widely applied 

M06-2X functional with a Dunnings aug-cc-pVDZ basis set. Appendix material 

pertaining to this chapter can be found in Appendix A (p. 211).  
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2.1 Introduction 

Arboviruses mainly use arthropod vectors for transmission between hosts and they 

are considered a growing global health threat.1, 2 This arises from the increasing 

number of international travellers, from 450 million in 1990 to nearly 1.4 billion in 

2018, and consequently travel-related diseases incidence has increased 

significantly.3 Chikungunya virus (CHIKV) (alphavirus genus, family 

Togaviridae) is one of the prevalent tropical alphaviruses that is transmitted by the 

Aedes mosquitoes.4, 5 After an incubation period of 2-4 days, symptoms start with 

the onset of high fever and severe persistent joint pain that may last for weeks to 

years.6, 7 Other symptoms of chikungunya fever (CHIKF) include headache, 

vomiting, rash, myalgia (muscle pain), photophobia and maculopopular rash.6, 8 

Unlike other arbovirus infections, around 15% of the patients may encounter “silent 

infections”.6 

A variety of strategies have been applied to develop anti-CHIKV treatments, 

including vaccines, and for small molecule inhibitors, random screening, computer 

aided drug design, ligand-based drug design, high throughput screening and 

Genome-Wide loss of function screens.9-17 Non-steroidal anti-inflammatory drugs 

(NSAID) have been used to alleviate the symptoms of the CHIKF because of the 

lack of effective prevention or curing of the viral infection.18 However, so far there 

is no vaccine or approved medication to prevent or treat CHIKV infection. 

The recent advances and growing knowledge about the arboviruses expand our 

understanding of the CHIKV life cycle, pathogenesis and infection.1-6 Intensive 

research in the past 10 years has led to the identification of new chemical scaffolds 

that might be potential anti CHIKV agents. Rhodanin 2.1 is a thiazolidin-4-one 

derivative, presenting a scaffold that exhibited broad antiviral activity against 
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HCV, HIV-1 and chikungunya (2.1, Figure 2.1).19 A series of rhodanine derivatives 

was tested for their anti-CHIKV activity by a cytopathic effect (CPE) reduction 

assay (Figure 2.1). The 2-methyl analogue 2.2 emerged as the best compound and 

displayed excellent activity with submicromolar EC50 (EC50 = 0.42 µM) against 

CHIKV. A docking study also showed good interaction between the ligand and 

CHIKV nsp2 protease.19 

 

Figure 2.1: Examples of heterocyclic classes showing anti-CHIKV activity, including 

thiazolidineone 2.1 and 2.2, pyrimidine 2.3 and pyrimidine fused rings 2.4 and 2.5-2.7. 

 

Among the main heterocycles that form the basis of small molecule inhibitors of 

CHIKV are the pyrimidine and fused pyrimidine rings, e.g. 2.3, 2.4 and 2.5-2.7 

(Figure 2.1).15, 20, 21 Recent reports indicated that hybridization between uracil-

coumarin–arenes 2.3 resulted in the discovery of a novel anti-CHIKV scaffold that 

was found to impede CHIKV replication.20 In an effort to find new leads as CHIKV 

inhibitors, a random screening identified the [1,2,3]triazolo[4,5-d]pyrimidin-

7(6H)ones as potential candidates.21 Iterative optimization cycles led to the most 

potent compound 2.4 with EC50 = 3 µM and a selectivity index greater than 600 

(Figure 2.1).21 In 2012, purine-β-lactams 2.5 and 2.6 and purine-amino propanol 



Chapter 2 Application of the hybridization concept 

 

24 

 

2.7 (Figure 2.1) conjugates were screened against nine different viruses including 

CHIKV. The amino propanol derivative 2.7 (EC50 = 11.51-17.11 μM) showed 

relatively higher activity when compared to the purine-β-lactam hybrids. 

Therefore, the β-lactam was not essential for activity.15 

Recently, hybridization of two or more bioactive fragments has emerged as a 

concept for the exploration of novel multitarget acting inhibitors as well as novel 

anti CHIKV agents (Figure 2.2).15, 20, 22, 23 Therefore, in our ongoing efforts to 

discover new scaffolds for CHIKV infection, we investigated a molecular 

hybridization approach with the fusion of the uracil and the rhodanine 

pharmacophoric moieties (Figure 2.2).22  

 

 

Figure 2.2: Design of the targeted Uracil-Rhodanine conjugates. 

 

2.2 Results and discussion 
 

The synthetic strategy started with the condensation of ethyl propionylacetate 2.9 

and thiourea 2.10 to afford the known 6-ethyl-2-thiouracil 2.11 with 69% yield.24, 



Application of the hybridization concept Chapter 2 

 

25 

 

25 Although the synthesis of the thiazolopyrimidine derivatives from the 6-ethyl-2-

thiouracil substrate has not previously been reported, this multi-component reaction 

(MCR) was achieved using an analogous procedure26-29 by reacting 2.11 with the 

aldehyde, chloroacetic acid, sodium acetate anhydrous, acetic anhydride and acetic 

acid in one pot and at reflux for 4 h (Scheme 2.1). 

 

 

Scheme 2.1: Reagents and conditions: i) NaOEt, C2H5OH, 6 h, reflux; ii) ClCH2COOH, 

anhydrous CH3COONa, (CH3CO)2, CH3COOH, 4-chlorobenzaldehyde, reflux, 4 h. 

 

These conditions consistently gave low yields and two configurational isomers (e.g 

chlorobenzaldehyde 2.16 E:Z 16%:84%), the latter determined by analysis of the 

1H NMR spectrum (Figure 2.3) – attempts to separate the isomers by column 

chromatography failed.  

Optimization of the reaction involved varying the mode of addition, replacement 

of the chloroacetic acid with bromoacetic acid, and lowering the reaction 

temperature. This aimed to favour the formation of the kinetic regioisomer (Z)-A, 

assumed to be the desired product, over the thermodynamic regioisomer (Z)-B 

(scheme 2.2), and resulted in the crystallization of only one regioisomer from the 

reaction mix (acetic acid) in each case. This may be due to lower regioselectivity 

of the chloroacetic acid compared to bromoacetic acid. 
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Figure 2.3: 1H NMR spectrum of the MCR product of the two regioisomers of 2.16 in a 

ratio of 1:5. 

 

 

Scheme 2.2: Reactions and conditions: i: BrCH2COOH, anhydrous CH3COONa, 

(CH3CO)2, CH3COOH, 60 °C, 3 h; ii: Benzaldehyde, anhydrous CH3COONa, CH3COOH, 

60 °C, 2 h. iii) BrCH2COOH, anhydrous CH3COONa, (CH3CO)2, CH3COOH, aldehyde, 

60 °C, 4 h. 

 

From the convergent reaction conditions, four possible isomers can be formed: the 

Z or E configurations of structural isomers A or B – (Z)-A, (E)-A, (Z)-B and (E)-B 
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(Figure 2.4). Analysis of the 1H NMR spectra showed a quartet at 2.48-2.57 ppm 

assigned to methylene hydrogens of the ethyl substituent – these were assigned to 

structural isomer A as a result of the adjacent carbonyl group  and the sp2 nitrogen 

atom (of the pyrimidine ring). The corresponding resonances of isomer B are 

expected to resonate more downfield (~ 3 ppm) as a result of the additional 

deshielding anisotropic effect of the adjacent carbonyl group of the thiazole ring.  

 

 

Figure 2.4: The four possible isomers that can be produced from the MCR reaction. 

 

The Z absolute configuration of this class of molecules was confirmed by X-ray 

crystallographic analysis of derivative 2.20 (Figure 2.5). This illustrated the 

planarity of the thiazolopyrimidine rings with the aryl group, which may be 

attributed to two intramolecular hydrogen bonds. The Z-configuration is 

presumably stabilized by the two intramolecular hydrogen bonds between the 

arylidene H and the oxygen atom of the thiazole carbonyl group (HB1) and between 

the sulfur atom and the aryl hydrogen (HB2). The distance of both hydrogen bonds 

is 2.49 and 2.50 Å, for HB1 and HB2, respectively, and the angles are 102.81˚ and 

132.94˚ for HB1 and HB2 respectively. 
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Figure 2.5: a) ORTEP diagram of compound 2.20, b) Representation of stabilizing 
hydrogen bonds of the regioisomer ZA. 

 

To investigate the observed preference for the Z isomer, density functional theory 

(DFT) calculations were performed using the widely applied M06-2X functional 

with a Dunnings aug-cc-pVDZ basis set. Compound 2.14 (Ar = C6H6) was selected 

for the theoretical study and all structures were optimised using acetic acid 

solvation modelling (SMD). Analysis of the proposed mechanism indicated a 

possible alcohol intermediate and dehydration step preceded the final Z/E isomer 

formation, and to keep the model simple, the calculations focussed on these 

molecules only, maintaining chirality where applicable (Figure 2.6).  

 

Figure 2.6: Proposed mechanism for the synthesis of isomers Z and E, the alcohol 

intermediate of interest (red) and the dehydration step (blue) are highlighted. Note the Z 

isomer is the product of the reaction in this example.  

 

Conformer analysis of the alcohol intermediate indicated a Gibbs free energy of 

reaction (ΔrG0(298K)) range of +0.35 to -2.30 kcal.mol-1 with the Z arranged C1 

being the lowest and the E arranged C2 the highest energy conformers respectively 
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(Figure 2.7). Analysis of the optimised geometries gave no indication of hydrogen 

bond stabilisation for the alcohol, despite attempts at manually inputing the 

conformation. This indicated steric and geometric arrangement of the alcohol 

intermediate is more significant for the energy term. 

 

 

 

Figure 2.7: Structures of three alcohol intermediate conformers (C1 – C3) investigated. 

ΔrG
0 (298 K) energies calculated relative to the starting materials, Compound 2.13 and 

benzaldehyde, in kcal.mol-1. All methods employed the aug-cc-pVDZ basis set. 

 

A stacked ring conformer (C3) was also observed with a favourable ΔrG0(298K) of 

-1.30 kcal.mol-1. To better account for this interaction, Grimmes dispersion (D3) 

and geometric counterpoise (gCP) corrections 30 were applied to the energy term, 

and the stacked C3 was observed to increase by +1.29 kcal.mol-1, whereas C1/C2 

increased by +0.87 and +0.85 kcal.mol-1 respectively. The similar increase to the 

  

C1 

-2.30(M06-2X) 

-1.43 (M06-2X-D3-gCP) 

C2 

+0.35 (M06-2X) 

+1.20 (M06-2X-D3-gCP) 

C3 

-1.30 (M06-2X) 

-0.01 (M06-2X-D3-gCP) 
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energy term for C1/C2 suggested there are no differences in dispersion effects to 

account for in these conformers. However, the greater energy change observed with 

C3 was indicative the ring stacking is not a favourable intramolecular force. Based 

on the subtle differences in energies of the conformers, C1 is the apparent favoured 

alcohol intermediate conformer, which is arranged to dehydrate to the Z isomer. 

The transition states of the proposed dehydration reactions were calculated and the 

saddle point ΔrG0(298K) were found to be +32.58 and +30.05 kcal.mol-1 for the E 

T1 and Z T2 arranged transition states respectively (Figure 2.7). With the D3-gCP 

corrections ΔrG0(298K) were +33.51 and +30.90 kcal.mol-1 for T1 and T2 

respectively. The similar increases in energy (+0.93 and +0.85 kcal.mol-1) indicated 

negligible differences in dispersion force correction required when comparing T1 

and T2. What was particularly interesting to note, in contrast to the alcohol 

intermediate, is the preference of the water leaving hydrogen bound to the carbonyl. 

Despite attempts in manually positioning the water to leave adjacent to the sulfur, 

and in turn have H – S interaction, the transition state only converged to allow 

hydrogen bonding of the water with the thiazole carbonyl. Subsequently, it was 

proposed the principal factor dictating the favoured transition state is the 

arrangement of the aryl group, as the water has apparent preference for leaving 

trans to the sulfur, in favour of Z isomer formation. Subsequent calculation of the 

product (E)-2.14 and (Z)-2.14 isomers indicated ΔrH0(298K) of -2.40 and -6.78 

kcal.mol-1 respectively, which indicates the Z isomer to be thermodynamically 

favoured, and D3-gCP corrections were in good agreement (Figure 2.8). 

Comparison of the calculated (Z)-6 structure with the X-ray crystal structure of 

compound 2.14 indicated similar bond distances of H.B 1 = 2.43 Å and H.B 2 = 

2.50 Å for the proposed intramolecular hydrogen bonds (Figure 2.5).  
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Figure 2.8: Energy profile for the formation of compound 2.14(Z) and 2.14(E), 

calculated with DFT M06-2X/aug-cc-pVDZ. Divergent reaction pathways are colour 

coded red for E formation and blue for Z formation. SR = stacked rings conformer. 

 

Likewise, the bond angles were in good agreement for H.B 1 and H.B 2 calculated 

at 101.34˚ and 127.70˚, compared with 102.81˚ and 132.94˚ from the crystal 

structure, respectively. In conclusion, although the energy differences are small 

between the investigated reaction pathways, there is a consistent preference for the 

Z forming pathway at each step investigated and this result was reciprocated by D3-

gCP energy corrections (Figure 2.8). 

The compounds were screened for their antiviral activities in a viral-cell based 

assay against chikungunya virus (Indian Ocean strain 899) (Table 2.1). Based on 

the biological results, compounds 2.14-2.28 showed different percentages of viral 

replication inhibition at 20 μg/mL with (Z)-7-ethyl-2-((4'-methyl-[1,1'-biphenyl]-

4-yl)methylene)-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-dione 2.23 showing the 

best activity with 58% inhibition of CHIKV replication. Derivatives 2.14, 2.19 and 
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2.28 showed 19, 28 and 34% inhibition of viral replication, whilst rest of the 

compounds showed fair or no activity. However, thiazolodione 2.23 can be 

considered as a potential lead compound in our future 

iterative cycles of optimization. The compound emerged 

as the most promising antiviral among the tested series 

with EC50 = 42 µM, with IC50 > 250 μM against the breast 

cancer cell line MCF-7 and the endothelial human sapiens cell line EA.hy926. 

Compound 2.23 is endowed with p-methylbiphenyl tail functionality which might 

interact favourably with the target. Our outlook will include optimization of 

compound 2.23 with the prime aim to find safe and effective anti-CHIKV agents.  

 

Table 2.1. The observed %inhibition of CHIKV activity of the novel compounds 2.14-

2.26. 

 

Compound Ar 
% inhibition at 

20 μg/mL 

EC50

(μΜ) 

2.14 -C6H5 19 ND 

2.15 4-FC6H4 ND ND 

2.16 4-ClC6H4 ND ND 

2.17 4-CH3C6H4 ND ND 

2.18 4-OCH3C6H4 4.3 ND 

2.19 1-Naphthyl 29 ND 

2.20 4-OAc-3-OCH3 C6H3 5.5 ND 

2.21 3,4-(OCH2O)C6H3 ND ND 

2.22 4-C6H5-C6H4 5.0 ND 

2.23 4(4-CH3C6H4)C6H4 58 42 

2.24 2-Pyrrolo ND ND 

2.25 2-Thieno 5 ND 

2.26 2-Nitro-2-furo 10 ND 

2.27 2-Pyridyl 13 ND 

2.28 7-Indolyl 34 ND 

ND: not determined; EC50: concentration of compound that inhibits virus-induced 

cell death with 50%. 
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2.3 Conclusions 

In this chapter, we reported the convergent synthesis of a new series of 2-arylidene 

thiazolo[3,2-a]pyrimidines. Using simple synthons, namely 6-ethylthiouracil, 

bromoacetic acid and different aldehydes in a mixture of acetic acid\acetic 

anhydride and catalytic amount of anhydrous sodium acetate, a novel series of (Z)-

7-ethyl-2-arylidine-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-diones was achieved. 

Optimization of the multi-component reaction conditions was achieved by 

replacing chloroacetic acid with the more regioselective bromoacetic acid, 

lowering reaction temperature and changing the mode of addition and we were able 

to prepare one isomer at each case. X-ray crystal structure of compound 2.20 shows 

that only one regioselective isomer formed with the Z configuration that is 

potentially stabilized by two intramolecular hydrogen bonds. Antiviral activity 

evaluation demonstrated the tailed thiazolodione 2.23 as a candidate for future 

development. 

2.4 Experimental section 

2.4.1 Chemistry 

General methods and material 

All reagents and solvents were purified and dried by standard techniques. Melting 

points were measured with a Stuart apparatus and were uncorrected. Reactions 

were monitored by TLC analysis using silica gel GF/UV 254. NMR spectra were 

recorded on Varian Gemini-300BB 500 MHz FT-NMR spectrometers (Varian Inc., 

Palo Alto, CA). 1H spectra were run at 500 MHz and 13C spectra were run at 126 

MHz, in deuterated dimethylsulfoxide (DMSO-d6), (CD3)2CO and CDCl3. 

Chemical shifts (δH) are reported relative to TMS as internal standard and coupling 
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constant (J) values are reported in Hertz. The abbreviations used are as follows: s, 

singlet; d, doublet; t, triplet; m, multiplet. Electrospray ionization (ESI single 

quadrupole) mass spectra have their ion mass to charge values (m/z) stated with 

their relative abundances as a percentage in parentheses. Peaks assigned to the 

molecular ion are denoted as [M+H]+ or [M+Na]+. Column chromatography was 

performed using silica gel 60 (0.063-0.200 mm). All reagents and solvents were 

purified and dried by standard techniques.  

 

6-Ethyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (2.11): 

After preparing a sodium ethoxide solution by dissolving sodium (4.6 g, 0.1 mole) 

in absolute ethanol (150 mL), the thiourea 2.10 (3.8 g, 0.05 mole) was added with 

stirring till complete dissolution. The ethyl 3-oxopentanoate ester 2.9 (7.21 g, 0.05 

mole) was then added and the reaction mixture was heated at reflux for 4 hours. 

After cooling the reaction mixture, water was added dropwise till complete 

dissolution of the formed white precipitate. Ice was added, and neutralization of the 

alkaline solution was accomplished using HCl (5 M). The reaction flask left 

overnight in the fridge and the formed white precipitate was filtered, washed 

thoroughly 3 times with water and 2 timed with diethyl ether and dried to give 2.11 

(5.38 g, 69%) as a white powder. In some cases, when glacial acetic acid was used 

instead of HCl as neutralizing agent, 2.11 was obtained as pink powder. m.p: 230 

°C; 1H NMR ((CD3)2SO2) δ: 1.07 (t, J = 7.5 Hz, 3H, CH3), 2.33 (q, J = 7.5 Hz, 2H, 

CH2), 5.33 (s, 1H, pyridine-H), 12.30 (br s, 2H, 2 x -NH); 13C NMR (CD3OD): 

13.4, 27.8, 103.9, 162.0, 165.8, 179.4; MS (ESI): 157 (20%, M+H)+, 179 (100%, 

M+Na)+. 
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7-Ethyl-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-dione (2.13): 

A previously dried sodium acetate (82 mg, 1 mmol) was added to a suspension of 

6-ethyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one 2.11 (156 mg, 1 mmol) and 

bromoacetic acid (153 mg,1.1 mmol) in glacial acetic acid (2 mL) and acetic 

anhydride (1 mL). The reaction flask was heated gently at no more than 60 °C for 

3 h. The formed precipitate was filtered while hot and washed thoroughly with 

water (3 x 10 mL) and diethyl ether (2 x 5 mL) and dried to afford 2.13 (79 mg, 

40%) as a white solid. 1H NMR ((CD3)2CO) δ: 1.19 (t, J = 7.5 Hz, 3H, CH3), 2.49 

(q, J = 7.5 Hz, 2H, CH2), 4.02 (s, 2H, CH2), 6.02 (s, 1H, pyridine-H); 13C NMR 

((CD3)2CO): 11.5, 30.0, 32.4, 105.7, 147.3, 163.6, 169.0, 169.3; MS (ESI): 197 

(25%, M+H)+, 219 (100%, M+Na)+; HRMS (ESI) calcd for C8H9N2O2S: 197.0381 

found 197.0385.  

 

General procedures for the synthesis of 2-aryl-7-ethyl-5H-thiazolo[3,2-

a]pyrimidine-3,5(2H)-dione (2.14-2.28):  

 

Method A: A previously dried sodium acetate (164 mg, 2 mmol) sample was added 

to a solution of 6-ethyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one 2.11 (156 mg, 1 

mmol), corresponding aldehyde (1.1 mmol) and bromoacetic acid (153 mg, 1.1 

mmol) in glacial acetic acid (2 mL) and acetic anhydride (1 mL). After gentle 

heating at no more than 60 ºC, the reaction was monitored using TLC analysis till 

consumption of the stating material or until conversion was observed to stall. 

Heating was then discontinued, and the reaction mixture was filtered while hot and 

the residue washed with water (3 × 10 mL), and diethyl ether (2 × 10 mL) then 

dried to give the desired thiazolopyrimidine 2.14-2.28.  
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Method B: A previously dried sodium acetate (82 mg, 1 mmol) was added to a 

suspension of 7-ethyl-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-dione (196 mg, 1 

mmol) 2.13 in glacial acetic acid, and 1.1 mmol of the appropriate aldehyde was 

added and the mixture was gently heated at less than 60 ºC. The reaction was 

monitored by TLC and the workup was similar to method A.  

 

(Z)-2-benzylidene-7-ethyl-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-dione (2.14): 

The compound was prepared according to method A (yield = 39%) and method B 

(yield = 24% over 2 steps); m.p: 170 °C; 1H NMR (CDCl3) δ: 1.24 (t, J = 7.5 Hz, 

3H, CH3), 2.54 (q, J = 7.5 Hz, 2H, CH2), 6.10 (s, 1H, pyridine-H), 7.50-7.54 (m, 

3H, ArH), 7.58 (d, J = 7.5 Hz, 2H, ArH), 8.07 (s, 1H, arylidene H); 13C NMR 

(CDCl3): 11.7, 30.5, 108.9, 118.6, 129.6, 130.8, 131.4, 133.1, 137.4, 158.2, 158.9, 

163.2, 168.4; MS (ESI): 285 (60%, M+H)+, 307 (100%, M+Na)+, 323 (70%, 

M+K)+; HRMS (ESI) calcd for C15H12N2O2SNa: 307.0502, found: 307.0517. 

 

(Z)-7-ethyl-2-(4-fluorobenzylidene)-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-

dione (2.15): The compound was prepared according to method A (yield = 40%) 

m.p: 210 °C; 1H NMR (CDCl3) δ: 1.23 (t, J = 7.5 Hz, 3H, CH3), 2.56 (q, J = 7.5 

Hz, 2H, CH2), 6.11 (s, 1H, pyridine-H), 7.21 (t, J = 8.5 Hz, 2H, Ar-H), 7.56 (dd, J 

= 8.5, 5.3 Hz, 2H, Ar-H), 8.01 (s, 1H, arylidene H); 13C NMR (CDCl3) δ: 11.6, 

30.3, 108.8, 116.8 (d, J2
C−F 21 Hz), 118.1, 129.3, 132.8 (d, J3

C−F 9 Hz), 135.9, 157.7, 

158.7, 163.0, 163.0 (d, J1
C−F 267 Hz), 168.3; MS (ESI):  303 (10%, M+H)+, 325 

(65%, M+Na)+, 627 (100%, 2M+Na)+; HRMS (ESI) calcd for C15H12FN2O2S: 

303.0618, found: 303.0604. 
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(Z)-2-(4-chlorobenzylidene)-7-ethyl-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-

dione (2.16): The compound was prepared according to method A (yield = 48%); 

m.p: 184 °C; 1H NMR (CDCl3) δ: 1.23 (t, J = 7.5 Hz, 3H, CH3), 2.55 (q, J = 7.5 

Hz, 2H, CH2), 6.12 (s, 1H, pyridine-H), 7.50 (m, 4H, ArH), 8.02 (s, 1H, arylidene 

H); 13C NMR (CDCl3): 11.6, 30.4, 108.9, 119.1, 129.8, 131.4, 131.8, 135.7, 137.5, 

157.6, 158.6, 162.9, 168.3; MS (ESI): 319 (20%, M+H)+, 341 (100%, M+Na)+, 357 

(25%, M+K)+; HRMS (ESI) calcd for C15H11ClN2O2SNa: 319.0302 found: 

319.0308. 

 

(Z)-7-ethyl-2-(4-methylbenzylidene)-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-

dione (2.17): The compound was prepared according to method A (yield = 37%) 

m.p: 180 °C; 1H NMR (CDCl3) δ: 1.24 (t, J = 7.5 Hz, 3H, CH3), 2.42 (s, 3H, CH3), 

2.56 (q, J = 7.5 Hz, 2H, CH2), 6.09 (s, 1H, pyridine-H), 7.31 (d, J = 8.0 Hz, 2H, 

Ar-H), 7.46 (d, J = 8.0 Hz, 2H, Ar-H), 8.04 (s, 1H, arylidene H); 13C NMR (CDCl3) 

δ: 11.6, 21.7, 30.4, 108.7, 117.1, 130.2, 130.2, 130.9, 137.5, 142.4, 158.2, 158.8, 

163.2, 168.2; MS (ESI):  299 (7%, M+H)+, 321 (35%, M+Na)+, 619 (100%, 

2M+Na)+; HRMS (ESI) calcd for  C16H14N2O2SNa: 321.0688, found: 321.0674. 

 

(Z)-7-ethyl-2-(4-methoxybenzylidene)-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-

dione (2.18): The compound was prepared according to method A (yield = 44%) 

m.p: 168 °C;  1H NMR (CDCl3) δ: 1.23 (t, J = 7.5 Hz, 3H, CH3), 2.56 (q, J = 7.5 

Hz, 2H, CH2), 3.89 (s, 3H, OCH3), 6.05-6.10 (m, 3H, pyridine-H + OCH2O), 7.02 

(d, J = 9.0 Hz, 2H, ArH), 7.53 (d, J = 9.0 Hz, 2H, ArH), 8.01 (s, 1H, arylidene H); 

13C NMR (CDCl3): 11.6, 30.3, 55.6, 108.5, 115.0, 115.1, 125.6, 132.9, 137.2, 

158.3, 158.9, 162.2, 163.2, 168.2; MS (ESI):  315 (10%, M+H)+, 337 (25%, 
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M+Na)+, 651 (100%, 2M+Na)+; HRMS (ESI) calcd for C16H14N2O3SNa: 337.0606 

found: 337.0623.  

 

(Z)-7-ethyl-2-(naphthalen-1-ylmethylene)-5H-thiazolo[3,2-a]pyrimidine-

3,5(2H)-dione (2.19): The compound was prepared according to method A (yield 

= 70%) m.p: 175 °C; 1H NMR (CDCl3) δ: 1.24 (t, J = 7.5 Hz, 3H, CH3), 2.56 (q, J 

= 7.5 Hz, 2H, CH2), 6.26 (s, 1H, pyridine-H), 7.57-7.67 (m, 3H, Ar-H), 7.73 (d, J 

= 7.0 Hz, 1H, Ar-H), 7.92 (d, J = 8.0 Hz, 1H, Ar-H), 7.98 (d, J = 8.0 Hz, 1H, Ar-

H), 8.14 (d, J = 8.5 Hz, 1H, Ar-H), 8.82 (s, 1H, arylidene H); 13C NMR (CDCl3) δ: 

11.7, 30.5, 108.8, 121.6, 123.5, 125.4, 127.2 (2C), 127.9, 129.2, 130.3, 131.9, 

132.1, 133.9, 134.4, 158.5, 159.0, 162.8, 168.4; MS (ESI):  335 (20%, M+H)+, 691 

(100%, 2M+Na)+; HRMS (ESI) calcd for  C19H15N2O2S: 335.0849, found: 

335.0854. 

 

(Z)-4-((7-ethyl-3,5-dioxo-5H-thiazolo[3,2-a]pyrimidin-2(3H)-ylidene)methyl)-

2-methoxyphenyl acetate (2.20): The compound was prepared according to 

method A (yield = 59%) m.p: 208 °C; 1H NMR (CDCl3) δ: 1.24 (t, J = 7.5 Hz, 3H, 

CH3), 2.34 (s, 3H, COCH3), 2.56 (q, J = 7.5 Hz, 2H, CH2), 3.90 (s, 3H, OCH3), 

6.10 (s, 1H, pyridine-H), 7.13 (s, 1H, Ar-H), 7.18 (s, 2H, Ar-H), 8.01 (s, 1H, 

arylidene H); 13C NMR (CDCl3) δ: 11.0, 20.0, 29.8, 55.4, 108.2, 113.4, 117.9, 

123.1, 123.3, 131.2, 135.9, 141.5, 151.2, 157.2, 158.0, 162.3, 167.6, 167.9; MS 

(ESI):  373 (15%, M+H)+, 767 (100%, 2M+Na)+;  HRMS (ESI) calcd for  

C18H17N2O5S: 373.0862, found: 373.0858. 
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(Z)-2-(benzo[d][1,3]dioxol-5-ylmethylene)-7-ethyl-5H-thiazolo[3,2-

a]pyrimidine-3,5(2H)-dione (2.21): The compound was prepared according to 

method A (yield = 67%) m.p: 206 °C; 1H NMR (CDCl3) δ: 1.23 (t, J = 7.5 Hz, 3H, 

CH3), 2.55 (q, J = 7.5 Hz, 2H, CH2), 6.07-6.10 (m, 3H, pyridine-H + OCH2O), 6.93 

(d, J = 8.3 Hz, 1H, Ar-H), 7.02 (s, 1H, Ar-H), 7.12 (d, J = 8.3 Hz, 1H, Ar-H), 7.95 

(s, 1H, arylidene H); 13C NMR (CDCl3) δ: 11.7, 30.5, 120.3, 108.7, 109.4, 109.5, 

115.9, 127.4, 127.8, 137.3, 148.9, 150.6, 158.2, 158.9, 163.2, 168.3; MS (ESI):  351 

(70%, M+Na)+, 679 (100%, 2M+Na)+;  HRMS (ESI) calcd for  C16H12N2O4SNa: 

351.0405, found: 351.0415. 

 

(Z)-2-([1,1'-biphenyl]-4-ylmethylene)-7-ethyl-5H-thiazolo[3,2-a]pyrimidine-

3,5(2H)-dione (2.22): The compound was prepared according to method A (yield 

= 77%) m.p: 172 °C; 1H NMR (CDCl3) δ: 1.23 (t, J = 7.5 Hz, 3H, CH3), 2.55 (q, J 

= 7.5 Hz, 2H, CH2), 6.08 (s, 1H, pyridine-H), 7.39-7.42 (m, 1H, ArH), 7.47 (t, J = 

7.5 Hz, 2H, ArH), 7.62-7.64 (m, 4H, ArH), 7.74 (d, J = 8.0 Hz, 2H, ArH), 8.07 (s, 

1H, arylidene H); 13C NMR (CDCl3) δ: 11.7, 30.4, 108.8, 118.1, 127.2, 128.0, 

128.5, 129.2, 131.4, 131.8, 136.9, 139.5, 144.0, 158.1, 158.8, 163.1, 168.3; MS 

(ESI):  383 (70%, M+Na)+, 743 (100%, 2M+Na)+;  HRMS (ESI) calcd for  

C21H16N2O2SNa: 383.0837, found: 383.0830. 

 

(Z)-7-ethyl-2-((4'-methyl-[1,1'-biphenyl]-4-yl)methylene)-5H-thiazolo[3,2-

a]pyrimidine-3,5(2H)-dione (2.23): The compound was prepared according to 

method A (yield = 69%) m.p: 218 °C; 1H NMR (CDCl3) δ: 1.24 (t, J = 7.5 Hz, 3H, 

CH3), 2.56 (q, J = 7.5 Hz, 2H, CH2), 7.28 (d, J = 7.8 Hz, 2H, ArH), 7.54 (d, J = 7.8 

Hz, 2H, ArH), 7.62 (d, J = 8.1 Hz, 2H, ArH), 7.73 (d, J = 8.1 Hz, 2H, ArH), 8.08 
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(s, 1H, arylidene H); 13C NMR (CDCl3) δ: 11.7, 21.3, 30.5, 108.8, 117.9, 127.1, 

127.8, 129.9, 131.5, 131.6, 136.6, 137.0, 138.6, 144.1, 158.2, 158.9, 163.2, 168.3; 

MS (ESI):  375 (65%, M+H)+, 397 (75%, M+Na)+, 771 (100%, 2M+Na)+;  HRMS 

(ESI) calcd for  C22H18N2O2SNa: 397.0996, found: 397.0987. 

 

(Z)-2-((1H-pyrrol-2-yl)methylene)-7-ethyl-5H-thiazolo[3,2-a]pyrimidine-

3,5(2H)-dione (2.24):The compound was prepared according to method A (yield = 

27%) m.p: 220 °C;  1H NMR (DMSO-d6) δ: 1.15 (t, J = 7.5 Hz, 3H, CH3), 2.48 (q, 

J = 7.5 Hz, 2H, CH2), 6.05 (s, 1H, pyridine-H), 6.44 (s, 1H, ArH), 6.66 (s, 1H, 

ArH), 7.32 (s, 1H, ArH), 7.89 (s, 1H, arylidene H), 11.86 (br s, 1H, NH); 13C NMR 

(DMSO-d6) δ: 12.3, 30.1, 108.6, 110.8, 113.5, 116.1, 126.1, 126.8, 128.0, 159.0, 

159.3, 163.5, 167.9; MS (ESI):  274 (10%, M+H)+, 296 (40%, M+Na)+, 569 (15%, 

2M+Na)+;  HRMS (ESI) calcd for C13H11N3O2SNa: 296.0484, found: 296.0470. 

 

(Z)-7-ethyl-2-(thiophen-2-ylmethylene)-5H-thiazolo[3,2-a]pyrimidine-

3,5(2H)-dione (2.25): The compound was prepared according to method A (yield 

= 43%) m.p: 216 °C;  1H NMR (CDCl3) δ: 1.23 (t, J = 7.5 Hz, 3H, CH3), 2.57 (q, J 

= 7.5 Hz, 2H, CH2), 6.11 (s, 1H, pyridine-H), 7.24-7.26 (m, 1H, ArH), 7.51 (d, J = 

3.0 Hz, 1H, ArH), 7.75 (d, J = 5.0 Hz, 1H, ArH), 8.01 (s, 1H, arylidene H); 13C 

NMR (CDCl3) δ: 11.6, 30.4, 108.8, 116.3, 129.1, 129.6, 133.3, 134.7, 137.7, 157.8, 

158.9, 162.9, 168.3; MS (ESI):  291 (15%, M+H)+, 313 (75%, M+Na)+, 603 (100%, 

2M+Na)+;  HRMS (ESI) calcd for C13H10N2O2S2Na: 313.0081, found: 313.0071.  
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(Z)-7-ethyl-2-((5-nitrofuran-2-yl)methylene)-5H-thiazolo[3,2-a]pyrimidine-

3,5(2H)-dione (2.26): The compound was prepared according to method A (yield 

= 46%) m.p: 202 °C;  1H NMR (DMSO-d6) δ: 1.14 (t, J = 7.5 Hz, 3H, CH3), 2.48 

(q, J = 7.5 Hz, 2H, CH2), 6.14 (s, 1H, pyridine-H), 7.40 (d, J = 3.8 Hz, 1H, ArH), 

7.84 (d, J = 3.8 Hz, 1H, Ar-H), 7.94 (s, 1H, arylidene H); 13C NMR (DMSO-d6) δ: 

11.5, 29.3, 108.5, 114.7, 118.6, 120.4, 123.7, 151.1, 152.8, 157.8, 158.3, 162.1, 

167.2; MS (ESI):  320 (5%, M+H)+, 661 (100%, 2M+Na)+; HRMS (ESI) calcd for 

C13H10N3O5S: 320.0335, found: 320.0341. 

 

(Z)-7-ethyl-2-(pyridin-2-ylmethylene)-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-

dione (2.27): The compound was prepared according to method A (yield = 22%) 

m.p: 225 °C;  1H NMR (CDCl3) δ: 1.24 (t, J = 7.5 Hz, 3H, CH3), 2.56 (q, J = 7.5 

Hz, 2H, CH2), 6.08 (s, 1H, pyrimidine H), 7.32 (dd, J = 7.4, 4.7 Hz, 1H), 7.59 (d, J 

= 7.7 Hz, 1H), 7.81 (dd, J = 7.4, 6.7 Hz, 1H), 7.98 (s, 1H, arylidene H), 8.78 (d, J 

= 4.7 Hz, 1H); 13C NMR (CDCl3) δ: 11.6, 30.4, 108.5, 124.0, 124.3, 157.5, 132.0, 

137.1, 149.2, 151.3, 159.1, 162.1, 163.5, 168.5; MS (ESI):  286 (5%, M+H)+, 308 

(10%, M+Na)+;  HRMS (ESI) calcd for  C14H12N3O2S: 286.0649, found: 286.0650. 

 

(Z)-2-((1H-indol-7-yl)methylene)-7-ethyl-5H-thiazolo[3,2-a]pyrimidine-

3,5(2H)-dione (2.28): The compound was prepared according to method A (yield 

= 37%) m.p: 190 °C; 1H NMR (CDCl3) δ: 1.27 (t, J = 7.5 Hz, 3H, CH3), 2.57 (q, J 

= 7.5 Hz, 2H, CH2), 6.08 (s, 1H, pyrimidine H), 6.64 (s, 1H, ArH), 7.18 (t, J = 7.5 

Hz, 1H, ArH), 7.34 (d, J = 7.5 Hz, 1H, ArH), 7.46 (s, 1H, ArH), 7.72 (d, J = 7.5 

Hz, 1H, ArH), 8.78 (s, 1H, arylidene H), 9.67 (br s, 1H, NH); 13C NMR (CDCl3) δ: 

11.7, 30.4, 103.2, 108.4, 110.0, 117.2, 118.4, 119.9, 122.1, 125.0, 129.4, 133.4, 
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135.5, 158.8, 159.2, 163.5, 168.4; MS (ESI):  324 (30%, M+H)+, 346 (100%, 

M+Na)+;  HRMS (ESI) calcd for  C17H14N3O2S: 324.0799, found: 324.0807. 

 

2.4.2 Anti-viral assay 

CHIKV Indian Ocean strain 899 (Genbank FJ959103.1) was generously provided 

by Prof. S. Günther (Bernhard Nocht Institute for Tropical Medicine, Hamburg, 

Germany) (Panning M et al., Emerging Infectious Diseases 2008). BGM cells were 

maintained in cell growth medium composed of minimum essential medium (MEM 

Rega-3, Gibco, Belgium) supplemented with 10% Foetal Bovine Serum (FBS, 

Integro, The Netherlands), 1% L-glutamine (Gibco), and 1% sodium bicarbonate 

(Gibco). The antiviral assays were performed in virus growth medium which is the 

respective cell growth medium supplemented with 2% (instead of 10%) FBS. Cell 

cultures were maintained at 37 °C in an atmosphere of 5% CO2 and 95-99% 

humidity. BGM cells were seeded in 96-well tissue culture plates (Becton 

Dickinson, Aalst, Belgium) at a density of 2.5 x 104 cells/well in 100 μL assay 

medium and were allowed to adhere overnight. Next, a compound dilution series 

was prepared in the medium on top of the cells after which the cultures were 

infected with 0.001 MOI of CHIKV 899 inoculum in 100 μL assay medium. On 

day 5 post-infection (p.i.), the plates were processed using the MTS/PMS method 

as described by the manufacturer (Promega, The Netherlands). The 50% effective 

concentration (EC50), which is defined as the compound concentration that is 

required to inhibit virus-induced cell death by 50%, was determined using 

logarithmic interpolation. All assay wells were checked microscopically for minor 

signs of virus induced CPE or possible alterations to the cell or monolayer 

morphology caused by the compound. 
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2.4.3 X-ray crystallographic data for compound 2.20 

Crystal data. Compound 12. C18H16N2O5S, M= 372.40, T=150 K, Triclinic, P1 , 

Z=2, a= 7.8375 (3), b= 8.2458 (3), c= 14.5394 (7) Å, α = 87.176 (4)°, β = 74.562 

(4)°, γ = 73.335 (4)° ,V= 867.31 (7) Å3, Dx= 1.426 g cm-3, Cu Kα radiation, 

λ=1.54184 Å, 16946 reflections measured (θ = 6–74˚), merged to 3491 unique data, 

R=0.034 [for 3396 data with I > 2σ(I)], Rw= 0.089 [all data], S = 1.00  

Structure determination of compound 2.20. Images were measured on an Agilent 

SuperNova diffractometer (Cu Kα radiation, mirror monochromator, λ=1.54184 Å) 

and data extracted using the CrysAlis PRO package.1 Structure solution was by 

direct methods (SIR92).2 The structure was refined using the CRYSTALS program 

package.3 CDCC 1968317. 

