
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part B 

Faculty of Engineering and Information 
Sciences 

2020 

Evaluation of roadway spatial-temporal travel speed estimation using Evaluation of roadway spatial-temporal travel speed estimation using 

mapped low-frequency AVL probe data mapped low-frequency AVL probe data 

Liqun Peng 

Zhixiong Li 
University of Wollongong, lizhixio@uow.edu.au 

Chenhao Wang 

Thompson Sarkodie-Gyan 

Follow this and additional works at: https://ro.uow.edu.au/eispapers1 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Peng, Liqun; Li, Zhixiong; Wang, Chenhao; and Sarkodie-Gyan, Thompson, "Evaluation of roadway spatial-
temporal travel speed estimation using mapped low-frequency AVL probe data" (2020). Faculty of 
Engineering and Information Sciences - Papers: Part B. 4193. 
https://ro.uow.edu.au/eispapers1/4193 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/4193?utm_source=ro.uow.edu.au%2Feispapers1%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages


Evaluation of roadway spatial-temporal travel speed estimation using mapped Evaluation of roadway spatial-temporal travel speed estimation using mapped 
low-frequency AVL probe data low-frequency AVL probe data 

Abstract Abstract 
© 2020 Elsevier Ltd The rapid increase in the number of vehicles equipped with GPS devices has resulted 
in using automatic vehicle location (AVL) data as probes to identify traffic flow status as well as route 
travel speed on a very fine spatial-temporal scale. However, these traffic monitoring approaches heavily 
rely on the widely distributed probe vehicles in the network and the high frequency of these probe 
samples, which are rarely implemented in the real world. This study aims to analyze the applicability of 
providing accurate traffic flow information from four types of low-frequency AVL data. Each data source is 
applied for speed estimation to develop guidelines on GPS data requirements for travel speed estimation. 
First, the probe sample size of each data source on each target corridor is studied to reveal the road 
segments that have the potential for speed estimation, along with the GPS sampling frequency of each 
data source. Second, the impact of probe vehicle types, sample sizes, and GPS sampling frequency is 
analyzed. This study offers guidance in using GPS data to conduct speed estimation in different 
scenarios, which can be further implemented in a prototype software tool for estimating the real-time 
travel speed. This study has shown the applicability for speed estimation from four types of GPS data, 
where the transit bus GPS data provides the best mean speed estimation. The speed estimation results 
are compared with loop detector data on a test road segment to evaluate its accuracy. The comparison 
results show that given the current GPS data sample size and updating frequency, the transit bus GPS 
data can provide a reasonably accurate estimation of the traffic flow speed with a mean absolute speed 
difference of 6.96 km/h. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Peng, L., Li, Z., Wang, C. & Sarkodie-Gyan, T. (2020). Evaluation of roadway spatial-temporal travel speed 
estimation using mapped low-frequency AVL probe data. Measurement: Journal of the International 
Measurement Confederation, 165 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/4193 

https://ro.uow.edu.au/eispapers1/4193


1 

 

Evaluation of Roadway Spatial-Temporal Travel Speed Estimation 
Using Mapped Low Frequency AVL Data as Probes 

Liqun Peng1,3, Zhixiong Li2*, Chenhao Wang3, Thompson Sarkodie-Gyan4 

1 School of Transportation and Logistics, East China Jiaotong University, 808 

Shuanggang East Road, Nanchang, Jiangxi, China 330013 

2 School of Mechanical, Materials, Mechatronic and Biomedical Engineering, 

University of Wollongong, NSW 2522, Australia  

3 Department of Civil and Environmental Engineering, University of Alberta, ICE 6-327, 

Edmonton, Alberta, Canada, T6G 1H9 

4 Laboratory for Industrial Metrology and Automation, College of Engineering, 

University of Texas, El Paso, TX, USA 

*Corresponding Author: zhixiong_li@uow.edu.au 

 

Abstract: With the road networks covered by rapidly increasing vehicles equipped with 

GPS devices, it has become common practice to use AVL (Automatic Vehicle Location) 

data as probes to perform identification of traffic flow status as well as route travel speed 

at a very fine spatial-temporal scale. However, these traffic monitoring approaches heavily 

reply upon the wide distributed probe vehicles in the network and high frequency of these 

probe samples, which are rarely implemented in real world. This study is to analyze the 

applicability of providing accurate traffic flow information from four types of low frequency 

AVL data, each data source is applied for speed estimation respectively, so as to develop 

guidelines on GPS data requirement for travel speed estimation. Firstly, the probe sample 

size of each data source on each target corridor is studied to reveal the road segments 

that have the potential for speed estimation, and the GPS sampling frequency of each 

data source is introduced as well. Secondly, the impact of probe vehicle types, sample 

sizes and GPS sampling frequency is analyzed. In conclusion, the study developed a 

guidance for using GPS data to conduct speed estimation in different scenarios, which 

can be further implemented to a prototype software tool for estimating the real-time travel 

speed. Our study has shown the applicability for speed estimation from four types of GPS 

data, where the transit bus GPS data provides the best mean speed estimation. The speed 

estimation results are compared with loop detector data on a test road segment to evaluate 

its accuracy. The comparison results have shown that given the current GPS data sample 

size and updating frequency, the transit bus GPS data can provide a reasonably accurate 

estimation of the traffic flow speed with the mean absolute speed difference of 6.96 km/h. 

Keywords: Travel speed estimation, AVL probes, Low frequency GPS data, Sample 

requirement 
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1. Introduction 

A major component of ITS (Intelligent Transportation Systems) application is 

Advanced Traveler Information System (ATIS), with one of its key components being the 

provision of accurate vehicle travel speed information. Vehicle travel speed is a valuable 

tool both for network managers and road travellers. It is a key indicator of developing 

problems on a network and one of the few congestion measures public users really 

understand. Travel speed is important information for various actors of a transport system, 

ranging from city planning, to day to day traffic management, to individual travellers. They 

all make decisions based on average travel speed or variability of travel speed among 

other factors. 

Typically, there are three ways to measure travel speed on an urban and highway 

network: 1) loop detectors, 2) GPS data, and 3) off-call cellular phone data. Measurement 

using loop detectors in the highway/urban network, requires detectors and is limited due 

to speed being measured only at certain points on the network. Additionally, loop detectors 

are not very effective in arterials with numerous traffic lights due to intermittent traffic 

movement. The high installation and maintenance cost of loop detector makes them less 

desirable. Location measurements using GPS data or off-call cellular phone data, can be 

used to calculate average vehicle speed, and depending on the technology used can also 

provide point speed along a particular road or highway. 

