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Triboelectric Nanogenerator
versus Piezoelectric Generator at Low
Frequency (<4 Hz): A Quantitative Comparison

Abdelsalam Ahmed,1,2,12,13,* Islam Hassan,3,7,12 Ahmed S. Helal,4 Vitor Sencadas,1,5,6 Ali Radhi,7

Chang Kyu Jeong,8,9 and Maher F. El-Kady10,11

SUMMARY

Triboelectric nanogenerators (TENGs) and piezoelectric generators (PGs) are
generally considered the two most common approaches for harvesting ambient
mechanical energy that is ubiquitous in our everyday life. The main difference be-
tween the two generators lies in their respective working frequency range.
Despite the remarkable progress, there has been no quantitative studies on the
operating frequency band of the two generators at frequency values below
4 Hz, typical of human motion. Here, the two generators are systematically
compared based on their energy harvesting capabilities below 4 Hz. Unlike
PGs, the TENG demonstrates higher power performance and is almost indepen-
dent of the operating frequency, making it highly efficient for multi-frequency
operation. In addition, PGswere shown to be inapplicable for charging capacitors
when a rectifier was attached to the system. The results of this work reveal the
tremendous potential of flexible TENGs for harvesting energy at low frequency.

INTRODUCTION

Small-scale electronics has boomed during the last decade for the Internet of Things (IoT), wireless sensor

networks (WSNs), smart city design, and medical application (Gubbi et al., 2013; Jaladi et al., 2017). The

components of such devices typically require a minimal amount of power, but it becomes a challenge

when considering a large network of devices reaching up to billions. Moreover, maintenance cost may

explode as the number of distributed micro-electronics increases when considering existing battery-based

electronics, where their batteries are prone to replacements after its service life. The field of energy harvest-

ing tries to answer these challenges by developing energy conversion schemes from ambient energy ex-

isting in the ecosystem such that electrical output is generated to allow for self-powered electronics (Mateu

et al., 2005; Elvin and Erturk, 2013). In particular, mechanical energy is known for its abundance in the sur-

rounding environment, readily available for potential energy harvesting apparatus based on electromag-

netic (Yang et al., 2009), piezoelectric (Kim et al., 2011; Wang, 2008), triboelectric (Wang, 2013; Ahmed

et al., 2019b) (Ahmed et al., 2020a), or electrostatic (Boisseau et al., 2012). Of these approaches, triboelec-

tric nanogenerators (TENGs) and piezoelectric generators (PGs) have more significant potential for appli-

cations and were hybridized and coupled on numerous occasions during the past few years (Ahmed et al.,

2017b, Ahmed et al., 2017; Chen et al., 2017).

The available mechanical energy found in the environment typically experiences low-frequency behaviors

(around 10 Hz and lower). Examples of such mechanical motion are abundantly found in oceanic waves, hu-

man motion, wind currents, and other wildlife species (Naruse et al., 2009; Salauddin and Park, 2017). Har-

vesting such low-frequency sources may not be the best when utilizing piezoelectric technologies because

PGs are known to be efficient at higher frequency ranges (60–100 Hz and above) (Liu et al., 2018; Han et al.,

2013). The recent research effort has been dedicated to broadening the operating frequency range of PGs

to include low-frequency loads (Wang, 2017; Jeong et al., 2017a). However, there are significant obstacles

that still pose a challenge for PGs to reach such extremely low levels of mechanical frequencies (<10 Hz or

sub 1 Hz frequencies). On the other hand, TENGs, owing to their attractive attributes, have been success-

fully applied for harvesting all kinds of mechanical energy such as vibration, human body motion, animal

organs wind power, and water motion (Yang et al., 2013; Ahmed et al., 2017a, 2017c, 2017d, Ahmed et

al., 2017, 2017f, Ahmed et al., 2018, 2019a, 2019c, 2019d, 2020b). A theoretical comparison between TENGs
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and PGs was previously conducted and reported by Han et al., 2015. However, a quantitative comparison

has not been conducted yet regarding the operating frequency band between the two generators from

low-frequency mechanical excitations.