 

2.4.4 Computational methods 

Structures were built intuitively in Avogadro and initially optimized with 

Molecular Mechanics (Universal force field). These structures were used for 

subsequent DFT calculations utilizing Gaussian16 with initial optimization at 

B3LYP/def2SVP for minima structures and M06-2X/6-31G(d) for transition states. 

All final structures and thermodynamics were calculated with M06-2X/aug-cc-

pVDZ and solvation in acetic acid modelled (SMD). Minima were confirmed by 

analysis of the normal modes. The transition states were confirmed saddle points 

by observation of one imaginary frequency with mode analysis indicating 

molecular displacement corresponding to the transition of interest. All structures 

energies were also corrected for dispersion (D3) and geometric counterpoise (gCP).  

Thermodynamic changes in the Gibbs free energy of reaction ΔrG0 (298K) from the 

starting materials, compound 2.13 and benzaldehyde, were calculated as per 
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equation (E1), that is ΔrG0(298K) for the product of interest is equal to the sum of 

electronic energy of the product  – the sum of electronic energy for the starting 

materials, with all values having the free energy correction applied.  

∆𝑟𝐺°(298 𝐾) =  ∑(𝜀0 + 𝐺𝑐𝑜𝑟𝑟)𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 −  ∑(𝜀0 + 𝐺𝑐𝑜𝑟𝑟)𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠   
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FOREWORD TO CHAPTER 3 

This chapter is a full research manuscript prepared for submission to the RSC 

Medicinal Chemistry. This chapter describes the synthesis of 1-aryl-

[1,2,4]triazolo[4,3-a]pyrimidines and 2-anilinopyrimidines as potential 

chikungunya virus inhibitors. It also describes the preparation and characterisation 

of the key intermediates as well as the synthesis of target compounds. X-ray single 

crystal studies of three intermediates and two target compounds were performed 

and confirmed their structure. In silico pharmacokinetic and drug likeness 

modelling of target compounds were conducted, followed by biological evaluation. 

DFT calculations and analysis of ESP were performed and revealed new insights 

into the viral-target binding site.  

Supporting information for this chapter can be found in Appendix B (p. 228). 
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3.1 Introduction 

Recent reports by the World Health Organization (WHO) on neglected tropical 

diseases underline the pressing need to discover new lead compounds to treat 

chikungunya virus (CHIKV) infection.1, 2 Strategies to discover antiviral agents 

have been described previously,3, 4 however our limited knowledge about the virus 

impedes drug development and therefore the availability of a clinical anti-CHIKV 

drug.  

There is no vaccine or an approved drug for CHIKV-infection prophylaxis or 

treatment and current management is limited to supportive measures and includes 

non-steroidal anti-inflammatory drugs (NSAID) and corticosteroids to alleviate the 

symptoms of acute viremia.5  Strategies to discover anti-CHIKV agents include 

vaccine development, the development of small molecule drug-like ligands 

discovered through virtual screening, in vitro whole cell phenotypic screening, and 

genome-wide loss of function screens.6-13 Advances in anti-CHIKV drug discovery 

have been reviewed.3, 4, 14  

Amongst synthetic compounds, the triazolo[4,5-d]pyrimidin-7(6H)ones have 

emerged as promising and potent anti-CHIKV agents (Figure 3.1.) 11, 12, 15 as 

exemplified by the optimised compound MADTP-372 (3.1) with a reported EC50 

(CHIKV) in the 0.75 – 2.6 μM range.16 We note, however, that for 1 there is very 

limited scope for structural elaboration of the fused bicyclic core and, therefore, 

limited scope for improving the molecular design with the goal of an effective and 

commercial drug.   

By applying robust medicinal chemistry strategies including bioisosteric 

substitution and simplification to 3.1 we devised two series of analogue scaffolds 



Application of the bioisosterism and simplification concepts Chapter 3 

 

48 

 

as shown in Figure 3.1. with the prime aim of demonstrating their anti-CHIKV 

potential for future drug design and to provide insight into ligand-target interactions 

critical for activity. 

Series A was arrived at through bioisosteric substitution freeing up ring position 3 

for additional substitutional elaboration (R2), and Series B through simplification 

to the conformationally more flexible 2-anilino pyrimidones. In both series we 

maintained the peripheral ethyl group adjacent to the ring nitrogen, the carbonyl 

group and unsubstituted intervening position as suggested by earlier structure 

activity studies.11 

 

 

Figure 3.1: Application of medicinal chemistry concepts to current CHIKV inhibitor 

MADTP-372 towards new potential anti-CHIKV agents. The assumed core, including the 

explicit hydrogen, are highlighted green. 

 

The selection of the simple acetyl and ethyl carboxylate groups for R2 (Figure 3.1.) 

was principally to demonstrate the initial inclusion of scaffold functionality useful 

for further derivatisation. Different aryl substituents were selected including the 3-

iso-propoxy of MADTP-372, the 3-acetyl group present in the parent compound 

used in the same study11, the sulfonamide group considered an acetyl isostere with 

increased H-bond acceptor potential, the 3-fluoro and 4-bromo moieties. 
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3.2 Results and discussion 

Syntheses of both series began with the construction of the thiouracil 3.4 achieved 

by the simple expedient of heating thiourea 3.3 at reflux with the β-keto ester 3.2 

in the presence of sodium ethoxide in 69% yield (Scheme 3.1).17 The synthesis of 

the 2-anilinopyrimidine series 3.6-3.10 (Scheme 3.1) started with methylation of 

3.4 with methyl iodide and sodium hydroxide as reported.18 The reaction between 

3.5 and anilines was investigated using different conditions, including using a neat 

reaction, using catalytic amounts of bases or acids. The best reaction conditions 

were heating pivalic acid at reflux with S-methylthiouracil 3.5 and the 

corresponding aniline (Scheme 3.1).19 Applying these reaction conditions afforded 

the 2-anilinopyrimidine derivatives 3.6-3.9 in yields ranging from 22-82%.  

 

 

Scheme 3.1: Reagents and conditions: i) NaOEt, C2H5OH, 6 h, reflux; ii) NaOH, EtOH, 

CH3I, 3 h, 50 °C; iii) Corresponding aniline, pivalic acid, 130 °C. 

 

Hydrazonoyl chlorides (highlighted in green in Scheme 3.2 are the main building 

blocks in this synthesis of these triazolo[4,3-a]pyrimidine derivatives and can be 

made via several routes from inexpensive and readily available precursors. Here we 

synthesised 3.14-3.24 starting with chlorination of the active methylene group of 

acetylacetone 3.10 and ethyl acetoacetate 3.11 using sulfuryl chloride as described 

by Alihn in 187820 (Scheme 3.2). Conventional coupling of the α-chloroacetyl 
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derivatives 3.12 and 3.13 (Scheme 3.2) with the readily prepared aryl diazonium 

salts afforded compounds 3.14-3.24 (Scheme 3.2) in yields ranging from 32-79%.21  

 

 

Scheme 3.2: Reagents and conditions: i) SO2Cl2, 0 °C; ii) CH3COONa/ 0 °C.  

 

Analysis of the single crystal X-ray diffraction (Figure 3.2) of derivatives 3.15, 3.20 

and 3.24 confirmed the presence of the (Z) configuration (Figures 3.2). 

 

 

Figure 3.2: X-ray crystal structure of 3.15 (a), 3.20 (b) and 3.24 (c). 
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The reactions of the thiouracil derivatives and hydrazonoyl halides have been 

extensively studied (Scheme 3.3).22-24 Generally, the reaction proceeds via a 1,3-

addition if the reacting heterocyclic thiones are protic nucleophiles, or a 1,3-dipolar 

cycloaddition pathway in the case that the heterocyclic thiones are dipolarophiles.22 

A review of this reaction revealed an almost exclusive preference for product 

isomer A (3.29-3.39) over B (3.42-3.52) (Scheme 3.3).22 This suggests a reaction 

process through the cycloaddition of carbon-2 and nitrogen-3 (rather than nitrogen-

1) of the thiouracil analogues with the hydrazonoyl chloride derivative in presence 

of base (Scheme 3.3).67 The reaction mechanism was postulated to start with S-

alkylation of the thiouracil derivative via a Japp-Klingmann reaction to afford the 

thiohydrazontes 3.25. In the presence of base, the nucleophilicity of the terminal 

hydrazone N increases and the compound undergoes Chapman-like rearrangement 

to give the corresponding thiohydrazide 3.26. The latter thiohydrazide cyclized in 

situ to afford A or B.22 The use of the triethylamine in this reaction which was 

reported to be one of the best bases to use, resulted in low yields. Changing the base 

to DIPEA provided good reaction outcomes with good yields in short reaction 

times. 

 Analysis of 13C NMR spectra of compounds 3.29-3.39 (corresponds to isomer A) 

or 3.42-3.52 (corresponds to isomer B) showed resonances at 172 – 173 ppm and 

was assigned to the carbonyl of the pyrimidine ring which might indicate that 

isomer B was preferentially obtained as reported.25 However, single crystal X-ray 

diffraction (SCXRD) of two compounds confirmed the presence of the other isomer 

(3.32 and 3.39, Fig. 2), required for the antiviral testing. X-ray analysis of 

compounds 3.32 and 3.39 showed the planarity of the fused bicyclic and the 

terminal aryl rings (Figure 3.3).  
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Scheme 3.3: Reagents and conditions: i) DIPEA, dioxane, 100 °C 

 

 

Figure 3.3: ORTEP depictions of compounds 3.23 and 3.39 at 70% probability. 
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In a typical example, analysis of the 1H NMR spectrum of 3.29 revealed a triplet at 

1.31 ppm and a quartet at 2.70 assigned to the CH3 and CH2 of the ethyl group, 

respectively and a resonance at 2.81 ppm assigned to the methyl of the acetyl group. 

The pyrimidine H was assigned to the singlet at δ 6.05 in the 1H NMR spectrum. 

To the corresponding aryl hydrogens were assigned the triplet at 7.09 ppm, the 

doublet of doublet at 7.50 ppm, and the multiplet at 8.08-8.12 ppm. The 13C NMR 

spectrum of the fluorine containing compound 3.29 showed a typical splitting 

pattern of the fluorine and carbon with coupling constants J1
C−F = 248 Hz, at 

resonance 161.9 ppm, J2
C−F = 28 Hz at resonance 108.1 ppm, J2

C−F = 21 Hz at 

resonance 114.5, J3
C−F = 9 Hz, at resonance 103.8, J3

C−F = 10 Hz at resonance 137.8 

and J4
C−F = 4 Hz at resonance 115.9 ppm. 

Compounds [1,2,4]triazolo[4,3-a]pyrimidin-7(1H)-ones 3.29-3.39 and 2-

anilinopyrimidin-4(3H)-one 3.6-3.9 were screened for their antiviral activities in a 

viral-cell based assay against chikungunya virus (Indian Ocean strain 899) (Table 

3.1).  The most active compounds were further tested for their cytotoxic activity 

against the normal cell line, EA.hy926, the endothelial human cell line, and two 

human breast cancer cell lines, namely, MCF-7 and MDA-MB-231 (Table 3.1). 

Compound, 3-acetyl-5-ethyl-1-(3-isopropoxyphenyl)-[1,2,4]triazolo[4,3-

a]pyrimidin-7(1H)-one 3.33, being the 3-acetyl analogue of the protype 3.1 

emerged as having the most promising antiviral activity among the tested series 

3.29-3.39 with EC50 = 38 μM, and IC50 > 300 μM against breast cancer cell lines, 

MCF-7 and MDA-MB-231 and normal cell line EA.hy926 (Table 3.1). The 3-

acetylphenyl analogue 3.31 was approximately three times less active than 3.33 

paralleling the activities of the 3-acetylphenyl analogue of 3.1.11 Of special interest 

was the finding that the only active ethyl carboxylate compound, 3.34, as expected 
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featured the high activity 3-iso-propoxyphenyl group and exhibiting low antiviral 

activity, but also exhibited pronounced and consistent cytotoxicity across all cell 

lines. The sulfonamide derivatives 3.35-3.38 showed no antiviral activity, even at 

high concentrations (1% inhibition at 100 μg/mL for 3.36) (Table 3.1). Whilst all 

of the conformationally more flexible Series B compounds 3.6-3.9 demonstrated 

weak inhibition of viral replication, all exhibited an EC50 > 200 μM.  

 

Table 3.1: In vitro antiviral and cytotoxic activities of compounds 3.29-3.39 and 3.6-3.9. 

 

  Ar Anti-CHIKV activity Cytotoxic activity 

EC50 (µM) 

%inhi-

bition 

at [  ] 

μg/m

L 

EC50 

(µM) 

MCF

7a 

MDAM

B231a 

Eahy

926a 

3.29 COCH3 3-F-C6H4 80 100 183 >300 250 >300 

3.30 COOC2H5 3-F-C6H4 9 100 >200 NT NT NT 

3.31 COCH3 3-(COCH3)-C6H4 100 100 136 >300 198 207 

3.32 COOC2H5 3-(COCH3)-C6H4 0 20 >200 NT NT NT 

3.33 COCH3 3-O-iPr-C6H4 69 20 38 >300 >300 >300 

3.34 COOC2H5 3-O-iPr -C6H4 90 75 100 68 65 73 

3.35 COCH3 3-SO2NH2-C6H4 0 100 >200 NT NT NT 

3.36 COOC2H5 3-SO2NH2-C6H4 1 100 >200 NT NT NT 

3.37 COCH3 4-SO2NH2-C6H4 2 20 >200 NT NT NT 

3.38 COOC2H5 4-SO2NH2-C6H4 2 100 >200 NT NT NT 

3.39 COCH3 4-Br-C6H4 54 75 186 128 81 147 

3.6 - -C6H5 6 75 >200 NT NT NT 

3.7 - 3-F-C6H4 30 75 >200 NT NT NT 

3.8 - 3-PriO-C6H4 26 20 >200 NT NT NT 

3.9 - 3-SO2NH2-C6H4 0 75 >200 NT NT NT 

NT: not tested, a Mean from three replicates, (errors were in the range  5-10 % of the reported 
values). 
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Drug Likeness Scores (DLS) were calculated using MolSoft26 and are listed in 

Table 3.2  Drug candidates typically show positive DLS values, while non-drug 

candidates might elicit zero or negative DLS values.  Whilst all tested compounds 

complied with Lipinski guidelines, only 3.33, 3.34, 3.37, 3.39, 3.6-3.9 received 

positive DLS ranging from 0.03 - 0.77, with the rest of the compounds showing 

zero or negative DLS. 

 

Table 3.2: Drug likeness calculations and Lipinski parameters of the compounds 3.29-

3.39 and 3.6-3.9. 

 

 

In order to infer the nature of the ligand – target interactions important for binding 

and inhibition, a series of minimal pharmacophore models was developed using the 

closely comparable bioactivity results of compounds 3.53 and 3.56 (Figure 3.4) 

 M. 

Wta 

log Pb HB

Ac
 

HBDd
 n 

violatione
 

Rule 

of 5 

nrot 

f 

TPSA

g 

%A

BSh 

DLSi 

3.29 300 1.8 4 0 0 pass 3 69.3 85.1 0.00 

3.30 330 2.6 5 0 0 pass 5 78.5 81.9 -0.05 

3.31 324 1.3 5 0 0 pass 4 86.4 79.2 -0.37 

3.32 354 2.1 6 0 0 pass 6 95.6 76.0 -0.45 

3.33 340 2.4 5 0 0 pass 5 78.5 81.9 0.29 

3.34 370 3.2 6 0 0 pass 7 87.7 78.7 0.29 

3.35 361 0.4 7 2 0 pass 4 129.4 64.4 -0.39 

3.36 391 1.2 8 2 0 pass 6 138.7 61.1 -0.42 

3.37 361 0.4 7 2 0 pass 4 129.4 64.4 0.07 

3.38 391 1.2 8 2 0 pass 6 138.7 61.1 -0.10 

3.39 360 2.4 4 0 0 pass 3 69.3 85.1 0.03 

3.6 215 1.9 2 2 0 pass 3 57.8 89.1 0.69 

3.7 233 2.2 2 2 0 pass 3 57.8 89.1 0.41 

3.8 273 2.7 3 2 0 pass 5 67.0 85.9 0.77 

3.9 294 0.7 5 4 0 pass 4 118.0 68.3 0.27 

a Molecular weight. b Lipophilicity. c Number of hydrogen bond acceptors. d Number of 

hydrogen bond donors. e Number of violations. f Number of rotatable bonds. g Topological 

polar surface area. h Percentage absorption. i Drug-likeness model score. 
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along with 3.54 and 3.55 (pink-dashed box in Figure 3.4) for the 3-iso-

propoxyphenyl analogues.11  As we are unable to infer orientation of an asymmetric 

pendant aryl group due to free rotation it was modelled as a phenyl moiety.  A 

methyl group on the bicyclic core is a suitable stand-in for substituents at that 

location. 

All compounds were modelled using Density-Functional Theory (DFT) using the 

Gaussian16 package at the B3LYP-D3(BJ)/6-311G(2d,p) using implicit water 

solvation to reflect in vivo conditions.  The possible tautomerism in 3.54 – 3.56 was 

examined with DFT calculated free energies indicating that for 3.54 and 3.55 only 

the single tautomer shown in each case is present in solution.  For 3.56, two of the 

three possible tautomers, 3.56a and 3.56b, would be present at 3% and 97% 

respectively. 

The calculated Electrostatic Potential (ESP) was mapped onto two values of the 

electron isodensity and is shown in Figure 3.4.  The large valued isodensity clearly 

resolves the atoms (middle row in Figure 3.4) whilst the lower value better reflects 

how the molecules are seen by the chemical environment, i.e. the ligand target. The 

closely similar molecular shapes of 3.53 – 3.56, the very similar polarities of the π-

systems and the comparable EC50 values for 3.53 – 3.55  indicate that this 

comparative approach is valid for inferring the important ligand – target 

interactions.  Both tautomers 3.56a-b feature reversed polarity in contrast to 3.53 – 

3.55  arising from the N-H groups.  Not surprisingly, such a situation correlates 

with antiviral activity, but at levels higher than the bioassays could measure. 
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Figure 3.4: Structures and DFT minimal pharmacophore models of the [1,2,4]triazolo[4,3-

a]pyrimidine (3.53), the azahypoxanthine (3.54), the hypoxanthine (3.55) and the 

pyrimidone tautomers (3.56a-b) showing the electrostatic potential mapped onto two 

different electron isodensities to convey both the resolved atoms (middle row) and the 

diffuse molecular surface as seen by the chemical environment (bottom row). Potential H-

bond interactions indicated by coloured arrows. The tautomers shown for 3.54 and 3.55 

calculated by DFT to represent 100% of the species in vivo.  For the pyrimidones 3.56, the 

relative concentration of the two tautomers is shown. 

 

Figure 3.5 is the consensus model, principally arrived at through comparisons of 

steric and charge features of 3.53 – 3.55.  The H-bond acceptor facility at position 

8 and the oxygen substituent at position 5 would both be expected to be important.  

Whilst no substituent can be tolerated at positions 2 and 6, there would seem to be 

a nebulous region of H-bond acceptor potential proximal to position 3.  Since 3.33 

is of comparable activity to 3.1 yet features greater steric bulk at position 3, we 

speculate that antivirals based on 3.54 and 3.55 interact with the target via a H2O 

molecule H-bonded to the 5-membered ring imine nitrogen(s). 
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Figure 3.5: (a) Consensus picture of the minimal pharmacophore with inferred important 

H-bond interactions indicated. For compounds like 3.54 and 3.55 R2 could likely represent 

an H-bonded H2O molecule. (b) The DFT Potential Energy Surfaces of 3.53 – 3.55 for the 

phenyl torsions as defined by the bold blue bonds in (a). 

 

Whilst the precise orientation of the aryl group is both unknown and cannot be 

inferred from our analysis, the calculated Potential Energy Surfaces (PES) for 3.53 

– 3.55 as shown in Figure 3.5 does indicate the energetic penalty (with concomitant 

reduction in activity) for geometries deviating from the unconstrained equilibrium 

torsions. These predictions only apply to 2,6-unsubstituted phenyl groups. 

3.3 Conclusions 
 

Inspired by the reported anti-CHIKV activity of MADTP-372 (3.1), two series of 

compounds, the triazolopyrimidines 3.29-3.39 and anilinopyrimidines 3.6-3.9, 

were designed, synthesised and bioassayed for anti-CHIKV activity and 

cytotoxicities.  Whilst the series 3.6-3.9, proved to only exhibit weak anti-CHIKV 

activity, 3.33, the 3-acetyl analogue of 3.1 exhibited comparable anti-CHIKV 

activity and low cytotoxicity to 3.1. The advantage of 3.33 over 3.1 is that the ability 

of the 3 position to accommodate substituents, these being accessed from easy to 

prepare hydrazonoyl chlorides, provides new and promising scope for improved 

drug design utilising this inexpensive scaffold. Comparisons of the geometries and 
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Electrostatic Potential-mapped surfaces of minimal pharmacophore models 3.53 – 

3.56 of anti-CHIKV agents has allowed for a consensus model for effective target 

binding. These results place future research into anti-CHIKV agents in better 

standing. 

3.4 Experimental section 

3.4.1 Chemistry 

General methods and material 

All reagents and solvents were purified and dried by standard techniques. Melting 

points were measured and were uncorrected. Reactions were monitored by TLC 

analysis using silica gel GF/UV 254. NMR spectra were recorded on Varian 

Gemini-300BB 500 MHz FT-NMR spectrometers (Varian Inc., Palo Alto, CA). 1H 

spectra were run at 500 MHz and 13C spectra were run at 126 MHz, in deuterated 

dimethylsulfoxide  (DMSO-d6), (CD3)2CO and CDCl3. Chemical shifts (δH) are 

reported relative to TMS as internal standard and coupling constant (J) values are 

reported in Hertz. The abbreviations used are as follows: s, singlet; d, doublet; t, 

triplet; m, multiplet. Electrospray ionization (ESI single quadrupole) mass spectra 

have their ion mass to charge values (m/z) stated with their relative abundances as 

a percentage in parentheses. Peaks assigned to the molecular ion are denoted as 

[M+H] or [M+Na]. Column chromatography was performed using silica gel 60 

(0.063-0.200 mm). Compounds 3.6-3.9 and 3.29-3.39 were ≥95% pure. The purity 

was determined by HPLC analysis using a Shimadzu CLASS-VP LC10 analytical 

HPLC system equipped with a Photo Diode Array Detector and autosampler (100% 

H2O/0.1% TFA → 100% CH3CN/0.1% TFA over 30 min. 
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6-Ethyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (3.4):17 

After preparing a sodium ethoxide solution by dissolving sodium (4.6 g, 0.1 mole) 

in absolute ethanol (150 mL), the thiourea (3.8 g, 0.05 mole) was added with 

stirring with complete dissolution. The ethyl 3-oxopentanoate ester 2 (7.21 g, 0.05 

mole) was then added and the reaction mixture was heated at reflux for 4 hours. 

After cooling the reaction mixture, water was added dropwise untill complete 

dissolution of the formed white precipitate. Ice was added, and neutralization of the 

alkaline solution was accomplished using HCl (5 M). The reaction flask was left 

overnight at 4 °C and the resulting white precipitate was filtered, washed with water 

(3 x 50 mL) and diethyl ether (2 x 30 mL) and dried to give 3 (5.38 g, 69%) as a 

white powder. m.p 230 °C; 1H NMR (DMSO, δ): 1.07 (t, J = 7.5 Hz, 3H, CH3), 

2.33 (q, J = 7.5 Hz, 2H, CH2), 5.33 (s, 1H, pyrimidine-H), 12.30 (br s, 2H, 2 x -

NH); 13C NMR (CD3OD, δ): 13.4, 27.8, 103.9, 162.0, 165.8, 179.4; MS (ESI+): 157 

(20%, M+H)+, 179 (100%, M+Na)+. 

 

6-Ethyl-2-(methylthio)pyrimidin-4(3H)-one (3.5): A mixture of 6-ethyl-2-

thioxo-2,3-dihydropyrimidin-4(1H)-one 3 (156 mg, 1 mmol), sodium hydroxide 

(44 mg, 1.1 mmol) in water (1 mL) and ethanol (3 mL) were stirred for 30 min. 

Methyl iodide (142 mg, 1 mmol) was added dropwise to the slurry and the reaction 

mixture was gently heated at 50 °C with stirring for 3 h. The reaction mixture was 

allowed to cool to r.t and the resulting white solid was filtered out, washed with 

water (3 x 30 mL) and dried to give 4 (128 mg, 75%) as a white powder; 1H NMR 

(CDCl3, δ): 1.24 (t, J = 7.5 Hz, 3H, CH3), 2.56 (q, J = 7.5 Hz, 2H, CH2), 2.60 (s, 

3H, SCH3), 6.09 (s, 1H, pyrimidine-H), 9.32 (br. s, 1H, -NH); 13C NMR (CDCl3, 

δ): 12.0, 13.2, 30.8, 106.7, 161.1, 165.9, 170.7; MS (ESI+): 171 (35%, M+H)+, 193 



Chapter 3 Application of the bioisosterism and simplification concepts 

 

61 

 

(100%, M+Na)+. 

General procedure A for the preparation of 6-ethyl-2-(anilino)pyrimidin-

4(3H)-ones (3.6-3.9):19 A mixture of 6-ethyl-2-(methylthio)pyrimidin-4(3H)-one 

3.5 (170 mg, 1 mmol) and the corresponding aniline (1.2 mmol) in pivalic acid (9 

volumes) was heated at 130 °C with stirring. Heating was maintained until the 

starting materials were fully consumed or until no further conversion was observed 

(as monitored by TLC analysis). The slurry was allowed to cool to 60-70 °C and 

hexanes (18 volumes) was added slowly with stirring and was further cooled to r.t. 

The resulting solid was filtered, washed with hexanes and dried.  

 

6-Ethyl-2-(phenylamino)pyrimidin-4(3H)-one (3.6): The compound was 

prepared according to general method A (yield = 79%) as a white powder, m.p: 

178-180 °C; HPLC purity 96.3%. 1H NMR (CDCl3, δ): 1.27 (t, J = 7.0 Hz, 3H, 

CH3), 2.55 (q, J = 7.0 Hz, 2H, CH2), 5.81 (s, 1H, pyrimidine-H), 7.05-7.13 (m, 1H, 

ArH), 7.36 (t, J = 8.0 Hz, 2H, ArH), 7.75 (d, J = 7.0 Hz, 2H, ArH), 9.50 (br. s, 1H, 

-NH), 11.62 (br. s, 1H, -NH); 13C NMR (CDCl3, δ): 14.5, 31.4, 101.1, 120.2, 123.4, 

129.1, 138.9, 151.7, 165.5, 173.9; MS (ESI+) m/z 216 (65%, M+H) +, MS (ESI-) 

m/z 214 (100%, M-H)-; HRMS (ESI+) calcd for C12H14N3O: 216.1142 (M+H)+, 

found: 216.1137.  

 

6-Ethyl-2-((3-fluorophenyl)amino)pyrimidin-4(3H)-one (3.7): The compound 

was prepared according to general method A (yield = 82%) as a buff powder, m.p: 

198-200 °C; HPLC purity 98.1%. 1H NMR (CDCl3, δ): 1.26 (t, J = 7.0 Hz, 3H, 

CH3), 2.56 (q, J = 7.0 Hz, 2H, CH2), 5.83 (s, 1H, pyrimidine-H), 6.76-6.80 (m, 1H, 

ArH), 7.20-7.31 (m, 2H, ArH), 7.81 (d, J = 10.0 Hz, 1H, ArH), 9.45 (br. s, 1H, -
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NH), 11.44 (br. s, 1H, -NH); 13C NMR (CDCl3, δ): 12.2, 31.2, 101.4, 107.1 (d, J2
C−F 

= 26 Hz), 109.7 (d, J2
C−F = 21 Hz), 114.9, 129.9 (d, J3

C−F = 10 Hz), 140.2 (d, J3
C−F = 

11 Hz), 151.0, 162.1 (d, J1
C−F = 248 Hz), 165.1, 173.9; MS (ESI+) m/z 234 (40%, 

M+H), MS (ESI-) m/z 232 (100%, M-H)-; HRMS (ESI-) calcd for C12H11FN3O: 

232.0886 (M-H)-, found: 232.0879.  

 

6-Ethyl-2-((3-isopropoxyphenyl)amino)pyrimidin-4(3H)-one (3.8): The 

compound was prepared according to general method A (yield = 24%) as a green 

powder, m.p: 100-102 °C; HPLC purity 95.2%. 1H NMR (CDCl3, δ): 1.27 (t, J = 

7.0 Hz, 3H, CH2CH3), 1.38 (d, J = 5.0 Hz, 6H, 2CH3), 2.55 (q, J = 7.0 Hz, 2H, 

CH2CH3), 4.45-4.59 (m, 1H, CH), 5.82 (s, 1H, pyrimidine-H), 6.63 (d, J = 7.0 Hz, 

1H, ArH), 7.12 (d, J = 8.0 Hz, 1H, ArH), 7.22 (dd, J = 7.0, 8.0 Hz, 1H, ArH), 7.60 

(s, 1H, ArH), 9.43 (br. s, 1H, -NH), 11.47 (br. s, 1H, -NH); 13C NMR (CDCl3, δ): 

12.2, 22.1, 31.2, 70.0, 101.0, 107.4, 111.2, 112.0, 129.6, 139.8, 151.4, 158.5, 165.2, 

173.5; MS (ESI+) m/z 274 (50%, M+H)+, MS (ESI-) m/z 272 (60%, M-H)-; HRMS 

(ESI-) calcd for C15H18N3O2: 272.1401 (M-H)-, found: 272.1399.  

 

3-((4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)amino)benzenesulfonamide 

(3.9): The compound was prepared according to general method A (yield = 22%) 

as a buff powder, m.p: 203-205 °C; HPLC purity 95.6%. 1H NMR (DMSO, δ): 1.17 

(t, J = 8.0 Hz, 3H, CH2CH3), 2.44 (q, J = 8.0 Hz, 2H, CH2CH3), 5.78 (s, 1H, 

pyrimidine-H), 7.33 (br. s, 2H, -SO2NH2), 7.42-7.49 (m, 2H, ArH), 7.83 (d, J = 7.0 

Hz, 1H, ArH), 8.26 (s, 1H, ArH), 9.18 (br. s, 1H, -NH), 11.79 (br. s, 1H, -NH); 13C 

NMR (DMSO, δ): 12.6, 30.5, 101.2, 116.6, 119.5, 122.4, 129.7, 140.2, 145.1, 

153.7, 164.9, 171.0; MS (ESI-) m/z 293 (60%, M-H)-, 587 (100%, 2M-H)-; HRMS 
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(ESI-) calcd for C12H13N4O3S: 293.0711 (M-H)-, found: 293.0708.  

 

General procedure B for preparation of hydrazonyl chlorides (3.14-3.24):27 

The diazonium salt was prepared by slowly adding a cold sodium nitrite solution 

(0.7 g, 10 mmol) in deionized water (5 mL) to a cold solution of the appropriate 

arylamine (10 mmol) dissolved in hydrochloric acid (6 M, 6 mL). In a second 

beaker, sodium acetate trihydrate (4.1 g, 30 mmol) was added to a stirred solution 

of 3-chloro-2,4-pentanedione 3.12 (1.34 g, 10 mmol) or ethyl 2-chloro-3-

oxobutanoate 3.13 (1.64 g, 10 mmol) in ethanol (100 mL) and the slurry was stirred 

for 15 min. The diazonium salt was added dropwise to the second beaker and the 

reaction was stirred for 2 h at 0-5 °C, then left for 8 h in a refrigerator (4 °C). The 

resulting solid was collected by filtration, washed thoroughly with water and dried. 

The crude product was crystallized from ethanol to give the corresponding 

hydrazonoyl chlorides 3.14-3.24.  

 

(Z)-N-(3-Fluorophenyl)-2-oxopropanehydrazonoyl chloride (3.14): The 

compound was prepared according to method B (yield = 63%) as yellow crystals, 

m.p: 155-157 °C. 1H NMR (CDCl3, δ): 2.58 (s, 3H, CH3), 6.77 (td, J = 2.0, 8.5 Hz, 

1H, ArH), 6.95 (dd, J = 1.0, 8.0 Hz, 1H, ArH), 7.02 (dt, J = 2.0, 10.0 Hz, 1H, ArH), 

7.29-7.33 (m, 1H, ArH), 8.48 (br. s, 1H, NH); 13C NMR (CDCl3, δ): 25.4, 101.9 (d, 

J2
C−F = 28 Hz), 110.1 (d, J4

C−F = 5 Hz), 110.2 (d, J2
C−F = 14 Hz), 126.1, 130.9 (d, J3

C−F 

= 9 Hz), 143.0 (d, J3
C−F = 10 Hz), 162.8 (d, J1

C−F = 246 Hz), 188.3; MS (ESI-) m/z 213 

(100%, M-H)-, 249 (10%, M+Cl)-; HRMS (ESI+) calcd for C9H8ClFN2ONa: 

237.0218 (M+Na)+, found: 237.0207. 
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Ethyl (Z)-2-chloro-2-(2-(3-fluorophenyl)hydrazineylidene)acetate (3.15): The 

compound was prepared according to method B (yield = 78%) as yellow crystals, 

m.p: 110-112 °C. 1H NMR (CDCl3, δ): 1.44 (t, J = 7.5 Hz, 3H, CH3), 4.43 (q, J = 

7.5 Hz, 2H, CH2), 6.76 (td, J = 2.0, 8.0 Hz, 1H, ArH), 6.97 (d, J = 8.0 Hz, 1H, ArH), 

7.06 (d, J = 10.0 Hz, 1H, ArH), 7.28-7.33 (m, 1H, ArH), 8.38 (br. s, 1H, NH); 13C 

NMR (CDCl3, δ): 14.2, 63.0, 102.0 (d, J2
C−F = 26 Hz), 109.7 (d, J2

C−F = 23 Hz), 110.0 

(d, J4
C−F = 2 Hz), 117.1, 130.7 (d, J3

C−F = 9 Hz), 143.0 (d, J3
C−F = 10 Hz), 159.5, 162.8 

(d, J1
C−F = 246 Hz); MS (ESI-) m/z 243 (50%, M-H)-, 279 (15%, M+Cl)-; HRMS 

(ESI-) calcd for C10H9ClFN2O2: 243.0344 (M-H)-, found: 243.0337. 

 

 (Z)-N-(3-Acetylphenyl)-2-oxopropanehydrazonoyl chloride (3.16): The 

compound was prepared according to method B (yield = 50%) as a white powder, 

m.p: 160 -162 °C. 1H NMR ((CD3)2CO, δ): 2.56 (s, 3H, CH3), 2.59 (s, 3H, CH3), 

7.49 (t, J = 7.5 Hz, 1H, ArH), 7.68-7.72 (m, 2H, ArH), 8.02 (s, 1H, ArH), 10.01 

(br. s, 1H, NH); 13C NMR ((CD3)2CO, δ): 24.6, 25.9, 114.1, 118.8, 122.7, 124.9, 

129.8, 138.5, 143.0, 187.4, 196.7; MS (ESI-) m/z 237 (100%, M-H)-, 273 (20%, 

M+Cl)-; HRMS (ESI-) calcd for C11H10ClFN2O2: 237.0431 (M-H)-, found: 

237.0431. 

 

Ethyl (Z)-2-(2-(3-acetylphenyl)hydrazineylidene)-2-chloroacetate (3.17): The 

compound was prepared according to method B (yield = 61%) as yellow crystals, 

m.p: 142-144 °C. 1H NMR ((CD3)2CO, δ): 1.36 (t, J = 7.0 Hz, 3H, -CH2CH3), 2.58 

(s, 3H, COCH3), 4.43 (q, J = 7.0 Hz, 2H, -CH2CH3), 7.49 (t, J = 7.5 Hz, 1H, ArH), 

7.62-7.66 (m, 2H, ArH), 7.97 (s, 1H, ArH), 9.91 (br. s, 1H, NH); 13C NMR 

((CD3)2CO, δ): 13.6, 25.9, 62.2, 113.9, 115.7, 118.7, 122.5, 129.7, 138.4, 143.2, 
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159.2, 196.7; MS (ESI-) m/z 267 (100%, M-H)-, 303 (20%, M+Cl)-; HRMS (ESI-) 

calcd for C12H12ClN2O3: 267.0528 (M-H)-, found: 267.0536. 

 

(Z)-N-(3-Isopropoxyphenyl)-2-oxopropanehydrazonoyl chloride (3.18): The 

compound was prepared according to method B (yield = 47%) as red crystals, m.p: 

80-82 °C. 1H NMR (CDCl3, δ): 1.37 (d, J = 6.0 Hz, 6H, 2CH3), 2.57 (s, 3H, CH3), 

4.56-4.60 (m, 1H, CH), 6.62 (dd, J = 2.0, 8.0 Hz, 1H, ArH), 6.76 (dd, J = 1.0, 8.0 

Hz, 1H, ArH), 6.82 (dd, J = 2.0, 2.0 Hz, 1H, ArH),  7.20-7.26 (m, 1H, ArH), 8.43 

(br. s, 1H, NH); 13C NMR (CDCl3, δ): 22.1, 25.3, 70.1, 102.6, 106.9, 110.6, 125.1, 

130.5, 142.6, 159.2, 188.4; MS (ESI-) m/z 253 (15%, M-H)-; HRMS (ESI-) calcd 

for C12H14ClN2O2: 253.0749 (M-H)-, found: 253.0744. 

 

Ethyl (Z)-2-chloro-2-(2-(3-isopropoxyphenyl)hydrazineylidene)acetate (3.19): 

The compound was prepared according to method B (yield = 51%) as brown 

needles, m.p: 67-69 °C. 1H NMR (CDCl3, δ): 1.34 (d, J = 7.0 Hz, 6H, 2CH3, C10), 

1.39 (t, J = 7.0 Hz, 3H, -CH2CH3), 4.37 (q, J = 7.0 Hz, 2H, -CH2CH3), 4.54-4.59 

(m, 1H, CH), 6.57 (dd, J = 2.0, 8.0 Hz, 1H, ArH), 6.73 (d, J = 8.0 Hz, 1H, ArH), 

6.82 (t, 2.0 Hz, 1H, ArH), 7.20 (dd, J = 8.0, 8.0 Hz, 1H, ArH), 8.31 (br. s, 1H, NH); 

13C NMR (CDCl3, δ): 14.4, 22.2, 62.9, 70.1, 102.5, 107.0, 110.5, 116.0, 130.4, 

143.0, 159.2, 159.8; MS (ESI+) m/z 591 (70%, 2M+Na)+; MS (ESI-) m/z 283 (5%, 

M-H)-. 

 

(Z)-2-Oxo-N-(3-sulfamoylphenyl)propanehydrazonoyl chloride (3.20): The 

compound was prepared according to method B (yield = 65%) as a yellow powder, 

m.p: 223-225 °C. 1H NMR (DMSO, δ): 2.49 (s, 3H, CH3), 7.39 (br. s, 2H, NH2), 
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7.44 (d, J = 7.0 Hz, 1H, ArH), 7.51 (t, J = 7.5 Hz, 2H, ArH), 7.61 (dd, J = 2.0, 7.5 

Hz, 1H, ArH), 7.89 (dd, J = 2.0 Hz, 2H, ArH), 10.90 (br. s, 1H, NH); 13C NMR 

(DMSO, δ): 25.9, 112.3, 118.2, 120.0, 124.7, 130.5, 143.4, 145.8, 188.4; MS (ESI) 

m/z 274 (100%, M-H)-; HRMS (ESI-) calcd for C9H9ClN3O3S: 274.0050 (M-H)-, 

found: 274.0053. 

 

Ethyl (Z)-2-chloro-2-(2-(3-sulfamoylphenyl)hydrazineylidene)acetate (3.21): 

The compound was prepared according to method B (yield = 72%) as an orange 

powder, m.p: 213-215 °C. 1H NMR (DMSO, δ): 1.30 (t, J = 7.0 Hz, 3H, CH3), 4.30 

(q, J = 7.0 Hz, 2H, CH2), 7.38 (br. s, 2H, NH2), 7.44 (d, J = 7.0 Hz, 1H, ArH), 7.49-

7.54 (m, 2H, ArH), 7.84 (s, 1H, ArH), 10.80 (br. s, 1H, NH); 13C NMR (DMSO, 

δ): 14.6, 62.9, 112.0, 115.6, 118.0, 119.8, 130.5, 143.6, 145.7, 159.6; MS (ESI-) m/z 

304 (100%, M-H)-, 340 (30%, M+Cl)-; HRMS (ESI-) calcd for C10H11ClN3O4S: 

304.0160 (M-H)-, found: 304.0159. 