The use of GPS probes in traffic management is growing rapidly as the required data 

collection infrastructure is increasingly in place, with a significant number of mobile 

sensors moving around covering expansive areas of the road network. Many travellers 

carry with them at least one device with a built-in GPS receiver. Furthermore, vehicles are 

becoming more and more location aware. Vehicles in commercial fleets are now routinely 

equipped with GPS. This research specifically investigates the estimation of traffic speed 

from various GPS data sources. The estimation relies on GPS data from City of Edmonton 

transit buses, Alberta Transportation snow plows, City of Edmonton SmartTravel app, and 

Shaw GPS Fleet Vehicle Tracking. The main objective of this paper is to evaluate the 

accuracy and reliability of travel speed estimation using sparse low frequency GPS data 

sources available in network. Through analysis of the historical GPS data from above 

datasets, we examine the effects of GPS sampling frequency, GPS sensor accuracy, 

travelled route, and probe vehicles type on accuracy and reliability of estimating average 

travel speed.  

The remainder of this paper is organized as follows: Section 2 summarizes the related 

works on travel speed estimation. Then, a description is presented for identifying a set of 

activities that are necessary to perform the travel time estimation in Section 3. This is 

followed by a description of experimental data, results and discussions and a conclusion. 
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2. Related Work 

Recent progress in advanced technologies for intelligent transportation systems has 

enabled the extraction of traffic information from many different sources and in multiple 

formats. Traffic data sources can be classified in several ways, while in this case the 

classification presented by Lim and Lee has been chosen [1]. They classify traffic detection 

systems into two main categories: point detectors and interval detectors. The interval 

detectors can be further divided into automatic vehicle identification (AVI) techniques and 

probe vehicle technologies. 

Point detectors have been the main source of traffic information in the past decades. 

This type of detector is set in fixed points of the road and captures traffic variables in these 

specific points. The most conventional point detectors are the inductive loops that can be 

further categorized into single and double loop detectors. Single-loop detectors consist of 

a single induction loop that generates a magnetic field and is able to detect the passing of 

large metallic objects, in this case vehicles. These detectors output variables such as flow 

(number of passing vehicles per hour) and occupancy (proportion of the time that the 

detector is occupied). Substantial studies have focused on this indirect estimation of 

roadway traffic speeds from single-loop detectors [2, 3], and additional research efforts 

have also been made in improving the accuracy of single-loop based speed estimation [4, 

5]. Double-loop detectors consist of a pair of single-loop detectors set very close to each 

other. This pair of sensors is capable of obtaining flow and occupancy but they can also 

collect point speed and vehicle lengths by using the travel time of the vehicles between 

the two sensors. In practice, it is very common that this velocity information is provided in 

an aggregated form, where the measurements of several vehicles are combined in 

different forms [6][7]. Besides the loop detectors, there are other types of point detectors 

that are available for estimating traffic speeds, including electronic toll collection data [8], 

infrared and radar technology, video image detection technology [9-11] and so on. These 

conventional sensors can provide high quality data and are not affected by external factors. 

They are usually widely deployed along a roadway. However, their installation and 

maintenance are expensive and complicated, which limit their spatial coverage, especially 

for arterials. 

  Another promising approach for measuring traffic speeds is to use probe vehicle 

technologies, which are capable of tracking probe vehicles by recording position 

information at regular time interval or space interval. The use of probe vehicles can provide 

the information of vehicles' trajectories, and travel times between two points can be easily 

derived. The emerging technologies include smart phones, global positioning systems 

(GPS), and automatic vehicle location (AVL) systems. Those probe vehicles act as mobile 

traffic sensors equipped with tracking devices (e.g., GPS or mobile phones), and send 

location, direction and speed information every few seconds or minutes. They are being 

used to collect network-wide traffic information such as instantaneous speeds and travel 
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times at any network location without the need of roadside equipment. There are a number 

of sophisticated methods can be utilized to process probe data for different analyses or 

applications [12, 13]. 

However, the most challenge of these services is upon the low sampling (also called 

reporting, or polling) rate (less than one per minute), which creates difficulties in inferring 

the travel time of the vehicle traversed between two designated link positions [14]. 

Furthermore, a few probe vehicles may cause unpredicted data error or missing in the 

field operation environment due to the GPS device failure and signal interference, in 

consequence, the fraction of the reported travel time is not accurate. Several non-

parameter models are proposed to estimate the probabilities of traffic congestion [15, 16], 

vehicle stops and travel delays between geo-locations by considering the speed limit, 

intersections and traffic environment, and allocate the travel time between two consequent 

observed position into each individual segment [17-21]. These methods mitigate the 

impact of the sparse and low-frequency vehicle probes on the accuracy of travel time 

estimation to a certain extent. 

On the other hand, the required probe sample size is crucial to represent realistic 

traffic conditions accurately and reliably. Zou, Xu and Zhu propose a method for arterial 

speed estimation by utilizing taxi GPS data from 100 vehicles in Guangzhou, China [22]. 

Their study shows that the number of probe vehicles accounting for 3% of total traffic result 

in significantly lower errors for travel speed estimation. Lorkowski, Mieth and Schäfer 

discuss the potential applications of probe vehicle data, such as dynamic routing and 

automatic congestion detection, using GPS data from 700 taxis in Stuttgart, Germany [23]. 

Their results indicate that probe vehicles accounting for about 1% of total traffic are 

required to estimate traffic conditions. Although the previous work clearly demonstrates 

the feasibility to extract useful information from low-frequency probe vehicle data, it is 

valuable to leverage the minimum requirement of low frequency GPS data sources 

available in network with the accuracy and reliability of travel speed estimation. By 

investing in in-house tools for travel time estimation, we can ensure the integrity of travel 

speed results and maximize its data assets. 

3. Travel Speed Estimation 

In this study, a probe-based link travel speed estimation method is proposed. This 

method calculates estimated link travel speed based on link travel time detected from GPS 

probes, e.g. transit buses, snow plow trucks, GPS-enabled mobile phones and 

commercial vehicles. Suggested by Hellinga et al. [17], inferring traffic conditions from 

positioning data requires five steps: map-matching, path identification, probe filtering, 

travel time allocation and travel time aggregation. A practical method to estimate link travel 

speed using different GPS data sources is introduced: (1) the road network model built for 

map-matching and path identification process, and (2) the proposed link travel time 

estimation method. It should be noted that three out of four GPS data sources applied in 
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this study are directly collected from GPS-equipped vehicles, and the other one, which is 

collected from a mobile application, has done the probe filtering before uploading data to 

the server, so the probe filtering process is not a concern here. 

3.1 Road Network 

The road network consists of two parts: nodes and links. A node represents a 

simplified geographical feature of the road network, such as intersections, dead ends of 

road segments, locations of a change in the road attribute, and on-ramps or off-ramps, as 

shown in Fig. 1. The set of nodes included the road network is denoted by 𝑵 = {𝑛𝑖|𝑖𝜖𝐼}, 

where 𝐼 is the total number of nodes. A link represents a real road segment connecting 

two nodes. The set of links in the digital map is denoted by 𝑳 = {𝑙𝑗|𝑗 ∈ 𝐽}, where J is the 

total number of links. Note that the two-dimension coordinates of each node and the length 

of each link can be obtained using spatial analysis application such as ArcGIS. 
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Fig. 1. Examples of Probe Distribution in Network 

Considering a GPS location report collected from vehicle k at time t, denoted by 

𝑔(𝑘, 𝑡), it can be represented by a set of two-dimension coordinates, 𝑔(𝑘, 𝑡) = (𝑥𝑘,𝑡 , 𝑦𝑘,𝑡). 

After map-matching process, the reported location is projected to the road link which is 

inferred to be the actual road segment the vehicle is on. The map-matched location is 

defined by 𝑔(𝑘, 𝑡) = (𝑙𝑘,𝑡 , 𝑑(𝑙𝑘,𝑡)), where 𝑙𝑘,𝑡 is the matched road link, and 𝑑(𝑙𝑘,𝑡) is the 

distance from the map-matched position to the beginning of the link. Thus, the position 

information is transferred into one-dimension coordinate. After path identification, the path 

traveled by the GPS probe between two consecutive map-matched locations 𝑔(𝑘, 𝑡1) and 

𝑔(𝑘, 𝑡2) (𝑡2 > 𝑡1), namely a GPS report pair 𝑝𝑘,𝑡2
= (𝑔(𝑘, 𝑡1) , 𝑔(𝑘, 𝑡2)), is defined as 𝑟𝑘,𝑡2

, 

and the links contained in the travel path can be defined as follows: 

 𝑟𝑘,𝑡2
= {𝑙𝑘,𝑡2,1, 𝑙𝑘,𝑡2,2 … 𝑙𝑘,𝑡2,m … lk,t2,M} (1) 

where M is the total number of traversed links. Figure 3.2 gives an example of a probe 

vehicle k with two consecutive location reports. The path travel time and travel distance of 

two consecutive location report from a probe vehicle can be simply calculated by 

 𝑇𝑇𝑘,𝑡2
= 𝑡2 − 𝑡1 (2) 
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 D𝑘,𝑡2
= (𝑙𝑒𝑛𝑔(𝑙𝑘,𝑡2,1) − 𝑑(𝑙𝑘,𝑡1

)) + ∑ 𝑙𝑒𝑛𝑔(𝑙𝑘,𝑡2,𝑚)𝑀−1
𝑚=2 + 𝑑(𝑙𝑘,𝑡2

) (3) 

where 𝑙𝑒𝑛𝑔(𝑙𝑘,𝑡2,𝑚)  denotes the length of link 𝑙𝑘,𝑡2,𝑚 . Note that when M =1, Dk,t2
=

(leng(𝑙k,t2,1) − 𝑑(l𝑘,𝑡1
)); when M =2, D𝑘,𝑡2

= (𝑙𝑒𝑛𝑔(𝑙𝑘,𝑡2,1) − 𝑑(𝑙𝑘,𝑡1
)) + 𝑑(𝑙𝑘,𝑡2

). 

3.2 Link Travel Speed Estimation 

The time interval between two consecutive GPS reports of one probe vehicle, namely 

the GPS sampling interval, is one of the key factors that determine the accuracy of link 

travel time estimation. For example, with a high resolution of GPS sampling interval, e.g. 

1 second or even less, we can know the exact time when the vehicle enters and leaves a 

road link disregarding positioning error caused by GPS device itself; meanwhile, in 

practice, the GPS sampling interval is much longer, e.g. over 30 seconds. Therefore, to 

estimate link travel speed, the path travel time should be first allocated to each included 

link, then by simply dividing the length of the link by the link travel time, the average link 

travel speed of the probe vehicle can be obtained. This refers to the aforementioned 

process of travel time allocation. As shown in Fig.1, a GPS pair can be categorized into 

three cases: Case 1: there is no node on the travel path, that is the two GPS location 

reports are on the same link; Case 2: there is one node on the travel path, that is the two 

GPS location reports are on adjacent links; Case 3: there are at least two nodes on the 

travel path, that is at least one complete link exists between the two GPS location reports. 

A benchmark travel time allocation method is proposed to allocate path travel time 

into each link based. This method is to first estimate the timestamp when a probe vehicle 

k passes a node, then the link travel time can be simply represented by the time difference 

between the estimated timestamp of its upstream and downstream nodes. The path travel 

time can be further decomposed into three constituents: (1) Free-flow travel time, which 

is the time interval that a vehicle traveling through the road segment with free-flow speed; 

(2) Congestion delay, which is the additional travel time caused by vehicle driving at a 

speed lower than free-flow speed due to traffic congestions; (3) Stopping delay, which 

occurs when the vehicles are forced to stop due to traffic control system, e.g. traffic signals. 

It includes the acceleration and deceleration time caused by stopping. 

Considering a GPS pair of vehicle k, 𝑝𝑘,𝑡𝑥
= (𝑔(𝑘, 𝑡𝑥−1) , 𝑔(𝑘, 𝑡𝑥)), which includes at 

least one node on its travel path (e.g. case 2 and 3), by assuming that the average travel 

speed on each link is not substantially different, 

 𝑡(𝑛𝑘,𝑡𝑥,𝑚) = 𝑡1 +
𝐿𝑢𝑝(𝑛𝑘,𝑡𝑥,𝑚)

𝐿𝑢𝑝(𝑛𝑘,𝑡𝑥,𝑚)+𝐿𝑑𝑜𝑤𝑛(𝑛𝑘,𝑡𝑥,𝑚)
𝑇𝑇𝑘,𝑡2

 (4) 

where 𝑛𝑘,𝑡𝑥,𝑚  denotes the downstream node of link 𝑙𝑘,𝑡𝑥,𝑚 , 𝑡(𝑛𝑘,𝑡𝑥,𝑚)  denotes the 

estimated timestamp when vehicle k passes node 𝑛𝑘,𝑡𝑥,𝑚 , 𝐿𝑢𝑝(𝑛𝑘,𝑡𝑥,𝑚)  and 

𝐿𝑑𝑜𝑤𝑛(𝑛𝑘,𝑡𝑥,𝑚)  denote the travel distance from node 𝑛𝑘,𝑡𝑥,𝑚  to the upstream and 

downstream map-matched GPS location respectively. Then the estimated travel time of 

vehicle k on link m is calculated by  

 𝑡𝑡(𝑙𝑘,𝑡x,𝑚) = 𝑡(𝑛𝑘,𝑡x,𝑚) − 𝑡(𝑛𝑘,𝑡x,𝑚−1)  (5) 

The assumption of Equation (4) is reasonable for uninterrupted traffic flow, such as 
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freeways, since there is no traffic control device that enforces vehicles to stop on the 

roadway and the stopping delay can be considered as zero. However, for interrupted traffic 

flow, e.g. urban arterials, the existence of signalized or un-signalized intersections makes 

stopping delay no ignorable. In fact, the stopping delay is the main component of traffic 

delay on arterial. For case 2 and 3, the stopping delay usually happens on the upstream 

of nodes, and the benchmark method could allocate part of the stopping delay of the 

upstream link to the downstream link. 