 

(Z)-2-Oxo-N-(4-sulfamoylphenyl)propanehydrazonoyl chloride (3.22): The 

compound was prepared according to method B (yield = 68%) as a buff powder, 

m.p: 190-192 °C. 1H NMR (DMSO, δ): 2.52 (s, 3H, CH3), 7.24 (br. s, 2H, NH2), 

7.56 (d, J = 9.0 Hz, 2H, ArH), 7.78 (d, J = 9.0 Hz, 2H, ArH), 10.93 (br. s, 1H, NH); 

13C NMR (DMSO, δ): 25.5, 114.5, 124.6, 127.3, 137.7, 145.2, 188.1; MS (ESI-) 

m/z 274 (100%, M-H)-, 310 (15%, M+Cl)-; HRMS (ESI-) calcd for C9H9ClN3O3S: 

274.0059 (M-H)-, found: 274.0053. 

 

Ethyl (Z)-2-chloro-2-(2-(4-sulfamoylphenyl)hydrazineylidene)acetate (3.23): 

The compound was prepared according to method B (yield = 75%) as an orange 
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powder, m.p: 178-180 °C. 1H NMR ((CD3)2CO, δ): 1.37 (t, J = 7.0 Hz, 3H, CH3), 

4.38 (q, J = 7.0 Hz, 2H, CH2), 6.57 (br. s, 2H, NH2), 7.51 (d, J = 8.0 Hz, 2H, ArH), 

7.87 (d, J = 8.0 Hz, 2H, ArH), 10.03 (br. s, 1H, NH); 13C NMR ((CD3)2CO, δ): 

13.8, 62.0, 114.0, 117.1, 127.6, 137.8, 145.9, 159.5; MS (ESI-) m/z 304 (100%, M-

H)-; HRMS (ESI+) calcd for C10H11
35ClN3O4S: 306.0315 (M+H)+, found: 306.0316. 

 

(Z)-N-(4-Bromophenyl)-2-oxopropanehydrazonoyl chloride (3.24):28 The 

compound was prepared according to method B (yield = 81%) as a yellow needles, 

m.p: 154-156 °C. 1H NMR (CDCl3, δ): 2.57 (s, 3H, CH3), 7.12 (d, J = 8.5 Hz, 2H, 

ArH), 7.47 (d, J = 8.5 Hz, 2H, ArH), 8.42 (br. s, 1H, NH); 13C NMR (CDCl3, δ): 

25.3, 115.9, 116.0, 126.0, 132, 140.5, 188.2; MS (ESI-) m/z 273 (100%, M-H, 79Br). 

 

General procedure C for preparation of target compounds (3.29-3.39) 

To a mixture of 6-ethyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one 3.4 (156 mg, 1 

mmol) and the corresponding hydrazonoyl chloride 3.14-3.24 (1 mmol) in dioxane 

(15.0 mL), DIPEA (174 μL, 1 mmol) was added. The reaction mixture was heated 

at reflux until the starting materials were fully consumed or until no further 

conversion was observed (monitored by TLC analysis). The solvent was removed 

under vacuum and the residue was triturated with methanol and the resulting 

precipitate filtered, taken up in EtOAc and washed with water (2 x 30 mL), brine 

(30 mL), dried (MgSO4), filtered and concentrated then subjected to flash 

chromatography (methanol/dichloromethane, 1:10) to give 3.29-3.39.  

 

 3-Acetyl-7-ethyl-1-(3-fluorophenyl)-[1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-

one (3.29): The compound was prepared according to method C (yield = 35%) as 
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a buff powder, m.p: 122-124 °C; HPLC purity 95.3%. 1H NMR (CDCl3, δ): 1.31 (t, 

J = 7.5 Hz, 3H, CH3), 2.70 (q, J = 7.5 Hz, 2H, CH2), 2.81 (s, 3H, COCH3), 6.05  (s, 

1H, ArH), 7.09 (app t, J = 8.0 Hz, 1H, ArH), 7.50 (dd, J = 8.0, 14.5 Hz, 1H, ArH), 

8.08-8.12 (m, 2H, ArH); 13C NMR (CDCl3, δ): 12.7, 30.0, 31.4, 101.2, 108.1 (d, 

J2
C−F = 28 Hz), 114.5 (d, J2

C−F = 21 Hz), 115.9 (d, J4
C−F = 4 Hz), 130.8 (d, J3

C−F = 9 

Hz), 137.8 (d, J3
C−F = 10 Hz), 141.6, 147.8, 155.9, 161.9 (d, J1

C−F = 248 Hz), 172.2, 

186.6; MS (ESI+) m/z 301 (80%, M+H)+, 623 (100%, 2M+Na)+; HRMS (ESI+) 

calcd for C15H14FN4O2: 301.1101 (M+H)+, found: 301.1095. 

 

Ethyl 7-ethyl-1-(3-fluorophenyl)-5-oxo-1,5-dihydro-[1,2,4]triazolo[4,3-

a]pyrimidine-3-carboxylate (3.30): The compound was prepared according to 

general method C (yield = 42%) as a buff powder, m.p: 92-94 °C; HPLC purity 

98.7%. 1H NMR (CDCl3, δ): 1.31 (t, J = 7.5 Hz, 3H, CH3), 1.46 (t, J = 7.0 Hz, 3H, 

CH3), 2.69 (q, J = 7.5 Hz, 2H, CH2), 4.58 (q, J = 7.0 Hz, 2H, CH2), 6.05  (s, 1H, 

ArH), 7.07 (td, J = 1.5, 8.0 Hz, 1H, ArH), 7.49 (dd, J = 8.0, 14.5 Hz, 1H, ArH), 

8.06-8.11 (m, 2H, ArH); 13C NMR (CDCl3, δ): 12.8, 14.0, 31.5, 64.2, 100.7, 108.0 

(d, J2
C−F = 28 Hz), 114.4 (d, J2

C−F = 21 Hz), 115.7 (d, J2
C−F = 3 Hz), 130.8 (d, J3

C−F = 

9 Hz), 135.8, 137.7 (d, J3
C−F = 11 Hz), 147.2, 155.6, 156.7, 161.8 (d, J2

C−F = 247 Hz), 

172.6; MS (ESI+) m/z 331 (55%, M+H)+, 683 (100%, 2M+Na)+; HRMS (ESI+) 

calcd for C16H16FN4O3: 331.1218 (M+H)+, found: 331.1206. 

 

3-Acetyl-1-(3-acetylphenyl)-7-ethyl-[1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one 

(3.31): The compound was prepared according to general method C (yield = 19%) 

as an orange powder, m.p: 118-120 °C; HPLC purity 97.5%. 1H NMR (CDCl3, δ): 

1.32 (t, J = 7.5 Hz, 3H, CH3), 2.68-2.71 (m, 5H, CH3 + CH2), 2.83 (s, 3H, COCH3), 
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6.07  (s, 1H, ArH), 7.66 (app t, J = 8.0 Hz, 1H, ArH), 7.97 (d, J = 8.0 Hz, 1H, ArH), 

8.47 (d, J = 8.0 Hz, 1H, ArH), 8.90 (s, 1H, ArH); 13C NMR (CDCl3, δ): 12.6, 27.0, 

30.0, 31.3, 101.2, 120.3, 124.7, 127.3, 129.9, 136.9, 138.1, 141.5, 147.8, 155.8, 

172.1, 186.6, 197.1; MS (ESI+) m/z 325 (20%, M+H)+, 671 (100%, 2M+Na)+; 

HRMS (ESI+) calcd for C17H17N4O3: 325.1293 (M+H)+, found: 325.1301. 

 

Ethyl 1-(3-acetylphenyl)-7-ethyl-5-oxo-1,5-dihydro-[1,2,4]triazolo[4,3-

a]pyrimidine-3-carboxylate (3.32): The compound was prepared according to 

general method C (yield = 43%) as a white powder, m.p: 120-122 °C; HPLC purity 

99.5%. 1H NMR (CDCl3, δ): 1.32 (t, J = 7.5 Hz, 3H, CH3), 1.48 (t, J = 7.5 Hz, 3H, 

CH3), 2.68-2.71 (m, 5H, CH3 + CH2), 4.59 (q, J = 7.0 Hz, 2H, CH2), 6.03 (s, 1H, 

ArH), 7.64 (app t, J = 8.0 Hz, 1H, ArH), 7.97 (d, J = 8.0 Hz, 1H, ArH), 8.46 (d, J 

= 8.0 Hz, 1H, ArH), 8.90 (s, 1H, ArH); 13C NMR (CDCl3, δ): 12.7, 14.1, 26.9, 31.5, 

64.2, 100.7, 120.4, 124.6, 127.1, 129.9, 136.1, 137.2, 138.3, 147.4, 155.6, 156.7, 

172.5, 197.0; MS (ESI+) m/z 355 (20%, M+H)+, 377 (90%, M+Na)+; HRMS (ESI+) 

calcd for C18H19N4O4: 355.1422 (M+H)+, found: 355.1406. 

 

3-Acetyl-7-ethyl-1-(3-isopropoxyphenyl)-[1,2,4]triazolo[4,3-a]pyrimidin-

5(1H)-one (3.33): The compound was prepared according to general method C 

(yield = 27%) as a buff powder, m.p: 88-90 °C; HPLC purity 96.5%. 1H NMR 

(CDCl3, δ): 1.30 (t, J = 7.5 Hz, 3H, CH3), 1.40 (d, J = 5.5 Hz, 6H, 2 x CH3), 2.68 

(q, J = 7.5 Hz, 2H, CH2), 2.80 (s, 1H, 3H, CH3), 4.62-4.64 (m, 1H, CH), 6.04 (s, 

1H, ArH), 6.91 (d, J = 7.5 Hz, 1H, ArH), 7.40 (app t, J = 7.5 Hz, 1H, ArH), 7.73-

7.79 (m, 1H, ArH), 7.84 (s, 1H, ArH); 13C NMR (CDCl3, δ): 12.7, 22.1, 30.0, 31.4, 

70.6, 100.8, 108.3, 112.7, 115.7, 130.3, 137.6, 141.3, 148.0, 156.1, 158.7, 172.2, 
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186.7; MS (ESI+) m/z 341 (60%, M+H)+, 703 (100%, 2M+Na)+; HRMS (ESI+) 

calcd for C18H21N4O3: 341.1611 (M+H)+, found: 341.1614. 

 

Ethyl 7-ethyl-1-(3-isopropoxyphenyl)-5-oxo-1,5-dihydro-[1,2,4]triazolo[4,3-

a]pyrimidine-3-carboxylate (3.34): The compound was prepared according to 

general method C (yield = 35%) as a buff powder, m.p: 95-97 °C; HPLC purity 

98.3%. 1H NMR (CDCl3, δ): 1.30 (t, J = 7.5 Hz, 3H, CH3), 1.38 (d, J = 6.0 Hz, 6H, 

2CH3), 1.46 (t, J = 7.0 Hz, 3H, CH3), 2.67 (q, J = 7.5 Hz, 2H, CH2), 4.57 (q, J = 7.0 

Hz, 2H, CH2), 4.60-4.65 (m, 1H, CH), 6.00 (s, 1H, ArH), 6.89 (d, J = 8.0 Hz, 1H, 

ArH), 7.39 (dd, J = 8.0, 8.5 Hz, 1H, ArH), 7.74 (d, J = 8.5 Hz, 1H, ArH), 7.82 (s, 

1H, ArH); 13C NMR (CDCl3, δ): 12.8, 14.1, 22.2, 31.6, 64.1, 70.5, 100.3, 108.0, 

112.7, 115.8, 130.3, 135.7, 137.7, 147.4, 155.9, 157.0, 158.7, 172.7; MS (ESI+) m/z 

371 (80%, M+H)+, 763 (100%, 2M+Na)+; HRMS (ESI+) calcd for C19H23N4O3: 

371.1720 (M+H)+, found: 371.1719. 

 

3-(3-Acetyl-7-ethyl-5-oxo-[1,2,4]triazolo[4,3-a]pyrimidin-1(5H)-

yl)benzenesulfonamide (3.35): The compound was prepared according to general 

method C (yield = 39%) as a buff powder, m.p: 180-182 °C; HPLC purity 96.5 %. 

1H NMR ((CD3)2CO), δ: 1.30 (t, J = 7.5 Hz, 3H, CH3), 2.68 (q, J = 7.5 Hz, 2H, 

CH2), 2.77 (s, 1H, 3H, CH3), 6.00 (s, 1H, ArH), 6.85 (br. s, 2H, NH2), 7.82 (dd, J 

= 8.0, 8.5 Hz, 1H, ArH), 7.94 (d, J = 8.0 Hz, 1H, ArH), 8.61 (d, J = 8.5 Hz, 1H, 

ArH), 8.79 (s, 1H, ArH); 13C NMR ((CD3)2CO), δ: 12.2, 29.8, 31.0, 100.1, 118.1, 

123.5, 124.7, 130.3, 137.5, 142.1, 145.8, 148.5, 155.9, 172.0, 188.0; MS (ESI+) m/z 

362 (10%, M+H)+, 384 (15%, M+Na)+; HRMS (ESI+) calcd for C15H16N5O4S: 

362.0917 (M+H)+, found: 362.0923. 
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Ethyl 7-ethyl-5-oxo-1-(3-sulfamoylphenyl)-1,5-dihydro-[1,2,4]triazolo[4,3-

a]pyrimidine-3-carboxylate (3.36): The compound was prepared according to 

general method C (yield = 55%) as a pale yellow powder, m.p: 176-178 °C; HPLC 

purity 98.7%. 1H NMR (DMSO, δ): 1.24 (t, J = 7.5 Hz, 3H, CH3), 1.35 (t, J = 7.0 

Hz, 3H, CH3), 2.62 (q, J = 7.5 Hz, 2H, CH2), 4.48 (q, J = 7.0 Hz, 2H, CH2), 6.02 

(s, 1H, ArH), 7.59 (br. s, 2H, NH2), 7.81-7.86 (m, 2H, ArH), 8.42 (d, J = 8.0 Hz, 

1H, ArH), 8.57 (s, 1H, ArH); 13C NMR (DMSO, δ): 12.9, 14.2, 31.0, 64.0, 100.0, 

118.1, 123.8, 124.8, 130.8, 135.8, 137.0, 145.8, 148.2, 155.5, 157.0, 172.0; MS 

(ESI+) m/z 414 (35%, M+H)+, 805 (100%, 2M+Na)+; HRMS (ESI+) calcd for 

C16H17N5O5S: 414.0858 (M+Na)+, found: 414.0848. 

 

4-(3-Acetyl-7-ethyl-5-oxo-[1,2,4]triazolo[4,3-a]pyrimidin-1(5H)-

yl)benzenesulfonamide (3.37): The compound was prepared according to general 

method C (yield = 51%) as a buff powder, m.p: 162-164 °C; HPLC purity 96.3%. 

1H NMR (DMSO, δ): 1.25 (t, J = 7.5 Hz, 3H, CH3), 2.65 (q, J = 7.5 Hz, 2H, CH2), 

2.72 (s, 1H, 3H, CH3), 6.07 (s, 1H, ArH), 7.49 (br. s, 2H, NH2), 8.05 (d, J = 8.5 Hz, 

2H, ArH), 8.37 (d, J = 8.5 Hz, 2H, ArH); 13C NMR (DMSO, δ): 13.0, 30.6, 30.9, 

100.5, 121.1, 127.6, 139.1, 141.9, 142.9, 148.4, 155.9, 171.8, 188.6; MS (ESI+) m/z 

384 (10%, M+Na)+, 745 (15%, 2M+Na)+; HRMS (ESI+) calcd for C15H16N5O4S: 

362.0912 (M+H)+, found: 362.0923. 

 

Ethyl 7-ethyl-5-oxo-1-(4-sulfamoylphenyl)-1,5-dihydro-[1,2,4]triazolo[4,3-

a]pyrimidine-3-carboxylate (3.38):  The compound was prepared according to 

general method C (yield = 61%) as a pale yellow powder, m.p: 180-182 °C; HPLC 

purity 96.7%. 1H NMR ((CD3)2CO), δ: 1.32 (t, J = 7.5 Hz, 3H, CH3), 1.45 (t, J = 
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7.0 Hz, 3H, CH3), 2.71 (q, J = 7.5 Hz, 2H, CH2), 4.56 (q, J = 7.0 Hz, 2H, CH2), 

6.00 (s, 1H, ArH), 6.72 (br. s, 2H, NH2), 8.13 (d, J = 8.5 Hz, 2H, ArH), 8.51 (d, J 

= 8.5 Hz, 2H, ArH); 13C NMR ((CD3)2CO), δ: 12.1, 13.3, 30.9, 63.5, 99.8, 120.4, 

127.4, 136.2, 139.5, 142.6, 148.0, 155.1, 156.7, 172.0; MS (ESI+) m/z 392 (5%, 

M+H)+, MS (ESI-) m/z 390 (100%, M–H)-; HRMS (ESI+) calcd for C16H18N5O5S: 

392.1032 (M+H)+, found: 392.1029. 

 

3-Acetyl-1-(4-bromophenyl)-7-ethyl-[1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-

one (3.39): The compound was prepared according to general method C (yield = 

32%) as a buff powder, m.p: 155-157 °C; HPLC purity 95.4%. 1H NMR (CDCl3, 

δ): 1.30 (t, J = 7.5 Hz, 3H, CH3), 2.68 (q, J = 7.5 Hz, 2H, CH2), 2.81 (s, 3H, 

COCH3), 6.05 (s, 1H, ArH), 7.66 (d, J = 9.0 Hz, 2H, ArH), 8.17 (d, J = 9.0 Hz, 2H, 

ArH); 13C NMR (CDCl3, δ): 12.6, 29.9, 31.3, 100.9, 121.3, 122.0, 132.4, 135.6, 

141.5, 147.6, 155.8, 172.1, 186.5; MS (ESI+) m/z 361 (10%, M+H, 79Br)+, 363 

(10%, M+H, 81Br)+; HRMS (ESI+) calcd for C15H14
79BrN4O2: 361.0301 (M+H)+, 

found: 361.0300. 

3.4.2 Biological evaluation 

- Antiviral assay: 29 

CHIKV Indian Ocean strain 899 (Genbank FJ959103.1) was generously provided 

by Prof. S. Günther (Bernhard Nocht Institute for Tropical Medicine, Hamburg, 

Germany) (Panning M et al., Emerging Infectious Diseases 2008). BGM cells were 

maintained in cell growth medium composed of minimum essential medium (MEM 

Rega-3, Gibco, Belgium) supplemented with 10% Foetal Bovine Serum (FBS, 

Integro, The Netherlands), 1% L-glutamine (Gibco), and 1% sodium bicarbonate 

(Gibco). The antiviral assays were performed in virus growth medium which is the 
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respective cell growth medium supplemented with 2% (instead of 10%) FBS. Cell 

cultures were maintained at 37 °C in an atmosphere of 5% CO2 and 95-99% 

humidity. BGM cells were seeded in 96-well tissue culture plates (Becton 

Dickinson, Aalst, Belgium) at a density of 2.5 x 104 cells/well in 100 μL assay 

medium and were allowed to adhere overnight. Next, a compound dilution series 

was prepared in the medium on top of the cells after which the cultures were 

infected with 0.001 MOI of CHIKV 899 inoculum in 100 μL assay medium. On 

day 5 post-infection (p.i.), the plates were processed using the MTS/PMS method 

as described by the manufacturer (Promega, The Netherlands). The 50% effective 

concentration (EC50), which is defined as the compound concentration that is 

required to inhibit virus-induced cell death by 50%, was determined using 

logarithmic interpolation. All assay wells were checked microscopically for minor 

signs of virus induced CPE or possible alterations to the cell or monolayer 

morphology caused by the compound. 

- Cell viability assay:  

Exactly 100 µL of cells were cultured in 96 well-plates at a seeding density of 105 

cells/mL. After 24 h, the cells were treated with the samples (dissolved in DMSO) 

and incubated for 72 h. Doxorubicin at 1 µM concentration was used as a positive 

control with 0.1% DMSO as a negative control for each plate. At the end of 

incubation period the culture media were aspirated followed by the addition of 

100 µL of 0.1 mg/mL Alamar blue solution (resazurin, stock solution (1 mg/mL in 

a freshly prepared PBS), followed by 1:10 dilution with FBS free media) was added 

to each well. Absorbance at 570 nm and 600 nm was measured using a BMG 

LABTech FLUOstar OPTIMA plate reader (Mount Eliza, Victoria, Australia). The 

drugs were tested in triplicate with a negative control was taken as 100% cell 
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viability. Nonlinear regression and IC50 calculations were performed with 

GraphPad Prism 7.0 (GraphPad Software, Inc., San Diego, CA). 

3.4.3 Computational studies 

All geometries and energies were calculated using the Gaussian16 package at the 

B3LYP-D3(BJ)/6-311++G(2d,p) level including implicit solvation (polarisable 

continuum model, solvent excluded surface and solvent-solute dispersion 

interaction included) using the standard parameters for water. Normal mode 

frequency analysis was performed on all ground state structures to confirm the 

nature of the energy stationary point and estimate free energies. 

For tautomer distributions, the molar free energies (ΔG) of each tautomer (relative 

to that of the lowest) was calculated and isomer distributions derived using the 

Boltzmann factor: 

 

𝑝𝑖

𝑝0
= ⅇ

−Δ𝐺
𝑅T  

where R is the molar gas constant, T the temperature (37° C = 310.15 K).  The 

results are shown in Table S1. 

Electron density and Electrostatic Potential (ESP) cube files were calculated using 

the Gaussian cubegen utility. ESP mapped onto electron isodensities were 

generated using the GausView 6.0.16 application (Table 3.3). 

Potential Energy Surfaces for the N-Ar torsion for 3.53, 3.54 and 3.55 were 

calculated at the B3LYP-D3(BJ)/6-311G(2d,p) (Table 3.3) level including implicit 

solvation (continuum model, solvent excluded surface and solvent-solute 

dispersion interaction included) using the standard parameters for water. The 

torsional angle defined by the blue heavy bonds (9,1,a,b) shown below and scanned 

in 1° increments: 
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Table 3.3: B3LYP-D3(BJ)/6-311++G(2d,p)-(water solvation) calculated free 

energies and relative concentrations at 37° C for tautomers of the minimal 

pharmacophores 3.54, 3.54b, 3.55, 3.55a, 3.56a-c. 

Tautomer  G / Ha ΔG / kJ mol-

1 

Relative 

conc. 

3.54 

 

-773.743900 [0] [1] 

3.54b 

 

-773.728761 40 2.0  10-7 

3.55 

 

-757.711628 [0] [1] 

3.55b 

 

-757.695321 43 6.1  10-8 

3.56a 

 

-665.434824 9 3.2  10-2 

3.56b 

 

-665.438199 [0] [1] 

3.56c 

 

-665.431651 17 1.3  10-3 
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3.4.4 X-ray crystallography 

- Single solid X-ray crystallographic data of 3.15 

Crystal data. Compound 3.15. C10H10ClFN2O2, M = 244.65, T =153 K, 

Orthorhombic, Z = 4, a = 4.590 (1), b = 9.619 (2), c = 25.879 (4) Å, V = 1142.6 

(4) Å3, Dx = 1.422 Mg m-3, synchrotron radiation, λ = 0.710919 Å, 4577 

reflections measured (θ = 1.6–29.1˚), merged to 2330 unique data, R= 0.040 

[for 2089 data with I > 2σ(I)], R [F2 > 2σ (F2)]= 0.043 [all data], S = 0.99  

Structure determination of compound 3.15. Data was collected using Dectris 

Eiger 16M diffractometer with radiation source: MX1 Beamline Australian 

Synchrotron.30 Structure solution was by direct methods (SIR92).31 The 

structure was refined using the CRYSTALS program package.32  

 

 

- Single solid X-ray crystallographic data of 3.20 

Crystal data. Compound 3.20. C10H10ClFN2O2, M = 275.72, T = 153 K, 

Orthorhombic, Z = 8, a = 15.154 (1), b = 8.056 (10), c = 19.144 (4) Å, V = 2337 

(3) Å3, Dx = 1.567 Mg m-3, synchrotron radiation, λ = 0.710919 Å, 26664 

reflections measured (θ = 2.1–29.2˚), merged to 2408 unique data, R = 0.111 

[for 1625 data with I > 2σ(I)], R[F2 > 2σ (F2)] = 0.060 [all data], S = 0.90. 

- Structure determination of compound 3.20. Data was collected using Dectris 

Eiger 16M diffractometer with radiation source: MX1 Beamline Australian 

Synchrotron.30 Structure solution was by direct methods (SIR92).31 The 

structure was refined using the CRYSTALS program package.32  
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- Single solid X-ray crystallographic data of 3.24 

Crystal data. Compound 3.24. C9H8BrClN2O, M = 275.53, T = 153 K, 

Orthorhombic, Z = 4, a = 8.821 (6), b = 25.123 (15), c = 4.560 (4) Å, V = 1010.5 

(13) Å3, Dx = 1.811 Mg m-3, synchrotron radiation, λ = 0.710919Å, 12004 

reflections measured (θ = 1.6–29.0˚), merged to 2334 unique data, R= 0.093 

[for 2022 data with I > 2σ(I)], R [F2 > 2σ (F2)] = 0.046 [all data], S = 1.01.  

Structure determination of compound 3.24. Data was collected using Dectris 

Eiger 16M diffractometer with radiation source: MX1 Beamline Australian 

Synchrotron.30 Structure solution was by direct methods (SIR92).31 The 

structure was refined using the CRYSTALS program package.32  

 

- Single solid X-ray crystallographic data of 3.23 

Crystal data. For compound 3.23 C18H18N4O4 (M =354.36 g/mol): monoclinic, 

space group P21/n (no. 14), a = 16.2162(9) Å, b = 5.5670(3) Å, c = 

19.1376(13) Å, β = 96.256(6)°, V = 1717.37(19) Å3, Z = 4, T = 100(2) K, 

μ(CuKα) = 0.824 mm-1, Dcalc = 1.371 g/cm3, 11249 reflections measured 

(7.564° ≤ 2Θ ≤ 145.012°), 3326 unique (Rint = 0.0503, Rsigma = 0.0396) which 

were used in all calculations. The final R1 was 0.0575 (I > 2σ(I)) and wR2 was 

0.1665 (all data).  

Structure determination of compound 3.23: Data was collected using 

SuperNova, Dual, Cu at home/near, Atlas diffractometer. Using Olex2 33, the 

structure was solved with the olex2.solve34 structure solution program using 

Charge Flipping and refined with the ShelX35 refinement package using Least 

Squares Minimization. 
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- Single solid X-ray crystallographic data of 3.39 

Crystal data. Compound 3.39. C15H13BrN4O2, M = 361.20, T = 153 K, 

Monoclinic, Z = 4, a = 4.668 (1), b = 21.780 (2), c = 14.348 (2) Å,  β = 93.379 

(6)°, V = 1456.2 (5) Å3, Dx = 1.647 Mg m-3, synchrotron radiation, λ = 0.710919 

Å, 19044 reflections measured (θ = 1.7–29.2˚), merged to 2876 unique data, R 

= 0.053 [for 2544 data with I > 2σ(I)], R [F2 > 2σ (F2)] = 0.031 [all data], S = 

0.99.  

Structure determination of compound 3.39. Data was collected using Dectris 

Eiger 16M diffractometer with radiation source: MX1 Beamline Australian 

Synchrotron.30 Structure solution was by direct methods (SIR92).31 The 

structure was refined using the CRYSTALS program package.32  
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FOREWORD TO CHAPTER 4  

This chapter describes application of structure-guided design approaches in the 

development of new anti-CHIKV agent. Herein, the biological evaluation of the 

active hits discovered by in silico screening is described. This chapter reports three 

potential CHIKV inhibitors discovered from the antiviral screening. It also 

describes the synthesis of a small library of the naphthamide derivative. However, 

more studies need to be performed, including biological testing of the naphthamide 

library at lower concentration and also development of the quinoline and the 

spirobi[cyclopenta[b]naphthalene]dione scaffolds. NMR data of the synthesized 

compounds from this chapter can be found in Appendix C (p. 257). 
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4.1 Introduction 

Chikungunya virus (CHIKV) is an arbovirus that is transmitted mainly by female 

Aedes aegypti or Aedes albopictus mosquito and is accompanied with abrupt 

onset of fever and debilitating acute and chronic joints pain in humans.1 In 1952 

symptoms of the CHIKV infection were reported for the first time after an outbreak 

in eastern Africa.2 Many intermittent outbreaks re-emerged in Africa and Asia in 

the past sixty years. 3-5 There was no major re-emergence of chikungunya fever 

until the epidemic outbreak in Kenya in 2004. 1 This epidemic CHIKV fever 

resulted in considerable mortality and morbidity and unfortunately, the infection 

spread to neighbouring areas. 6  

The wider spreading of the virus throughout Europe and Americas was due to 

number of adaptive mutations of the virus that allowed for exploitation a new vector 

(Aedes albopictus).7 In 2013, CHIKV infection has been reported on the Caribbean 

island of Saint Martin and spread to another 22 countries in Caribbean and America 

in less than a year. In 2018, around 14,000 cases of CHIKV were reported in Sudan, 

with 95% in Kassala state.9, 10 More than 55 countries have reported the CHIKV 

infection so far and the virus was classified by US National Institute of Allergy and 

Infectious Diseases (NIAID) as a category C priority pathogen; this category 

includes reemerging pathogens that could be used for mass dissemination.1 

So, far, there is no vaccine or an approved drug to treat, cure or prevent the CHIKV 

infection. Current management of the CHIKV infection includes non-steroidal anti-

inflammatory drugs (NSAID) to alleviate the symptoms of CHIKV and 

corticosteroids as anti-inflammatory in chronic CHIKV infection.11 Efforts have 

been made to discover clinical anti-CHIKV agents by many research groups. This 
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includes vaccine development, virtual screening, in vitro whole cell phenotypic 

screening and genome-wide loss of function screens.6, 12-18 Recent advances in 

CHIKV drug discovery have been recently reviewed.1, 19, 20  

 

In 2010, crystal structure of the virus genome was fully elucidated offering an 

important step for anti-CHIKV in-silico drug discovery.1 A computational study in 

our research group has led to identification of potential CHIKV inhibitors,6, 12, 21 

using in silico tools to elucidate possible interactions of small molecule inhibitors 

with the viral protein. Molecular docking, virtual screening, molecular dynamic 

(MD) simulation and binding free energy calculations were computational 

strategies used to identify novel CHIKV inhibitors from the NCI Diversity Set II 

database (1541 compounds). The study investigated nsP2 proteases and the nsP3 

macrodomain, in addition to the envelope glycoprotein complexes responsible for 

virus entry and attachment as targets for potential inhibitors.21  

Table 4.1 presents the outcomes of the above study showing the compounds 

and their binding activity. Analysis of the docking experiments showed the 

different interactions between the ligands and the viral targets.21 Two promiscuous 

compounds were reported interacting with all the tested viral components, namely, 

the benzimidazole derivative, NCI_61610 and the quinoxaline derivative, 

NCI_293778 (1.9).21 Among the investigated compounds, NCI_25457 1.30, 

NCI_37553 1.27, and NCI_127133 1.28, showed good interaction with two of the 

three target proteins and glycoproteins (Table 4.1).21  

 

 



Structure-guided drug design Chapter 4 

 

84 

 

Table 4.1: Results of the selected compounds of focused dockings on the nsP2, nsP3 and 

the glycoprotein envelope. 

NCI # 
Chemical Structure 

Target 
BA* 

Kcal/mol 

217697 

 

nsP2 -9.2 

61610 

 

nsP2 -10.6 

nsP3 -11.1 

E glyp -12.2 

67436 

 

nsP2 
-15.5  

345647 

 

nsP3 -10.9 

37168 

 

nsP3 -10.0 

 

 

37553 

 

 

 

 

nsP2 -9.6 

E glyp -11.7 



Chapter 4 Structure-guided drug design 

 

85 

 

293778 

 

nsP2 (-9.8) – 

 (-10.4) 

nsP3 -9.4 

E glyp -13.2 

127133 

 

nsP2 -8.8 

nsP3 -8.3 

156219 

 

E glyp  -11.1 

25457 

 

nsP2 -9.0 

nsP3 -10.8  

670283 

 

nsP3 -10.6 

*BA: Binding Affinity 

 

 

4.2 Results and discussion 

In this dissertation, the eleven compounds (Table 4.1) which were discovered by 

docking-based virtual screening and molecular dynamic simulation were selected 

for biological investigation for their anti CHIKV activity. The selected ligands 

were requested from Developmental Therapeutics Program Databases and Search 



Structure-guided drug design Chapter 4 

 

86 

 

Tools, National Cancer Institute, USA and were tested in Rega Institute, KU 

Leuven, Belgium for their anti-CHIKV activity. 

Three compounds, out of the tested eleven compounds, showed antiviral activities, 

the quinoline derivative 4.1 (EC50 = 6.8 µg/mL and EC90 = 12.0 µg/mL) and the 

naphthalene derivatives 4.5 (EC50 = 0.8 µg/mL) and 4.11 (11.5 µg/mL) (Figure 

4.1). We chose compound 4.5 for the next cycle of optimization because of 

availability of the starting materials and ease of synthesis.  

 

 

Figure 4.1: Structure of the active potential leads. 

To further gain insights into the structure activity relationship of NCI_37168 (4.5), 

possible modifications were postulated including changing the aniline substitution 

and spacer between the amide group nitrogen and aryl side chain and also 

investigate the effect of the presence of naphthalene hydroxyl group (Figure 4.2). 

Firstly, the effect of the presence of hydroxyl moiety in the parent molecule 4.5 

was investigated 4.14.  

Then, aniline substitution with different groups was suggested to explore the 

structure activity relationship (4.15-4.17), while adding a spacer (1 carbon) 

between the amino group and the aryl side chain was supposed to increase  the 

flexibility that can possibly add more points of interaction with the receptor (4.19 
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and 4.20). 

 

 

Figure 4.2: Possible modification of NCI_37168 (4.5). 

 

Compounds 4.18 and 4.19 were prepared by the standard amide bond formation 

using CDI in THF (yields 45 and 50%, respectively).22 It is worthy to note that the 

CDI coupling procedure failed to prepare 3-hydroxy-N-aryl-2-naphthamides 

compounds 4.5 and 4.14-4.17 presumably due to formation of the ester side 

product. The required compounds 4.14-4.17 were prepared using PCl3 promoted 

coupling of 2-naphthoic acid 4.12 or 3-hydroxy-2-naphthoic acid 4.13, 

corresponding anilines and catalytic amounts of PCl3 (40 mol%) in xylene and 

heating at reflux gave yields 14-32% (Scheme 4.1).22  
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Scheme 4.1: Reagents and conditions i) 40 mol% PCl3, xylene, 2 h, reflux ii) CDI, THF, 

18 h, rt. 

 

The synthesized compounds were investigated for their biological activity against 

CHIKV and showed considerable toxic effect to the Vero cells, which impedes 

detection of their antiviral activity (Table 4.2). Although some compounds showed 

antiviral activity such as 4.5, 4.15 and 4.16, however toxicity of these compounds 

might impede further development of the naphthalene scaffold 4.5. Antiviral 

testing of these inhibitors at lower concentration could be done to investigate their 

antiviral activity, while lowering their toxic effect. It is worthy to note that another 

study could investigate the development of the quinoline scaffold 4.1 and exploring 

the potential antiviral activity of this scaffold.  
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Table 4.2: In vitro antiviral and cytotoxic activities of compounds 4.14-4.20. 

 

 

 

Cpd 

number 

R1 R2 n CHIKV at 

[20] µg/mL 

Toxicity 

IC50 µg/mL 

4.14 H 3-NO2 0 3 NT 

4.15 OH H 0 25 NT 

4.5 OH 3-NO2 0 49 1.74 

4.16 OH 4-NO2 0 27 <0.4 

4.17 OH 4-F 0 13 NT 

4.18 OH H 1 0 NT 

4.19 OH 4-F 1 0 NT 

NT: not tested 

 

4.3 Conclusions 

A virtual screening search using NCI Diversity Set II database (1541 compounds) 

was performed against three CHIKV targets, namely nsP2, nsP3 and the envelope 

glycoprotein. Eleven hits were identified and tested for their anti-CHIKV activity 

in a cell-based assay and three hits, with naphthalene and quinoline scaffolds, 

showed promising anti-CHIKV. A facile and applicable synthesis of a small library 

4.14-4.19 of the naphthamide hit 4.5 and their characterization were reported. 

Antiviral testing of these inhibitors at lower concentration will be done to 

investigate their antiviral activity, while lowering their toxic effect. 
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4.4 Experimental section 

4.4.1 Chemistry 

General 

Electronspray ionisation mass spectra (ESI-MS) were recorded on a Shimadzu 

LCMS 2010 EV spectrometer and are reported as ion mass to charge ratio (m/z) 

with their abundance as a percentage. Solvents used were analytical reagent grade. 

Reactions were monitored by TLC analysis using silica gel GF/UV 254. NMR 

spectra were recorded on Bruker Avance III HD 500 or 400 MHz NMR 

spectrometers with spectra run at 400 and 500 MHz and 13C spectra at 100 and 125 

MHz, in deuterated chloroform or dimethylsulfoxide  (DMSO-d6). Chemical shifts 

(δH) are reported relative to TMS as an internal standard and coupling constant (J) 

values are reported in Hertz. Abbreviations used are: s, singlet; d, doublet; t, triplet; 

m, multiplet. All reagents and solvents were purified and dried by standard 

techniques.  

 

General method A: 

A solution of 2-naphthoic acid 4.12 (182 mg, 1.06 mmol) or 3-hydroxy-2-naphthoic 

acid 4.13 (200 mg, 1.06 mmol) in xylene (6 mL) and the corresponding aniline 

(1.17 mmol) was heated at reflux. PCl3 (40.0 µL, 0.424 mmol) was added slowly 

and heat was maintained till HCl evolution had ceased (ca. 1 h). The reaction 

mixture was cooled down and water was added to decompose excess PCl3. The 

resulting precipitate was filtered, washed with petroleum spirit (2 x 10 mL) and 

recrystallized from THF and water (3:1, 20 mL) with a few drops of methanol. 
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General method B: 

A solution of 3-hydroxy-2-naphthoic acid 4.13 (109 mg, 0.58 mmol), CDI (197 mg, 

1.22 mmol), in THF (4 mL) was stirred at r.t. overnight. The reaction mixture was 

cooled to 0 °C and the corresponding benzylamine (1.16 mmol) in THF (4 mL) was 

added dropwise. The reaction was stirred at room temperature for 18 h, 

concentrated in vacuo and subjected to flash chromatography (MeOH 5%/ DCM 

95%) to give compounds 4.19 and 4.20. 

 

N-(3-Nitrophenyl)-2-naphthamide (4.14)22 

Using general procedure A, 4.12 and 3-nitroaniline (98.4 mg, 0.697 mmol), 

compound 4.14 (140 mg, 45%) was isolated as a white solid; m.p: 162-164 °C. 1H 

NMR (500 MHz, DMSO) δ: 7.71-7.64 (m, 3H, ArH), 8.13-7.98 (m, 5H, ArH), 8.27 

(dd, 1H, J = 8.2, 1.2 Hz, ArH), 8.65 (s, 1H, ArH), 8.86 (s, 1H, ArH), 10.89 (s, 1H, 

NH); 13C NMR (126 MHz, DMSO) δ: 114.8, 118.6, 124.8, 126.7, 127.5, 128.2, 

128.6, 128.7, 128.8, 129.5, 130.6, 132.0, 132.5, 135.0, 141.0, 148.4, 166.6; ESI-

MS m/z 315 (53%, [M+Na]+), 291 (100%, [M-H]-).  

 

3-Hydroxy-N-phenyl-2-naphthamide (4.15) 23 

Using general procedure A, 4.13 and aniline (106 µL, 1.17 mmol), compound 4.15 

(91 mg, 32%) was isolated as a red crystals; m.p: 244-246 °C. 1H NMR (500 MHz, 

DMSO) δ: 7.23-7.19 (m, 1H, ArH), 7.39 (s, 1H, ArH), 7.47-7.41 (m, 3H, ArH), 

7.59-7.56 (m, 1H, ArH), 7.83-7.81 (m, 3H, ArH), 7.99 (d, 1H, J = 8.1 Hz, ArH), 

8.56 (s, 1H, ArH), 10.65 (s, 1H, NH), 11.40 (s, 1H, OH); 13C NMR (126 MHz, 

DMSO) δ: 111.0, 121.0, 122.3, 124.3, 124.6, 126.3, 127.4, 128.6, 129.2, 129.3, 

130.9, 136.2, 138.9, 154.2, 166.1; ESI-MS m/z 286 (100%, [M+Na]+), 262 (100%, 
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[M-H]-). 