To improve the benchmark method, the instantaneous GPS speed is taken into 

consideration to infer and allocate stopping delay. Given a map-matched trajectory of 

probe vehicle 𝑘, which includes 𝑋 GPS pairs, 𝑝𝑘,𝑡1
, 𝑝𝑘,𝑡2

, …, 𝑝𝑘,𝑡𝑥
,…, 𝑝𝑘,𝑡𝑋

, to estimate 

the timestamp when the vehicle passes node n𝑘,𝑡𝑥,𝑚 , the procedure is described as 

follows:  

Step 1: obtain the adjacent GPS pairs 𝑝𝑘,𝑡𝑥−1
, 𝑝𝑘,𝑡𝑥+1

; 

Step 2: calculate the number of nodes passed in 𝑝𝑘,𝑡𝑥
, denoted by 𝑐(𝑝𝑘,𝑡𝑥

); compared 

𝑐(𝑝𝑘,𝑡𝑥
)  with a predefined value 𝑐𝑡ℎ𝑟𝑒𝑠(𝑥) , if 𝑐(𝑝𝑘,𝑡𝑥

) > 𝑐𝑡ℎ𝑟𝑒𝑠(𝑥) , go to Step 9, 

otherwise go to Step 3; 

Step 3: calculate average travel path speed 𝑣(𝑝𝑘,𝑡𝑥
) using Equation (6) 

 𝑣(𝑝𝑘,𝑡𝑥
) =

𝐷𝑘,𝑡𝑥

𝑡𝑥−𝑡𝑥−1
  (6) 

and then compare it with the predefined speed threshold 𝑝𝑣𝑡ℎ𝑟𝑒𝑠; if 𝑣(𝑝𝑘,𝑡𝑥
) > 𝑝𝑣𝑡ℎ𝑟𝑒𝑠, 

go to Step 9, otherwise go to Step 4; 

Step 4: compare instantaneous GPS speed 𝑣𝑘,𝑡𝑥−1
,𝑣𝑘,𝑡𝑥

 of 𝑔(𝑘, 𝑡𝑥−1) , 𝑔(𝑘, 𝑡𝑥) with the 

predefined point speed threshold 𝑣_𝑡ℎ𝑟𝑒𝑠_𝑝; if both 𝑣𝑘,𝑡𝑥−1
 and 𝑣𝑘,𝑡𝑥

 are higher or not 

less than 𝑣𝑡ℎ𝑟𝑒𝑠, go to Step x, else if 𝑣𝑘,𝑡𝑥−1
≤  𝑣𝑡ℎ𝑟𝑒𝑠 and 𝑣𝑘,𝑡𝑥+1

>  𝑣𝑡ℎ𝑟𝑒𝑠, go to Step 

5, otherwise go to Step 7; 

Step 5: calculate 𝑐(𝑝𝑘,𝑡𝑥−1
) ; if 𝑐(𝑝𝑘,𝑡𝑥−1

) > 𝑐𝑡ℎ𝑟𝑒𝑠(𝑥 − 1) , go to Step 6, otherwise go to 

Step 9; 

Step 6: calculate 𝑣(𝑝𝑘,𝑡𝑥−1
)  using Equation (6); if 𝑣(𝑝𝑘,𝑡𝑥−1

) > 𝑝𝑣𝑡ℎ𝑟𝑒𝑠 , calculate 

𝑡(𝑛𝑘,𝑡𝑥,𝑚) using Equation (7) 

 𝑡(𝑛𝑘,𝑡𝑥,𝑚) = 𝑡1 +
𝐿𝑢𝑝(𝑛𝑘,𝑡𝑥,𝑚)

𝑣(𝑝𝑘,𝑡𝑥−1)
  (7) 

otherwise go to Step 9 ; 

Step 7: calculate 𝑐(𝑝𝑘,𝑡𝑥+1
) ; if 𝑐(𝑝𝑘,𝑡𝑥+1

) > 𝑐𝑡ℎ𝑟𝑒𝑠(𝑥 + 1) , go to Step 8, otherwise go to 

Step 9; 

Step 8: calculate 𝑣(𝑝𝑘,𝑡𝑥+1
)  using Equation (6); if 𝑣(𝑝𝑘,𝑡𝑥+1

) > 𝑝𝑣𝑡ℎ𝑟𝑒𝑠 , calculate 

𝑡(𝑛𝑘,𝑡𝑥,𝑚) using Equation (8) 

 𝑡(𝑛𝑘,𝑡𝑥,𝑚) = 𝑡2 −
𝐿𝑑𝑜𝑤𝑛(𝑛𝑘,𝑡𝑥,𝑚)

𝑣(𝑝𝑘,𝑡𝑥+1)
 (8) 

otherwise go to Step 9 ; 

Step 9: calculate 𝑡(𝑛𝑘,𝑡𝑥,𝑚) using Equation (4). 

The threshold values applied in the procedure are explained here. 𝑐𝑡ℎ𝑟𝑒𝑠(𝑥) is to clarify 

which case the GPS pair belongs to, for example when 𝑐𝑡ℎ𝑟𝑒𝑠(𝑥) = 1, 𝑐(𝑝𝑘,𝑡𝑥
) > 𝑐𝑡ℎ𝑟𝑒𝑠(𝑥) 

means 𝑝𝑘,𝑡𝑥
 is case 3. 𝑝𝑣𝑡ℎ𝑟𝑒𝑠 is a predefined value of average path travel speed, which 
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is used to determine if significant delay occurs in the path. The 𝑣𝑡ℎ𝑟𝑒𝑠 is a predefined 

threshold for instantaneous GPS speed, which is used to determine if the delay occurs on 

the upstream of the node or on the downstream of the node. For example, if 𝑣𝑘,𝑡𝑥−1
≤

 𝑣𝑡ℎ𝑟𝑒𝑠 and 𝑣𝑘,𝑡𝑥+1
>  𝑣𝑡ℎ𝑟𝑒𝑠, then it is assumed that the delay occurs on the upstream of 

the node. 