3-Hydroxy-N-(3-nitrophenyl)-2-naphthamide  (4.5) 23 

Using general procedure A, 4.13 and 3-nitroaniline (162 mg, 1.17 mmol), 

compound 4.16 (46 mg, 14%) was isolated as a yellow solid; m.p: 248-250 °C. 1H 

NMR (500 MHz, DMSO) δ: 7.35 (s, 1H, ArH), 7.39-7.36 (m, 1H, ArH), 7.53 (app 

t, 1H, J = 7.5 Hz, ArH), 7.69 (app t, 1H, J = 8.2 Hz, ArH), 7.78 (d, 1H, J = 8.3 Hz, 

ArH), 7.95 (d, 1H, J = 8.2 Hz, ArH), 8.00 (dd, 1H, J = 8.2, 2.1 Hz, ArH), 8.12 (d, 

1H, J = 8.8 Hz, ArH), 8.45 (s, 1H, ArH), 8.84 (s, 1H, ArH), 10.94 (s, 1H, NH), 

11.09 (s, 1H, OH); 13C NMR (126 MHz, DMSO) δ: 111.0, 114.8, 118.9, 123.0, 

124.3, 126.3, 126.7, 127.3, 128.7, 129.2, 130.7, 131.0, 136.2, 140.3, 148.5, 153.8, 

166.6; ESI-MS m/z 331 (100%, [M+Na]+), 307 (100%, [M-H]-). 

 

3-Hydroxy-N-(4-nitrophenyl)-2-naphthamide (4.16) 23 

Using general procedure A, 4.13 and 4-nitroaniline (162 mg, 1.17 mmol), 

compound 4.17 (47 mg, 15%) was isolated as a green solid; m.p: 262-264 °C. 1H 

NMR (500 MHz, DMSO) δ: 7.44-7.40 (m, 2H, ArH), 7.57 (app t, 1H, J = 7.5 Hz, 

ArH), 7.83 (d, 1H, J = 8.3 Hz, ArH), 8.00 (d, 1H, J = 8.4 Hz, ArH), 8.10 (d, 2H, J 

= 9.1 Hz, ArH), 8.35 (d, 2H, J = 9.1 Hz, ArH), 8.46 (s,1H, ArH), 11.21-11.08 (m, 

2H, OH/NH); 13C NMR (126 MHz, DMSO) δ: 110.9, 120.3, 123.6, 124.3, 125.5, 

126.3, 127.4, 128.7, 129.2, 131.2, 136.2, 143.1, 145.4, 153.4, 166.4; ESI-MS m/z 

307 (100%, [M-H]-). 

 

3-Hydroxy-N-(4-fluorophenyl)-2-naphthamide (4.17) 24 

Using general procedure A, 4.13 and 4-fluoroaniline (110 µL, 1.17 mmol), 

compound 4.18 (52 mg, 17%) was isolated as a pale green solid; m.p: 266-286 °C. 
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1H NMR (500 MHz, DMSO) δ: 7.24 (app t, 2H, J = 8.5 Hz, ArH), 7.38-7.34 (m, 

2H, ArH), 7.52 (app t, 1H, J = 7.3 Hz, ArH), 7.80-7.77 (m, 3H, ArH), 7.93 (d, 1H, 

J = 7.9 Hz, ArH), 8.50 (s, 1H, ArH), 10.64 (s, 1H, NH), 11.30 (s, 1H, OH); 13C 

NMR (126 MHz, DMSO) δ: 111.0, 115.9 (d, 2JCF = 22 Hz), 122.2, 122.9 (d, 3JCF = 

7.9 Hz), 124.2, 126.8, 127.3, 128.6, 129.2, 130.8, 135.3, 136.3, 154.3, 159.0 (d, 

1JCF = 241 Hz), 166.2; ESI-MS m/z 304 (100%, [M+Na]+), 280 (100%, [M-H]-). 

 

N-Benzyl-3-hydroxy-2-naphthamide (4.18) 23 

Using general procedure B and benzyl aniline (124 mg, 1.16 mmol), compound 

4.19 (72 mg, 45%) was isolated as white crystals; m.p: 168-170 °C. 1H NMR (500 

MHz, DMSO): 4.59 (d, 2H, J = 5.8 Hz, CH2), 7.29-7.26 (m, 2H, ArH), 7.41-7.34 

(m, 5H, ArH), 7.51 (ddd, 1H, J = 8.2, 6.8, 1.2 Hz, ArH), 7.75 (d, 1H, J = 8.2 Hz, 

ArH), 7.86 (d, 1H, J = 8.1 Hz, ArH), 8.56 (s,1H, ArH), 9.53 (1H, J = 5.7 Hz, NH), 

11.98 (s, 1H, OH); 13C NMR (126 MHz, DMSO) δ: 43.1, 111.2, 119.1, 124.2, 

126.3, 127.1, 127.4, 127.9, 128.7, 128.9, 129.2, 130.1, 136.5, 139.4, 155.8, 168.4; 

ESI-MS m/z 300 (100%, [M+Na]+), 276 (100%, [M-H]-). 

 

N-4-Fluorobenzyl-3-hydroxy-2-naphthamide (4.19) 23 

Using general procedure B and benzyl aniline (145 mg, 1.16 mmol) compound 4.20 

(86 mg, 50%) was isolated as white powder; m.p: 188-190 °C. 1H NMR (500 MHz, 

DMSO): 4.68 (d, 2H, J = 5.2 Hz, CH2), 6.81 (s, 1H, ArH), 7.08 (t, J = 8.0 Hz, 2H, 

ArH), 7.29-7.50 (m, 5H, ArH), 7.67-7.72 (m, 2H, ArH), 7.94 (1H, J = 5.7 Hz, NH), 

11.65 (s, 1H, OH); 13C NMR (126 MHz, CDCl3) δ: 43.3, 110.0, 112.5, 115.8 (d, 

2JCF = 22 Hz), 116.8, 124.0, 126.3, 126.7, 128.5, 128.6, 129.7 (d, 3JCF = 8 Hz), 

133.2, 137.2, 156.7, 161.8  (d, 1JCF = 241 Hz), 169.7; ESI-MS m/z 318 (100%, 
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[M+Na]+), 294 (100%, [M-H]-). HRMS (ESI-) calcd for C18H13FNO2: 294.0927 

(M-H)-, found: 294.0930. 

 

4.4.2 Anti-viral assay 

CHIKV Indian Ocean strain 899 (Genbank FJ959103.1) was generously provided 

by Prof. S. Günther (Bernhard Nocht Institute for Tropical Medicine, Hamburg, 

Germany) (Panning M et al., Emerging Infectious Diseases 2008). BGM cells were 

maintained in cell growth medium composed of minimum essential medium (MEM 

Rega-3, Gibco, Belgium) supplemented with 10% Foetal Bovine Serum (FBS, 

Integro, The Netherlands), 1% L-glutamine (Gibco), and 1% sodium bicarbonate 

(Gibco). The antiviral assays were performed in virus growth medium which is the 

respective cell growth medium supplemented with 2% (instead of 10%) FBS. Cell 

cultures were maintained at 37 °C in an atmosphere of 5% CO2 and 95-99% 

humidity. BGM cells were seeded in 96-well tissue culture plates (Becton 

Dickinson, Aalst, Belgium) at a density of 2.5 x 104 cells/well in 100 μL assay 

medium and were allowed to adhere overnight. Next, a compound dilution series 

was prepared in the medium on top of the cells after which the cultures were 

infected with 0.001 MOI of CHIKV 899 inoculum in 100 μL assay medium. On 

day 5 post-infection (p.i.), the plates were processed using the MTS/PMS method 

as described by the manufacturer (Promega, The Netherlands). The 50% effective 

concentration (EC50), which is defined as the compound concentration that is 

required to inhibit virus-induced cell death by 50%, was determined using 

logarithmic interpolation. All assay wells were checked microscopically for minor 

signs of virus induced CPE or possible alterations to the cell or monolayer 



Chapter 4 Structure-guided drug design 

 

95 

 

morphology caused by the compound. 
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FOREWORD TO CHAPTER 5 

This chapter is a full research manuscript is accepted to Angewandte Chemie, 2020 

(doi: 10.1002/anie.202006392 and 10.1002/ange.202006392, impact factor 

12.257). This manuscript describes the development stimuli-responsive 

cycloaurated ‘OFF-ON’ switchable fluorescent anion transporters. Herein, we 

report the synthesis and characterization of five anion transporters based on 1,3-

bis(benzimidazol-2-yl)pyrimidine scaffold. We also developed four putative anion 

transporters that are switched-on in the presence of GSH, which is found in a higher 

concentration in cancer cells. It also describes full transport and binding properties 

of the free receptors and extensive reduction kinetic studies of the switchable 

cycloaurated complexes under different conditions, including in DMSO, external 

addition in liposomes and in GSH-encapsulated liposomes.  

Supporting information for this chapter can be found in Appendix D (p. 264). 
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5.1 Introduction 

Biomimetic stimuli-responsive systems activated under particular physical, 

chemical or biological conditions have recently gained increasing attention and 

represent a promising therapeutic approach due to their selective and controllable 

action.1-4 These smart systems can be switched on under specific conditions, 

including in the presence of certain proteins, redox states or chemical signals (such 

as changes in pH).5 In the field of anion recognition, pH-responsive, redox-

switchable and photophysical controllable anion receptors have been developed.5-

10 These switchable anion receptors have been recognised for diverse applications 

including ion sensing, catalysis and can be used as potential drug candidates in 

medicinal chemistry.11-13 

Transmembrane ion transport is a fundamental biological process and is involved 

in diverse physiological functions including, neuroexcitation, muscle contraction, 

cell migration and proliferation, and maintaining cellular pH, membrane potential 

and cellular secretions.14 Channelopathies are a group of diseases characterised by 

impaired ion channel function, including cystic fibrosis, epilepsy and cancer.15-17 

Anionophores are small molecules that are capable of transporting anions and they 

demonstrated cytotoxic effects against stem cancer cells by facilitating the transport 

of chloride and bicarbonate anions so changing the cellular pH, causing cellular 

differentiation and death.13, 18-20 

A recent mechanistic study of cancer death showed that the induction of apoptosis 

and inhibition of autophagy by particular anion transporters are due to the cellular 

osmotic stress which is caused by increasing cellular ion concentration.21 This 

promotes the generation of reactive oxygen species (ROS) and activates a caspase-
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dependent apoptosis. Two of the tested transporters induced cellular osmotic stress, 

by increasing the intracellular Ca+2 concentration and lysosomal pH (as a result of 

a decrease in the lysosomal chloride ion concentration), leading eventually to 

autophagy disruption.21 

Glutathione (GSH), is a tripeptide and forms with glutathione disulfide (GSSG) a 

redox complex that keeps the cellular oxidative properties under normal 

physiological conditions.22 Many diseases such as diabetes, neurodegenerative 

disorders and cancer are implicated with high levels of GSH. Redox state 

environment in cancer cells is greatly dictated by the NADPH (NADPH, NADP+) 

and GSH (GSH, GSSG) redox systems.23, 24 In normal cells, GSH intracellular 

concentration was reported to be 10 mM, while the extracellular concentration was 

ranged from 2 to 20 µM.25 However, previous reports stated that there was a four-

fold increase in GSH concentration in cancer cells, compared to normal cells and 

even higher in multi-resistant tumour cells.26, 27 These findings inspired the 

development of stimuli-responsive systems targeting high GSH levels and these 

systems have been widely used in contemporary drug delivery approaches. 28-32 

Recently, Akhtar et al. developed water soluble GSH-responsive anion transporters 

with potential activity to treat cystic fibrosis.33 However, GSH content in cystic 

fibrosis cells is lower than normal cells presumably due to the abnormal 

extracellular GSH transport ability of CFTR proteins, limiting the application of 

these molecules as potential treatment.33, 34 

Inspired by the high affinity of thiols, such as GSH, for gold and prompted by the 

reported efficient anion transport activity of 1,3-bis(benzimidazol-2-yl)benzenes, 

we designed and synthesized new switchable cycloaurated anion transporters based 
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on the structurally related 1,3-bis(benzimidazol-2-yl)pyrimidine (BisBzImPy) 

(Figure 5.1). 

 

Figure 5.1: Schematic representation showing the design of switchable anion transporters. 

 

Blocking groups, such as chloride or N-heterocyclic carbene (NHC) were used to 

afford the switchable complexes (Figure 5.2).32, 35-37 These complexes were 

designed to be reduced by GHS as a stimulus to liberate the fluorescent anion 

transporters that can bind to chloride and facilitate transmembrane transport (Figure 

5.2). 

 

Figure 5.2: Reported GSH mediated activation and putative transporters 5.1-5.538 

 

5.2 Results and discussion 

5.2.1 Chemistry 

Unsubstituted BisBzImPy 5.1 was synthesized by condensation of o-
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phenylenediamine with dipicolinic acid in phosphoric acid at 200 °C for 6 h 

(Scheme 5.1).39, 40 Dinitro BisBzImPy derivative 5.5 was prepared by nitration of 

5.1 and showed low solubility in most solvents.40  

 

Scheme 5.1: Reagents and conditions: i) H3PO4, 200 °C, 6 h; ii) H2SO4/HNO3 3 h. 

Attempts to synthesize ditrifluoromethyl BisBzImPy derivative 5.2 using the same 

procedure failed may be due to the deactivating effect of the trifluoromethyl, 

bistrifluoromethyl and difluoro groups that would make the amino groups in the 

arylidene diamines less nucleophilic.  

 

Scheme 5.2: Reagents and conditions: i) NaS2O5, EtOH, RT; ii) DMF, 120 °C, 4 h. 

 



Switchable anion transporters Chapter 5 

 

102 

 

BisBzImPy derivatives 5.2-5.4 were obtained in 42-54% yields by adopting an 

alternative procedure using sodium metabisulfite and 2,6-

pyridinedicarboxaldehyde (Scheme 5.2).41 The structure of 5.2 was confirmed by 

X-ray diffraction analysis (Figure 5.3) which showed that transporter 5.2 formed a 

1:1 complex with DMSO via two hydrogen bonds with nitrogen atoms of 

benzimidazole (NH- - -O distances of 1.991 Å and 2.018 Å and NH- - -O bond 

angles of 169.21° and 170.77°. 

 

Figure 5.3: X-ray structure of anion transporter 5.2. DMSO complex. 

Gold chloride derivatives 5.13 and 5.14 were readily prepared by heating at reflux  

BisBzImPy derivatives 5.2 and 5.3, respectively, with KAuCl4 and anhydrous 

sodium acetate in methanol for 3 h (Scheme 5.3).38 The structure of 5.14 was 

determined by single X-ray crystallography (Figure 5.4) and showed a heptacyclic 

flat planar gold chloride complex. The bond lengths between Au(III) and nitrogen 

atoms of benzimidazole and pyridine rings were 1.98-1.99 Å. The angle between 

the nitrogen atom of pyridine, Au(III) and nitrogen atoms of benzimidazole 
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(N^Au^N) were 79.24° and 80.23°, while the angle between chloride, AuIII, and 

nitrogen atoms of benzimidazole were (Cl^Au^N) 100.02° and 100.45°.  

 
Scheme 5.3: Reagents and conditions: i) KAuCl4, MeOH, NaOAc, reflux; ii) AgOTf, 

CH3CN, reflux, 12 h in dark. 

 

Figure 5.4: X-ray structure of complex 5.14. 

 

 

Reaction of 5.13 and 5.14 with NHC 5.15, silver triflate in acetonitrile in the 

absence of light gave complexes 5.16 and 5.17 in 13% and 12% yields, respectively 
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(Scheme 5.3).38 

The X-ray crystal structure of the Au(III) complex 5.16 and 5.17 (Figures 5.5 and 

5.6) revealed that the NHC plane is almost perpendicular to the BizBzImPy plane 

with a torsion angle of 73.79° and 81.23° and for complexes 5.16 and 5.17, 

respectively (Figures 5.5 and 5.6). The bond length between Au(III) and nitrogen 

atoms of benzimidazole and pyridine rings were 2.007-2.015 Å for complex 5.16  

and 1.988-2.009 Å for complex 5.17, slightly longer than in complex 5.14. 

 

 

Figure 5.5: X-ray structure of anion complex 5.16.  
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Figure 5.6: X-ray structure of anion transporter 5.17. 

 

 

 

5.2.2 Binding in solution 

To gain a better understanding of the anionophoric properties of the compounds, 

NMR chloride binding studies were performed in DMSO-d6/0.5%H2O and CD3CN 

with TBACl. Data were fitted globally to the 1:1 or 2:1 (host: guest) for transporters 

5.1-5.4, while transporter 5.5 was omitted from this study due to it is low solubility 

(Table 5.1, Figures 5.7, Figures D1-D8).  

In DMSO, anionophores 5.1-5.4 were fitted to the 1:1 binding model giving Ka 

ranging from 63 to 132 M-1. Transporters 5.1, 5.3 and 5.4 were fitted also to 2:1 

model giving greater K21 values than K11. These findings show that transporters 5.1, 

5.3 and 5.4 might adopt different binding modes in DMSO. NMR anion binding 

titration studies in CD3CN showed that anion transporters 5.1 and 5.2 adopt the 1:1 

binding mode and interestingly transporters 5.3 and 5.4 prefer the 2:1 sandwich 

mode (Table 5.1) (Figures 5.7). 
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Figure 5.7: Stack plot of 1H NMR spectroscopic titration of receptor 5.2 (1 mM) with 

TBACl in CD3CN at 298 K.  

 

Table 5.1: Binding properties of compounds 5.1–5.4. 

 5.1 5.2 5.3 5.4 

 

 

DMSO 

1:1 (Ka) 92 77 132 63 

covfit [a] 1.1 x 10-2 2.3 x 10-4 2.0 x 10-3 3.0 x 10-4 

2:1 (Ka) K₁₁: 40;  

K₂₁: 2.5 x 102 

- K₁₁: 40;  

K₂₁: 2.6 x 10 

K₁₁: 75;  

K₂₁: 89 

β21
[b] 1.0 x 105 - 1.0 x 104 6.7 x 103 

covfit  4.0 x 10-3 - 1.5 x 10-3 2.0 x 10-4 

 

CD3CN 

1:1 (Ka) 4.6 x 103 1.2 x 104 - - 

covfit[a]  9.4 x 10-4  2.5 x 10-4 - - 

2:1 (Ka) - - K₁₁ and K₂₁:  

2.0 x 103 

K₁₁: 0.69;  

K₂₁: 8.2 x 

106 

β21
[b] - - 4.4 X 106 5.5 X 106 

covfit - - 2.9 x 10-4 5.2 x 10-3 

[a] The covariance of the fit (covfit) is calculated by dividing the covariance of the residual (experimental 

data − calculated data) with the covariance of the experimental data. [b] The association constant (β21) 

for the 2:1 host:guest complex calculated by multiplying K11 and K21. nd: not determined. 
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5.2.3 Binding in solid state  

A single crystal of anionophore 5.2 with chloride ion was obtained for X-ray 

crystallographic diffraction by vapor diffusion of Et2O into a CH3CN solution of 

transporter 5.2 and two equivalents of TEACl (Figure 5.8). Interestingly, Cl- is 

sandwiched between two molecules of compound 5.2, where it forms two hydrogen 

bonds with imidazole NHs, with NH… Cl- distances of 2.41 and 2.63 Å, and one 

hydrogen bond with a water molecule with an OH…Cl- distance of 2.29 Å (Figure 

5.8).  

 

 
Figure 5.8: Crystal structure of 5.2 with chloride complex. 

 

This water molecule connects the chloride anion and the second transporter 

molecule by acting as a hydrogen bond donor and an acceptor. It forms five 

hydrogen bonds including two with imidazole NHs of the bottom compound 5.2, 

one with imidazole NH of the top compound 5.2, one with the pyridine N and the 

one mentioned earlier with chloride, with distances ranging from 2.29 to 3.54 Å. 

The sandwich complex is further stabilized by another water molecule, which forms 

hydrogen bonds with both molecules of 5.2 (Figure 5.8). 
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5.2.4 Transport studies 

Transporters 5.1-5.5 were investigated for their chloride transport property via 

Cl/NO3 exchange assay using a chloride ion selective electrode (ISE) (Figure 5.9, 

Table 5.2). Briefly, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

unilamellar liposomes were prepared with diameter 200 nm and loaded with 489 

mM KCl, buffered to pH = 7.2 and suspended in 489 mM KNO3 solution which is 

buffered to pH = 7.2. The chloride efflux which is considered as indication of Cl-

/NO3
- exchange process, was monitored using chloride ion selective electrode upon 

addition of DMSO solution of transporters 5.1-5.5 to the prepared liposomes.42 At 

the same concentration, compounds 5.1-5.5 showed better transport properties 

when transporter loading volume increased from 10 μL to 40 μL, presumably due 

to better deliverability in a higher volume of DMSO. Chloride efflux at different 

concentrations of tested compounds (expressed as mol% with respect to lipid 

concentration (rtl)) was measured to obtain Hill plots and to calculate EC50 (defined 

as the concentration required to achieve 50% the chloride efflux at 270 s) and Hill 

coefficient (n). Hill coefficient indicates the stoichiometry of the formed complex 

during the anion transport across the lipid bilayer, while EC50 is used as a measure 

of anion transporter potency. 

Compounds 5.1 and 5.5 were excluded from Hill plot analysis due to low potency 

of compound 5.1 and solubility limitation of transporter 5.5. Among tested 

anionophores 5.2-5.4, transporter 5.2 was the most active with EC50 = 0.42 mol%, 

followed by transporters 5.3 and 5.4 (EC50 = 0.49 and 0.58 mol% (rtl), respectively) 

(Figure 5.9a and 5.9d, Table 5.2). Cationophore coupling assay, using valinomycin 

(Vln) or monensin (Mon) was used to investigate the mechanism of anion transport 

of the novel transporters.  
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Table 5.2: Transport properties of compounds 5.1–5.5. 

 1 2 3 4 5 

cLog P [a] 4.0 4.4 5.0 4.0 3.8 

KCl (EC50, mol%) [b] 4.8 1.0 x 10-1 9.4 x 10-2 2.3 x 10-1 6.1 x 10-2 

n[c] 2.2 1.3 0.7 1.2 0.9 

KGlu (EC50, mol%) [d] 2.3 2.3 x 10-2 3.5 x 10-3 4.4 x 10-2 3.8 x 10-2 

n[c] 1.4 1.2 1.2 1.0 1.0 

Cl/NO3 (EC50, mol%) [e] nd 0.42 0.49 0.58 nd 

n[c] nd 1.4 0.9 1.4 nd 

[a] clog P values calculated using VCCLab. [b] EC50 from the KCl assay measuring H+/Cl− symport. [c] 

Hill coefficient as an indicator of the stoichiometry the complex mediating transport. [d] EC50 from the 

KGlu assay measuring Cl− uniport. [e] EC50 from the Cl/NO3 exchange assay. Nd: not determined. 

 

 

 

 

Figure 5.9: a-c) Schematic representation of ISE-based assays used to investigate the 

mechanism of anion transport of receptors 5.1-5.5.  a) Cl-/NO3
- antiport, b) and c) 

cationophore coupled-KCl, valinomycin and monensin to measure the Cl- uniport and 

M+/Cl+ transport, respectively. d) Chloride efflux achieved by transporters 5.1-5.5 (1.0 

mol%, rtl) for transporters 5.1-5.4 and 0.8 mol% (rtl) for transporter 5.5 from unilamellar 

POPC vesicles containing 489 mM KCl buffered to pH 7.2 with 5 mM potassium 

phosphate salts, suspended in 489 mM KNO3 buffered to pH 7.2 with 5 mM phosphate 

salts. e) Chloride efflux achieved by transporter 5.2 at 1.0 mol% (rtl) in the absence or 

presence of cationophores (monensin or valinomycin) monitored over a period of 5 min.  
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Such assays are used to determine the activities of Cl- uniport (coupling with 

valinomycin) and H+/Cl- symport (coupling with monension) (Figure 5.9b-c and 

5.9e).42 Compounds 5.1-5.5 were capable of both Cl- uniport and H+/Cl- symport 

(Figure 5.9e). 

BisBzImPy derivatives 5.1-5.5 were investigated for their potential anion transport 

properties using 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) assay (Table 5.2 

and Figure 5.10).42 The HPTS-KCl assays measures the activity of anion 

transporters in facilitating H+/Cl- cotransport leading to the dissipation of pH 

gradients. The unsubstituted BisBzImPy 5.1 emerged as the lowest activity 

transporter in HPTS-KCl (HCl symport, Figure 5.10a) assay with an EC50 = 4.8 

mol% (Table 5.2). Grafting electron withdrawing groups such as 

bistrifluoromethyl, tetratrifluoromethyl, tetrafluoro or dinitro in the phenyl of 

benzimidazole rings (5.2-5.5) increased the ability to facilitate H+/Cl- symport, with 

EC50 values of these compounds ranging from  (2.3 x 10-1) - (6.1 x 10-2) mol%, rtl, 

(Figure 5.10e, Table 5.2). The activity decreased in the order of 5.5> 5.3> 5.2> 5.4.  

To further investigate the intrinsic ability of transporters 5.1-5.5 to transport only 

chloride ion, the same assay was employed at 1 mol% transporter (mol% relative 

to lipid concentration, rtl) and using the protonophore carbonyl cyanide m-

chlorophenyl hydrazone (CCCP) as an efficient proton transporter (Figure 5.10b). 

If H+ transport is the rate determining step of HCl symport, CCCP will improve 

transport and accelerate the pH dissipation (Figure 5.10f, Figures D14-D18, 

appendix D).42Anionophores 5.1-5.5 transport properties demonstrated no CCCP 

dependence indicating effective H+ transport by these compounds.  
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Figure 5.10: a-d) Schematic representation of the HPTS-based assays used in the current 

study (a) H+/Cl- symport or OH-/Cl- antiport b) the presence of cccp (protonophore) to 

asses Cl- uniport  c) the presence of valinomycin to measure the proton flux d) the effect 

of fatty acid presence as a fuel on the transport. (e) H+/Cl- symport or OH-/Cl- antiport 

facilitated by compounds 5.1-5.5  (1.0 mol% (rtl)) from unilamellar POPC vesicles loaded 

with 100 mM KCl buffered to pH 7.0 with 10 mM HEPES buffer and 1 mM HPTS internal 

sensor. f) Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), buffered 

to pH 7.0 with HEPES (10 mM), different conditions were applied to determine the effect 

of addition of the protonphore cccp at 0.5 mol% (as a measure of Cl- uniport), oleic acid at 

1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if the transport is fatty acid 

dependent) on the rate of chloride transport of receptor 5.2 (1 mol%). 

We next examined the abilities of transporters 5.1-5.5 to transport only H+ using 

the H+ transport assay by replacing potassium chloride with potassium gluconate 

(KGlu) (Figure 5.10c) and using valinomycin to facilitate K+ transport and dissipate 

the membrane potential generated by H+ transport.42 Gluconate is a relatively large 

hydrophilic anion that can be considered lipid bilayer impermeable42. Apart from 

the unsubstituted BisBzImPy 5.1 (EC50 = 2.3 mol%), tested compounds 5.2-5.5 

showed a remarkable protonophoric affinity with EC50 spanning from (4.4 x 10-2) 

– (3.5 x 10-3) mol%, rtl, (Table 5.2). These values are lower than the EC50 for H+/Cl- 

symport, indicating faster H+ transport than Cl- transport.  

The activity of transporters 5.2-5.5 as protonophores decreased in the order of 5.3> 

5.2> 5.5> 5.4 (Table 5.2). To further investigate the potential interaction between 
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fatty acids and the tested anion transporters 5.1-5.5, oleic acid (1 mol%) or BSA 

treated liposomes (to remove fatty acids) were used (Figure 5.10f). It was reported 

that some transporters could transport H+ indirectly by facilitating the 

transmembrane flip-flop of deprotonated fatty acids.42, 43 The transport activity in 

KCl and KGlu assays were not affected by addition or removal of fatty acids, which 

indicate that H+ transport by 5.1-5.5 is fatty acid-independent and presumably 

occurs via deprotonation of the NH groups. A liposomal leakage experiment 

performed using self-quenching calcein confirm the absence of non-specific 

membrane leakage.43 

 

5.2.5 Anion and cation selectivity 

A selectivity assay has demonstrated preferential transport of more lipophilic 

anions including Br-, I-, NO3
-, and ClO4

- over Cl- for all anionphores 5.1-5.5 

(Figures D29-D33, appendix D). Identical transport rates were found when the K+ 

in the HPTS assay was replaced with Na+ (Figures D34 and D35, appendix D) 

consistent with the lack of metal ion transport.  

 
Figure 5.11: Observed fluorescence ratio response due to HCl influx in the presence of 

compounds 5.2 (1 mol%) into vesicles loaded with KCl (100 mM) and suspended in KCl, 

KBr, KI, KNO3 and KClO4 (100 mM). All external and internal solutions were buffered to 

pH 7 with HEPES (10 mM). 
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5.2.6 Reduction kinetic studies 

We exploited the fluorescence and anion transport properties of transporters 5.2 

and 5.3 and examined the corresponding gold complexes 5.13, 5.14, 5.16 and 5.17 

(complexes 5.13 and 5.16  for transporter 5.2, while complexes 5.14 and 5.17 for 

transporter 5.3) against the effect of the physiological reducing agent GSH 5.18 and 

the non-physiological reducing agents DTT 5.19 and TCEP 5.20 (Figure 5.12).  

 

Figure 5.12: Chemical structure of tested compounds and the three reducing agents used 

in the current study. 

 

Time-dependent reduction kinetics of these complexes were examined under 

different conditions, including external addition of the reducing agent in organic 

solvent (DMSO) and in liposomes (Figure 5.13-5.16). Also, encapsulation of GSH 

in liposomes was performed to mimic the cellular physiological conditions (Figure 

5.17). UV-Vis and fluorescence spectroscopies were used to detect the change in 

the absorbance or fluorescence intensity upon reduction of complexes with GSH 

5.18, DTT 5.19 and TCEP 5.20. GSH was tested at molar ratio 6:1, while TCEP 

and DTT were used at molar ratio 3:1, with respect to tested compound.  

In DMSO, complexes 5.13, 5.14, 5.16 and 5.17 showed higher affinity to thiols 
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(GSH 5.18 and DTT 5.19) over TCEP. As indicated from fluorescence and UV-Vis 

spectra, the reaction between complexes 5.13, 5.14, 5.16 and 5.17 and the reducing 

agent is fast, and it took only few seconds to 20 minutes to reach a plateau in both 

absorbance and fluorescence studies (Figures 5.13 and 5.14).  

a)  

 
 

b)  

 

Figure 5.13: Reduction by thiols; namely GSH (reduced glutathione) and DTT 

(dithiothreitol), and TCEP (tris(2-carboxyethyl)phosphine hydrochloride) of complexes 

5.13 and 5.16 in organic solvent (DMSO) monitored by a) fluorescence and b) UV-Vis 

spectroscopies. Fluorescence readings are averages of three replicates and UV-Vis 

readings are averages of two replicates, always with standard deviations less than 10%. 
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a) 

 
 

b) 

 

Figure 5.14: Reduction by thiols; namely GSH (reduced glutathione) and DTT 

(dithiothreitol), and TCEP (tris(2-carboxyethyl)phosphine hydrochloride) of complexes 

5.14 and 5.17 in organic solvent (DMSO) monitored by a) fluorescence and b) UV-Vis 

spectroscopies. Fluorescence readings are averages of three replicates and UV-Vis 

readings are averages of two replicates, always with standard deviations less than 10%. 
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agent in liposomes. NHC-gold complexes 5.16 and 5.17 responded rapidly to DTT 

with prompt increase in the UV-Vis absorption spectra and reach a plateau after 1-

2 minutes. Complex 5.14 showed a stronger response to DTT than complex 5.13 

with a gradual increase in absorbance and reached a plateau in 30 minutes, while 

the reduction of complex 5.13 took 3 h to reach a plateau. 

Monitoring the reduction kinetics of compounds 5.13 and 5.16 by fluorescence 

spectroscopy showed similar pattern as seen in the UV-Vis studies. Surprisingly, 

complexes 5.14 and 5.17 reduction kinetics could not be chased by fluorescence 

spectroscopy as the fluorescence intensity of the parent anion transporter 5.3 was 

diminished in the liposome model. GSH and TCEP showed a comparable reduction 

activity towards Au(III) chloride complexes 5.13 and 5.14 and it took less than 3 h 

for a complete reduction and a stable fluorescence or absorbance reading (Figures 

5.15 and 5.16).  

GSH achieved fast reduction of NHC gold complexes 5.16 and 5.17 and reach a 

plateau in 5 minutes as illustrated by UV-Vis spectroscopy. However, compound 

5.16 showed a gradual increase in fluorescence in response to GSH and took 60 

minutes to reach the highest fluorescence intensity. This may be attributed to 

encapsulation of the formed free transporter in the membrane bilayer. TCEP 

demonstrated the lowest reduction affinity to complexes 5.16 and 5.17 and it took 

more than 3 h for complex 5.16 and 1 h for complex 5.17 to reach a plateau (Figures 

5.15 and 5.16).   

 

 

 



Chapter 5 Switchable anion transporters 

 

117 

 

a) 

 

b) 

 

 

Figure 5.15: Reduction by thiols; namely GSH (reduced glutathione) and DTT 

(dithiothreitol), and TCEP (tris(2-carboxyethyl)phosphine hydrochloride) of complexes 

5.13 and 5.16 in liposomes monitored by a) fluorescence  and b) UV-Vis spectroscopies. 

Fluorescence readings are averages of three replicates and UV-Vis readings are averages 

of two replicates, always with standard deviations less than 10%. 
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Figure 5.16: Reduction by thiols; namely GSH (reduced glutathione) and DTT 

(dithiothreitol), and TCEP (tris(2-carboxyethyl)phosphine hydrochloride) of complexes 

5.14 and 5.17 in liposomes monitored by UV-Vis spectroscopy. UV-Vis readings are 

averages of two replicates, always with standard deviations less than 10%. 

 

In order to mimic the physiological conditions, the reduction kinetics of complexes 

5.13, 5.14, 5.16 and 5.17 in GSH-encapsulated liposomes were investigated 

(Figures 5.17 and 5.18). In a similar pattern to the liposome model, complexes 5.16 

and 5.17 showed a fast reaction with GSH and reach a plateau in 10 minutes as 

illustrated from UV-Vis spectra, while complexes 5.13 and showed weaker 

responses than complexes 5.16 and 5.17.  

 
Figure 5.17: Reduction of 5.13 and 5.16 in GSH encapsulated liposomes. Fluorescence readings 

are averages of three replicates, always with standard deviations less than 10%. 

0 50 100 150 200 250

0.00

0.05

0.10

0.15

0.20

 5.14 + GSH

 5.14 + DTT

 5.14 + TCEP

 5.17 + GSH

 5.17 + DTT

 5.17 + TCEP

A
b

s
o

rb
a

n
c
e

Time / m

0 50 100 150
0

20

40

60

80

100

 5.13
 5.16

F
lu

o
re

s
c

e
n

c
e

 i
n

te
n

s
it

y

Time / m



Chapter 5 Switchable anion transporters 

 

119 

 

 

Figure 5.18: Reduction of complexes 5.13, 5.14, 5.16 and 5.17 in GSH encapsulated 

liposomes. UV-Vis readings are averages of two replicates, always with standard 

deviations less than 10%. 

 

Generally, fluorescence and absorbance intensities of complexes 5.13, 5.14, 5.16 

and 5.17 changed over time upon addition of the reducing agents under all 

conditions, but with different rates. 

 

5.2.7 Switchable time-dependant transport studies 

Time-dependent transport studies of complexes 5.13, 5.14, 5.16 and 5.17 were 

performed in HPTS-KCl liposome (HCl symport, Figure 5.19) against the three-

reducing agents at 1 mol% (rtl) of receptors 5.2-5.3 and complexes 5.13, 5.14, 5.16 

and 5.17. Complexes 5.13 and 5.16 (without addition of the reducing agent) showed 

low anion transport activities at 1 mol% (Figures 5.20 and 5.21, Figures D50-D57 

appendix D). 

Interestingly, complexes 5.14 and 5.17 showed 35% and 36% efflux respectively 

at 1 mol% (rtl) (Figures 5.20 and 5.21), indicating that Au (III)-mediated chloride 

transport across phospholipid membranes.44  
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As evidenced by kinetic studies, DTT is the most potent reducing agent among all 

tested complexes 5.13, 5.14, 5.16 and 5.17, followed by GSH and TCEP showed 

the slowest reduction rate.  

 

Figure 5.19: KCl-KOH liposomal model used to assess the switchable-time dependent 

studies. POPC vesicles were loaded with KCl (100 mM), buffered to pH 7.0 with HEPES 

(10 mM). The test compound was added at 0 s and detergent was added at 200 s. 

 

Complex 5.13 showed the same chloride efflux as the parent anion transporter 5.2 

after mixing with the reducing agents for 3 h (Figure 5.20a). Incubation of complex 

5.14 with GSH and TCEP for 30 minutes demonstrated a similar chloride efflux 

rate to that of the parent anion transporter 5.3, however, incubation with DTT for 

30 minutes led to a faster chloride efflux than the parent compound 5.3 (Figure 20b, 

Figures D52 and D53, appendix D). This is presumably due to anion transport 

activity of complex 5.14 itself. Also, reacting complex 5.14 with all reducing agents 

for 3 hours gave a higher chloride efflux than anion transporter 5.3 at 1 mol%. 

Incubation of complex 5.16 with DTT or GSH for 5 minutes showed 100% and 

~90% chloride efflux, respectively, in comparison with the parent transporter 5.2, 

while incubation for 20 minutes reach 100% for both reductants (Figure 5.21a). 

Incubation of DTT, GSH or TCEP with complex 5.17 showed higher chloride 

efflux (with GSH and DTT) and similar chloride efflux (with TCEP) in comparison 

to the parent transporter 5.3 (Figure 5.21b).  
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a) 

 

 
 

b) 

 

 
 

 

Figure 5.20. Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complexes a) 5.13 and b) 5.14 (1 μM) by GSH (6 μΜ) using 

KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with 

HEPES (10 mM) at different time intervals. The test complexes 5.13 and 5.14 (1 mol%) 

and KOH were added firstly, then GSH was added at 0 s. DMSO, GSH (3 mol%), parent 

anion transporters 5.2 and 5.3 and complex 5.13 and 5.14 (without addition of DTT) were 

used as controls. Detergent was added at 200 s. Ionophore concentrations are shown as 

ionophore to lipid molar ratios. Error bars represent SD from at least three repeats. 
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a)  

 
 

b)  

 
 

 
Figure 5.21. Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complexes a) 5.16 and b) 5.17 (1 μM) by GSH (6 μΜ) using 

KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with 

HEPES (10 mM) at different time intervals. The test complexes 5.16 and 5.17 (1 mol%) 

and KOH were added firstly, then GSH was added at 0 s. DMSO, GSH (3 mol%), parent 

anion transporters 5.2 and 5.3 and complex 5.16 and 5.17 (without addition of DTT) were 

used as controls. Detergent was added at 200 s. Ionophore concentrations are shown as 

ionophore to lipid molar ratios. Error bars represent SD from at least three repeats. 
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5.3 Conclusions 

We present herein stimuli-responsive gold complexes as efficient switchable anion 

transporters that can be reduced to release active anion transporters by a set of 

reducing agents, including the physiologically predominant GSH. Five BisBzImPy 

anion transporters 5.1-5.5 have been synthesized and they have been shown to bind 

Cl- with moderate affinity in DMSO-d6/0.5%H2O and CD3CN and facilitate the 

transport of H+, Cl- and NO3- in liposomal models. Switchable cycloaurated 

complexes 5.13, 5.14, 5.16 and 5.17 were constructed from the two most potent 

anion transporters 5.2 and 5.3. The switch-off complexes 5.13, 5.14, 5.16 and 5.17 

demonstrated higher affinity to DTT, followed by GSH, while TCEP emerged as 

the weakest reducing agent. Finally transport studies showed that these switchable 

anion transporters 5.13, 5.14, 5.16 and 5.17 are highly efficient and can be switched 

on by all tested reducing agents with different rates. DTT emerged as the most 

potent reducing agent followed by GSH and TCEP. A remarkably rapid reduction 

of Au(III) centre was found for complex 5.17 upon treatment with GSH leading to 

complete release of the active anion transporter within 5 min. 

 

5.4 Experimental Section 

5.4.1 Chemistry 

 

General methods and material 

All reagents and solvents were purified and dried by standard techniques. Reactions 

were monitored by TLC analysis using silica gel GF/UV 254. NMR spectra were 

recorded on Bruker 400 MHz FT-NMR spectrometer and Varian Gemini-300BB 

300 MHz FT-NMR spectrometers (Varian Inc., Palo Alto, CA). 1H spectra were 
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run at 300 and 400 MHz and 13C spectra were run at 75 and 101 MHz, in the stated 

solvent. Chemical shifts (δH) are reported relative to TMS as internal standard and 

coupling constant (J) values are reported in Hertz. The abbreviations used are as 

follows: s, singlet; d, doublet; t, triplet; m, multiplet. Electrospray ionization (ESI 

single quadrupole) mass spectra have their ion mass to charge values (m/z) stated 

with their relative abundances as a percentage in parentheses. Peaks assigned to the 

molecular ion are denoted as [M+H]+ or [M+Na]+. Column chromatography was 

performed using silica gel 60 (0.063-0.200 mm). Low resolution mass spectra 

(LRMS) and high-resolution mass spectra (HRMS) were recorded using 

positive/negative ion electrospray ionization (ESI) and atmospheric pressure 

photoionization (APPI) on Bruker amaZon SL mass spectrometer and Bruker 

Solarix 2xR 7T Fourier transform ion cyclotron resonance mass spectrometer 

(FTICR). UV-Vis kinetic studies were performed on an Agilent Cary 4000 UV-Vis 

absorption spectrometer equipped with a magnetic stirrer and a temperature 

controller. Synthesis of 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine 5.1, 2,6-bis(5-

nitro-1H-benzo[d]imidazol-2-yl)pyridine 5.5 and Ag N-hetercyclic carbene (NHC) 

derivatives 5.15 were attempted according to literature.40, 45, 46 

 

2,6-Bis(1H-benzo[d]imidazol-2-yl)pyridine (5.1): 39, 40 Dipicolinic acid 

(pyridine-2,6-dicarboxylic acid) (1.67 g, 10 mmol) and o-phenylenediamine (2.38, 

22 mmol) were suspended in orthophosphoric acid (30 mL) at 200 °C for 6 h. After 

cooling, the reaction melt was poured in 500 mL of cold water and vigorous stirring 

was applied. The blue-green precipitate was filtered out and then stirred with hot 

10% aqueous sodium carbonate for 10 min. The formed solid was collected by 

filtration and crystalized from methanol to give 5.1 (1.35 g, 43%); as a white 
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powder 1H NMR (400 MHz, DMSO, d6) δ: 7.23-7.36 (m, 4H, ArH), 7.77 (dd, J = 

8.0, 24.0 Hz, 4H, Ar-H), 8.18 (t, J = 8.0 Hz, 1H, Ar-H), 8.36 (d, J = 8.0 Hz, 2H, 

Ar-H), 13.10 (br s, 2H, 2 x -NH); 13C NMR (101 MHz, DMSO, d6) δ: 112.3, 120.2, 

121.8, 122.7, 124.2, 134.9, 139.7, 144.6, 148.3, 151.0. HRMS (ESI+) calcd for 

C19H13N5Na (M+Na)+: m/z 334.1063, found 334.1061. 

 

General procedure A of synthesis of anion transporters 5.2-5.4 41 

Step 1. To a suspension of pyridine-2,6-dicarbaldehyde (270 mg, 2 mmol) in 

ethanol (7 mL), was slowly added a solution of sodium metabisulfite (213 mg, 1.1 

mmol) in water (1 mL). The mixture was stirred vigorously at room temperature 

and ethanol (10 mL) was added. The reaction flask was left overnight at 0 °C and 

the resulting pink precipitate was filtered and dried to give the aldehyde adduct 

(611 mg, 89%) as a pink powder. The aldehyde adduct was used without further 

purification.    

 

Step 2.  

A mixture of aldehyde adducts (342 mg, 1 mmol) and the appropriate phenylene 

diamine (2 mmol) in dry DMF (1 mL) was heated at 120 °C for 4 h. The mixture 

was cooled overnight and poured on brine solution and left to stir overnight. The 

resulting solid filtered, washed with water (3 x 10 mL), dried and recrystallized 

from ethanol to give anion transporter 2-4.  

 

2,6-Bis(5(6)-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)pyridine (5.2): Using 

general procedure A and 4-(trifluoromethyl)benzene-1,2-diamine (352 mg, 2 

mmol), anion transporter 5.2 (482 mg, 54%) was obtained as a white solid; m.p: 
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285-287 °C. 1H NMR (400 MHz, CD3CN) δ: 7.39 (dd, J = 1.0, 9.0 Hz, 2H, Ar-H), 

7.54 (d, J = 8.0 Hz, 2H, Ar-H), 7.72 (t, J = 8.0 Hz, 1H, Ar-H), 7.77-7.83 (m, 2H, 

ArH), 8.02 (d, J = 8.0 Hz, 2H, Ar-H); 13C NMR (101 MHz, CD3CN) δ: 118.1, 

120.6, 121.9, 123.1, 124.6, 125.0 (d, J2
C−F = 31 Hz), 127.3, 130.0, 139.5, 147.9, 

153.2. HRMS (ESI+) calcd for C21H11F6N5Na (M+Na)+: m/z 470.0811, found 

470.0809. 

 

2,6-Bis(4,6(3,5)-bis(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)pyridine (5.3): 

Using general procedure A and 4-(trifluoromethyl)benzene-1,2-diamine (488 mg, 

2 mmol), anion transporter 5.3 (495 mg, 42%) was obtained as a white solid; m.p: 

290-291 °C. 1H NMR (300 Hz, CD3CN) δ: 7.78-7.90 (m, 2H, ArH), 8.13 (t, J = 8.0 

Hz, 1H, Ar-H), 8.18-8.25 (m, 2H, ArH), 8.40 (d, J = 8.0 Hz, 2H, Ar-H); 13C NMR 

(126 Hz, (CD3)2CO) δ: 113.6, 113.8, 116.2, 117.8, 120.9, 121.2, 121.5, 122.5, 

123.7, 123.8, 124.0, 124.1, 124.4, 124.6, 125.3, 126.8, 132.7, 135.6, 139.3, 143.1, 

145.6, 147.3, 154.2, 154.5; 19F (471 Hz, (CD3)2CO) δ: -61.63. HRMS (ESI+) calcd 

for C23H9F12N5Na (M+Na)+: m/z 606.0559, found 606.0559. 

 

2,6-Bis(5,6-difluoro-1H-benzo[d]imidazol-2-yl)pyridine (5.4) 

Using general procedure A and 4-(trifluoromethyl)benzene-1,2-diamine (288 mg, 

2 mmol), anion transporter 5.4 (390 mg, 51%) was obtained as a violet solid; m.p: 

> 300 °C. 1H NMR (300 Hz, DMSO, d6) δ: 7.75-7.85 (m, 4H, ArH), 8.18 (t, J = 7.0 

Hz, 1H, Ar-H), 8.30 (d, J = 7.0 Hz, 2H, Ar-H); 13C NMR (75 Hz, DMSO, d6): 

122.0, 139.9, 146.2, 147.7, 149.4, 152.8. HRMS (ESI+) calcd for C19H10F4N5 

(M+H)+: m/z 384.0867, found 384.0864. 
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2,6-Bis(6-nitro-1H-benzo[d]imidazol-2-yl)pyridine (5.5): 45 

Compound 5.1 (311 mg, 1 mmol) was dissolved in concentrated H2SO4 (1 mL) and 

was cooled in an ice-water mixture. A mixture of 1:1 HNO3/H2SO4 (0.25 mL) was 

added dropwise and the reaction suspension was stirred for 3 h, poured into ice 

water (10 mL) and neutralized with 20% NaOH. The resulting solid was filtered 

and washed with water (2 x 10 mL) to give 5.5 (310 mg, 77%) as pale-yellow 

powder. 1H NMR (500 Hz, pyridine, d5) δ: 7.70-7.85 (m, 4H, Ar-H), 8.06 (t, 1H, J 

= 7.5 Hz , Ar-H), 8.27 (dd, 2H, J = 2.0, 9.0 Hz , Ar-H), 8.65 (d, 2H, J = 7.5 Hz , 

Ar-H); 13C NMR (126 Hz, pyridine, d5) δ: 118.8, 122.9, 134.9, 135.7, 138.9, 139.1, 

144.0, 148.1, 149.2, 155.2; HRMS (ESI+) calcd for C19H12N7O4 (M+H)+: m/z 

402.0945, found 402.0951. 

 

General procedure B for synthesis of complexes 5.13 and 5.1438 

Dry methanol (25 mL) was added a mixture of anion receptor 5.2 (224 mg, 0.50 

mmol) or anion receptor 5.3 (292 mg, 0.50 mmol), dried sodium acetate (325 mg, 

3.97 mmol) and KAuCl4 (284 mg, 0.75 mmol) and was heated at reflux for 3 h. The 

resulting solid was filtered and washed with methanol (2 x 10 mL) and diethyl ether 

(3 x 10 mL) and dried to give complex 5.13 (352 mg, 67%) and 5.14 (455 mg, 56%) 

as yellow powders. 

 

Characterisation of complex 5.13: Using general procedure B and anion receptor 

5.2, complex 5.13 (352 mg, 67%) was obtained as a yellow solid; m.p: > 300 °C. 

1H NMR (500 Hz, DMSO, d6) δ: 7.56 (td, J = 2.0, 7.0 Hz, 1H, Ar-H), 7.70 (dd, J = 

2.0, 9.0 Hz, 1H, Ar-H), 7.95-7.98 (m, 1H, Ar-H), 8.14 (s, 1H, Ar-H), 8.23 (t, J = 

8.0 Hz, 1H, Ar-H), 8.33-8.40 (m, 3H, Ar-H), 8.61-8.66 (m, 1H, Ar-H); 13C NMR 



Switchable anion transporters Chapter 5 

 

128 

 

(126 Hz, DMSO, d6) δ: 111.1, 114.8, 118.7, 119.5, 122.2, 123.4, 123.5, 124.0, 

142.2, 126.1, 140.0, 142.4, 142.8, 145.3, 146.7, 146.8, 147.6, 160.4, 160.8; 19F (471 

Hz, DMSO) δ: -59.62, -59.26. HRMS (APPI) calcd for C21H9AuClF6N5 (M)+: m/z 

677.0111, found 677.0107. 

 

Characterisation of complex 5.14:  Using general procedure B and anion receptor 

5.3, complex 5.14 (455 mg, 56%) was obtained as a yellow solid; m.p: > 300 °C. 

1H NMR (500 Hz, (CD3)2CO) δ: 7.75 (s, 2H, Ar-H), 8.41 (d, J = 5.0 Hz, 2H, Ar-

H), 8.58 (s, 2H, Ar-H), 8.73 (t, J = 8.0 Hz, 1H, Ar-H); 13C NMR (126 Hz, 

(CD3)2CO) δ: 115.3 (d, J1
C−F = 200 Hz), 120.8, 122.1 (d, J2

C−F = 16 Hz), 122.9, 124.4 

(d, J3
C−F = 8 Hz), 125.1, 125.7 (d, J1

C−F = 200 Hz), 125.9 (d, J2
C−F = 33 Hz),127.3, 

141.1, 141.7, 147.0, 147.8, 161.8. 19F (471 Hz, (CD3)2CO) δ: -61.92. HRMS 

(APCI) calcd for C23H7AuClF12N5 (M)+: m/z 812.9859, found 812.9898. 

 

General procedure C of complexes 8 and 938 

Previously dried silver triflate (46 mg, 0.18 mmol) was added to a suspension of 

(1-methyl-3-pentyl-1,3-dihydro-2H-imidazol-2-ylidene)silver(I) bromide (60 mg, 

0.18 mmol) 5.15 and complex 5.13 (100 mg, 0.15 mmol) or complex 5.14 (120 mg, 

0.15 mmol) in acetonitrile (15 mL). After holding the reaction mixture in the dark 

at reflux for 12 h, it was cooled, filtered and purified by cycles of crystallization of 

diethyl ether diffusion in an acetonitrile solution of the product.  

 

Characterisation of complex 5.16 

Using general procedure C, complex 5.16 (18 mg, 13%); was obtained as a yellow 

solid; m.p: > 237-239 °C. 1H NMR (300 MHz, CD3CN) δ: 0.51 (t, J = 7.0 Hz, 3H, 
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CH3), 0.98-1.05 (m, 2H, CH2), 1.13-1.18 (m, 2H, CH2), 1.71-1.80 (m, 2H, CH2), 

4.05 (s, 3H, CH3), 4.36-4.41 (m, 2H, CH2), 6.12-6.15 (m, 2H, Ar-H), 7.53-7.62 (m, 

2H, Ar-H), 7.93-8.03 (m, 2H, Ar-H), 8.22 (s, 1H, Ar-H), 8.39 (d, J = 8.0 Hz, 2H, 

Ar-H), 8.64 (t, J = 8.0 Hz, 1H, Ar-H); 13C NMR (101 MHz, CD3CN) δ: 12.6, 21.6, 

27.8, 30.1, 38.4, 51.6, 108.8, 112.5, 112.7, 119.1, 122.4, 122.9, 125.5, 126.9, 138.3, 

141.2, 142.3, 147.2, 147.2, 147.5, 161.6; HRMS (APPI) calcd for C30H25AuF6N7
+

 

(M - OTf)+: m/z 794.1736, found 794.1737. 

 

Characterisation of complex 5.17 

Using general procedure C, complex 5.17 (20 mg, 12%); was obtained as a yellow 

solid; m.p: > 231-233 °C.  1H NMR (300 Hz, (CD3)2CO) δ: 0.39 (t, J = 7.0 Hz, 3H, 

CH3), 0.85-1.03 (m, 2H, CH2), 1.04-1.11 (m, 2H, CH2), 1.72-1.79 (m, 2H, CH2), 

4.26 (s, 3H, CH3), 4.63 (t, J = 7.0 Hz, 2H, CH3), 6.45 (s, 2H, Ar-H), 7.77 (s, 1H, 

Ar-H), 7.88 (s, 1H, Ar-H), 8.37 (d, J = 2.0 Hz, 2H, Ar-H), 8.42 (d, J = 2.0 Hz, 2H, 

Ar-H), 8.51 (d, J = 8.0 Hz, 2H, Ar-H), 8.75 (t, J = 8.0 Hz, 1H, Ar-H); 13C NMR (75 

MHz, (CD3)2CO) δ: 12.6, 21.7, 27.9, 30.4, 38.5, 51.8, 113.0, 116.8, 119.8, 119.9, 

120.5, 122.1, 122.8 (q, 2JC,F = 34 Hz), 124.2, 124.5 (q, 1JC,F = 209 Hz), 127.6, 131.9, 

139.8, 141.5, 147.4, 147.6, 163.9; HRMS (APPI) calcd for C32H23AuF12N7
+

 (M - 

OTf)+: m/z 930.1484, found 930.1486. 

 

 

5.4.2 X-ray crystallography 

X-ray of transporter (5.2) 

Single crystals of transporter 5.2 (C23H17N5OF6S) were obtained by slow diffusion 

of DMSO solution of 5.2. A suitable crystal was selected and in Paratone on a 

micromount on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The 
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crystal was kept at 100 K during data collection. Using Olex247, the structure was 

solved with the ShelXS48 structure solution program using Direct Methods and 

refined with the ShelXL49 refinement package using Least Squares minimization. 

Crystal Data for C23H17N5OF6S (M =525.47 g/mol): orthorhombic, space 

group Pmc21 (no. 26), a = 6.841(2) Å, b = 17.047(3) Å, c = 19.783(4) Å, V = 

2307.1(10) Å3, Z = 4, T = 100(2) K, μ(Cu Kα) = 1.943 mm-1, Dcalc = 1.513 g/cm3, 

3102 reflections measured (8.94° ≤ 2Θ ≤ 147.086°), 3102 unique (Rsigma = 0.0551) 

which were used in all calculations. The final R1 was 0.1265 (I > 2σ(I)) and wR2 

was 0.3804 (all data). 

 

 

X-ray of complex (5.14) 

Single crystals of complex 5.14 (C26H13AuClF12N5O) were obtained by slow 

diffusion of acetone solution of 5.14. A suitable crystal was selected and in Paratone 

on a micromount on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. 

The crystal was kept at 100 K during data collection. Using Olex247, the structure 

was solved with the ShelXS48 structure solution program using Direct Methods and 

refined with the ShelXL49 refinement package using Least Squares minimization. 

Crystal Data for C26H13AuClF12N5O (M =871.83 g/mol): orthorhombic, space 

group P212121 (no. 19), a = 4.9760(2) Å, b = 18.4846(6) Å, c = 29.9692(9) Å, V = 

2756.57(16) Å3, Z = 4, T = 100(2) K, μ(CuKα) = 11.990 mm-1, Dcalc = 

2.101 g/cm3, 10634 reflections measured (9.57° ≤ 2Θ ≤ 146.43°), 5220 unique (Rint 

= 0.0665, Rsigma = 0.0718) which were used in all calculations. The final R1 was 

0.0895 (I > 2σ(I)) and wR2 was 0.2353 (all data).  
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X-ray of transporter 5.16  

Single crystals of transporter 5.16 (C33H28AuF9N8O3S) were crystalized by a 

mixture of acetonitrile and diethyl ether solution of 5.16. A suitable crystal was 

selected and in Paratone on a micromount on a SuperNova, Dual, Cu at home/near, 

Atlas diffractometer. The crystal was kept at 100 K during data collection. Using 

Olex247, the structure was solved with the ShelXS48 structure solution program 

using Direct Methods and refined with the ShelXL49 refinement package using 

Least Squares minimization. 

Crystal Data for C33H28AuF9N8O3S (M =984.66 g/mol): monoclinic, space 

group P21/n (no. 14), a = 15.51220(20) Å, b = 16.2596(2) Å, c = 28.5690(3) Å, β = 

95.2011(11)°, V = 7176.06(16) Å3, Z = 8, T = 100(2) K, μ(Cu Kα) = 9.101 mm-1, 

Dcalc = 1.823 g/cm3, 12657 reflections measured (7.894° ≤ 2Θ ≤ 133.198°), 12657 

unique (Rint = ?, Rsigma = 0.0511) which were used in all calculations. The final R1 

was 0.0380 (I > 2σ(I)) and wR2 was 0.0907 (all data). 

 

 

X-ray of complex 5.17 

Single crystals of complex 5.17 were obtained by slow diffusion vapour diffusion 

of Et2O into an acetone solution of 5.17. A suitable crystal was selected and in 

Paratone on a micromount on a SuperNova, Dual, Cu at home/near, Atlas 

diffractometer. The crystal was kept at 100 K during data collection. Using Olex247, 

the structure was solved with the ShelXS48 structure solution program using Direct 

Methods and refined with the ShelXL49 refinement package using Least Squares 

minimization. 
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Crystal Data for C36H29N7O4F15SAu (M =1137.69 g/mol): triclinic, space 

group P-1 (no. 2), a = 11.2877(3) Å, b = 14.0974(3) Å, c = 14.9642(4) Å, α = 

109.821(2)°, β = 107.118(2)°, γ = 102.3303(19)°, V = 2006.66(9) Å3, Z = 2, T = 

100(2) K, μ(CuKα) = 8.474 mm-1, Dcalc = 1.883 g/cm3, 14400 reflections 

measured (6.848° ≤ 2Θ ≤ 145.304°), 7742 unique (Rint = 0.0278, Rsigma = 0.0382) 

which were used in all calculations. The final R1 was 0.0337 (I > 2σ(I)) and wR2 

was 0.0859 (all data).  

 

X-ray of 5.2.TEACl complex 

Single crystals of transporter 5.2 and chloride ion were obtained by slow diffusion 

vapour diffusion of Et2O into acetonitrile solution of 5.2 and two equivalents of 

TEACl. A suitable crystal was selected and in Paratone on a micromount on a 

SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at 

100 K during data collection. Using Olex247, the structure was solved with the 

ShelXS48 structure solution program using Direct Methods and refined with the 

ShelXL49 refinement package using Least Squares minimization. 

 

Crystal Data for C50H48ClF12N11O3 (M =1114.44 g/mol): triclinic, space 

group P-1 (no. 2), a = 11.3690(16) Å, b = 11.800(2) Å, c = 19.141(3) Å, α = 

100.941(16)°, β = 90.546(14)°, γ = 104.405(14)°, V = 2437.5(7) Å3, Z = 2, T = 

100(2) K, μ(CuKα) = 1.605 mm-1, Dcalc = 1.518 g/cm3, 19563 reflections 

measured (7.892° ≤ 2Θ ≤ 147.71°), 9489 unique (Rint = 0.1261, Rsigma = 0.1672) 

which were used in all calculations. The final R1 was 0.1404 (I > 2σ(I)) and wR2 

was 0.4052 (all data).  
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5.4.3 1H NMR titration binding studies with TBACl 

Proton NMR titrations binding studies were performed on Bruker 400 MHz FT-

NMR spectrometer at 298 K. Solution of receptors 5.1-5.4 in DMSO-d6/0.5% H2O 

or acetonitrile were prepared in 2 mM and 1 mM concentrations, respectively. The 

guest anion, tetra-n-butylammonium (TBA) chloride, was prepared with the same 

receptor solution, to ensure the overall receptor concentration stays constant whilst 

the guest anion concentration changes. Using small aliquots of the guest salt, the 

receptor solution was titrated, and after each addition, chemical shifts were reported 

in ppm in refence to residual solvent peaks. The isotherm based on the NH and CH 

chemical shifts were globally fitted using the online fitting program Bindfit.50  

 

5.4.4 Anion transport studies: 

5.4.4.1 Ion selective electrode (ISE) assays 

a- Cl/NO3 exchange assay: 

Unilamellar vesicles were prepared as reported.51-53 Briefly, ~ 30 mg of POPC (1-

palmitoyl-2-oleoylphosphatidylcholine) was dissolved in 1 mL chloroform in a 

round-bottomed flask and the solvent was removed in vacuo to form a thin lipid 

layer. The thin film was dried under high vacuum for at least 6 h and suspended on 

the internal solution (4 mL) and vortexed using a lab dancer to form large 

multilamellar vesicles, which was subjected to nine freeze-thaw cycles alternating 

between water (at room temperature) and liquid nitrogen. Further, the formed lipid 

was left to rest for 30 minutes and then subjected to extrusion through a 200 nm 

polycarbonate membranes 25 times to form the unilamellar vesicles. The formed 

vesicles were subjected to dialysis for 4 h in the desired external solution to remove 

any unencapsulated internal salts. Finally, using the required external solution, the 
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lipid was diluted to 1.0 mM. The pH of the internal and external solutions was 

maintained at 7.2 using phosphate buffer with a 500 mM total ionic strength. Test 

compound in DMSO (40 μL) was added to start the experiment and chloride 

selective electrode was used to monitor the chloride efflux. Detergent (50 μL) was 

added after 300 seconds to lyse the vesicles, while the 100% chloride efflux reading 

was taken at 420 seconds. 

 

- Hill plots for Cl/NO3: 

Hill plots were performed for Cl/NO3 exchange assay by conducting transport assay 

at different concentrations of tested compounds. Receptor concentration vs chloride 

efflux at 270 s (the endpoint of transport assay) were plotted and fitted to the Hill 

equation using Origin 2019b: 

𝑦 = 𝑉𝑚𝑎𝑥

𝑥𝑛

𝑘𝑛  +  𝑥𝑛
=  100% 

𝑥𝑛

(𝐸𝐶50)𝑛  +  𝑥𝑛
 

Where y is the chloride efflux at 270 s (%) and x is the tested compound 

concentration (mol% relative to lipid concentration) 

 

Vmax is the maximum efflux possible and considered as 100% as this is 

experimentally the maximum chloride efflux possible.  

k (EC50 value) is the carrier concentration needed to reach Vmax/2. 

Each data point on each Hill plot are an average of at least two repeated runs. Error 

bars represent standard deviation about the mean. 

Hill plots for receptors 5.1 and 5.5 were not performed due to low potency and 

solubility issues of ionophore 5.1 and 5.5, respectively.  
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b- KCl efflux – cationohore coupling:  

In this assay, 300 mM total ionic strength of both K gluconate external solution and 

KCl internal solution were marinated. The vesicles were made in a similar way to 

Cl/NO3 exchange assay except that gel filtration, using sephadex, replaced dialysis 

to allow exchange of any unencapsulated KCl for KGlu. External KGlu solution 

(10 mL) was used to dilute the lipid solution obtained after sephadex to obtain a 

lipid stock of known concentration. A cationohore, monensin or Valinomycin, (10 

μL, 0.5 mM) was added first to the lipid solution at concentration 0.1 mol% with 

respect to lipid concentration. Receptor was added after 30 seconds of the 

cationohore addition to start the experiment.  

5.4.4.2 General preparation for HPTS assays: 

Base-pulse 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) assays 

were conducted using unilamellar 1-palmitoyl-2-oleoylphosphatidylcholine 

vesicles (POPC) with a mean diameter of 200 nm loaded with the pH sensitive 

fluorescence dye HPTS (1 mM).51-53 A chloroform solution of POPC (~ 30 mg/mL) 

was evaporated under vacuum and dried for at least 6 h. The thin film was hydrated 

by the internal solution containing HPTS (1 mM) and was subjected to nine freeze-

thaw cycles followed by extrusion 25 times through a 200 nm polycarbonate 

membrane. Size exclusion chromatography using sephadex G-25 column and 

HPTS-free external solution as an eluent was conducted to remove unentrapped 

HPTS from the vesicles` solution. The internal and external solutions used were 

identical salt solution potassium gluconate (KGlu) or KCl (100 mM) buffered with 

10 mM HEPES at pH 7.0. Finally, for each measurement, external solution (KCl or 

KGlu) was used to dilute the lipid stock to obtain 2.5 mL lipid suspension 
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containing 0.1 mM lipid. A base pulse of KOH (25 μL, 0.5 M) at a final 

concentration of 5 mM was added to generate a transmembrane pH gradient. After 

the tested receptors were added, HPTS fluorescence ratio (λex = 460 nm, λem = 510 

nm divided by λex = 403 nm, λem = 510 nm) was recorded. Assisting ionophore 

(carbonyl cyanide phenylhydrazone (CCCP) or valinomycin) was used as a 5 μL 

DMSO. Bovine serum albumins (BSA) was added to vesicles at 1 mol% (with 

respect to lipid) and allowed to stir for 30 minutes to test if the transport is fatty 

acid independent, while, oleic acid (1 mol% and 10 mol%) was used as a source of 

fatty acid to test if the transport is fatty acid dependent. Detergent (25 μL) was 

added at 200 seconds to destroy the pH gradient to calibrate the assay.  

 

Results are the average of at least three repeats and the fractional fluorescence 

intensity (If) was determined using the following formula: 

𝐼𝑓 =  
𝑅𝑡 − 𝑅0

𝑅𝑑 − 𝑅0
 

 

Where  

- Rt is the fluorescence ratio at time t. 

- R0 is the fluorescence ratio at time 0 

- Rd is the fluorescence ratio after detergent addition. 

 

Hill plots were determined for KCl and KGlu transport assays by conducting 

transport assays at different tested receptors concentrations. Receptor concentration 

vs fractional fluorescence intensity If at 200 s (the endpoint of transport assay) were 

plotted and fitted to the Hill equation using Origin 2019b: 
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The following formula was used to calculate hill coefficients (n) and EC50 (200 s) 

values by fitting the curves to the following equation: 

𝑦 = 𝑦0 + (𝑦𝑚𝑎𝑥 − 𝑦0)
𝑥𝑛

𝑘𝑛  +  𝑥𝑛
 

Where: 

- y is If (200 s) value of the ionophore at concentration x (receptors concentration 

is expressed as ionophore to lipid molar ratio). 

- y0 is If value at 200 s, without addition of the ionophore. 

- ymax is the maximum If value.  

- n is the Hill coefficient, and K is the EC50 (200 s) value.  

 

5.4.4.3 Chloride vs anions selectivity assay: 

Unilamellar vesicles were prepared in a similar pattern to KCl-KOH assay as 

reported in section 5.4.4.2. Internal solution of each experiment contained KCl (100 

mM) and HPTS (1 mM) while five external solutions were used at 100 mM with 

different salts KCl, KBr, KI, KNO3 and KClO4. Both external and internal solutions 

are buffered with HEPES (10 mM) to pH 7.0. HPTS is a pH responsive probe that 

has two wavelengths corresponding to the acidic and basic forms, 403 nm and 460, 

respectively. Fluorescence ratio between acidic and basic forms was measured for 

the five receptors against chloride/anion (X-) selectivity. If the anion X- is being 

transported into the vesicles, it would transport as HX and so lowered the pH inside 

the vesicles, resulting in a negative Normalized HPTS value. However, if the 

chloride is being transported out along with the proton gradient, so the pH inside 

the vesicles would be decreased, causing a positive Normalized HPTS value. 
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5.4.4.4 Calcein leakage assays:  

A chloroform solution of POPC was evaporated under vacuum and dried for at least 

6 h as reported.43 The thin film was hydrated by the internal solution containing 

calcein disodium salt (100 mM) and NaCl (100 mM) buffered to pH 7.4 with 

HEPES (10 mM). Then, the lipid suspension was subjected to nine freeze-thaw 

cycles followed by extrusion 25 times through a 200 nm polycarbonate membrane. 

Size exclusion chromatography using sephadex G-25 column and calcein-free 

external solution, containing NaCl (100 mM) and Na2SO4 (100 mM) buffered to 

pH 7.4 with HEPES (10 mM).  

The resulting suspension of dye-encapsulated LUVs with a mean diameter of 200 

nm was diluted with the external solution to obtain 2.5 mL lipid suspension 

containing a 0.1 mM lipid concentration. After the tested receptors 5.1-5.5 were 

added at 1 mol%, calcein fluorescence (λex = 490 nm, λem = 520 nm) was recorded 

at 25 °C. Detergent (25 μL) was added at 200 seconds to lyse the vesicle and to 

calibrate the assay.  

The fractional calcein release (FR) was calculated as follows (with It = fluorescence 

intensity at time t, I0 = fluorescence intensity at time 0 and Imax = fluorescence 

intensity after addition of detergent): 

𝐹𝑅 =  
𝐼𝑡 − 𝐼0

𝐼𝑚𝑎𝑥 − 𝐼𝑜
 

 

5.4.5 Reduction kinetic studies 

Three reducing agents were used in the current study, namely: the tripeptide 

glutathione (GSH), dithiothreitol (DTT) and HCl of tris(2-carboxyethyl)phosphine 
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(TCEP). The reduction kinetic study of complexes 5.13, 5.14, 5.16 and 5.17 has 

been done in organic solvent (DMSO), in liposomes with external addition of the 

reducing agent and in GSH encapsulated liposomes and was monitored by UV-Vis 

and fluorescence spectroscopies. Absorbance studies UV-Vis spectra were 

recorded on an Agilent Cary 100 UV-Vis spectrophotometer, equipped with a 

temperature-controlled multicell holder and a temperature control unit. 

Fluorescence spectra were conducted on an Agilent Cary Eclipse fluorescence 

spectrophotometer, equipped with a temperature control unit and a magnetic stirrer. 

In the current study GSH was used in 6:1, relative to tested compound, while DTT 

and TCEP were used in 3:1, relative to tested compound.  

 

Reactivity with different thiols was quantified by measuring the increase in 

fluorescence at 365 nm (285 nm excitation) for probe 5.2 and complexes 5.13 and 

5.16 and at 400 nm (350 nm excitation) for probe 5.3 and complexes 5.14 and 5.17 

over time and the increase in absorbance at 325 nm for all tested compounds over 

time. Receptors 5.2 and 5.3 and complexes 5.13, 5.14, 5.16 and 5.17 were dissolved 

in DMSO at room temperature to afford the probe concentration at 0.5 mM. GSH, 

DTT and TCEP stock solutions (3.0 mM, 1.5 mM, 1.5 mM, respectively) were 

freshly prepared in deionized water for the DMSO experiments and in the external 

solution for the experiments conducted in liposomes. Generally, 5 μL (0.5 mM, 

final concentration = 1 μM) of tested compounds were used in fluorescence 

experiments, while low absorbance was detected for this concentration in UV-Vis, 

loading volume of tested compounds was changed to 25 μL (0.5 mM, final 

concentration = 5 μM). The absorbance or the emission spectra at a certain 

wavelength (noted for each compound above) was plotted against the wavelength 

using OriginPro 9.1. 
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Reduction kinetics in DMSO: 

UV-Vis: In a quartz cuvette and at 25 °C, tested compound (25 μL, 0.5 mM) was 

added to DMSO 2450 μL. The reducing agent (25 μL) GSH (3.0 mM), DTT (1.5 

mM) or TCEP (1.5 mM) was added with stirred for 30 seconds. A baseline 

absorbance was measured on 2475 μL DMSO and 25 μL of the reducing agent, and 

spectra were collected at 1 minute intervals over a period of 15 minutes. After 15 

minutes, there was no significant change in the absorbance intensity. Results are 

the average of at least two repeats. 

 

Fluorescence: DMSO (2490 μL) and tested compound (5 μL) were added to a 

disposable cuvette with stirring and at 25 °C. Reducing agent (5 μL) GSH (3.0 

mM), DTT (1.5 mM) or TCEP (1.5 mM) was added and stirred for 30 seconds and 

spectra was collected every minute for 30 minutes. Results are the average of at 

least three repeats. 

 

Reduction kinetics in liposomes: 

Unilamellar KCl (100 mM) vesicles, buffered with 10 mM HEPES at pH 7.0, were 

prepared as mentioned earlier in section S6.1, however, without addition of HPTS 

probes. The and UV-Vis and fluorescence properties of receptors 5.2 and 5.3 were 

exploited to monitor the reduction kinetics of complexes 5.13, 5.14, 5.16 and 5.17. 

It was noted that both transporters 5.2 and 5.3 retained their UV-Vis properties and 

had the same λmax as in organic solvent experiment (DMSO, S7.1). Transporter 5.2 

retained its fluorescence nature in the KCl-liposomes, while transporter 5.3 

fluorescence diminished, when it was added to liposomes. Thus reduction kinetics 

of complexes 5.13 and 5.16 was monitored by UV-Vis and fluoresence, while 
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reduction complexes 5.14 and 5.17 to the free anion transporter 5.3 could be only 

monitored by UV-Vis.  

 

UV-Vis: In a quartz cuvette and at 25 °C, tested compound (25 μL, 0.5 mM) was 

added to 2450 μL of the liposomal suspension. The reducing agent (25 μL) GSH 

(3.0 mM), DTT (1.5 mM) or TCEP (1.5 mM) was added with stirred for 30 seconds. 

A baseline absorbance was measured on 2450 μL liposomal suspension 25 μL of 

reducing agent, and 25 μL DMSO. Spectra were collected at 5 minutes intervals 

over a period of 3-4 h. Results are the average of at least two repeats. 

 

Fluorescence: Fluorescence spectra were recorded on excitation wavelength 285 

nm and emission wavelengths 300-500 (λex = 285 nm, λem = 300-500 nm). 

Liposomal suspension (2490 μL) and tested compound (5 μL) were added to a 

standard disposable cuvette with stirring and at 25 °C. Reducing agent (5 μL) GSH 

(3.0 mM), DTT (1.5 mM) or TCEP (1.5 mM) was added and stirred for 30 seconds 

and spectra was collected every minute for 1.5-3.0 h. Results are the average of at 

least three repeats.  

 

Reduction kinetics in encapsulated GSH Liposomes: 

Assuming the fraction of the interior volume of 200 nm unilammelar vesicles was 

0.059%, two different 10 mM (final concentration in 2.5 mL  = 6 μM) and 50 mM 

(final concentration in 2.5 mL = 30 μM) GSH encapsulated KCl liposomes, 

buffered with 10 mM HEPES at pH 7.0, were made. A chloroform solution of 

POPC (~ 30 mg/mL) was evaporated under vacuum and dried for at least 6 h. The 

thin film was hydrated by the internal solution containing GSH (10 mM or 50 mM) 
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and was subjected to nine freeze-thaw cycles followed by extrusion 25 times 

through a 200 nm polycarbonate membrane. Size exclusion chromatography using 

sephadex G-25 column and HPTS-free external solution as an eluent was conducted 

to remove unentrapped GSH from the vesicles` solution.  

The internal and external solutions used were KCl (100 mM) buffered with 10 mM 

HEPES at pH 7.0. Finally, for each measurement, external solution (KCl) was used 

to dilute the lipid stock to obtain 2.5 mL lipid suspension containing 0.1 mM lipid. 

A base pulse of KOH (25 μL, 0.5 M) at a final concentration 5 mM was added to 

generate a transmembrane pH gradient. After the tested receptors were added, 

compound 5.2 fluorescence spectra of excitation = 285 nm and emission = 300-500 

nm were recorded. Compound 5.3 and its complexes 5.14 and 5.17 were excluded 

as receptor 5.3 fluorescence properties diminished fluorescence in liposomal 

solution.  

UV-Vis and fluorescence reduction kinetic experiments were used as in the 

previous section where 50 mM GSH encapsulated vesicles used in UV-Vis study 

and 10 mM GSH encapsulated vesicles used in fluorescence studies, 

correseponding to 1:6 compound:GSH in each case. 

 

5.4.6 Transport studies upon reduction of complexes 5.13, 5.14 5.16 and 5.17 

Base-pulse 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) assays 

were conducted using unilamellar 1-palmitoyl-2-oleoylphosphatidylcholine 

vesicles (POPC) with a mean diameter of 200 nm loaded with the pH sensitive 

fluorescence dye HPTS (1 mM).51-53 A chloroform solution of POPC (~ 30 mg/mL) 

was evaporated under vacuum and dried for at least 6 h. The thin film was hydrated 
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by the internal solution containing HPTS (1 mM) and was was subjected to nine 

freeze-thaw cycles followed by extrusion 25 times through a 200 nm polycarbonate 

membrane. Size exclusion chromatography using sephadex G-25 column and 

HPTS-free external solution as an eluent was conducted to remove unentrapped 

HPTS from the vesicles` solution. The internal and external solutions used were 

identical salt solution potassium gluconate (KGlu) or KCl (100 mM) buffered with 

10 mM HEPES at pH 7.0. Finally, for each measurement, external solution (KCl or 

KGlu) was used to dilute the lipid stock to obtain 2 mL lipid suspension containing 

0.1 mM lipid. A base pulse of KOH (25 μL, 0.5 M) at a final concentration 5 mM 

was added to generate a transmembrane pH gradient. After the tested receptors were 

added, HPTS fluorescence ratio (λex = 460 nm, λem = 510 nm divided by λex = 403 

nm, λem = 510 nm) was recorded. Assisting ionophore (carbonyl cyanide 

phenylhydrazone (CCCP) or valinomycin) was used as a 5 μL DMSO. Bovine 

serum albumins (BSA) was added to vesicles at 1 mol% (with respect to lipid) and 

allowed to stir for 30 minutes to test if the transport is fatty acid independent, while, 

oleic acid (1 mol% and 10 mol%) was used as a source of fatty acid to test if the 

transport is fatty acid dependent. Detergent (25 μL) was added at 200 seconds to 

destroy the pH gradient to calibrate the assay.  

5.5 References: 

1. Hennig, A.; Gabriel, G. J.; Tew, G. N.; Matile, S. Stimuli-responsive polyguanidino-

oxanorbornene membrane transporters as multicomponent sensors in complex matrices. J. Am. 

Chem. Soc. 2008, 130, 10338-10344. 

2. Vlatkovic, M.; Collins, B. S.; Feringa, B. L. Dynamic responsive systems for catalytic 

function. Chemistry 2016, 22, 17080-17111. 

3. Zhou, R.; Zhu, S.; Gong, L.; Fu, Y.; Gu, Z.; Zhao, Y. Recent advances of stimuli-

responsive systems based on transition metal dichalcogenides for smart cancer therapy. J. Mater. 

Chem. B 2019, 7, 2588-2607. 

4. Wezenberg, S. J.; Feringa, B. L. Supramolecularly directed rotary motion in a 

photoresponsive receptor. Nat. commun. 2018, 9, 1-7. 

5. Rao, N. V.; Ko, H.; Lee, J.; Park, J. H. Recent progress and advances in stimuli-

responsive polymers for cancer therapy. Front. Bioeng. Biotechnol. 2018, 6, 1-15. 



Switchable anion transporters Chapter 5 

 

144 

 

6. Lee, S.; Flood, A. H. Photoresponsive receptors for binding and releasing anions. J. Phys. 

Org. Chem. 2013, 26, 79-86. 