4. Data Collection and Analysis 

The research scope of this study is limited to four geographic areas, as shown in Fig.2, 

including the Anthony Henday Drive, Whitemud Drive, Yellowhead Trail (from 170 Street 

NW to 75 Street NW) and Queen Elizabeth II Highway (from the Edmonton International 

Airport to the Anthony Henday Drive) in the City of Edmonton, Alberta, Canada. An attempt 

will be made to apply developed algorithms to non-urban areas and assess their 

performance where GPS data availability is more limited.  

 

Fig. 2. Research Scope 

4.1 Introduction of GPS Data Sources 

There are four GPS data sources involved in this study: ETS Smart Bus GPS Data, 

Snow Plow GPS Tracking, SmartTravel App GPS Data, and Shaw Commercial Vehicle 

GPS Tracking. This section gives a brief introduction to these data sources, especially 

their GPS sampling frequency and sample size. Among the four data sources, 

SmartTravel data is the only GPS data source collected from general vehicles. Its GPS 

sampling frequency is 1 second, which makes it much easier to obtain travel path 

information and accurate link travel speed. If the mobile device has other sensors such as 

gyroscope or accelerometer, the sensor data can also be collected. Table 1 summarizes 



9 

 

the available information from the four data sources. Vehicle ID, timestamp and position 

are basic information for speed estimation, and speed, direction and route schedule are 

supplementary information, which is helpful for improving the accuracy and reliability of 

map-matching and speed estimation. Besides, the real-time capability of ETS Smart Bus 

data and Snow Plow data gives potential usage for real-time application. 

Table 1. Summary of GPS Data Features 

Data Source 
Basic info Supplementary info Real-time availability 

Vehicle 

ID 
Timestamp Position Speed Direction 

Route 

Schedule 
Real-Time Historical 

ETS smart bus √ √ √   √ √ √ 

Snow plow √ √ √ √ √  √ √ 

SmartTravel √ √ √ √ √   √ 

Shaw GPS 

Tracking 
√ √ √     √ 

4.2 GPS Sampling Frequency 

GPS sampling frequency measures how many GPS records can be obtained from 

one probe vehicle in a certain time period. Higher GPS sampling frequency provides better 

accuracy of map-matching and speed estimation, since the uncertainty of probe vehicle 

trajectory is decreased.  

 

Fig. 3. GPS Sampling Interval of Different Data Sources 

GPS sampling interval is the reciprocal of GPS sampling frequency. It refers to the 

time gap between two consecutive GPS records of one probe vehicle. Fig. 3 shows the 

accumulative proportion of GPS records with different GPS sampling interval for each data 

source, and Table 2 shows the proportion of records with different GPS sampling intervals. 

SmartTravel data has the best sampling frequency, with 97.1% GPS records having 1-

second sampling interval. As for Snow Plow data, the sampling interval of about 50% data 

is between 10 to 12 seconds, and the sampling interval of over 90% data is under 30 

second. The third best is ETS Bus data, with 80% GPS records having less than 65-

second sampling interval. Regarding the Shaw GPS tracking, 12% data has 1-second 
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sampling interval, while 48.4% data has sampling interval over 180 seconds.  

Table 2. GPS Sampling Interval 

Sampling Interval  

(second) 

% of GPS records 

ETS Bus Snow Plow Smart Travel Shaw 

(0, 10] 0% 33% 100% 24% 

(10, 30] 5% 60% 0% 6% 

(30, 60] 39% 5% 0% 4% 

(60, 120] 55% 2% 0% 11% 

(120, 180] 1% 0% 0% 7% 

180+ 0% 0% 0% 48% 

4.3 Sample Size Distribution 

In this study, a sample is defined as an estimate on one road link from one probe 

vehicle. For travel time estimation, it is important to first analyze the spatial and temporal 

distribution of the sample size generated from each data source, thus knowing if the GPS 

data can support speed estimation for a certain road link. For example, the ETS Bus data 

can cover most urban arterials, while it may not provide a satisfying sample size for 

freeways; the Snow Plow data is collected from snowplows, which do not work on arterial.  

Fig. 4 to 7 illustrates the daily average sample size on each corridor for every 15-

minute time slot. The X axis denotes the time of day and the Y axis denotes landmarks 

(e.g. intersections) along the corridor. For ETS Bus data, it provides relatively large sample 

size on the road segment between 170 Street and 122 Street on Whitemud Drive, 

especially during AM and PM peak hours. This is because of that, first, there are more bus 

routes passing through the road segment; second, more buses of these routes are 

operated during peak hours, as the bus departure interval reduces from 30 minutes to 15 

minutes. Similarly, the samples generated from ETS Bus is large on Yellowhead Trail, 

especially during peak hours, and less on Anthony Henday Drive, which is consistent with 

the bus route schedule. Specifically, the bus route 747, known as the Sky Shuttle, provides 

all samples on Highway 2, and it can cover the whole road segment from Anthony Henday 

Drive to the airport. 

For the Snow Plow data, the samples are mainly on Highway 2, as it is one of the 

main corridors in the schedule of snowplows. Another factor that limits the sample size of 

Snow Plow is the limited number of monitored snowplows. In the provided real-time Snow 

Plow data feed, there are in total 22 snow plow trucks, which, compared with other data 

sources, is relatively small. It should be noticed that the snow conditions on road also 

could impact the sample size of Snow Plow. For SmartTravel data, we can find the 

samples on all four corridors, yet compared with ETS Bus data, the daily average sample 

size on each corridor is not constant as the users’ travel activity is relatively random and 

cannot be controlled. However, the mobile application can be improved and the number 

of users will continually increase, and the sample size, especially during peak hours, will 

hopefully increase and be stable. For Shaw data, the samples are almost on Yellowhead 

Trail, which is reasonable because the data is collected from commercial vehicles and 
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Yellowhead Trail is the main access to many commercial and industrial zones.  

 

 

 

 

Fig. 4. Distribution of Sample Sizes of GPS Data Sources on Whitemud Drive 
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Fig. 5. Distribution of Sample Sizes of GPS Data Sources on Anthony Henday Drive 
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Fig. 6. Distribution of Sample Sizes of GPS Data Sources on Highway 2 
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Fig. 7. Distribution of Sample Sizes of GPS Data Sources on Yellowhead Trail 
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5. Results and Evaluation 

In this chapter, we analyze how the characteristics of GPS data and road network 

influence the accuracy of traffic speed estimation. Section 5.1 analyzes the impact of 

sample size and probe vehicle type upon link traffic speed estimation. Section 5.2 

introduces two data features that may impact the accuracy of sample speed: GPS 

sampling frequency and road type (e.g. freeway and arterial).  