7. Howe, E. N.; Busschaert, N.; Wu, X.; Berry, S. N.; Ho, J.; Light, M. E.; Czech, D. D.; 

Klein, H. A.; Kitchen, J. A.; Gale, P. A. Ph-regulated nonelectrogenic anion transport by 

phenylthiosemicarbazones. J. Am. Chem. Soc. 2016, 138, 8301-8308. 

8. Vlatkovic, M.; Feringa, B. L.; Wezenberg, S. J. Dynamic inversion of stereoselective 

phosphate binding to a bisurea receptor controlled by light and heat. Angew. Chem. Int. Ed. Engl. 

2016, 55, 1001-1004. 

9. McNaughton, D. A.; Fu, X.; Lewis, W.; D’Alessandro, D. M.; Gale, P. A. Hydroquinone-

based anion receptors for redox-switchable chloride binding. Chemistry 2019, 1, 80-88. 

10. Saha, A.; Akhtar, N.; Kumar, V.; Kumar, S.; Srivastava, H. K.; Kumar, S.; Manna, D. 

Ph-regulated anion transport activities of bis(iminourea) derivatives across the cell and vesicle 

membrane. Org. Biomol. Chem. 2019, 17, 5779-5788. 

11. Evans, N. H.; Beer, P. D. Advances in anion supramolecular chemistry: From recognition 

to chemical applications. Angew. Chem. Int. Ed. Engl. 2014, 53, 11716-11754. 

12. Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A. Applications of 

supramolecular anion recognition. Chem. Rev. 2015, 115, 8038-8155. 

13. Busschaert, N.; Park, S. H.; Baek, K. H.; Choi, Y. P.; Park, J.; Howe, E. N. W.; Hiscock, 

J. R.; Karagiannidis, L. E.; Marques, I.; Felix, V.; Namkung, W.; Sessler, J. L.; Gale, P. A.; Shin, 

I. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular 

chloride concentrations. Nat. Chem. 2017, 9, 667-675. 

14. Gadsby, D. C. Ion channels versus ion pumps: The principal difference, in principle. Nat. 

Rev. Mol. Cell. Biol. 2009, 10, 344-352. 

15. Ashcroft, F. M. Ion channels and disease. Academic press: Massachusetts, United States, 

1999. 

16. Li, H.; Valkenier, H.; Judd, L. W.; Brotherhood, P. R.; Hussain, S.; Cooper, J. A.; Jurcek, 

O.; Sparkes, H. A.; Sheppard, D. N.; Davis, A. P. Efficient, non-toxic anion transport by synthetic 

carriers in cells and epithelia. Nat. Chem. 2016, 8, 24-32. 

17. Verkman, A. S.; Galietta, L. J. Chloride channels as drug targets. Nat. Rev. Drug Discov. 

2009, 8, 153-171. 

18. Van Rossom, W.; Asby, D. J.; Tavassoli, A.; Gale, P. A. Perenosins: A new class of anion 

transporter with anti-cancer activity. Org. Biomol. Chem. 2016, 14, 2645-2650. 

19. Rodilla, A. M.; Korrodi-Gregorio, L.; Hernando, E.; Manuel-Manresa, P.; Quesada, R.; 

Perez-Tomas, R.; Soto-Cerrato, V. Synthetic tambjamine analogues induce mitochondrial swelling 

and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer. 

Biochem. Pharmacol. 2017, 126, 23-33. 

20. Soto-Cerrato, V.; Manuel-Manresa, P.; Hernando, E.; Calabuig-Farinas, S.; Martinez-

Romero, A.; Fernandez-Duenas, V.; Sahlholm, K.; Knopfel, T.; Garcia-Valverde, M.; Rodilla, A. 

M.; Jantus-Lewintre, E.; Farras, R.; Ciruela, F.; Perez-Tomas, R.; Quesada, R. Facilitated anion 

transport induces hyperpolarization of the cell membrane that triggers differentiation and cell death 

in cancer stem cells. J. Am. Chem. Soc. 2015, 137, 15892-15898. 

21. Park, S.-H.; Park, S.-H.; Howe, E. N.; Hyun, J. Y.; Chen, L.-J.; Hwang, I.; Vargas-

Zuñiga, G.; Busschaert, N.; Gale, P. A.; Sessler, J. L. Determinants of ion-transporter cancer cell 

death. Chem 2019, 5, 2079-2098. 

22. Forman, H. J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, 

measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1-12. 

23. Wu, G.; Fang, Y. Z.; Yang, S.; Lupton, J. R.; Turner, N. D. Glutathione metabolism and 

its implications for health. J. Nutr. 2004, 134, 489-492. 

24. Hegedus, C.; Kovacs, K.; Polgar, Z.; Regdon, Z.; Szabo, E.; Robaszkiewicz, A.; Forman, 

H. J.; Martner, A.; Virag, L. Redox control of cancer cell destruction. Redox Biol. 2018, 16, 59-74. 

25. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. 

Nature Mater. 2013, 12, 991-1003. 

26. Meng, F.; Hennink, W. E.; Zhong, Z. Reduction-sensitive polymers and bioconjugates 

for biomedical applications. Biomaterials 2009, 30, 2180-2198. 

27. Li, R.; Xie, Y. Nanodrug delivery systems for targeting the endogenous tumor 

microenvironment and simultaneously overcoming multidrug resistance properties. J. Control. 

Release 2017, 251, 49-67. 

28. Chan, N.; Khorsand, B.; Aleksanian, S.; Oh, J. K. A dual location stimuli-responsive 

degradation strategy of block copolymer nanocarriers for accelerated release. Chem. Commun. 

2013, 49, 7534-7536. 



Chapter 5 Switchable anion transporters 

 

145 

 

29. Jia, L.; Cui, D.; Bignon, J.; Di Cicco, A.; Wdzieczak-Bakala, J.; Liu, J.; Li, M. H. 

Reduction-responsive cholesterol-based block copolymer vesicles for drug delivery. 

Biomacromolecules 2014, 15, 2206-2217. 

30. Li, Y.; Wu, Y.; Chen, J.; Wan, J.; Xiao, C.; Guan, J.; Song, X.; Li, S.; Zhang, M.; Cui, 

H. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and 

chemo-photothermal combination therapy. Nano Lett. 2019, 19, 5806-5817. 

31. Sharma, A.; Lee, M.-G.; Won, M.; Koo, S.; Arambula, J. F.; Sessler, J. L.; Chi, S.-G.; 

Kim, J. S. Targeting heterogeneous tumors using a multifunctional molecular prodrug. J. Am. 

Chem. Soc. 2019, 141, 15611-15618. 

32. Hickey, J. L.; Ruhayel, R. A.; Barnard, P. J.; Baker, M. V.; Berners-Price, S. J.; 

Filipovska, A. Mitochondria-targeted chemotherapeutics: The rational design of gold(I) N-

heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols 

in preference to thiols. J. Am. Chem. Soc. 2008, 130, 12570-12571. 

33. Akhtar, N.; Pradhan, N.; Saha, A.; Kumar, V.; Biswas, O.; Dey, S.; Shah, M.; Kumar, S.; 

Manna, D. Tuning the solubility of the ionophores: Glutathione-mediated transport of chloride ion 

across the membranes. Chem. Commun. 2019, 55, 8482-8485. 

34. Gao, L.; Kim, K. J.; Yankaskas, J. R.; Forman, H. J. Abnormal glutathione transport in 

cystic fibrosis airway epithelia. Am. J. Physiol. 1999, 277, L113-118. 

35. Montoya, C.; Cervantes, R.; Tiburcio, J. Neutral bis(benzimidazole) λ-shaped anion 

receptor. Tetrahedron Lett. 2015, 56, 6177-6182. 

36. Peng, C. C.; Zhang, M. J.; Sun, X. X.; Cai, X. J.; Chen, Y.; Chen, W. H. Highly efficient 

anion transport mediated by 1,3-bis(benzimidazol-2-yl)benzene derivatives bearing electron-

withdrawing substituents. Org. Biomol. Chem. 2016, 14, 8232-8236. 

37. Yu, X. H.; Hong, X. Q.; Chen, W. H. Fluorinated bisbenzimidazoles: A new class of 

drug-like anion transporters with chloride-mediated, cell apoptosis-inducing activity. Org. Biomol. 

Chem. 2019, 17, 1558-1571. 

38. Zou, T.; Lum, C. T.; Chui, S. S.; Che, C. M. Gold(III) complexes containing n-

heterocyclic carbene ligands: Thiol "switch-on" fluorescent probes and anti-cancer agents. Angew. 

Chem. Int. Ed. Engl. 2013, 52, 2930-2933. 

39. Addison, A. W.; Burke, P. J. Synthesis of some imidazole‐and pyrazole‐derived chelating 

agents. J. Heterocycl. Chem. 1981, 18, 803-805. 

40. Li, G.; Huang, J.; Zhang, M.; Zhou, Y.; Zhang, D.; Wu, Z.; Wang, S.; Weng, X.; Zhou, 

X.; Yang, G. Bis(benzimidazole)pyridine derivative as a new class of g-quadruplex inducing and 

stabilizing ligand. Chem. Commun. 2008, 4564-4566. 

41. Goeker, H.; Alp, M.; Ateş‐Alagöz, Z.; Yıldız, S. Synthesis and potent antifungal activity 

against candida species of some novel 1h‐benzimidazoles. J. Heterocycl. Chem. 2009, 46, 936-948. 

42. Wu, X.; Howe, E. N. W.; Gale, P. A. Supramolecular transmembrane anion transport: 

New assays and insights. Acc. Chem. Res. 2018, 51, 1870-1879. 

43. Howe, E. N. W.; Gale, P. A. Fatty acid fueled transmembrane chloride transport. J. Am. 

Chem. Soc. 2019, 141, 10654-10660. 

44. Milano, D.; Benedetti, B.; Boccalon, M.; Brugnara, A.; Iengo, E.; Tecilla, P. Anion 

transport across phospholipid membranes mediated by a diphosphine-pd(II) complex. Chem. 

Commun. 2014, 50, 9157-9160. 

45. Parnham, E. R.; Morris, R. E. 1-alkyl-3-methyl imidazolium bromide ionic liquids in the 

ionothermal synthesis of aluminium phosphate molecular sieves. Chem. Mater. 2006, 18, 4882-

4887. 

46. Wang, H. M.; Chen, C. Y.; Lin, I. J. Synthesis, structure, and spectroscopic properties of 

gold (I)−carbene complexes. Organometallics 1999, 18, 1216-1223. 

47. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A.; Puschmann, H. The 

anatomy of a comprehensive constrained, restrained refinement program for the modern computing 

environment–olex2 dissected. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 59-75. 

48. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. Olex2: A 

complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-

341. 

49. Sheldrick, G. M. A short history of shelx. Acta Crystallogr. Sect. A: Found. Crystallogr. 

2008, 64, 112-122. 

50. Wu, X.; Wang, P.; Turner, P.; Lewis, W.; Catal, O.; Thomas, D. S.; Gale, P. A. Tetraurea 

macrocycles: Aggregation-driven binding of chloride in aqueous solutions. Chem 2019, 5, 1210-

1222. 

51. Berry, S. N.; Soto-Cerrato, V.; Howe, E. N.; Clarke, H. J.; Mistry, I.; Tavassoli, A.; 



Switchable anion transporters Chapter 5 

 

146 

 

Chang, Y.-T.; Pérez-Tomás, R.; Gale, P. A. Fluorescent transmembrane anion transporters: 

Shedding light on anionophoric activity in cells. Chem. Sci. 2016, 7, 5069-5077. 

52. Jowett, L. A.; Howe, E. N.; Wu, X.; Busschaert, N.; Gale, P. A. New insights into the 

anion transport selectivity and mechanism of tren‐based tris‐(thio)ureas. Chem. Eur. J. 2018, 24, 

10475-10487. 

53. Wu, X.; Judd, L. W.; Howe, E. N.; Withecombe, A. M.; Soto-Cerrato, V.; Li, H.; 

Busschaert, N.; Valkenier, H.; Pérez-Tomás, R.; Sheppard, D. N. Nonprotonophoric electrogenic 

Cl− transport mediated by valinomycin-like carriers. Chem 2016, 1, 127-146. 

 

 

 



 

 

 

 

 

 

 

 

 

Chapter 7: 

Carbonic anhydrase inhibitors 

 



 

172 

 

FOREWORD TO CHAPTER 7  

This chapter is accepted in the J Med Chem (doi: 10.1021/acs.jmedchem.9b02090, 

impact factor 6.054). This paper describes the design and synthesis of three dual-

tailed sulfonamide series as potent carbonic anhydrase inhibitors. All compounds 

were evaluated for inhibitory action against pharmacologically relevant human (h) 

CAs isoforms I, II, IV, and VII and showed a significant selectivity to CA II, which 

is implicated in glaucoma. X-ray crystallographic analysis of three compounds 

bound to CA II showed the validity of the adopted drug design strategy as specific 

moieties within in the ligand structure interacted directly with the hydrophobic and 

hydrophilic halves of the CA II active site. Four compounds were evaluated for 

their intraocular pressure (IOP) lowering effects in a rabbit model of the glaucoma 

and two of them showed significant efficacy when compared to the clinically used 

drug dorzolamide. Supporting information to this chapter can be found in Appendix 

F (p. 343).  
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7.1 Introduction 

 

Glaucoma is an optic neuropathy disease that affects more than 64 million people 

worldwide and is implicated with 5 million instances of blindness which accounts 

for 12% of blindness, globally.1, 2 Despite profound advances in the area, the 

understanding of the primary causes of glaucoma is still not complete.1 Glaucoma 

is categorized into two major classes according to the anatomic configuration of the 

aqueous humor, namely open angle glaucoma (OAG), which is prevalent in Europe 

and Africa and angle-closure glaucoma (CAG), which mainly affects Asian 

countries.2 Risk factors of OAG are age-related and are associated with high intra 

ocular pressure (IOP) and thin central cornea.3 

Current approaches used in the clinic to manage OAG mainly include IOP lowering 

drugs and surgery. There are fundamentally five drug classes used to lower IOP, 

namely, carbonic anhydrase inhibitors, cholinomimetics, sympathomimetic, β-

blockers and prostaglandin analogues.4 Limitations in determining IOP reduction 

in vitro make common drug discovery approaches such as cell-based assay or high 

throughput screening not useful to assess the drop in IOP.1 Whilst some promising 

candidates are under clinical trials as anti-glaucoma agents, the development of 

new, safe and effective glaucoma drugs is in high demand.1  

Carbonic anhydrases (CA, EC 4.2.1.1) constitute a superfamily of ubiquitous 

metalloenzymes which principally act as catalysts in the CO2 hydration reaction. 

The 15 isoforms identified in human belong to the α-class of the 8 genetically 

diverse families of CA discovered to date (α-, β-, γ-, δ-, ζ-, η-, θ- and ι-CAs). These 

15 isozymes differ in multiple factors including catalytic activity, structural fold, 
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tissue and subcellular localization and response to different kinds of modulators.5-

10 Abnormal expression of hCAs isoforms such as II and IV were detected in 

glaucoma.7, 10, 11 

Great effort has been made in the design and synthesis of selective CA inhibitors 

(CAI) with anti-glaucoma activity. Primary sulfonamides such as acetazolamide 

(7.1, AAZ) (Figure 7.1) have been clinically used for almost 70 years as systemic 

anti-glaucoma agents despite a range of side effects due to the lack of enzymatic 

selectivity.9 The second generation antiglaucoma drugs, such as dorzolamide (7.2, 

DRZ) and brinzolamide (7.1, BRZ) (Figure 7.1), act topically thus leading to a 

significant side effects reduction.12 They contain an amino group which can be 

converted to a HCl salt, conferring better water solubility. 

 

Figure 7.1: Structures of clinically used CAIs and other inhibitors derived from 

sulfanilamide (SA). 
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The design and development of selective CAI is challenging. Many strategies have 

been adopted including the widely used ring and tail approaches.12-14 CA inhibitors 

such as AAZ (7.1), DRZ (7.2) and BRZ (7.3) are examples of the ring approach, 

in which a primary sulfonamide group is attached to varied types of main aromatic 

rings (Figure 7.1).12 In the tail approach, a variety of molecular tails are attached to 

the scaffold bearing the zinc binding group to confer better physicochemical 

properties, such as increased water solubility, or to tune the inhibition profiles 

against the target CAs by interaction with the most diverse section of the CA active 

site, the medium-outer portion.16-19 Sulfanilamide (7.4, Figure 7.1), clinically used 

as an antibacterial, has been the lead CA inhibitor in many drug-design strategies 

whereby a variety of tail functionalities were used, such as tosylureido (ts-SA, 7.5), 

cyanoamide (CA-SA, 7.7), or dual-tailed arylsulfone (SO-SA, 7.6) (Figure 7.1).15,16 

7.2 Results and discussion 

7.2.1 Drug design and chemistry 

 

In the current study, a new class of 3-oxo-N-(4-sulfamoylphenyl)butanamides was 

proposed based on the dual tail approach (Figure 7.2). Considering the 

benzenesulfonamide as zinc-binding motif (orange in Figure 7.2), aryl groups were 

included in the derivatives tails to interact with the CA hydrophobic region (red in 

Figure 7.2), whereas H-bonds acceptor moieties were included for the interactions 

with Gln and Asn residues present in the hydrophilic half of the active site (blue in 

Figure 7.2).  

The synthesized compounds were thus investigated for their inhibitory effect 

against the cytosolic isoforms hCA I, II and VII and the transmembrane hCA IV. 

The best inhibitors in terms of potency and selectivity against the CAs implicated 
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in glaucoma were assessed in vivo for their IOP lowering action using DRZ as a 

standard. Evidence for the mode of binding of these dual tailed sulfonamides to 

hCA II was achieved at the molecular level by X-ray crystallographic analysis with 

three of the most potent CA II inhibitors. 

 

 

 
Figure 7.2: Design of dual-tailed sulfonamides targeting hCAs. The molecular surface of 

hydrophobic and hydrophilic halves of the CA active site are coloured in red and blue, 

respectively. The Zn(II) ion is represented as an orange sphere (pdb 1CA2). 

 

The key intermediate 7.9 was synthesized by reacting sulfanilamide 7.4 with ethyl 

acetoacetate 7.8 (Scheme 7.1).17 Knoevenagel condensation of acetoacetanilide 7.9 

with the aldehydes in the presence of catalytic piperidine and acetic acid afforded 

7.10-7.16 derivatives in yields of 30-62% (Scheme 7.1).  
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Scheme 7.1: Reagents and conditions: a) neat reaction, reflux, 15 min; b) MS 4 Å, 

piperidine, acetic acid, ethanol, RT, 8 h; c) NaNO2/HCl, 0 °C; d) sodium acetate trihydrate, 

ethanol, 0 °C; e) SO2Cl2, 0 °C, 1 h then RT for 4 h. 

 

In a typical example, analysis of the 1H NMR and 13C NMR spectra of 7.13 revealed 

the disappearance of the resonances at 3.60 ppm and 52.8 ppm, respectively, 

assigned to the methylene group in 7.9, indicating the formation of arylidene 7.13. 

The 1H NMR spectrum showed two singlets at 2.37 and 3.70 ppm, assigned to CH3 

and OCH3, respectively. The arylidene H was assigned to the singlet at δ 7.61. The 

protons ortho to the methoxy group in the aryl substituent were assigned the 

resonance at 6.83 ppm, while the protons meta to the methoxy group were assigned 

to the resonance at 7.49 ppm. The p-sulfamoyl aryl substituents were assigned to 

the two doublets at 7.70 ppm (meta to the sulfamoyl group) and 7.77 ppm (ortho to 
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the sulfamoyl group). The halogenated derivative 7.25 was synthesized by 

chlorination of the key intermediate 7.9 using sulfuryl chloride (Scheme 7.1).18 

Access to derivatives of the type 7.17-7.24 and 7.26-7.30 was accomplished via 

classic Japp-Klingemann coupling reaction of 3-oxo-N-(4-

sulfamoylphenyl)butanamide 7.9 and 2-chloro-3-oxo-N-(4-

sulfamoylphenyl)butanamide 7.25, respectively with diazonium salts in the 

presence of sodium acetate trihydrate and ethanol (Scheme 7.1).19 Analysis of the 

1H NMR spectra of 7.17-7.24 and 7.26-7.30 showed the disappearance of the 

resonances at ~3.60 and 5.42 ppm assigned to the methylene and methane in 7.9, 

respectively. It should be mentioned that derivatives 7.26-7.30 may react non-

specifically with nucleophiles present in biomolecules due to the presence of an 

activated chlorine atom, although we did not see this behavior with CAs. 

 

7.2.2 Carbonic anhydrase inhibition 

Compounds 7.9, 7.10-7.16, 7.17-7.24 and 7.26-7.30 were evaluated for their 

inhibition against the cytosolic CA I, II and VII and the membrane-bound CA IV 

using a stopped-flow CO2 hydrase assay method.20 The clinically used 

acetazolamide (7.1, AAZ) was used as the standard in the kinetic evaluation.  

The ubiquitous CA I was inhibited efficiently by compounds 7.9 and 7.10-7.16 with 

inhibition constants (Ki values) spanning a narrow range between 7.3 and 75.5 nM 

with the 2-chlorophenyl derivative 7.12 showing the best activity with a Ki value 

of 7.3 nM against CA I. An inhibition decline was observed for compounds of 

subset 7.17-7.24 and 7.26-7.30, with the exception of 7.17, 7.24, 7.28 and 7.30 

whose Ki values spanned the range 44.1-86.1 nM (Table 7.1).  
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Table 7.1: Inhibition data of compounds 7.9, 7.10-7.16, 7.17-7.24 and 7.26-7.30 

against isoforms hCA I, II, IV and VII by a stopped-flow CO2 hydrase assay.20 

 

 

In contrast, the other derivatives of the two subsets showed inhibition of CA I in 

the high nanomolar to low micromolar range (227.1-2669 nM) up to no inhibition 

observed below 10 μM for 7.20. Thus, incorporation of halo-substituted phenyl 

moieties in the scaffolds 7.17-7.24 and 7.26-7.30 produced a detrimental effect on 

the inhibition of CA I. 

 
 

 

 

 
 

Cmp R Ar Ki (nM)a 
CA I CA II CA IV CA VII 

7.9 H - 69.2±5.5 39.5±1.7 885.3±41 273.1±15 
7.10 - C6H5 68.7±3.9 4.4±0.16 957.5±53 44.4±1.9 

7.11 - 4-ClC6H4 41.1±1.8 0.61±0.02 145.0±7.0 4.3±0.14 

7.12 - 2-ClC6H4 7.3±0.61 0.36±0.03 382.8±19 2.9±0.09 

7.13 - 4-OCH3C6H4 15.3±1.2 0.45±0.02 608.5±26 3.1±0.12 

7.14 - 3-NO2C6H4 75.5±5.0 6.9±0.11 387.0±24 46.3±3.0 

7.15 - 2-Cl-4-F-C6H4 52.7±3.9 5.6±0.25 222.5±15 23.5±1.6 

7.16 - 2-thienyl 49.1±4.8 2.9±0.10 810.4±63 5.3±0.24 

7.17 COCH3 C6H5 82.2±6.4 4.3±.31 >10000 647.0±33 

7.18 COCH3 4-FC6H4 2669±231 8.1±0.65 >10000 3323±159 

7.19 COCH3 4-ClC6H4 2642±114 5.2±0.20 >10000 1690±73 

7.20 COCH3 4-BrC6H4 >10000 370.5±16 >10000 >10000 

7.21 COCH3 4-CNC6H4 512.9±38 52.2±1.4 >10000 761.5±54 

7.22 COCH3 4-OCH3C6H4 703.7±49 273.1±13 >10000 3589.4±23

8 7.23 COCH3 3-NO2C6H4 750.6±62 71.4±3.9 >10000 792.4±55 

7.24 COCH3 3,4-diOCH3C6H3 59.3±2.8 5.0±0.14 1477±96 4.4±0.31 

7.26 Cl C6H5 227.1±11.6 40.6±2.1 7364±124 68.1±4.5 

7.27 Cl 4-FC6H4 295.6±14.5 34.8±1.1 7380±210 46.6±3.0 

7.28 Cl 4-ClC6H4 44.1±2.3 3.0±0.24 906.5±64 6.1±0.52 

7.29 Cl 4-BrC6H4 925.7±57 262.1±17 >10000 1034.1±76 

7.30 Cl 4-OCH3C6H3 86.1±3.3 21.1±0.93 6415.6±320 55.2±3.1 

AAZ - 250±13 25.0±1.1 74.0±4.1 2.5±0.14 

DRZ - >50000 9±0.51 8500±245 3.5±0.13 

BRZ - 730±24 3±0.12 3950±341 2.8±0.11 
a Mean ± SD, from three replicates, by a stopped flow technique. 
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The target CA II was potently inhibited by compounds 7.10-7.16 with low to sub 

nanomolar Ki values (0.36-6.9 nM) whereas 7.9 showed a Ki of 39.5 nM. Of note 

is the subnanomolar CA II inhibition by 7.11-7.13, significantly lower than that of 

AAZ (7.1), which endow them with significant potential for the treatment of a 

wealth of diseases implicating CA II abnormal levels or activities. More complex 

SAR were instead produced with the inhibition data against CA II of compounds 

from subsets 7.17-7.24 and 7.26-7.30. While the absence of, or presence of specific 

substituents certain substituents (e.g. o-chloro, p-chloro or p-methoxy) on the outer 

phenyl ring enabled the compounds to hold a low nanomolar efficacy (Ki values in 

the range 3.0-8.1 nM for 7.17-7.19, 7.24 and 7.28), some others led to a drop of 

inhibition effectiveness culminating with Ki values of 370.5 and 262.1 nM arising 

from the incorporation of a para-bromo substituent in the 7.17-7.24 and 7.26-7.30 

scaffolds. 

The membrane bound CA IV was the least inhibited isoform here screened by 

compounds 7.9, 7.10-7.16, 7.17-7.24 and 7.26-7.30. Whereas compounds 7.9 and 

7.10-7.16 retained a submicromolar inhibition with Ki values spanning 145.0 - 

885.3 nM, derivatives from subsets 7.17-7.24 and 7.26-7.30 reported some 

micromolar Ki values against CA IV (0.91-7.38 μM), but mostly did not produced 

inhibition below 10 μM (7.17-7.22, 7.29). 

The cytosolic isoform CA VII, generally defined as a brain-associated isozyme, 

was efficiently inhibited by compounds 7.10-7.16, though by an order of magnitude 

lower than CA II with Ki values spanning 2.9 - 46.6 nM, with 7.11-7.13 being again 

the most potent inhibitors (Ki values of 4.3, 2.9 and 3.1 nM, respectively). Again, a 

drop-in inhibition was observed with compounds from subset 7.17-7.24, where Ki 

values were in the range 647.0 - >10000 nM, with the exception of the 3,4-
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dimethoxyphenyl derivative 7.24, which held 4.4 nM Ki. In contrast, most 

compounds bearing a chloro substituent in place of the acetyl group from subset 

7.26-7.30 showed an effective CA VII inhibition in the range 6.1-68.1 nM, except 

7.29, the p-Br-phenyl derivative, that displayed a Ki of 1034.1 nM. 

 

7.2.3 Protein X-ray crystallography 

To gain insights into the ligand-target interactions driving such intense hCA II 

inhibition, the X-ray co-crystallographic analysis of the adducts of hCA II with 

7.10, 7.13 and 7.16 was achieved at resolutions of 1.67, 1.32 and 1.48 Å, 

respectively (Figure 7.3). The sulfonamide coordination to the Zn(II) is present in 

all adducts, as well as the two H-bond networks involving the SO2NH- group and 

Thr199. The phenyl ring bearing the sulfonamide moiety of 7.11, 7.13 and 7.16 

forms hydrophobic interactions with Val121, Val143 and Leu198. As originally 

designed, the carbonyl group of the amide and acetyl moieties are oriented towards 

the hydrophilic half of the hCA II active site where they establish H-bond networks. 

In detail, the amidic oxo group of 7.11, 7.13 and 7.16 H-bonded to the Gln92 side 

chain NH2. In contrast, the oxo-acetyl group of 7.11 and 7.16 are directly H-bonded 

to the Asn67 side chain NH2 and by a water-bridge with Asn62, whereas the hCA 

II/7.13 adduct possesses a sole water-bridged H-bond between the acetyl group and 

Asn67. The outer aromatic ring of 7.11, 7.13 and 7.16 were bound within the 

hydrophobic pocket of the hCA II active site by π-alkyl interactions with Leu198, 

Pro202, Leu204, Val135 and Phe131, as hypothesized in the drug design phase. 
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7.2.4 Anti-glaucoma activity (IOP lowering activity) 

The IOP lowering properties of the most potent CA II inhibitors, 7.11-7.13 and 

7.16, were assessed in a rabbit model of glaucoma (Figure 7.4). DZA hydrochloride 

1% was used as the standard, and control experiments utilised the vehicle (0.9% 

NaCl + 0.1% DMSO + 0.1% EtOH). A 1% solution of the compounds were 

administered as eye drops to rabbits with high IOP, induced by the injection of 0.05 

mL of hypertonic saline solution (5% NaCl in distilled water) into the vitreous of 

Figure 7.3:  Active site view of the hCA II adduct with A) 7.10 (pdb 6UFB), B) 

7.13 (pdb 6UFC) and C) 7.16 (pdb 6UFD). Hydrogen bonds are represented as black 

dashed lines. 
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both eyes. At 60 min post-instillation compounds 7.11 and 7.13 decreased IOP by 

9.0 and 10.0 mmHg, while the standard DRZ was less effective with an IOP 

reduction of 8.5 mmHg (Figure 7.4). In contrast, 7.12 and 7.16 produced an IOP 

reduction of 6.4 and 7.5 mmHg, respectively. At the 120 min mark after the 

administration, 7.11 and 7.13 triggered an even more marked IOP drop to 12.8 and 

12.3 mmHg. DRZ retained a comparable action, with the IOP reduction settling at 

9.0 mmHg. Derivative 7.16 showed an enhanced efficacy after 120 min post-

instillation, with a reduction of 8.9 mmHg, compared to DRZ. In contrast, 7.12 

reported a rapid reduction of efficacy (only 3.6 mmHg reduction) 120 min after 

post-administration. Oddly, 7.12 uniquely protracted its action after 240 min post-

instillation at 2.0 mmHg, whereas the IOP lowering activity of 7.11 and 7.13 settled 

at 1.3 and 1.5 mmHg, respectively. 

 

Figure 7.4. Drop of intraocular pressure (ΔIOP, mmHg) versus time (min) in hypertonic 

saline-induced ocular hypertension in rabbits, treated with 50 μL of 1% solution of 

compounds 7.11-7.13 and 7.16 and DRZ as the standard. Data are analyzed with 2way 

Anova followed by Bonferroni multiple comparison test. * p<0.05 7.11, 7.16, DRZ vs 

vehicle at 60' and DRZ vs vehicle at 120'; ** p<0.01 7.13 and vs vehicle at 60' and 7.16 vs 

vehicle at 120'; **** p<0.001 7.11 and 7.13 vs vehicle at 120'. 
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7.3 Conclusions 

Three series of dual-tailed sulfonamide CA inhibitors 7.10-7.16, 7.17-7.24 and 

7.26-7.30 were designed, synthesized and evaluated for their inhibitory profiles 

against four carbonic anhydrase isoforms: hCA I, II, IV, and VII. The tested 

compounds showed selectivity to CA II and compounds 7.10-7.16 emerged as the 

most potent CA II inhibitors with low to sub nanomolar Ki values (0.36-6.9 nM). 

To further understand and rationalize the strong inhibitory profile of the compounds 

against CA II, X-ray crystallographic studies were performed which showed 

defined moieties within the ligand structures specifically interact with the 

hydrophobic and hydrophilic halves of the CA II active site. As CA II up-regulation 

is implicated with glaucoma, the most active CA II inhibitors 7.11-7.13 and 7.16 

(Ki values of 0.36-2.9 nM) were evaluated for their IOP lowering action against 

DRZ as the standard. Compound 7.16 showed a comparable IOP lowering effect 

to DRZ (IOP reduction = 8.5 mmHg), while compounds 7.11 and 7.13 were more 

potent than DRZ with IOP reduction of 12.8 and 12.3 mmHg, respectively. 

Therefore, this study presents compounds 7.11 and 7.13 as potential promising 

candidates for the development of therapeutic anti-glaucoma strategies.  

7.4 Experimental Protocol 

7.4.1 Chemistry 

 Melting points were measured with a Gallenkamp (Griffin) apparatus and are 

uncorrected. Reactions were monitored by TLC analysis using silica gel GF/UV 

254 and visualized with UV light. Flash chromatography was performed using 

Merck silica gel 60 (70–230 mesh) under positive air pressure. Infrared (IR) spectra 

were obtained on a Shimadzu IRAfinity-1 FTIR spectrometer. NMR spectra were 
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recorded on Bruker 400 and 500 MHz FT-NMR spectrometers. 1H spectra were run 

at 400 and 500 MHz, while 13C spectra were run at 100 and 125 MHz. Chemical 

shifts (δH) are reported relative to TMS as the internal standard and coupling 

constant (J) values are reported in Hertz. The abbreviations used are as follows: s, 

singlet; d, doublet; t, triplet; m, multiplet. All reagents and solvents were purified 

and dried by standard techniques. The purity of tested compounds was greater than 

95% as determined by HPLC analysis using a Shimadzu CLASS-VP LC10 

analytical HPLC system equipped with a Photo Diode Array Detector and 

autosampler (see Supporting Information). Low resolution mass spectrometry (MS) 

was performed on a Shimadzu LC-2010 Electrospray ionization (ESI) Mass 

Spectrometer. Samples were prepared using HPLC grade methanol. The principal 

ion peaks m/z values are reported with their relative intensities in parentheses. High 

resolution mass spectra (HRMS) were obtained using a Waters Quadrupole-Time 

of Flight (Q-Tof) mass spectrometer via ESI with Leucine-Enkephalin as internal 

standard. All compounds were screened for PAINS alerts using the SwissADME 

server (www.swissadme.ch). Derivatives 7.17-7.24 showed alerts due to imine 

functionality, however, these compounds are not the major lead outcomes from this 

study and are not taken further. The activity results can still be used in the context 

of SAR as an enzyme assay was used, and thus binding results are still valid. It 

should be noted that drugs developed in this area are for topical use, and not 

systemic use. 

 

3-Oxo-N-(4-sulfamoylphenyl)butanamide (7.9)17, 21 

Sulfanilamide 4 (3.44 g, 20 mmol) was added to a boiling ethyl acetoacetate 7.8 

(7.77 mL, 61 mmol) and the mixture was heated at reflux for 20 minutes. After 

http://www.swissadme.ch/
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cooling, HCl 10% (10 mL) was added and the mixture was stirred for 30 minutes, 

the solid material filtered out and crystalized from aqueous ethanol to give 7.9 (3.02 

g, 59%) as white crystals; m.p. 180 °C (Lit. 183-186 °C).22 The product contains 

about 10% of enol form as analysed by 1H NMR. 1H NMR (500 MHz, DMSO-d6) 

δ: 2.21 (s, 3H, CH3), 3.60 (s, 2H, CH2), 7.25 (br. s, 2H, NH2), 7.71 (d, J = 9.0 Hz, 

2H, ArH), 7.76 (d, J = 9.0 Hz, 2H, ArH), 10.43 (s, 1H, NH). Enol form signals: 

1.93 (s, 3H, CH3), 5.23 (s, 1H, =CH), 10.26 (s, 1H, NH), 13.59 (br. s, 1H, OH); 13C 

NMR (126 MHz, DMSO-d6): 30.7 (CH3), 52.8 (CH2), 119.1, 127.2, 139.0, 142.2, 

166.1, 203.1; MS (ESI-) 255 (100%, M-H)-, 291 (34%, M+Cl); HRMS (ESI-) calcd 

for C10H11N2O4S: 255.0440, found 255.0437.  

 

General procedure A for preparation of 2-arylidene-3-oxo-N-(4-

sulfamoylphenyl)butanamides 7.10-7.16: A suspension of 3-oxo-N-(4-

sulfamoylphenyl)butanamide 7.9 (256 mg, 1 mmol), the appropriate aldehyde (1 

mmol) piperidine (10 µL, 0.1 mmol) and acetic acid (6 µL, 0.1 mmol) in absolute 

ethanol (10 mL) and was stirred for 6-8 h at room temperature. The mixture was 

slowly poured into brine (20 mL) and extracted with dichloromethane (3 × 10 mL), 

dried (anhyd. MgSO4), the solvent removed under reduced pressure, and the 

resulting residue purified via flash chromatography (petroleum ether: ethyl acetate 

= 5:5) to give 7.10-7.16.  

 

(E)-2-Benzylidene-3-oxo-N-(4-sulfamoylphenyl)butanamide (7.10): Using the 

general procedure A and benzaldehyde (106 mg, 1 mmol), compound 7.10 (153 

mg, 45%) was isolated as a white solid, m.p. 172 °C. 1H NMR (500 MHz, DMSO-

d6) δ: 2.47 (s, 3H, CH3), 7.30 (br. s, 2H, NH2), 7.39-7.41 (m, 3H, ArH), 7.42 (d, J = 
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7.0 Hz, 2H, ArH), 7.76 (s, 1H, arylidineH), 7.76-7.79 (m, 4H, ArH), 10.76 (s, 1H, 

NH); 13C NMR (126 MHz, DMSO-d6): 26.9 (CH3), 119.6, 127.5, 129.7, 130.4, 

131.4, 133.8, 138.1, 139.6, 140.9, 142.3, 166.8 (CONH), 197.1 (COCH3); MS (ESI-

) 343 (100%, M-H)-, 379 (25%, M+Cl); HRMS (ESI-) calcd for C17H15N2O4S: 

343.0753, found 343.0757. 

 

(E)-2-(4-Chlorobenzylidene)-3-oxo-N-(4-sulfamoylphenyl)butanamide 7.11: 

Using the general procedure and 4-chlorobenzaldehyde (140 mg, 1 mmol), 

compound 7.11 (204 mg, 54%) was isolated as a white solid, m.p. 183 °C. 1H NMR 

(500 MHz, CD3OD) δ: 2.46 (s, 3H, CH3), 7.31 (br. s, 2H, NH2), 7.52 (d, J = 8.4 Hz, 

2H, ArH), 7.64 (d, J = 8.4 Hz, 2H, ArH), 7.76-7.80 (m, 5H, 4ArH+arylidineH), 

10.77 (s, 1H, NH); 13C NMR (126 MHz, DMSO-d6): 26.5 (CH3), 119.2, 127.0, 

129.3, 131.5, 132.3, 135.5, 138.1, 139.0, 139.2, 141.7, 166.0, 196.5; MS (ESI-) 377 

(100%, M (35Cl)-H)-, 379 (34%, M (37Cl)-H)-; HRMS (ESI-) calcd for 

C17H14
35ClN2O4S: 377.0363, found 377.0367.  

 

(E)-2-(2-Chlorobenzylidene)-3-oxo-N-(4-sulfamoylphenyl)butanamide 7.12: 

Using the general procedure and 2-chlorobenzaldehyde (140 mg, 1 mmol), 

compound 7.12 (136 mg, 36%) was isolated as a white solid, m.p. 192 °C. 1H NMR 

(500 MHz, CD3OD) δ: 2.50 (s, 3H, CH3), 7.24 (td, J = 7.7, 1.3 Hz, 1H, ArH), 7.37, 

(td, J = 7.8, 1.7 Hz, 1H, ArH), 7.51 (dd, J = 8.1, 1.3 Hz, 1H, ArH), 7.65 (dd, J = 

7.9, 1.7 Hz, 1H, ArH), 7.69 (d, J = 8.8 Hz, 2H, ArH), 7.83 (d, J = 8.8 Hz, 2H, ArH), 

8.01 (s, 1H, arylidineH); 13C NMR (126 MHz, CD3OD): 25.2 (CH3), 119.4, 126.9, 

127.0, 129.1, 129.8, 131.5, 131.6, 134.8, 136.9, 139.1, 141.5, 166.4, 196.1; MS 

(ESI-): 377 (100%, M (35Cl)-H)-, 379 (35%, M (37Cl)-H), (ESI+): 401 (M+Na); 
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HRMS (ESI-) calcd for C17H14
35ClN2O4S: 377.0363, found 377.0356.  

 

(E)-2-(4-Methoxybenzylidene)-3-oxo-N-(4-sulfamoylphenyl)butanamide 7.13: 

Using the general procedure and 4-methoxybenzaldehyde (136 mg, 1 mmol), 

compound 7.13 (217 mg, 58%) was isolated as a white solid, m.p. 162 °C. 1H NMR 

(DMSO-d6) δ: 1H NMR (500 MHz, CD3OD) δ 2.37 (s, 3H, CH3), 3.70 (s, 3H, 

OCH3), 6.83 (d, J = 9.0 Hz, 2H, ArH), 7.49 (d, J = 9.0 Hz, 2H, ArH), 7.61 (s, 1H, 

arylidineH), 7.70 (d, J = 9.0 Hz, 2H, ArH), 7.77 (d, J = 9.0 Hz, 2H, ArH); 13C NMR 

(126 MHz, CD3OD): 24.8 (CH3), 54.6 (OCH3), 114.2, 119.3, 125.3, 126.9, 131.9, 

134.8, 139.0, 141.4, 141.8, 162.2, 168.0, 196.8; MS (ESI-) 373 (100%, M-H)-, 

(ESI+): 397 (M+Na); HRMS (ESI-) calcd for C18H17N2O5S: 373.0858, found 

373.0840.  

 

(E)-2-(3-Nitrobenzylidene)-3-oxo-N-(4-sulfamoylphenyl)butanamide 7.14: 

Using the general procedure and 3-nitrobenzaldehyde (151 mg, 1 mmol), 

compound 7.14 (74 mg, 19%) was isolated as a white solid, m.p. 196 °C. 1H NMR 

(DMSO-d6) δ: 1H NMR (400 MHz, DMSO) δ 2.50 (s, CH3, 3H), 7.30 (br. s, 2H, 

NH2), 7.72-7.81 (m, 5H, ArH), 7.97 (s, 1H, arylidineH), 8.03 (d, J = 8.5 Hz, 1H, 

ArH), 8.26 (d, J = 8.5 Hz, 1H, ArH), 8.56 (s, 1H, ArH), 10.83 (s, 1H, NH); 13C 

NMR (101 MHz, DMSO) δ: 26.8 (CH3), 119.7, 124.5, 125.3, 127.3, 131.1, 135.5, 

135.9, 138.4, 139.7, 139.8, 141.7, 148.5, 165.8, 196.9; MS (ESI-) 388 (100%, M-

H)-, (ESI+): 412 (M+Na); HRMS (ESI-) calcd for C17H14N3O6S: 388.0603, found 

388.0605.  
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(E)-2-(2-Chloro-4-fluorobenzylidene)-3-oxo-N-(4-sulfamoylphenyl) 

butanamide 7.15: Using the general procedure and 2-chloro-4-

fluorobenzaldehyde (158 mg, 1 mmol), compound 7.15 (99 mg, 25%) was isolated 

as a yellow solid, m.p. 152 °C. 1H NMR (400 MHz, CD3OD) δ: 2.50 (s, 1H, CH3), 

δ 7.06 (td, J = 8.5, 2.6 Hz, 1H, ArH), 7.37 (dd, J = 8.5, 2.6 Hz, 1H, ArH), 7.69-7.71 

(m, 3H, ArH), 7.84 (d, J = 9.0 Hz, 2H, ArH), 7.95 (s, 1H, arylidineH); 13C NMR 

(101 MHz, CD3OD) δ: 25.2 (CH3), 114.3 (d, J2
C−F 28), 117.0 (d, J2

C−F 31), 119.4, 

126.9, 130.7 (d, J3
C−F 11), 135.8, 136.0 (d, J3

C−F 14), 139.0, 139.0, 139.1, 141.4, 

162.2 (d, J1
C−F 315), 166.3, 195.9; MS (ESI-:) 395 (100%, M-H)-, 397 (30%, M 

(37Cl)-H), (ESI+): 319 (M+Na); HRMS (ESI-) calcd for C17H13
35ClFN2O4S: 

359.0269, found 395.0271.  

 

(E)-3-Oxo-N-(4-sulfamoylphenyl)-2-(thiophen-2-ylmethylene)butanamide 

7.16: Using the general procedure and thiophene-2-carbaldehyde (112 mg, 1 

mmol), compound 7.16 (217 mg, 62%) was isolated as a yellow solid, m.p. 185 °C. 

1H NMR (500 MHz, DMSO-d6) δ: 2.43 (s, 1H, CH3), 7.19 (dd, J = 5.0, 3.7 Hz, 1H, 

ArH), 7.30 (br. s, 2H, NH2), 7.64 (dd, J = 3.7, 1.3 Hz, 1H, ArH), 7.83-7.85 (m, 5H, 

ArH), 8.01 (s, 1H, arylidineH), 10.84 (s, 1H, NH); 13C NMR (126 MHz, DMSO-

d6): 26.5 (CH3), 119.5, 127.3, 128.6, 133.7, 133.9, 134.7, 136.0, 137.0, 139.4, 

142.4, 166.0, 196.1; MS (ESI-) 349 (100%, M-H)-, (ESI+): 373 (M+Na); HRMS 

(ESI-) calcd for C15H13N2O4S2: 349.0317, found 349.0311.  

 

General procedure B for preparation of (E)-3-oxo-2-(2-arylhydrazineylidene)-

N-(4-sulfamoylphenyl)butanamides 7.17-7.24: The diazonium salt was prepared 

by slowly adding a cold sodium nitrite solution (0.7 g, 10 mmol) in deionized water 
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(5 mL) to a cold solution of the appropriate arylamine (10 mmol) dissolved in 6 M 

hydrochloric acid (6 mL). To a cold solution of 3-oxo-N-(4-

sulfamoylphenyl)butanamide 7.9 (256 mg, 1 mmol) and sodium acetate trihydrate 

(408 mg, 3 mmol) in ethanol (10 mL), the appropriate diazonium chloride solution 

(15 mmol) was slowly added over a period 30 min at 0-5 °C. The reaction mixture 

was stirred for further 3 h at 0-5 °C and 3 h at room temperature. The resulting solid 

was filtered, washed with water (2 x 10 mL), dried and recrystallized from 

EtOH/DMF to afford 7.17-7.24. 

 

(E)-3-Oxo-2-(2-phenylhydrazineylidene)-N-(4-sulfamoylphenyl)butanamide 

7.17: Using general procedure B and aniline (93 mg, 1 mmol), compound 7.17 (165 

mg, 46%) was isolated as yellow solid, m.p. 215 °C. 1H NMR (500 MHz, DMSO-

d6) δ: 2.46 (s, 3H, CH3), 7.16 (t, J = 7.5 Hz, 1H, ArH), 7.28 (br. s, 2H, NH2), 7.41 

(t, J = 7.5 Hz, 2H, ArH), 7.54 (d, J = 7.5 Hz, 2H, ArH), 7.80 (d, J = 9.0 Hz, 2H, 

ArH), 7.83 (d, J = 9.0 Hz, 2H, ArH), 11.44 (s, 1H, CONH), 13.77 (s, 1H, NNH); 

13C NMR (126 MHz, DMSO-d6): 26.3, 116.4, 120.3, 125.5, 127.3, 127.4, 130.0, 

139.9, 140.7, 142.3, 162.5, 198.8; MS (ESI-): 359 (100%, M-H)-; HRMS (ESI-) 

calcd for C16H15N4O4S: 359.0809, found 359.0823.  

 

(E)-2-(2-(4-Fluorophenyl)hydrazineylidene)-3-oxo-N-(4-sulfamoylphenyl) 

butanamide 7.18: Using general procedure B and 4-fluoroaniline (111 mg, 1 

mmol), compound 7.18 (185 mg, 49%) was isolated as a greenish solid, m.p. 248 

°C. 1H NMR (400 MHz, DMSO-d6) δ: 2.50 (s, 3H, CH3), 7.25-7.30 (m, 4H, NH2 + 

2ArH), 7.59-7.63 (m, 2H, ArH), 7.82 (d, J = 11.0 Hz, 2H, ArH), 7.85 (d, J = 11.0 

Hz, 2H, ArH), 11.39 (s, 1H, CONH), 13.65 (s, 1H, NNH); 13C NMR (101 MHz, 
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DMSO-d6): 26.3, 116.7 (d, J2
C−F 29 Hz), 118.2 (d, J3

C−F 10 Hz), 120.3, 127.3, 127.7, 

139.0, 139.9, 140.7, 158.7 (d, J1
C−F 240 Hz), 162.4, 198.7; MS (ESI-) 377 (100%, 

M-H)-; HRMS (ESI-) calcd for C16H14FN4O4S: 377.0714, found 377.0729.  

 

(E)-2-(2-(4-Chlorophenyl)hydrazineylidene)-3-oxo-N-(4-sulfamoylphenyl) 

butanamide 7.19: Using general procedure B and 4-chloroaniline (127 mg, 1 

mmol), compound 7.19 (217 mg, 55%) was isolated as a yellow solid, m.p. 260 °C. 

1H NMR (500 MHz, DMSO-d6) δ: 2.49 (s, 3H, CH3), 7.32 (br. s, 2H, NH2), 7.44 

(d, J = 8.5 Hz, 2H, ArH), 7.56 (d, J = 8.5 Hz, 2H, ArH), 7.80 (d, J = 9.0 Hz, 2H, 

ArH), 7.83 (d, J = 9.0 Hz, 2H, ArH), 11.34 (s, 1H, CONH), 13.51 (s, 1H, NNH); 

13C NMR (126 MHz, DMSO-d6): 26.2, 117.9, 120.3, 127.2, 128.8, 128.9, 129.8, 

139.9, 140.7, 141.4, 162.1, 198.4; MS (ESI-) 393 (100%, M (35Cl)-H)-, 395 (30%, 

M (37Cl)-H)-; HRMS (ESI-) calcd for C16H14
35ClN4O4S: 393.0419, found 393.0435.  

 

(E)-2-(2-(4-Bromophenyl)hydrazineylidene)-3-oxo-N-(4-sulfamoylphenyl) 

butanamide 7.20: Using general procedure B and 4-bromoaniline (171 mg, 1 

mmol), compound 7.20 (258 mg, 59%) was isolated as a yellow solid, m.p. >260 

°C. 1H NMR (500 MHz, DMSO-d6) δ: 2.50 (s, 3H, CH3), 7.52 (d, J = 9.0 Hz, 2H, 

ArH), 7.59 (d, J = 9.0 Hz, 2H, ArH), 7.82 (d, J = 9.0 Hz, 2H, ArH), 7.85 (d, J = 9.0 

Hz, 2H, ArH), 11.32 (s, 1H, CONH), 13.39 (s, 1H, NNH); 13C NMR (126 MHz, 

DMSO-d6): 26.4, 117.3, 118.5, 120.5, 127.5, 129.3, 133.0, 140.1, 141.0, 142.1, 

162.4, 198.7; MS (ESI-) 437 (100%, M (79Br)-H)-, 339 (100%, M (81Br)-H)-; 

HRMS (ESI-) calcd for C16H14
79BrN4O4S: 436.9919, found 436.9925. 
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(E)-2-(2-(4-Cyanophenyl)hydrazineylidene)-3-oxo-N-(4-sulfamoylphenyl) 

butanamide 7.21: Using general procedure B and 4-aminobenzonitrile (118 mg, 1 

mmol), compound 7.21 (119 mg, 31%) was isolated as a yellow solid, m.p. >260 

°C. 1H NMR (DMSO-d6) δ: 1H NMR (500 MHz, DMSO-d6) δ: 2.50 (s, 3H, CH3), 

7.32 (br. s, 2H, NH2), 7.65 (d, J = 9.0 Hz, 2H, ArH), 7.82 (d, J = 9.0 Hz, 2H, ArH), 

7.85 (d, J = 9.0 Hz, 2H, ArH), 11.15 (s, 1H, CONH), 12.85 (s, 1H, NNH); 13C NMR 

(126 MHz, DMSO-d6) δ: 26.3, 106.1, 116.6, 119.8, 120.5, 127.5, 133.2, 134.5, 

140.2, 141.1, 146.6, 161.9, 198.1; MS (ESI-): 384 (100%, M-H)-; HRMS (ESI-) 

calcd for C17H14N5O4S: 384.0761, found 384.0776.  

 

(E)-2-(2-(4-Methoxyphenyl)hydrazineylidene)-3-oxo-N-(4-sulfamoylphenyl) 

butanamide 7.22: Using general procedure B and 4-methoxyaniline (123 mg, 1 

mmol), compound 7.22 (168 mg, 43%) was isolated as a yellow solid, m.p. 255 °C. 

1H NMR (500 MHz, DMSO-d6) δ: 2.50 (s, 3H, CH3), 3.78 (s, 3H, OCH3), 7.02 (d, 

J = 8.5 Hz, 2H, ArH), 7.34 (br. s, 2H, NH2), 7.53 (d, J = 8.5 Hz, 2H, ArH), 7.83-

7.88 (m, 4H, ArH), 11.57 (s, 1H, CONH), 14.07 (s, 1H, NNH); 13C NMR (126 

MHz, DMSO-d6) δ: 25.6, 55.2, 114.7, 117.4, 119.7, 125.1, 126.7, 135.1, 139.2, 

140.1, 157.1, 162.2, 198.1; MS (ESI-): 389 (100%, M-H)-; HRMS (ESI-) calcd for 

C17H17N4O5S: 389.0914, found 389.0933.  

 

(E)-2-(2-(3-Nitrophenyl)hydrazineylidene)-3-oxo-N-(4-sulfamoylphenyl) 

butanamide 7.23: Using general procedure B and 3-nitroaniline (138 mg, 1 mmol), 

compound 7.23 (117 mg, 29%) was isolated as a yellow solid, m.p. 248 °C. 1H 

NMR (500 MHz, DMSO-d6) δ: 2.48 (s, 3H, CH3), 7.31 (br. s, 2H, NH2), 7.65 (t, 

1H, J = 8.5 Hz, 1H, ArH), 7.81 (d, J = 8.5 Hz, 2H, ArH), 7.84 (d, J = 8.5 Hz, 2H, 
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ArH), 7.91 (d, J = 8.0 Hz, 1H, ArH), 7.95 (d, J = 8.0 Hz, 1H, ArH), 8.32 (s, 1H, 

ArH), 11.15 (s, 1H, CONH), 12.92 (s, 1H, NNH); 13C NMR (126 MHz, DMSO-d6) 

δ: 25.9, 110.4, 118.5, 120.1, 121.9, 127.2, 131.3, 132.1, 139.8, 140.8, 144.0, 149.0, 

161.6, 197.7; MS (ESI-): 404 (100%, M-H)-; HRMS (ESI-) calcd for C16H14N5O6S: 

404.0659, found 404.0673.  

 

(E)-2-(2-(3,4-Dimethoxyphenyl)hydrazineylidene)-3-oxo-N-(4-

sulfamoylphenyl) butanamide 7.24: Using general procedure B and 3,4-

dimethoxyaniline (153 mg, 1 mmol), compound 7.24 (168 mg, 40%) was isolated 

as an orange solid, m.p. 247 °C. 1H NMR (500 MHz, DMSO-d6) δ: 2.52 (s, 3H, 

CH3), 3.77 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 7.02 (d, J = 9.0 Hz, 1H, ArH), 7.12 

(dd, J = 9.0, 2.5 Hz, 1H, ArH), 7.26 (d, J = 2.5 Hz, 1H, ArH), 7.31 (br. s, 2H, NH2), 

7.82 (d, J = 9.0 Hz, 2H, ArH), 7.85 (d, J = 9.0 Hz, 2H, ArH), 11.54 (s, 1H, CONH), 

13.99 (s, 1H, NNH); 13C NMR (126 MHz, DMSO-d6) δ: 26.4, 56.2, 56.5, 101.4, 

108.6, 113.1, 120.5, 126.1, 127.5, 136.1, 140.0, 140.9, 147.5, 150.3, 162.9, 198.8; 

MS (ESI-): 419 (100%, M-H)-, HRMS (ESI-) calcd for C18H19N4O6S: 419.1020, 

found 419.1035.  

 

2-Chloro-3-oxo-N-(4-sulfamoylphenyl)butanamide 7.25: To a stirred 

suspension of 3-oxo-N-(4-sulfamoylphenyl)butanamide 7.9 (2.56 g, 10 mmol) in 

toluene (30 mL) with ice cooling was added dropwise over 1 h sulfuryl chloride 

(1.50 g, 11 mmol) and the reaction warmed at 40-50 °C until completion as 

analysed by TLC. The toluene was evaporated, and the residue was crystallized 

from ethanol to afford 7.25 (1.22 g, 42%) as white crystals, m.p. 140 °C. The 

product contains about 32% of enol form as analysed by 1H NMR. 1H NMR (500 
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MHz, DMSO-d6) δ: 2.32 (s, 3H, CH3), 2.52 (s, 3H, CH3), 5.42 (s, 1H, CH), 7.31 

(br. s, 2H, NH2), 7.34 (br. s, 2H, NH2), 7.74-7.76 (m, 4H, ArH), 7.80-7.82 (m, 4H, 

ArH), 7.34 (br. s, 2H, NH2), 10.98 (s, 1H, NH), 10.99 (s, 1H, NH); 13CNMR (126 

MHz, DMSO-d6) δ: 24.7, 27.5, 64.2, 84.0, 120.0, 121.3, 127.1, 127.3, 140.0, 140.6, 

140.7, 141.3, 162.3, 163.9, 192.3, 197.3; MS (ESI-): 289 (100%, M(35Cl)-H), 391 

(30%, M (37Cl)-H); HRMS (ESI-) calcd for C10H10
35ClN2O4S: 289.0044, found 

289.0058. 

 

General procedure C for preparation of (Z)-2-oxo-N-aryl-2-((4-

sulfamoylphenyl)amino)acetohydrazonoyl chloride 7.26-7.30: To a cold 

solution of 2-chloro-3-oxo-N-(4-sulfamoylphenyl)butanamide 7.25 (290 mg, 1 

mmol) and sodium acetate trihydrate (408 mg, 3 mmol) in ethanol (10 mL), the 

appropriate diazonium chloride solution (15 mmol) was slowly added over a period 

30 min at 0-5 °C. The reaction mixture was stirred for further 3 h at 0-5 °C and 3 h 

at room temperature. The resulting solid was filtered, washed with water (2 x 10 

mL), air dried and recrystallized from EtOH/DMF to afford 7.26-7.30. 

 

(Z)-2-Oxo-N-phenyl-2-((4-sulfamoylphenyl)amino)acetohydrazonoyl chloride 

7.26: Using general procedure C and aniline (93 mg, 1 mmol), compound 7.26 (151 

mg, 34%) was isolated as a white solid, m.p. 245 °C. 1H NMR (500 MHz, DMSO-

d6) δ: 7.00 (t, J = 7.5 Hz, 1H, ArH), 7.29 (br. s, 2H, NH2), 7.34 (t, J = 7.5, 8.5 Hz, 

2H, ArH), 7.61 (d, J = 8.5 Hz, 2H, ArH), 7.82 (d, J = 9.0 Hz, 2H, ArH), 7.92 (d, J 

= 9.0 Hz, 2H, ArH), 10.34 (s, 1H, NH), 10.41 (s, 1H, NH); 13C NMR (126 MHz, 

DMSO-d6) δ: 115.4, 118.2, 120.8, 122.6, 127.0, 129.5, 139.5, 141.8, 143.2, 158.1; 

MS (ESI-): 351 (100%, M (35Cl)-H)-, 353 (33%, M (37Cl)-H)-, HRMS (ESI-) calcd 

for C14H12
35ClN4O3S: 351.0319, found 351.0310. 
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(Z)-N-(4-Fluorophenyl)-2-oxo-2-((4-sulfamoylphenyl)amino) 

acetohydrazonoyl chloride 7.27: Using general procedure C and 4-fluoroaniline 

(111 mg, 1 mmol), compound 7.27 (100 mg, 27%) was isolated as a buff solid, m.p. 

250 °C. 1H NMR (500 MHz, DMSO-d6) δ: 7.16 (t, J = 8.8 Hz, 2H, ArH 7.28 (br. s, 

2H, NH2), 7.61 (dd, J = 8.8, 5.0 Hz, 2H, ArH), 7.82 (d, J = 8.5 Hz, 2H, ArH), 7.91 

(d, J = 8.5 Hz, 2H, ArH), 10.32 (s, 1H, NH), 10.42 (s, 1H, NH); 13C NMR (126 

MHz, DMSO-d6) δ: 116.0 (d, J2
C−F 23 Hz), 116.8 (d, J3

C−F 8 Hz), 118.2, 120.8, 

126.9, 139.4, 139.7, 141.7, 157.3 (d, J1
C−F 238 Hz), 158.0; MS (ESI-): 369 (100%, 

M (35Cl)-H)-, 371 (33%, M (37Cl)-H)-; HRMS (ESI-) calcd for C14H11F35ClN4O3S: 

369.0224, found 369.0232. 

 

(Z)-N-(4-Chlorophenyl)-2-oxo-2-((4-sulfamoylphenyl)amino) 

acetohydrazonoyl chloride 7.28: Using general procedure C and 4-chloroaniline 

(127 mg, 1 mmol), compound 7.28 (154 mg, 40%) was isolated as a yellow solid, 

m.p. 255 °C. 1H NMR (500 MHz, DMSO-d6) δ: 7.29 (br. s, 2H, NH2), 7.37 (d, J = 

8.3 Hz, 2H, ArH), 7.62 (d, J = 8.3 Hz, 2H, ArH), 7.82 (d, J = 8.5 Hz, 2H, ArH), 

7.92 (d, J = 8.5 Hz, 2H, ArH), 10.36 (s, 1H, NH), 10.51 (s, 1H, NH); 13C NMR 

(126 MHz, (CD3)2CO) δ: 123.2, 129.5, 130.0, 131.1, 132.6, 137.0, 139.3, 143.6, 

157.0, 163.2; MS (ESI-): 385 (100%, (35Cl) M-H)-, HRMS (ESI-) calcd for 

C14H11
35Cl2N4O3S: 384.9929, found 384.9935. 

 

(Z)-N-(4-Bromophenyl)-2-oxo-2-((4-sulfamoylphenyl)amino) 

acetohydrazonoyl chloride 7.29: Using general procedure C and 4-bromoaniline 

(171 mg, 1 mmol), compound 7.29 (137 mg, 32%) was isolated as a yellow solid, 

m.p. >260 °C. 1H NMR (500 MHz, DMSO-d6) δ: 7.29 (br. s, 2H, NH2), 7.50 (d, J 
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= 9.0 Hz, 2H, ArH), 7.56 (d, J = 9.0 Hz, 2H, ArH), 7.81 (d, J = 9.0 Hz, 2H, ArH), 

7.91 (d, J = 9.0 Hz, 2H, ArH), 10.37 (s, 1H, NH), 10.51 (s, 1H, NH); 13C NMR 

(126 MHz, DMSO-d6) δ: 113.5, 116.8, 118.5, 120.2, 126.3, 131.5, 138.9, 141.0, 

142.0, 157.2; MS (ESI-): 429 (100%, M-H)-, HRMS (ESI-) calcd for 

C14H11
79Br35ClN4O3S: 428.9424, found 428.9428. 

 

(Z)-N-(4-Methoxyphenyl)-2-oxo-2-((4-sulfamoylphenyl)amino) 

acetohydrazonoyl chloride 7.30: Using general procedure C and 4-anisidine (123 

mg, 1 mmol), compound 7.30 (69 mg, 18%) was isolated as a yellow solid, m.p. 

250 °C. 1H NMR (500 MHz, DMSO-d6) δ: 3.72 (s, 3H, OCH3), 7.26 (br. s, 2H, 

NH2), 7.51 (d, J = 9.0 Hz, 2H, ArH), 7.78 (d, J = 9.0 Hz, 2H, ArH), 7.82 (d, J = 9.0 

Hz, 2H, ArH), 7.89 (d, J = 9.0 Hz, 2H, ArH), 10.24 (s, 1H, NH), 10.27 (s, 1H, NH); 

13C NMR (126 MHz, DMSO-d6) δ: 55.7, 114.8, 116.6, 118.2, 120.6, 126.4, 136.9, 

139.9, 141.9, 155.3, 158.1; MS (ESI-): 381 (100%, (35Cl) M-H)-, HRMS (ESI-) 

calcd for C15H14
35ClN4O4S: 381.0424, found 381.0407. 

 

7.4.2 Protein X-ray crystallography 

CA II protein was concentrated to 7 mg/mL and set up in SD-2 plates (Molecular 

Dimensions) with 200 nL plus 200 nL drops (protein plus reservoir solution) over 

50 μL reservoirs and incubated at 8º C. The reservoir conditions consisted of 2.5-

2.8 M ammonium sulfate with 100 mM Tris pH 8.5-9.0. Compounds were soaked 

into the crystals for approximately 24 hours and subsequently glycerol (20% final 

concentration) was added to cryoprotect the crystals for cryo-cooling. Data were 

collected at the Australian Synchrotron MX1 beamline in Oct 2017 and at the MX2 

beamline in Nov 2017. Data were auto-processed with XDS23 and then Aimless24 
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was used to scale the reflections, Phaser25 was used with model 4cq0 to phase the 

data and Coot26 was used to manually place the atoms in electron density. AFITT 

(OpenEye Scientific Software) was used to place the ligands into density and 

generate the dictionary files. REFMAC27 was used to refine the structures. The 7.13 

(high resolution at 1.32 Å) structure used anisotropic refinement whereas the other 

structures were refined using isotropic refinement. The models and structure factors 

have been deposited at the RCSB with PDB codes: 6UFB (ligand 7.10), 6UFC 

(ligand 7.13) and 6UFD (ligand 7.16).  

 

7.4.3 CA Inhibition  

An Applied Photophysics stopped-flow instrument was used for assaying the CA 

catalyzed CO2 hydration activity.20 Phenol red (at a concentration of 0.2 mM) was 

used as indicator, working at the absorbance maximum of 557 nm, with 20 mM 

Hepes (pH 7.5) as buffer and 20 mM Na2SO4 (for maintaining constant the ionic 

strength), following the initial rates of the CA-catalyzed CO2 hydration reaction for 

a period of 10−100 s. The CO2 concentrations ranged from 1.7 to 17 mM for the 

determination of the kinetic parameters and inhibition constants. For each inhibitor, 

at least six traces of the initial 5−10% of the reaction have been used for 

determining the initial velocity. The uncatalyzed rates were determined in the same 

manner and subtracted from the total observed rates.  

Stock solutions of inhibitor (0.1 mM) were prepared in distilled−deionized water, 

and dilutions up to 0.01 nM were carried out subsequently with the assay buffer. 

Inhibitor and enzyme solutions were preincubated together for 6 hours at room 

temperature prior to assay in order to allow for the formation of the E−I complex. 

The inhibition constants were obtained by nonlinear least-squares methods using 
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PRISM 3 and the Cheng−Prusoff equation, as reported earlier,28, 29 and represent 

the mean from at least three different determinations. All CA isoforms were 

recombinant ones obtained in-house as reported earlier. 30, 31 

 

7.4.4 Hypertensive rabbit IOP lowering studies 

The experimental procedures were carried out on New Zealand albino rabbits, 

following the Resolution of the Association for Research in Vision and 

Ophthalmology, the Good Laboratory Practice for the use of animals upon 

authorization of Italian Ministry of Health (number 1179/2015-PR), in agreement 

with the European Union Regulations (OJ of ECL 358/1, 12/12/1986).32 Male 

albino rabbits (body weight 2-2.5 kg) were kept in individual cages, food and water 

was provided ad libitum. The animals were maintained on a 12 h-12 h light/dark 

cycle in a temperature-controlled room (22-23 °C). Animals were identified with a 

tattoo in the ear, numbered consecutively and examined before the beginning of the 

study to verify the good general and ophthalmic health condition. All the 

compounds were dissolved in pyrogen free sterile 0.9% NACl solution (i.e. 

physiologic solution) and 0.1% DMSO, 0.1% EtOH at 1 mM concentration. 

Vehicle was 0.9% NaCl + 0.1% DMSO + 0.1% EtOH. The viability of compounds 

was evaluated after repeated administration using the Draize Eye Test (Wilhelmus, 

2001). Topical delivery into the conjunctival cul-de-sac is the most common route 

of ocular drug delivery.  

All compounds were given prior to saline injection and the IOP was measured at 

the very beginning of the experimental session to establish basal IOP. Ocular 

hypertension was induced by the injection of 0.05 mL of sterile hypertonic saline 

(5%) into the vitreous bilaterally with local anaesthesia provided by one drop of 
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0.2% oxybuprocaine hydrochloride in each eye one minute prior. IOP was 

measured using a Pneumotonometer (Reichert Inc. Depew, NY) after hypertonic 

saline injection after stabilization (normally 10 minutes) to verify the rise of IOP 

into the suitable experimental range (IOP >30 and < 40 mmHg) and after 60, 90, 

120, 240 minutes in all groups after drug or vehicle treatment. One drop of 0.2% 

oxybuprocaine hydrochloride was instilled in each eye immediately before each set 

of pressure measurements  
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8.1 The search for anti-CHIKV lead compounds (Chapters 2-4) 

8.1.1 Conclusions 

Using a multi-disciplinary approach, considerable efforts have been made towards 

the development of potential anti-CHIKV. The key findings from this study can be 

summarised into two main sections: 

a) application of medicinal chemistry concepts to existing inhibitors: 

By applying robust medicinal chemistry strategies such as hybridization, 

bioisosteric substitution and simplification of existing anti-CHIKV agents, we 

devised three series of analogue scaffolds, triazolopyrimidine, thiazolopyrimidine 

and 2-anilinopyrimdine, respectively, as shown in Figure 8.1 (Chapter 2 and 3).  

 

Figure 8.1: Summary of the application to medicinal chemistry concepts 

Starting from 6-ethyl thiouracil, target compounds 2.14-2.28, 3.29-3.39 and 3.6-3.9 

were synthesized using the state-of-art organic chemistry. The first series of (Z)-7-

ethyl-2-arylidine-5H-thiazolo[3,2-a]pyrimidine-3,5(2H)-diones 2.14-2.28 was 
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synthesized by optimization of the multi-component reaction conditions via 

replacing chloroacetic acid with the more regioselective bromoacetic acid, lowering 

reaction temperature and changing the mode of addition. X-ray crystal structure 

and computational studies showed that only one regioselective isomer formed with 

the Z configuration that is potentially stabilized by two intramolecular hydrogen 

bonds.  Anti-CHIKV activity evaluation showed the tailed thiazolopyrimidine 2.23 

(Figure 8.1) as a promising lead compound for future development with EC50 = 42 

µM, with IC50 > 250 µM against the breast cancer cell line MCF-7 and the 

endothelial human sapiens cell line EA.hy926. 

The triazolopyrimidines 3.29-3.39 and anilinopyrimidines 3.6-3.9, were designed, 

synthesised and bioassayed for anti-CHIKV activity and cytotoxicity. Five 

derivatives of triazolopyrimidine scaffold 3.29, 3.31, 3.33, 3.34 and 3.39 showed 

anti-CHIKV activity spanning from 38-186 µM and compound 3.33 emerged as the 

most active and least toxic (EC50 = 42 µM, with IC50 > 300 µM) against the breast 

cancer cell lines MCF-7 and MDA-MB-231 and the endothelial human sapiens cell 

line EA.hy926). Compound 3.33  showed considerable advantages over the parent 

compound 3.1, including the ability of the 3 position in 3.33 to accommodate 

substituents and accessibility, low cost and diversities of the hydrazonoyl chlorides 

starting materials. Derivative 3.33 may provide new and promising scope for 

improved drug design utilising this inexpensive scaffold. Series 3.6-3.9 proved to 

only exhibit weak anti-CHIKV activity. Comparisons of the geometries and 

Electrostatic Potential-mapped surfaces of minimal pharmacophore models 3.53-

3.56 of anti-CHIKV agents has allowed for a consensus model for effective target 

binding. These results place future research into anti-CHIKV agents in better 

standing. 
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b) Structure-guided drug design (Chapter 4):  

In a previous study, eleven potential inhibitors of the CHIKV proteins were 

identified by virtual screening of NCI Diversity set II database (1541 compounds) 

against three CHIKV proteins (nsP2, nsP3 and envelope glycoprotein) (Figure 

8.2).1, 2 Herein, we requested these compounds and sent them to be bioassayed for 

their anti-CHIKV activity. Three CHIKV inhibitors were identified out of the 1541 

in silico screened database (Figure 8.2).  

 

 
Figure 8.2: Structure-guided drug design workflow in this dissertation. 

 

Synthesis of a small library of NCI-37168 (4.5 (Figure 8.3) EC50 < 0.8 ug/mL) was 

achieved by applying amide coupling conditions to 2-naphthoic acid or 3-hydroxy-

2-naphthoic acid with different anilines to afford 4.14-4.19. These compounds were 

investigated for their anti-CHIKV activity at 20 µg/mL and showed that the 

hydroxyl group at position 2 of the naphthalene scaffold and the m-nitro group are 
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important for the anti-viral activity.  

 

 

Figure 8.3: Structure of the active potential leads 4.1, 4.5 and 4.11 and optimization of 

4.5. 

 

8.1.2 Future directions 

a) application to medicinal chemistry concepts to existing inhibitors: 

Antiviral activity evaluation demonstrated the tailed thiazolopyrimidine 2.23 as a 

candidate for future development. The rest of the compounds among 

thiazolopyrimidines 2.14-2.28, except 2.23, showed no or weak anti-CHIKV, 

which indicate that the thiazolo[3,2-a]pyrimidine scaffold is not important for the 

antiviral activity (Figure 8.4). Further medicinal chemistry optimization could be 

achieved by retaining the tail, while replacing thiazolo[3,2-a]pyrimidine bicyclic 

system with thiazolidine scaffold 8.1 (Figure 8.4). 
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The most active anti-CHIKV compound 3.33 among the tested 1-aryl-

[1,2,4]triazolo[4,3-a]pyrimidines 3.29-3.39, could be subjected to another cycle of 

optimization by varying R1 and R2 to further explore the structure activity 

relationship of this scaffold (Figure 8.4). 

 

Figure 8.4: Future development of the thiazolopyrimidine 2.23 and triazolopyrimidine 

3.33. 

 

b) Structure-guided drug design (Chapter 4): 

Compounds 4.14-4.19 will be tested for their antiviral activity at lower 

concentration to investigate their antiviral activity, while lowering their toxic effect. 

Inhibition profile of these derivatives against the protein target nsP3 could be 

performed and iterative cycles of optimization could be achieved to decrease their 

cytotoxic effect, while retaining the anti-CHIKV activity. The quinoline derivative 

4.1 (Figure 8.3) showed a strong inhibitory effect against CHIKV (EC50 = 6.8 ± 0.5 

mg/mL, EC90 = 12.0 ± 0.5 mg/mL) and could be considered as a promising hit for 

future development. further work will be performed in our lab on compounds 4.1 

and 4.11. 
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8.2 Fluorescent anion transporters (Chapters 5-6) 

8.2.1 Conclusions 

An investigation into the design and synthesis of two new classes of fluorescent 

anion transporters for pharmacological applications has been undertaken 

(Chapters 5-6). The first anion transporters study (Chapter 5) aimed to find 

switchable anion reporters that are switched on in the presence of the reducing 

agents GSH, DTT and TCEP. We have developed five new anion transporters 5.1-

5.5 and four putative anionophores 5.13, 5.14, 5.16 and 5.17 that are ‘switched on’ 

in the presence of the reducing agent GSH which is found in higher concentrations 

in tumours than in healthy tissue. Biological testing of these compound is currently 

undergoing.  

A new class of bisurea anion transporters bearing the fluorescent 4-methyl 

coumarin has been developed (Chapter 6, 6.1-6.4). The fluorescent anion receptors 

elicited a relatively strong chloride binding affinity in DMSO-d6/0.5%H2O with Ka 

= 81 - 177 M-1 and superior Cl-/NO3
- exchange ability in ISE-based affinity and 

H+/Cl- cotransport activity. Transporters 6.1-6.4 showed efficient anion binding and 

transport properties than the previously reported fluorescent anion transporters.3, 4 

In terms of the biological component of this project the four coumarin-bisurea 

compounds 6.1-6.4 synthesised during this work are currently under evaluation in 

cell-based assays and cellular fluorescent imaging. 

8.2.2 Future directions 

Based on the biological evaluation and if the switchable abilities of the gold 

complexes 5.13, 5.14, 5.16 and 5.17 could be replicated in a cellular environment, 

it would be beneficial to create a larger library of NHC-based bisbenzimidazole-

pyridine (8.3, Figure 8.5) and investigate their biological properties (Figure 8.5). 
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The designed receptors 8.3 could be with a wide variety of substitutions at the R1, 

R2 and R3 positions and modifying the coordination metal (gold III) with other 

metals such as ruthenium (with anticancer property) whilst retaining the basic 

bisbenzimidazole pyridine scaffold present in 5.1-5.5 (Figure 8.5).  

 

Figure 8.5: Future development of the switchable anion transporters 5.13, 5.14, 5.16 and 

5.17. 

The synthesized coumarin-bisurea conjugates 6.1-6.4 are currently under biological 

evaluation, and based on the derived structure activity relationship, further 

medicinal chemistry derivatisation could be achieved such as formation of 

macrocycle fluorescent probes based on these receptors for fluorescent imaging of 

subcellular organelles application. 

8.3 Carbonic anhydrase inhibitors (Chapter 7): 

8.3.1 Conclusions: 

Based on the dual-tailed approach of the CA inhibitors, we designed and 

synthesized three series of dual-tailed sulfonamide CA inhibitors 7.10-7.16, 7.17-

7.24 and 7.26-7.30.5 They were tested for their inhibitory profiles against four 

carbonic anhydrase isoforms: hCA I, II, IV, and VII. Series 7.10-7.16 emerged as 

the most potent CA II inhibitors with low to sub nanomolar Ki values (0.36-6.9 

nM) (Figure 8.6). X-ray crystallographic studies of 7.10, 7.13 and 7.16 against CA 

II were conducted to further understand and rationalize the strong CA II inhibitory 

profile of the compounds. As per our design, the X-ray crystallographic studies 
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showed defined moieties within the ligand structures specifically interact with the 

hydrophobic and hydrophilic halves of the CA II active site (Figure 8.6). The most 

active CA II inhibitors 7.11-7.13 and 7.16 (Ki values of 0.36-2.9 nM) were 

evaluated for their IOP lowering action against DRZ as the standard. Compounds 

7.11 and 7.13, with IOP reduction of 12.8 and 12.3 mmHg, respectively, emerged 

as more potent than the clinically used drug DRZ (IOP reduction = 8.5 mmHg). 

 

 

Figure 8.6: Drug design of the potent anti-glaucoma derivatives studied in the current 

thesis.  