5.1 Impact of Probe Vehicle Type  

In this study, Loop Detector Speed Data on the Whitemud Drive are selected as the 

benchmark to evaluate the speed estimation accuracy of GPS data. The ETS bus data 

out of four proposed data sources is chosen for this accuracy comparison because it can 

consistently provide GPS data points due to the pre-determined transit schedule. 

Furthermore, the ETS bus data also has the greatest sampling sizes as well as the spatial 

coverage on the Whitemud Drive. However, due to the special type of probe vehicles, the 

estimated speeds could in general different from the whole traffic flow as buses under 

certain circumstances travel slower than the general vehicles. The Loop Detectors cover 

the Whitemud Drive from 122st intersection to 178st intersection as shown in Fig. 8.  

 

Fig. 8. Loop Detectors (VDS) Locations on Whitemud Drive 

In the original Loop Detector Data, loop detectors are constantly recording the speed 

of passing vehicles in a 20-second interval. If more than one vehicle is passing through 

the VDS, their average speeds will be noted as the estimated speed within this interval. In 

this study, the speed data has been aggregated into a 1-minute interval, which means that 

the average speed of all vehicles passing through one VDS within one minute is noted as 

the estimated speed in order to smooth the speed profile curve. Furthermore, a 5-minute 

moving average window is implemented to further smooth out the curve, or otherwise, the 

speed profile will be very difficult to identify the speed drop. In this case, the VDS speed 

estimations are used as the reference speed to evaluate the accuracy of speed estimation 
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from the ETS Bus GPS data.  

ETS Bus speeds are estimated from the GPS records as mentioned before, and the 

data interval is 15 minutes. In every fifteen minutes, the average speed of all the sampling 

records is noted as the estimated speed. Furthermore, the moving average window 

procedure is also used to smooth out the speed estimation that can better represent the 

speed drop trend. The loop detector 1034 and 1035 at road segment 25544 and 42896 

on the Whitemud Drive is chosen as an example to show the accuracy of the speed 

estimation. The data covers 10 weekdays from December 5th to 16th, and from 6 A.M. to 

10 P.M. on each day.  

5.1.1 Evaluation Criteria 

In evaluating the speed estimation, the Mean Absolute Speed Difference and 

Percentage Absolute Speed Difference are used to determine the accuracy of speed 

estimation. The reason to use the mean absolute speed difference is that the positive and 

negative speed difference can offset the absolute difference between the ETS and GPS 

speed estimations. Therefore, applying the absolute speed difference value can represent 

the deviation of the estimated speed from the reference speed. The percentage absolute 

speed difference, on the other hand, can help to demonstrate the percentage of the 

deviation given the reference speeds.  

 𝑀𝐴𝑆𝐷 =  
1

𝑁
∑ |𝑣𝐺𝑃𝑆 − 𝑣𝑉𝐷𝑆|𝑁

𝑘=1  (9) 

Where MASD = mean absolute speed difference 

N = number of samples 

      𝑣𝐺𝑃𝑆 = estimated speed from GPS data 

   𝑣𝑉𝐷𝑆 = estimated speed from VDS data 

 𝑃𝐴𝑆𝐷 =  
1

𝑁
∑ |

𝑣𝐺𝑃𝑆−𝑣𝑉D𝑆

𝑣𝑉𝐷𝑆
|𝑁

𝑘=1  (10) 

Where PASD = percentage absolute speed difference 

5.1.2 Probe Vehicle Types 

The ETS Bus GPS data on the road segments 25544 and 42896 contains in total 

2407 samples within 10 weekdays. These samples have covered 1046 15-minute time 

intervals that at least one sample is presented in these time intervals. The speed 

differences between the VDS speeds and the estimated speeds from GPS data are 

considered as the estimation error that is due to the variation of the traffic flow. In the Fig. 

9, the box plots have shown the speed difference distribution for different sample size 

within one time slot.  
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Fig. 9. Box plot of the speed differences between the VDS and GPS speed estimations 

From the box plot above, we can see that the distribution for each sample size follows 

a relative good normal distribution. All the groups have shown that the average VDS travel 

speed is higher than that of the GPS estimated speed, and the mean is slightly increasing 

along with the increase of the sample sizes. On the contrary, the standard deviation for 

each group decreases as the sample size increases. Because larger sample size can 

provide higher accuracy of the speed estimation, the increasing trend of the mean speed 

difference could be due to the specificity of probe vehicle type. Because the probe vehicle 

here is the ETS bus, which could instinctively travel slower than the general traffic flow.  

When we take further analysis about the difference between GPS and VDS speed 

estimations, as we can see from the Fig. 10, the absolute differences between two data 

sources are shown in a standard normal distribution where the mean difference value is 

6.96 km/h. This could due to the bus traffic speed, in general, is slower than the overall 

traffic speed. And the general distribution is not skewed to the right or left, which means 

that the speed difference is mostly due to some human random factors. By conducting the 

one-sample Kolmogorov-Smirnov Test, the result has shown that the speed difference 

distribution follows the normal distribution with the asymmetric significance less than 0.000. 

This can further prove that the speed difference between the VDS and GPS speed 

estimations are due to the random factors with no significant bias. 
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Fig. 10. The distribution of absolute difference of speed estimation between GPS and 

VDS data 

5.2 Sample Size Requirement 

In collecting traffic information using probe vehicles, the sample size is one of the 

critical issues that needs to be considered. It is important to determine the number of probe 

vehicles because the traffic state can be affected by many variables. Sometimes the 

variance of traffic speeds within one time interval is very large, and in this case, the 

sufficient sample size would be important to accurately estimate the current traffic state. 

Also, higher sample size means that the confidence level of estimation speed will be higher 

once the standard deviation of speed values and allowable errors are determined. 

According to the macroscopic traffic flow theory, the required sample size can be 

calculated using the equation below: 

 𝑛 = (
𝑡𝑠

𝜀
)2  (11) 

where 

 n = required sample size 

 t = value for the selected confidence level using t distribution 

 s = standard deviation of estimated travel speed 

 𝜀 = allowable error 

and T-distribution is used because the sample size is less than 30.  

In the equation above, the s represents the standard deviation of travel speed values. 