8.3.2 Future directions 

This study presents compounds 7.11 and 7.13 as potential promising candidates for 

the development of therapeutic anti-glaucoma strategies. For further development 

on this scaffold, rigidification of the amide group could be done, with a wide variety 

of substitutions at the R2 position, whilst retaining the 4-chloro or 4-methoxy 

substitutions at R1 (8.4, Figure 8.7). 
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Figure 8.7: possible derivatization and development of the CA inhibitors  
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B) Binding studies: 
a) 

 
 

b)                                       c)                                         d) 

 
Figure D1: 1H NMR spectroscopic titration of receptor 1 (2 mM) with TBACl in 

DMSO-d6 with 0.5% water at 298 K. a) Stack plot. b) Fitplot for NH proton at δ = 13.43 

ppm (proton1, Im-NH) and CH protons at δ = 8.33 ppm (proton2, Py-2CH) and δ = 7.29 

ppm (proton3, Py-CH), using global analysis with 1:1 (Ka = 92 M-1, error: 13%) and 2:1 

host:guest stoichiometry (K11 = 40; K12: 2514 M-1, error 11 and 21%). c) Plot of the 

residuals for δ = 13.43 ppm (proton1), δ = 8.33 ppm (proton2) and δ = 7.29 ppm (proton3) 

using global analysis. d) Calculated mole fractions. 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40 50
7

8

9

10

11

12

13

14

C
h

e
m

ic
a
l 
S

h
if

t 
(p

p
m

)

Equivalents of TBA-chloride

 Im-NH (expt. data)

 Py-2CH (expt. data)

 Py-CH (expt. data)

 Im-NH (fitted data)

 Py-2CH (fitted data)

 Py-CH (fitted data)

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

M
o

le
 F

ra
c

ti
o

n

Equivalents of TBA-chloride

 Free host

 H:G

0 10 20 30 40 50
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

Equivalents of TBA-chloride

R
e
s
id

u
a

l 
(p

p
m

)

 Im-NH

 Py-2CH

 Py-CH



Appendix D for Chapter 5 

 

280 

 

a)  

 

b)                                       c)                                         d) 

  
Figure D2: 1H NMR spectroscopic titration of receptor 2 (2 mM) with TBACl in 

DMSO-d6 with 0.5% water at 298 K. a) Stack plot. b) Fitplot for NH proton at δ = 13.37 

ppm (proton1, Im-NH) and CH proton at δ = 8.45 ppm (proton2, Py-CH) using global 

analysis with 1:1 host:guest stoichiometry (Ka = 77 M-1, error: 2%). c) Plot of the residuals 

for δ = 13.37 ppm (proton1) and δ = 8.45 ppm (proton2) using global analysis. d) 

Calculated mole fractions. 
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a)  

 
 

b)                                           c)                                         d)  

 
Figure D3: 1H NMR spectroscopic titration of receptor 3 (2 mM) with TBACl in 

DMSO-d6 with 0.5% water at 298 K. a) Stack plot. b) Fitplot for NH proton at δ = 14.03 

ppm (proton1, Im-NH) and CH proton at δ = 8.50 ppm (proton2, Py-CH), using global 

analysis with 1:1 (Ka = 133 M-1, error: 6%) and 2:1 host:guest stoichiometry (K11 = 40; 

K12: 259 M-1, error 17% for both of them). c) Plot of the residuals for δ = 14.03 ppm 

(proton1) and δ = 8.50 ppm (proton2) using global analysis. d) Calculated mole fractions. 
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a)  

 
 

b)                                           c)                                         d)  

 
Figure D4: 1H NMR spectroscopic titration of receptor 1 (2 mM) with TBACl in 

DMSO-d6 with 0.5% water at 298 K. a) Stack plot. b) Fitplot for NH proton at δ = 13.15 

ppm (proton1, Im-NH) and CH protons at δ = 8.33 ppm (proton2, Py-2CH) and δ = 7.83 

ppm (proton3, Py-CH), using global analysis with 1:1 host:guest stoichiometry (Ka = 63 

M-1, error: 2%). c) Plot of the residuals for δ = 13.15 ppm (proton1), δ = 8.33 ppm (proton2) 

and δ = 7.83 ppm (proton3) using global analysis. d) Calculated mole fractions. 
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a)  

 
b)                                             c)                                      d) 

 
Figure D5: 1H NMR spectroscopic titration of receptor 1 (1 mM) with TBACl in 

CD3CN at 298 K. a) Stack plot. b) Fitplot for NH proton at δ = 11.73 ppm (proton1, Im-

NH) and CH proton at δ = 8.42 ppm (proton2, Py-CH), using global analysis with 1:1 

host:guest stoichiometry (Ka = 4586 M-1, error: 11%). c) Plot of the residuals for δ = 11.73 

ppm (proton1) and δ = 8.42 ppm (proton2) using global analysis. d) Calculated mole 

fractions. 
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a)  

 
 

b)                                             c)                                       d) 

 
Figure D6: 1H NMR spectroscopic titration of receptor 2 (1 mM) with TBACl in 

CD3CN at 298 K. a) Stack plot. b) Fitplot for NH proton at δ = 11.85 ppm (proton1, Im-

NH) and CH proton at δ = 8.49 ppm (proton2, Py-CH), using global analysis with 1:1 

host:guest stoichiometry (Ka = 12051 M-1, error: 10%). c) Plot of the residuals for δ = 

11.85 ppm (proton1) and δ = 8.49 ppm (proton2) using global analysis. d) Calculated mole 

fractions. 
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a)  

 
 

 

b)                                            c)                                    d) 

 
Figure D7: 1H NMR spectroscopic titration of receptor 3 (1 mM) with TBACl in 

CD3CN at 298 K. a) Stack plot. b) Fitplot for NH proton at δ = 12.93 ppm (proton1, Im-

NH) and CH proton at δ = 8.54 ppm (proton2, Py-CH), using global analysis with 2:1 

host:guest stoichiometry (K11 = 1987; K12: 2238 M-1, error 15 and 7%, respectively). c) 

Plot of the residuals for δ = 12.93 ppm (proton1) and δ = 8.54 ppm (proton2) using global 

analysis. d) Calculated mole fractions. 
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a)  

 
 

b)                                            c)                                     d) 

 
Figure D8: 1H NMR spectroscopic titration of receptor 4 (1 mM) with TBACl in 

CD3CN at 298 K. a) Stack plot. b) Fitplot for NH proton at δ = 11.72 ppm (proton1, Im-

NH) and CH proton at δ = 8.37 ppm (proton2, Py-CH), using global analysis with 2:1 

host:guest stoichiometry (K11 = 0.69; K12: 8.2 x 106 M-1). c) Plot of the residuals for δ = 

11.72 ppm (proton1) and δ = 8.37 ppm (proton2) using global analysis. d) Calculated mole 

fractions. 
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C) Transport studies:  
 

1) HPTS  

 
[1] = 5.1 

 
Figure D9: Hill plot analysis of H+/Cl- symport or Cl-/OH- antiport facilitated by compound 

5.1 using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), buffered to pH 

7.0 with HEPES (10 mM). The test compound was added at 0 s and detergent was added 

at 200 s. Ionophore concentrations are shown as ionophore to lipid molar ratios. Error bars 

represent SD from at least three repeats. 

 

 

 

 
[2] = 5.2 

 
Figure D10: Hill plot analysis of H+/Cl- symport or Cl-/OH- antiport facilitated by 

compound 5.2 using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM). The test compound was added at 0 s and 

detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats. 
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[3] = 5.3 

 
Figure D11: Hill plot analysis of H+/Cl- symport or Cl-/OH- antiport facilitated by 

compound 5.3 using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM). The test compound was added at 0 s and 

detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats. 

 

 

  

 

 

 

[4] = 5.4 

 
Figure D12: : Hill plot analysis of H+/Cl- symport or Cl-/OH- antiport facilitated by 

compound 5.4 using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM). The test compound was added at 0 s and 

detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats. 
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[5] = 5.5 

 
Figure D13: Hill plot analysis of H+/Cl- symport or Cl-/OH- antiport facilitated by 

compound 5.5 using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM). The test compound was added at 0 s and 

detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats. 

 

 
 

1 = 5.1 

 
Figure D14: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the protonphore cccp at 0.5 mol% (to measure of chloride uniport 

solely), oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if the 

transport is fatty acid dependent) on the rate of chloride transport of receptor 5.1 (10 

mol%). 
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2 = 5.2 

 
Figure D15: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the protonphore cccp at 0.5 mol% (as a measure of chloride 

uniport), oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if 

the transport is fatty acid dependent) on the rate of chloride transport of receptor 5.2 (1 

mol%). 

 

 

 
 

3 = 5.3 

 
Figure D16: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the protonphore cccp at 0.5 mol% (as a measure of chloride 

uniport), oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if 

the transport is fatty acid dependent) on the rate of chloride transport of receptor 5.3 (1 

mol%). 
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4 = [5.4] 

 
Figure D17: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the protonphore cccp at 0.5 mol% (as a measure of chloride 

uniport), oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if 

the transport is fatty acid dependent) on the rate of chloride transport of receptor 5.4 (1 

mol%). 

 

 

 
5 = [5.5] 

 
Figure D18: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the protonphore cccp at 0.5 mol% (as a measure of chloride 

uniport), oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if 

the transport is fatty acid dependent) on the rate of chloride transport of receptor 5.5 (1 

mol%). 
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[1] = 5.1 

 

Figure D19: Hill plot analysis of H+ flux facilitated by compound 5.1 using KGlu-KOH 

assay from POPC vesicles loaded with KGlu (100 mM), buffered to pH 7.0 with HEPES 

(10 mM). The test compound was added at 0 s and detergent was added at 200 s. Ionophore 

concentrations are shown as ionophore to lipid molar ratios. Error bars represent SD from 

at least three repeats. 

 

 
 

[2] = 5.2 

 
Figure D20: Hill plot analysis of H+ flux facilitated by compound 5.2 using KGlu-KOH 

assay from POPC vesicles loaded with KGlu (100 mM), buffered to pH 7.0 with HEPES 

(10 mM). The test compound was added at 0 s and detergent was added at 200 s. Ionophore 

concentrations are shown as ionophore to lipid molar ratios. Error bars represent SD from 

at least three repeats. 
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 [3] = 5.3 

 

Figure D21: Hill plot analysis of H+ flux facilitated by compound 5.3 using KGlu-KOH 

assay from POPC vesicles loaded with KGlu (100 mM), buffered to pH 7.0 with HEPES 

(10 mM). The test compound was added at 0 s and detergent was added at 200 s. Ionophore 

concentrations are shown as ionophore to lipid molar ratios. Error bars represent SD from 

at least three repeats. 

 

 
 

 

[4] = 5.4 

 
Figure D22: Hill plot analysis of H+ flux facilitated by compound 5.4 using KGlu-KOH 

assay from POPC vesicles loaded with KGlu (100 mM), buffered to pH 7.0 with HEPES 

(10 mM). The test compound was added at 0 s and detergent was added at 200 s. Ionophore 

concentrations are shown as ionophore to lipid molar ratios. Error bars represent SD from 

at least three repeats. 
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[5] = 5.5 

 
Figure D23: Hill plot analysis of H+ flux facilitated by compound 5.5 using KGlu-KOH 

assay from POPC vesicles loaded with KGlu (100 mM), buffered to pH 7.0 with HEPES 

(10 mM). The test compound was added at 0 s and detergent was added at 200 s. Ionophore 

concentrations are shown as ionophore to lipid molar ratios. Error bars represent SD from 

at least three repeats. 

 

 

 
1 = 5.1 

 
Figure D24: Using KGlu-KOH assay from POPC vesicles loaded with KGlu (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the ionophore valinomycin at 0.05 mol% (as a measure of H+ flux), 

oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if the transport 

is fatty acid dependent) on the rate of chloride transport of receptor 5.1 (4 mol%). 
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2 = 5.2 

 
Figure D25: Using KGlu-KOH assay from POPC vesicles loaded with KGlu (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the ionophore valinomycin at 0.05 mol% (as a measure of H+ flux), 

oleic acid at 1 mol%AND 10 mol% (as a source of fatty acid) and BSA-treated lipid (to 

test if the transport is fatty acid dependent) on the rate of chloride transport of receptor 5.2 

(0.1 mol%). 

 

 
 

3 = 5.3 

 
Figure D26: Using KGlu-KOH assay from POPC vesicles loaded with KGlu (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the ionophore valinomycin at 0.05 mol% (as a measure of H+ flux), 

oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if the transport 

is fatty acid dependent) on the rate of chloride transport of receptor 5.3 (0.1 mol%). 
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4 = 5.4 

 
Figure D27: Using KGlu-KOH assay from POPC vesicles loaded with KGlu (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the ionophore valinomycin at 0.05 mol% (as a measure of H+ flux), 

oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if the transport 

is fatty acid dependent) on the rate of chloride transport of receptor 5.4 (0.1 mol%). 

 

 

 
 

5 = 5.5 

 
Figure D28: Using KGlu-KOH assay from POPC vesicles loaded with KGlu (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied to determine 

the effect of addition of the ionophore valinomycin at 0.05 mol% (as a measure of H+ flux), 

oleic acid at 1 mol% (as a source of fatty acid) and BSA-treated lipid (to test if the transport 

is fatty acid dependent) on the rate of chloride transport of receptor 5.5 (0.1 mol%). 
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[1] = 5.1 

 
Figure D29:  Observed fluorescence ratio response due to HCl influx in the presence of 

compounds 5.1 (10 mol%) into vesicles loaded with KCl (100 mM) and suspended in KCl, 

KBr, KI, KNO3 and KClO4 (100 mM). All external and internal solutions were buffered to 

pH 7 with HEPES (10 mM). 

 

 

 
 

[2] = 5.2 

 
Figure D30: Observed fluorescence ratio response due to HCl influx in the presence of 

compounds 5.2 (1 mol%) into vesicles loaded with KCl (100 mM) and suspended in KCl, 

KBr, KI, KNO3 and KClO4 (100 mM). All external and internal solutions were buffered to 

pH 7 with HEPES (10 mM). 
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[3] = 5.3 

 
Figure D31: Observed fluorescence ratio response due to HCl influx in the presence of 

compounds 5.3 (1 mol%) into vesicles loaded with KCl (100 mM) and suspended in KCl, 

KBr, KI, KNO3 and KClO4 (100 mM). All external and internal solutions were buffered to 

pH 7 with HEPES (10 mM). 

 

 
 

[4] = 5.4 

 
Figure D32: Observed fluorescence ratio response due to HCl influx in the presence of 

compounds 5.4 (1 mol%) into vesicles loaded with KCl (100 mM) and suspended in KCl, 

KBr, KI, KNO3 and KClO4 (100 mM). All external and internal solutions were buffered to 

pH 7 with HEPES (10 mM). 
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[5] = 5.5 

 
Figure D33: Observed fluorescence ratio response due to HCl influx in the presence of 

compounds 5.5 (1 mol%) into vesicles loaded with KCl (100 mM) and suspended in KCl, 

KBr, KI, KNO3 and KClO4 (100 mM). All external and internal solutions were buffered to 

pH 7 with HEPES (10 mM). 
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2) Potassium over sodium selectivity: 

 
2 = 5.2 

 
Figure D34: Observed fluorescence ratio response due to HCl influx or Cl-/OH- antiport 

facilitated by compound 5.2 (1 mol%) using KCl-KOH and NaCl-KOH assays from POPC 

vesicles loaded with KCl (100 mM) or NaCl, respectively. All external and internal 

solutions were  buffered to pH 7.0 with HEPES (10 mM). The test compound was added 

at 0 s and detergent was added at 200 s. Ionophore concentrations are shown as ionophore 

to lipid molar ratios. Error bars represent SD from at least three repeats. 

 

 
[3] = 5.3 

 
Figure D35: Observed fluorescence ratio response due to HCl influx or Cl-/OH- antiport 

facilitated by compound 5.3 (1 mol%) using KCl-KOH and NaCl-KOH assays from POPC 

vesicles loaded with KCl (100 mM) or NaCl, respectively. All external and internal 

solutions were  buffered to pH 7.0 with HEPES (10 mM). The test compound was added 

at 0 s and detergent was added at 200 s. Ionophore concentrations are shown as ionophore 

to lipid molar ratios.  
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3) Calcein leakage assays:  

A chloroform solution of POPC was evaporated under vacuum and dried for at least 

6 h as reported.1 The thin film was hydrated by the internal solution containing 

calcein disodium salt (100 mM) and NaCl (100 mM) buffered to pH 7.4 with 

HEPES (10 mM). Then, the lipid suspension was subjected to nine freeze-thaw 

cycles followed by extrusion 25 times through a 200 nm polycarbonate membrane. 

Size exclusion chromatography using sephadex G-25 column and calcein-free 

external solution, containing NaCl (100 mM) and Na2SO4 (100 mM) buffered to 

pH 7.4 with HEPES (10 mM).  

 

The resulting suspension of dye-encapsulated LUVs with a mean diameter of 200 

nm was diluted with the external solution to obtain 2.5 mL lipid suspension 

containing a 0.1 mM lipid concentration. After the tested receptors 5.1-5.5 were 

added at 1 mol%, calcein fluorescence (λex = 490 nm, λem = 520 nm) was recorded 

at 25 °C. Detergent (25 μL) was added at 200 seconds to lyse the vesicle and to 

calibrate the assay.  

 

The fractional calcein release (FR) was calculated as follows (with It = fluorescence 

intensity at time t, I0 = fluorescence intensity at time 0 and Imax = fluorescence 

intensity after addition of detergent): 

 

 

𝐹𝑅 =  
𝐼𝑡 − 𝐼0

𝐼𝑚𝑎𝑥 − 𝐼𝑜
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Figure D36: Calcein leakage by 5.1-5.5 (1 mol% carrier-to-lipid) from unilamellar POPC 

vesicles loaded with calcein disodium salt (100 mM) and NaCl (100 mM) buffered to pH 

7.4 with HEPES (10 mM). At t = 10 s, a DMSO solution of the transporter was added to 

start the experiment. At the end of the experiment, detergent was added to lyse the vesicles. 

The results are shown as the fraction of calcein leaked from the vesicles. 
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4) Ion selective electrode (ISE) assays: 

Cl/NO3 exchange assay: 

 
[1] = 5.1 

 
Figure D37: Chloride efflux mediated by receptor 5.1 (10 mol% w.r.t. lipid), added from 

stock DMSO solutions of the receptor at varying concentration with different loading 

volume. The compound was added to POPC vesicles containing 489 mM KCl and 

suspended in 489 mM KNO3, both buffered to pH 7.2 with phosphate buffer. At the end of 

the experiment the vesicles were lysed with detergent to achieve 100% chloride efflux. 

Each point represents the average of 3 trials. 

 

 
[2] = 5.2 

 
Figure D38: Chloride efflux mediated by receptor 5.2 (1 mol%), added from stock DMSO 

solutions of the receptor at varying concentration with different loading volume. The 

compound was added to POPC vesicles containing 489 mM KCl and suspended in 489 

mM KNO3, both buffered to pH 7.2 with phosphate buffer. At the end of the experiment 

the vesicles were lysed with detergent to achieve 100% chloride efflux. Each point 

represents the average of 3 trials. 
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[3] = 5.3 

 
Figure D39: Chloride efflux mediated by receptor 5.3 (1 mol%), added from stock DMSO 

solutions of the receptor at varying concentration with different loading volume. The 

compound was added to POPC vesicles containing 489 mM KCl and suspended in 489 

mM KNO3, both buffered to pH 7.2 with phosphate buffer. At the end of the experiment 

the vesicles were lysed with detergent to achieve 100% chloride efflux. Each point 

represents the average of 3 trials. 

 

 
[4] = 5.4 

 
Figure D40: Chloride efflux mediated by receptor 5.4 (1 mol%), added from stock DMSO 

solutions of the receptor at varying concentration with different loading volume. The 

compound was added to POPC vesicles containing 489 mM KCl and suspended in 489 

mM KNO3, both buffered to pH 7.2 with phosphate buffer. At the end of the experiment 

the vesicles were lysed with detergent to achieve 100% chloride efflux. Each point 

represents the average of 3 trials. 
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[2] = 5.2 

 

 Figure D41: Hill plot analysis of chloride efflux facilitated by compound 5.2 from 

unilamellar POPC vesicles that were loaded with a 489 mM KCl solution buffered to pH 

7.2 with 5 mM phosphate, and were suspended in a 489 mM KNO3 solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of three repeats. 

 

 

[3] = 5.3 

 
Figure D42: Hill plot analysis of chloride efflux facilitated by compound 5.3 from 

unilamellar POPC vesicles that were loaded with a 489 mM KCl solution buffered to pH 

7.2 with 5 mM phosphate, and were suspended in a 489 mM KNO3 solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of three repeats. 
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[4] = 5.4 

 

Figure D43:  Hill plot analysis of chloride efflux facilitated by compound 5.4 from 

unilamellar POPC vesicles that were loaded with a 489 mM KCl solution buffered to pH 

7.2 with 5 mM phosphate, and were suspended in a 489 mM KNO3 solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of three repeats. 

 

 
 

[5] = 5.5 

 
Figure D44:  Chloride efflux mediated by different mol% of transporter 5.5, from 

unilamellar POPC vesicles that were loaded with a 489 mM KCl solution buffered to pH 

7.2 with 5 mM phosphate, and were suspended in a 489 mM KNO3 solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of three repeats. The maximim observed solubility of compound 5 in DMSO was 1 mM, 

so higher concentration could not be performed to get hill plot. 
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[2] = 5.2 

 
Figure D45: Electrogenic or electroneutral transport mediated by compound 5.2 (1 mol% 

with respect to lipid) in the presence of monensin or valinomycin (0.1 mol% with respect 

to lipid). Unilamellar POPC vesicles were loaded with a 300 mM KCl solution buffered to 

pH 7.2 with 5 mM phosphate and were suspended in a 300 mM KGlu solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of three repeats. 

 

 
 

[3] = 5.3 

 
Figure D46: Electrogenic or electroneutral transport mediated by compound 5.3 (1 mol% 

with respect to lipid) in the presence of monensin or valinomycin (0.1 mol% with respect 

to lipid). Unilamellar POPC vesicles were loaded with a 300 mM KCl solution buffered to 

pH 7.2 with 5 mM phosphate and were suspended in a 300 mM KGlu solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of three repeats. 
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[4] = 5.4 

 
Figure D47: Electrogenic or electroneutral transport mediated by compound 5.4 (1 mol% 

with respect to lipid) in the presence of monensin or valinomycin (0.1 mol% with respect 

to lipid). Unilamellar POPC vesicles were loaded with a 300 mM KCl solution buffered to 

pH 7.2 with 5 mM phosphate and were suspended in a 300 mM KGlu solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of three repeats. 
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5) Fluorescence titration studies with TBACl 

 

 
Figure D48: Fluorescent changes over 30 minutes (Ex = 285 nm) of compound 5.2 (1.0 

μM) upon addition of 100 equivalents of TBACl (100 μM) in DMSO. 

 

 

 

 

 
 
Figure D49: Fluorescent changes over 30 minutes (Ex = 350 nm) of compound 5.3 (1.0 

μM) upon addition of 100 equivalents of TBACl (100 μM) in DMSO. 
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D) Transport studies upon reduction of complexes 5.13, 5.14, 5.16 

and 5.17. 
 

 

Figure D50: Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complex 5.13 (1 μM) by dithiothreitol DTT (3 μΜ) using KCl-

KOH assay from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with 

HEPES (10 mM) after 30 minutes and 3 hours. The test complex 6 (1 mol%) and KOH 

were added firstly, then DTT was added at 0 s. DMSO, DTT (3 mol%), parent anion 

transporter 5.2 and complex 5.13 (without addition of DTT) were used as controls. 

Detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats.  

 

 

Figure D51: Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complex 5.13 (1 μM) by TCEP (3 mM) using KCl-KOH assay 

from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with HEPES (10 mM) 

after 30 minutes and 3 hours. The test complex 5.13 (1 mol%) and KOH were added firstly, 

then TCEP was added at 0 s. DMSO, TCEP (3 mol%), parent anion transporter 5.2 and 

complex 5.13 (without addition of TCEP) were used as controls. Detergent was added at 

200 s. Ionophore concentrations are shown as ionophore to lipid molar ratios. Error bars 

represent SD from at least three repeats.  
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Figure D52: Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complex 5.14 (1 μM) by dithiothreitol DTT (3 mM) using KCl-

KOH assay from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with 

HEPES (10 mM) after 30 minutes and 3 hours. The test complex 5.14 (1 mol%) and KOH 

were added firstly, then DTT was added at 0 s. DMSO, DTT (3 mol%), parent anion 

transporter 5.3 and complex 5.14 (without addition of DTT) were used as controls. 

Detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats.  

 

 

 

Figure D53: Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complex 5.14 (1 μM) by TCEP (3 mM) using KCl-KOH assay 

from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with HEPES (10 mM) 

after 30 minutes and 3 hours. The test complex 5.14 (1 mol%) and KOH were added firstly, 

then TCEP was added at 0 s. DMSO, TCEP (3 mol%), parent anion transporter 5.3 and 

complex 5.14 (without addition of TCEP) were used as controls. Detergent was added at 

200 s. Ionophore concentrations are shown as ionophore to lipid molar ratios. Error bars 

represent SD from at least three repeats.  
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Figure D54: Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complex 5.16 (1 μM) by dithiothreitol DTT (3 mΜ) using KCl-

KOH assay from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with 

HEPES (10 mM) after 5 minutes and 20 minutes. The test complex 5.16 (1 mol%) and 

KOH were added firstly, then DTT was added at 0 s. DMSO, DTT (3 mol%), parent anion 

transporter 5.2 and complex 5.16 (without addition of DTT) were used as controls. 

Detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats.  

 

 

 

Figure D55: Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complex 5.16 (1 μM) by TCEP (3 mM) using KCl-KOH assay 

from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with HEPES (10 mM) 

after 5 minutes, 20 minutes and 3 hours. The test complex 5.16 (1 mol%) and KOH were 

added firstly, then TCEP was added at 0 s. DMSO, TCEP (3 mol%), parent anion 

transporter 5.2 and complex 5.16 (without addition of TCEP) were used as controls. 

Detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats.  
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Figure D56: Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complex 5.17 (1 μM) by dithiothreitol DTT (3 mM) using KCl-

KOH assay from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with 

HEPES (10 mM) after 5 minutes and 20 minutes. The test complex (1 mol%) and KOH 

were added firstly, then DTT was added at 0 s. DMSO, DTT (3 mol%), parent anion 

transporter 5.2 and complex 5.17 (without addition of DTT) were used as controls. 

Detergent was added at 200 s. Ionophore concentrations are shown as ionophore to lipid 

molar ratios. Error bars represent SD from at least three repeats.  

 

 

 

 

Figure D57: Observed fluorescence ratio response due to H+/Cl- symport or Cl-/OH- 

antiport upon reduction of complex 5.17 (1 μM) by TCEP (3 mM) using KCl-KOH assay 

from POPC vesicles loaded with KCl (100 mM), buffered to pH 7.0 with HEPES (10 mM) 

after 5 minutes and 20 minutes. The test complex 5.17 (1 mol%) and KOH were added 

firstly, then TCEP was added at 0 s. DMSO, TCEP (3 mol%), parent anion transporter 5.3 

and complex 5.17 (without addition of TCEP) were used as controls. Detergent was added 

at 200 s. Ionophore concentrations are shown as ionophore to lipid molar ratios. Error bars 

represent SD from at least three repeats.  
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Appendix E: Supplementary Information to Chapter 6 
 

A) NMR spectra of compounds from chapter 6 
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B) Binding studies: 

a)  

 

 

 

b)                                               c)                                            d) 

 

 

 

 

 

 

 

Figure E1: 1H NMR spectroscopic titration of receptor 6.1 (2 mM) with TBACl in DMSO-

d6 with 0.5% water at 298 K. a) Stack plot. b) Fitplot for 4 NH protons at δ = 8.09, 8.54, 

9.00 and 9.46 using global analysis with 1:1 (Ka = 81 M-1, error: 1%). c) Plot of the residuals 

for using global analysis. d) Calculated mole fractions. 
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a)  

 

 

b)                                               c)                                            d) 

 

 

 

Figure E2:  1H NMR spectroscopic titration of receptor 6.2 (2 mM) with TBACl in DMSO-

d6 with 0.5% water at 298 K. a) Stack plot. b) Fitplot for 4 NH protons at δ = 8.25, 8.64, 

9.56 and 9.90 using global analysis with 1:1 (Ka = 146 M-1, error: 3%). c) Plot of the 

residuals for using global analysis. d) Calculated mole fractions. 
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a)  

 

 

b)                                          c)                                            d) 

 

Figure E3:  1H NMR spectroscopic titration of receptor 6.3 (2 mM) with TBACl in DMSO-

d6 with 0.5% water at 298 K. a) Stack plot. b) Fitplot for 4 NH protons at δ = 8.23, 8.63, 

9.46 and 9.84 using global analysis with 1:1 (Ka = 177 M-1, error: 3%). c) Plot of the 

residuals for using global analysis. d) Calculated mole fractions. 
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a)  

 

 

b)                                         c)                                            d) 

 

 

 

 

 

 

 

Figure E4: 1H NMR spectroscopic titration of receptor 6.4 (2 mM) with TBACl in DMSO-

d6 with 0.5% water at 298 K. a) Stack plot. b) Fitplot for 4 NH protons at δ = 8.54, 8.80, 

9.90 and 10.37 using global analysis with 1:1 (Ka = 96 M-1, error: 5%). c) Plot of the 

residuals for using global analysis. d) Calculated mole fractions. 
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C) Transport studies:  

a)  

 

b)  

 

Figure E5: a) Dose response curve and b) Hill plot analysis of chloride efflux facilitated 

by compound 6.1 from unilamellar POPC vesicles that were loaded with a 489 mM KCl 

solution buffered to pH 7.2 with 5 mM phosphate, and were suspended in a 489 mM KNO3 

solution buffered to pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each 

point is the average of at least two repeats. 
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a)  

 

b)  

 

Figure E6: a) Dose response curve and b) Hill plot analysis of chloride efflux facilitated 

by compound 6.2 from unilamellar POPC vesicles that were loaded with a 489 mM KCl 

solution buffered to pH 7.2 with 5 mM phosphate, and were suspended in a 489 mM KNO3 

solution buffered to pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each 

point is the average of at least two repeats. 
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a)  

 

b)  

 Experimental Data
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Figure E7: a) Dose response curve and b) Hill plot analysis of chloride efflux facilitated 

by compound 6.3 from unilamellar POPC vesicles that were loaded with a 489 mM KCl 

solution buffered to pH 7.2 with 5 mM phosphate, and were suspended in a 489 mM KNO3 

solution buffered to pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each 

point is the average of at least two repeats. 
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a)  

 

b)  

 

 

Figure E8: a) Dose response curve and b) Hill plot analysis of chloride efflux facilitated 

by compound 6.4 from unilamellar POPC vesicles that were loaded with a 489 mM KCl 

solution buffered to pH 7.2 with 5 mM phosphate, and were suspended in a 489 mM KNO3 

solution buffered to pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each 

point is the average of at least two repeats. 
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Figure E9: Electrogenic or electroneutral transport mediated by compound 6.1 (2 mol% 

with respect to lipid) in the presence of monensin or valinomycin (0.1 mol% with respect 

to lipid). Unilamellar POPC vesicles were loaded with a 300 mM KCl solution buffered to 

pH 7.2 with 5 mM phosphate and were suspended in a 300 mM KGlu solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of at least two repeats. 
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Figure E11: Electrogenic or electroneutral transport mediated by compound 6.3 (0.05 

mol% with respect to lipid) in the presence of monensin or valinomycin (0.1 mol% with 

respect to lipid). Unilamellar POPC vesicles were loaded with a 300 mM KCl solution 

buffered to pH 7.2 with 5 mM phosphate and were suspended in a 300 mM KGlu solution 

buffered to pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is 

the average of at least two repeats. 

 

 

Figure E12: Electrogenic or electroneutral transport mediated by compound 6.4 (0.2 mol% 

with respect to lipid) in the presence of monensin or valinomycin (0.1 mol% with respect 

to lipid). Unilamellar POPC vesicles were loaded with a 300 mM KCl solution buffered to 

pH 7.2 with 5 mM phosphate and were suspended in a 300 mM KGlu solution buffered to 

pH 7.2 with 5 mM phosphate salts. DMSO was used as a control. Each point is the average 

of at least two repeats. 
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a)  

 

b)  

 

Figure E13: a) Dose response curve, b) Hill plot analysis of H+/Cl- symport or Cl-/OH- 

antiport facilitated by compound 6.1 using KCl-KOH assay from POPC vesicles loaded 

with KCl (100 mM), buffered to pH 7.0 with HEPES (10 mM). The test compound was 

added at 0 s and detergent was added at 200 s. Ionophore concentrations are shown as 

ionophore to lipid molar ratios. Error bars represent SD from at least three repeats. 
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a)  

 

 

b)  

 
Figure E14: a) Dose response curve, b) Hill plot analysis of H+/Cl- symport or Cl-/OH- 

antiport facilitated by compound 6.2 using KCl-KOH assay from POPC vesicles loaded 

with KCl (100 mM), buffered to pH 7.0 with HEPES (10 mM). The test compound was 

added at 0 s and detergent was added at 200 s. Ionophore concentrations are shown as 

ionophore to lipid molar ratios. Error bars represent SD from at least three repeats. 
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a)  

 

b)  

 

Figure E15: a) Dose response curve, b) Hill plot analysis of H+/Cl- symport or Cl-/OH- 

antiport facilitated by compound 6.3 using KCl-KOH assay from POPC vesicles loaded 

with KCl (100 mM), buffered to pH 7.0 with HEPES (10 mM). The test compound was 

added at 0 s and detergent was added at 200 s. Ionophore concentrations are shown as 

ionophore to lipid molar ratios. Error bars represent SD from at least three repeats. 
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a)  

 

 

b)  

 

Figure E16: a) Dose response curve, b) Hill plot analysis of H+/Cl- symport or Cl-/OH- 

antiport facilitated by compound 6.4 using KCl-KOH assay from POPC vesicles loaded 

with KCl (100 mM), buffered to pH 7.0 with HEPES (10 mM). The test compound was 

added at 0 s and detergent was added at 200 s. Ionophore concentrations are shown as 

ionophore to lipid molar ratios. Error bars represent SD from at least three repeats. 
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Figure E17: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied including using 

BSA-treated lipid (to test if the transport is fatty acid dependent)  addition of oleic acid at 

1 mol% (as a source of fatty acid), addition of the protonphore cccp at 1 mol% (to measure 

of chloride uniport solely), or addition of valinomycin  at 0.05 mol% (as a measure of H+ 

flux), on the rate of chloride transport of receptor 6.1 (0.05 mol%). 

 

 

 

Figure E18: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied including using 

BSA-treated lipid (to test if the transport is fatty acid dependent)  addition of oleic acid at 

1 mol% (as a source of fatty acid), addition of the protonphore cccp at 1 mol% (to measure 

of chloride uniport solely), or addition of valinomycin  at 0.05 mol% (as a measure of H+ 

flux), on the rate of chloride transport of receptor 6.2 (0.002 mol%). 
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Figure E19: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied including using 

BSA-treated lipid (to test if the transport is fatty acid dependent)  addition of oleic acid at 

1 mol% (as a source of fatty acid), addition of the protonphore cccp at 1 mol% (to measure 

of chloride uniport solely), or addition of valinomycin  at 0.05 mol% (as a measure of H+ 

flux), on the rate of chloride transport of receptor 6.3 (0.001 mol%). 

 

 

Figure E20: Using KCl-KOH assay from POPC vesicles loaded with KCl (100 mM), 

buffered to pH 7.0 with HEPES (10 mM), different conditions were applied including using 

BSA-treated lipid (to test if the transport is fatty acid dependent)  addition of oleic acid at 

1 mol% (as a source of fatty acid), addition of the protonphore cccp at 1 mol% (to measure 

of chloride uniport solely), or addition of valinomycin  at 0.05 mol% (as a measure of H+ 

flux), on the rate of chloride transport of receptor 6.4 (0.01 mol%). 

 

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0 [A] = 6.3 (0.001 mol%)

 DMSO

 A

 A (BSA-treated)

 A + OA (1 mol%)

 A + Vln (0.05 mol%)

 A + cccp (1 mol%)

F
lu

o
re

s
c

e
n

c
e

  
ra

ti
o

Time / s

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

[A] = 6.4 (0.01 mol%)
 DMSO
 A
 A (BSA-treated)
 A + OA (1 mol%)
 A + Vln (0.05 mol%)
 A + cccp (1 mol%)

F
lu

o
re

s
c
e

n
c
e

  
ra

ti
o

Time / s



Appendix F for Chapter 7 

 

343 

 

Appendix F: Supplementary Information to Chapter 7 
 

A) NMR spectra of compounds from chapter 7 
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Selected high-resolution mass spectra: 

 

Compound 7.9: 

 
 

Compound 7.10: 

 
 

Compound 7.11: 

 
 

Compound 7.12: 
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Compound 7.13: 

 
 

 

Compound 7.14: 

 
 

 

Compound 7.15: 

 
 

 

Compound 7.16: 
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Compound 7.17: 

 
 

 

Compound 7.18 
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Compound 7.19: 

 

 
 

 

Compound 7.22: 
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Compound 7.23: 

 
 

 

Compound 7.24: 

 
 

 

 

Compound 7.27: 
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Compound 7.28: 

 
 

 

Compound 7.29: 

 
 

 

Compound 7.30: 
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B) HPLC purity: 

The purity of all tested compounds was determined by High Performance Liquid 

Chromatography (HPLC) analysis and was greater than 95%. HPLC was performed 

with a Shimadzu CLASS-VP LC10 analytical HPLC system (Shimadzu 

Corporation, Kyoto, Japan) equipped with a diode array detector and an auto-

sampler with detection at 254 nm and at a flow rate of 0.5 mL/min. The column 

used in HPLC analysis was Luna C18 column (250 × 4.6 mm; 5 μm particle size; 

Phenomenex, Australia). Column temperature was not controlled during the 

experiment. The mobile phase consisted of (A) water/TFA (99.9:0.1, v/v) and (B) 

acetonitrile/TFA (99.9:0.1, v/v). 

Table F1: HPLC purity of the synthesized compounds 

Compound Formula Retention time Purity 

7.9 C10H12N2O4S 5.58 98.4% 

7.10 C17H16N2O4S 5.56 98.6% 

7.11 C17H15ClN2O4S 5.79 96.1% 

7.12 C17H15ClN2O4S 5.80 97.2% 

7.13 C18H18N2O5S 5.54 95.5% 

7.14 C17H15N3O6S 5.90 98.0% 

7.15 C17H14ClFN2O4S 5.85 95.2% 

7.16 C15H14N2O4S2 5.48 98.0% 

7.17 C16H16N4O4S 6.74 98.0% 

7.18 C16H15FN4O4S 6.75 95.2% 

7.19 C16H15ClN4O4S 6.75 95.9% 

7.20 C16H15BrN4O4S 6.72 95.6% 

7.21 C17H15N5O4S 6.62 98.2% 

7.22 C17H18N4O5S 6.63 99.4% 

7.23 C16H15N5O6S  6.65 98.7% 

7.24 C18H20N4O6S 6.66 97.4% 

7.26 C14H13ClN4O3S 4.98 99.5% 

7.27 C14H12FClN4O3S 5.63 99.5% 

7.28 C14H12Cl2N4O3S 5.62 97.9% 

7.29 C14H12BrClN4O3S 5.02 99.6% 

7.30 C15H15ClN4O4S 5.02 99.4% 
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C) Protein X-ray crystallography data: 

Table F2: Summary of Data Collection and Atomic Model Refinement 

Statistics 

PDB 6UFB 6UFC 6UFD 

compound 7.10 7.13  7.16  

Space group P21 P21 P21 

Cell 

dimensions 

 
  

a, b, c 42.4, 41.5, 

72.0 

42.6, 41.5, 

72.4 

42.6, 41.7, 

72.3 

alpha, beta, 

gamma 

90, 104.5, 

90 

90, 104.7, 

90 

90, 104.6, 

90 

Resolution 

(Å) 

41.5 - 1.67 41.5 - 1.32 41.7 - 1.48 

Resolution-

high (Å) 

1.70 - 1.67 1.35 - 1.32 1.50 - 1.48 

Rmerge 0.091 

(0.772) 

0.083 

(0.536) 

0.127 

(0.790) 

Rpim 0.036 

(0.302) 

0.035 

(0.235) 

0.053 

(0.370) 

CC ½ 0.999 

(0.800) 

0.998 

(0.810) 

0.995 

(0.625) 

I/sigI 17.2 (2.6) 12.2 (3.2) 10.1 (2.6) 

Completeness 

(%) 

97.3 (94.0) 97.7 (88.2) 97.7 (69.4) 

Redundancy 7.5 (7.3) 6.7 (6.0) 6.7 (5.3) 
 

   

Refinement    

resolution (Å) 41.0 - 1.67 40.3 - 1.32 41.3 - 1.48 

unique 

reflections 

26,243 52,867 38,441 

Rwork/Rfree 15.1 / 18.6 11.7 / 14.4 14.9 / 16.7 
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(%) 

# atoms 2466 2510 2496 

Protein 2164 2206 2203 

metal (Zn) 1 1 1 

ligand 24 26 23 

water 258 270 250 

B-factors 

(Å2) 

14.9 9.3 13.8 

protein 15.1 14.4 14.0 

metal (Zn) 7.9 7.0 6.4 

ligand 19.6 20.4 16.5 

water 26.0 27.7 25.4 

r.m.s. 

deviations 

   

Bond 

length (Å) 

0.010 0.008 0.009 

Bond 

angle (°) 

1.628 1.753 1.646 

* values in parenthesis are values in the high-resolution bin 
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Figure F1: Graphical depiction of the model fit to experimental electron density of 

all instances of 7.10 in hCA II active site (pdb 6UFB). Each fit is shown from 

different orientation to approximate a three-dimensional view. 2mFo-DFc (at 0.7 

rmsd) in gray mFo-DFc (at 3 Å rmsd) in purple (negative) and green (positive). 
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Figure F2: Graphical depiction of the model fit to experimental electron density of 

all instances of 7.13 in hCA II active site (pdb 6UFC). Each fit is shown from 

different orientation to approximate a three-dimensional view. 2mFo-DFc (at 0.7 

rmsd) in gray mFo-DFc (at 3 Å rmsd) in purple (negative) and green (positive). 
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Figure F3: Graphical depiction of the model fit to experimental electron density 

of all instances of 7.16 in hCA II active site (pdb 6UFD). Each fit is shown from 

different orientation to approximate a three-dimensional view. 2mFo-DFc (at 0.7 

rmsd) in gray mFo-DFc (at 3 Å rmsd) in purple (negative) and green (positive). 
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Figure F4: Protein X-ray structure of 7.10 bound to the active site in CA II (pdb 

6UFB). The molecular surface of the active site is coloured in blue for the 

hydrophilic half and in red for the hydrophobic area. 
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