In this case, two preliminary assumptions have to be made, where 1) the speed estimation 

error follows the normal distribution or T-distribution if the sample size is less than 30, and 

2) the speed estimation error within one individual time slot follows the same normal or T-

distribution of the all the speed estimations. The relationship between the ground truth and 

the estimated speed can be shown below: 

 𝑣𝑖,𝑡 = 𝑣𝑡 + 𝜀𝑖,𝑡  (12) 

where 
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 𝑣𝑡 = the ground truth speed at time t 

 𝑣𝑖,𝑡 = the ith estimated speed at time t 

 𝜀𝑖,𝑡 = the ith estimation error at time t, and the error follows N ((𝜇, 𝜎2) 

and the average speed estimations of total N samples at time t equals to: 

 𝐴𝑣𝑔(𝑣𝑖,𝑡) = 𝑣𝑡 +
1

𝑁
∑ 𝜀𝑖,𝑡

𝑁
𝑖=1  (13) 

Therefore, the standard deviation of the estimated travel speed can be written as the 

following equation: 

 𝑆𝐷(𝑣𝑡) = [
1

𝑁
∑ (𝑣𝑖,𝑡 − 𝐴𝑣𝑔(𝑣𝑖,𝑡))2𝑁

𝑖=1 ]
1

2  (14) 

By combining the Equation(12) and (13) into Equation (14), 𝑆𝐷(𝑣𝑡) can be rewritten 

as: 

 𝑆𝐷(𝑣𝑡) = [
1

𝑁
∑ (𝜀𝑖,𝑡 − 𝐴𝑣𝑔(𝜀𝑖,𝑡))2𝑁

𝑖=1 ]
1

2  (15) 

The standard deviation of the estimated speeds at time t:𝑆𝐷(𝑣𝑡) can be represented 

by the standard deviation of the estimation error. And by following the second assumption, 

the standard deviation of the estimation error is independent from the ground truth speed, 

and the distribution of estimation error within one time slot equals to the overall distribution 

of the estimation error for all the time. Thus, the standard deviation of the estimated travel 

speeds can be calculated by using the Equation (15).  

In this study, the required sample size for different combinations of confidence level 

and errors on road link 25544 and 42896 on Whitemud Drive is shown below in Table 3. 

There are in total 2407 samples and 1046 time slots, and the standard deviation SD(�̂�𝑡) 

is 6.411 km/h. 

Table 3. Sample size requirements for different combinations of confidence levels and 

allowable errors.  

Confidence 
level 

𝜺<3 km/h 𝜺<5km/h 𝜺<10 km/h 𝜺<15 km/h 

70% 5 2 1 1 
75% 7 3 1 1 
80% 8 3 1 1 
85% 10 4 1 1 
90% 13 5 2 1 
95% 18 7 2 1 

 

As the above table shows the required sample size for different scenarios, the 

estimation assumes that the GPS points are perfectly accurate. In the real world, due to 

the location errors of GPS points, the required sample size should be greater than what is 

displayed in the table, and it depends on the accuracy of the GPS system.  

5.3 Impact of GPS Sampling Frequency and Road Type  

The GPS sampling frequency can influence the accuracy of estimated sample speed. 

With lower GPS sampling frequency, probe vehicles may have traversed significant 
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distances between records, which creates difficulties in inferring the true path of the 

vehicle between two position records. Furthermore, the fraction of the reported travel time 

that is spent on each individual road link is not observed, which creates challenges for 

travel speed estimation. 

In this section, the historical SmartTravel data of five weekdays is used to evaluate 

the impact of GPS sampling frequency and the type of travelled routes upon the accuracy 

of samples. In this study, a sample is defined as a speed estimate of one road link from 

one probe vehicle, including link ID, vehicle ID, timestamps when the probe vehicle enters 

and leaves the road link, link travel time and link travel speed.  

The SmartTravel mobile application collects vehicle position information every one 

second, which can offer very accurate vehicle trajectories for sample generation. Due to 

environmental impacts or network connectivity, sometimes the sampling interval of 

SmartTravel probes could be more than one second. To build up a reference dataset and 

provide samples as errorless as possible, an original vehicle trajectory may be split into 

several sub-trajectories with reassigned vehicle ID. Fig. 11 gives an example 

demonstrating this process: for a complete vehicle trajectory, when there are two records 

with sampling interval higher than the predefined threshold (in this study, the threshold is 

set as 10 seconds), this trajectory is split into two shorter trajectories. Each trajectory is 

assigned with a new virtual vehicle ID, hence in the processed data the sampling intervals 

of all virtual vehicle trajectories are lower than the threshold value. Besides, the total travel 

time of virtual vehicle trajectory should be longer than 5 minutes, and those with total travel 

time less than 5 minutes are removed. After such data processing, the processed 

SmartTravel data is considered as the reference dataset, and samples generated the 

reference dataset are considered as the ground truth for comparison, namely the 

reference samples. 

 

Fig. 11 Example of the process to obtain reference dataset 

To evaluate the impact of GPS sampling frequency on the accuracy of samples, by 

removing partial GPS records of each probe vehicle from the reference dataset, we can 

obtain several GPS datasets with different sampling intervals, e.g. 10 seconds or 60 

seconds. These datasets are considered as the test groups and the samples generated 

from each test dataset, namely test samples, will finally be compared with the reference 

samples. 

To evaluate the impact of travelled route type on the accuracy of samples, samples 
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on the target four corridors are divided into two groups based on the type of traffic flow. 

One group is uninterrupted flow, includes Anthony Henday Drive, Whitemud Drive and 

Highway 2; another group is interrupted flow, includes Yellowhead Trail, on which there 

are five signalized intersections.  

The performance of the test samples is evaluated by the speed difference: 

 ∆𝑣𝑘
𝑖 = 𝑣𝑘

𝑖 − 𝑣𝑟𝑒𝑓
𝑖   (16) 

where  𝑣𝑘
𝑖  is the speed of sample i generated from test dataset k, and 𝑣𝑟𝑒𝑓

𝑖  is the speed 

of sample i generated from the reference dataset. Further, the mean value of absolute 

speed differences is calculated as 

 𝑀𝐴𝐷𝑘 =
∑ |∆𝑣𝑘

𝑖 |𝐼
𝑖

𝐼
  (17) 

where I is the total number of samples.  

Fig. 12 shows the percentage of samples with different speed difference for each test 

datasets, and Fig. 13. shows the standard deviation of speed differences for each test 

datasets. For both freeway and arterial, the speed differences are most within -2~2 km/h, 

and as the sampling frequency decreases, the standard deviation of speed difference 

tends to increase, meaning the variance of the sample speed error increases as the 

sampling frequency decreases. We can also see from Fig. 13. that, with the same 

sampling frequency, the standard deviation of sample speed error on freeway is lower 

than that on arterial. This is reasonable since the control delays caused by traffic signals 

make it more difficult to allocate travel times to road links.  

Fig. 14. illustrates the 𝑀𝐴𝐷𝑘  for each test dataset k. As the sampling interval 

increases from 10 seconds to 60 seconds, the mean absolute difference slightly increases 

from 3.9 km/h to 6.1 km/h for freeway and from 5.2 km/h to 8.0 km/h for arterial; when 

compare the MAD of 60-second and 90-second dataset, even though the sampling interval 

increases by 30 seconds, the MAD does not increase significantly for both freeway and 

arterial. However, as the sampling interval rises to 120 seconds, the MAD of both freeway 

and arterial datasets significantly increases. The result suggests that the proposed travel 

speed estimation method performs well for those GPS data with sampling interval shorter 

than 90 seconds. Besides, generally the proposed method performs better for probe 

samples on freeway than that on arterial, which, considering the difficulty of allocating 

stopping delay caused by signalized or un-signalized intersections, is reasonable. 
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(a) Arterial 

 

 
(b) Freeway 

Fig. 12. Distribution of Sample Speed Error  

 

Fig. 13. Standard Deviation of Sample Speed Error with Different GPS Sampling Interval 

and Road Type 
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Fig. 14. Mean Absolute Speed Difference with Different GPS Sampling Interval 

5.4 Comparison Results 

In the following Fig. 15. to 5.10, the speed estimation comparisons between VDS and 

GPS data on Dec 5th, 6th, and 16th at road link 42896 on Whitemud Drive have been chosen 

as the example to show the estimation results. In this case, we have chosen the estimated 

speed between 6 am and 10 pm to conduct the comparison. As shown in the figures, blue solid 

lines represent the VDS speed estimation, red dot lines show the GPS speed estimation before 

conducting moving average procedure, and yellow solid lines show the GPS speed estimation 

after conducting moving average procedure.  

 

 

 

Fig. 15. Speed estimation comparison between VDS (1035) at road segment 42896 and 

GPS data on Dec. 5th  
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Fig. 16. Speed estimation comparison between VDS (1035) at road segment 42896 and 

GPS data on Dec. 6th  

 

 

Fig. 17. Speed estimation comparison between VDS (1035) at road segment 42896 and 

GPS data on Dec. 16th  

As the figures showed above, the GPS speed estimation can represent the general 

trend of speed profile comparing with the VDS data with some variations. For instance, 

during the morning peak hour on Dec 6th, the GPS speed estimation results did capture 

the dramatic speed drop caused by a temporary traffic flow disruption between 8 - 9 am. 

On the Dec 5th and 16th during the afternoon peak hour, the GPS speed can also capture 

the congestions, which is very common traffic patterns and main concerns for traffic 

operators as the afternoon peak congestion on this segment is the main cause of traffic 

delay on roadway, apart from incidents such as traffic accidents and road constructions. 

But still, there will be some discrepancies in speed estimation at a specific time due to 

some human factors and the specialty of the transit bus. But in general, this ETS bus can 

provide a valid estimation of the current traffic state. 

 

 

 



25 

 

Table 4. Speed estimation results for all the samples.  

 Sample Size 
Mean Absolute 

Speed Difference 
(km/h) 

Percentage Mean 
Absolute Speed 
Difference (%) 

Speed estimation 
difference between 
GPS and VDS data 

 
2407 

 
6.96 

 
9.18% 

 

Table 5. Speed estimation comparison between AM peak, PM peak, and off-peak hours. 

 AM peak 7 – 10 am 
(km/h) 

PM peak 4 – 7 pm 
(km/h) 

On Average 
(km/h) 

Speed estimation 
difference between 
GPS and VDS data 

7.25 7.53 6.96 

 

The Mean Absolute Speed Difference and Percentage Mean Absolute Speed 

Difference are shown in Table 4. In total, the sample size in these 10 selected dates are 

2407, and on average there are 2.3 probe vehicles per speed estimation. The overall mean 

absolute speed difference is 6.96 km/h, and this difference will be higher in the AM and 

PM peaks, which are 7.25 km/h and 7.53 km/h respectively (Table 5). These results 

comply with the sample size requirement calculation above, and the error is within the 

acceptable range. The percentage mean absolute speed difference showed that the 

difference between GPS and VDS speed estimations is 9.18% on average according to 

equation (10). The results also illustrate that the speed difference between the VDS and 

GPS speed estimations are due to the random factors with no significant bias. It should 

be emphasized that in the real world, due to the location errors of GPS points, the required 

sample size in specific scenarios may be greater than what is applied in this study, and it 

depends on the accuracy of the GPS measurement. In collecting traffic information using 

probe vehicles, it is important to determine the number of probe vehicles because the 

traffic state can be affected by many variables. Sometimes the variance of traffic speeds 

within special time intervals is very large, and in this case, the sufficient sample size would 

be important to accurately estimate the current traffic state. Also, higher sample size 

means that the confidence level of estimation speed will be higher once the standard 

deviation of speed values and allowable errors are determined. 

6. Conclusions 

In conclusion, the study has proposed one method of conducting the mean speed 

estimation from the GPS traffic data. In the future, if more GPS data source and/or 

samples are available, the accuracy of estimation can be further improved. The key piece 

that this study tries to deliver is the provision of travel speed and congestion heat maps 

that can provide color coded average speed in each section of the road. This study is 

aiming to provide the algorithms for estimating travel speed from GPS data and to evaluate 
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the accuracy of various GPS data sources. Here are some key findings from the paper: 

• With respect to GPS sampling frequency, more accurate and reliable samples can 

generate the accurate speed estimation at a higher confidence level. Also, during the 

morning and afternoon peak hours, the speed estimation accuracy is lower than the 

speed estimation on the uninterrupted flows. 

• In the current four data sources, the transit bus GPS data can provide the best mean 

speed estimation compared with the reference speed, while other three types of data 

neither provide enough sample size nor have enough temporal coverage to conduct 

the analysis.  

• From the sample size requirement analysis, the ETS bus data can provide sufficient 

sampling frequencies for the allowable error of speed estimations less than 10 km/h. 

However, higher sample size is required for more accurate estimations.  

• According to the mean absolute speed difference analysis, the mean speed estimation 

difference between ETS GPS data and VDS data is 6.96 km/h, and the speed 

estimation is significantly greater in the morning and afternoon peak hours.  

• In the evaluation section, the Transit bus GPS successfully captures the congestion 

condition given limited sampling size, and the speed profile results fit well with the loop 

detector data on the Whitemud Drive.  
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