Here, we present a comparative study and analysis between TENGs and PGs on low-frequency mechanical

energy harvesting. In order to achieve a more systematic comparison, a simplified design of the TENG is

compared with a chosen commercial PG. Contact separation (CS) TENG was fabricated, whereas the PG

was made to operate in similar operating mode (Impact mode ‘‘IM’’). For both energy harvesters, each

mode is investigated and their respective open-circuit voltage VOC and short-circuit current ISC are used

for electrical output comparison at multiple frequency values <4 Hz. PGs are efficient at much higher fre-

quency values, where their extremely small outputs limit their uses for powering small-electronics or

charging capacitors. TENG will be shown to have a maintainable and sustainable voltage and energy

values, regardless of the frequency of mechanical excitation. This study shows the high efficiency of TENGS

over PGs at a frequency less than 4 Hz for harvesting low-frequency mechanical loads.

RESULTS

This study aims to compare two of themost promising energy harvesting technologies, namely, TENGs and

PGs, where they share several attractive features such as relatively low costs, ease of fabrication, and inte-

grability in flexible electronics. CS operatingmode is widely used in mechanical energy harvesting owing to

their simplicity, efficiency, and compatibility with multi-directional loads (Yang et al., 2013). This mode was

carefully selected as our criteria of comparison because it can be applied to both TENGs and PGs at the

same time. Moreover, the CS mode was previously coupled in various device configurations owing to their

outstanding performance in low-frequency/amplitude excitations. Analogous to TENGs, PGs were set up

to have similar operating modes. The set up with CS mode was made possible by exerting an impact load

on the PG (IM mode) in a contact-separation manner (Fuh et al., 2015; Gu, 2011). Therefore, this study uti-

lizes the proposed modes as a foundation of systematic comparison between the two generators.

Figure 1A shows active materials and electrodes used for fabricating the TENG. The CS mode harvests en-

ergy by contact separation between the fluorinated ethylene propylene (FEB) layer and aluminum (Al) layer.

The size and weight of PGs and TENGs are listed in Methods. For the computational part, we conducted

both TENG and PG simulations at the same load conditions. Using the Multiphysics COMSOL software, a

simulation was conducted to obtain the electrical potential field of the TENG at separation distances of

0, 5, and 10 mm as shown in Figure 1A. When there is no separation between the FEP and Al layers, the

ensuing potential field is approximately zero at the interface. At a separation distance of 10 mm, the CS

mode generates an electrical potential up to 80 V. Hence, the electrical potential shows a significant

Figure 1. Direct Comparison of the Operation Modes and FEM Modeling of TENG and PG, Respectively

Schematic illustration, photograph of the fabricated devices, and EFM modeling for (A) TENG and (B) PG devices.
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increase with larger separation distances. A computational model was also applied to the PG devices (Park

et al., 2017; Jeong et al., 2017b), as shown in Figure 1B. Owing to its remarkable piezoelectric effect, lead

zirconate titanate (PZT) ceramic is used in the prototypes of PG devices. This has now been replaced with

a Macro Fiber Composite (MFC) in commercial devices as it offers high performance, flexibility, and low

cost. The device consists of uniaxial piezoelectric ceramic fibers surrounded by a polymer matrix such as

epoxy, which provides protection for the fibers and allows the materials to readily conform to curved sur-

faces. This unique design combines the power density of piezoceramic materials with the flexibility of poly-

mers. However, a simplified representation of the PGmaterials is obtained by using PZT as the PG material

for simulation, which according to themanufacturer has properties similar to those of MFC (dos Santos Gui-

marães et al., 2010). The observed piezoelectric field had a consistent distribution of roughly 26 V between

adjacent electrodes under impact mode.

Initially, we measured open-circuit voltages Voc and short-circuit currents ISC for both devices, while each mea-

surement is conducted at different mechanical load frequencies. Figure 2 summarizes the results, with a pre-

scribed mechanical motion outlined in Methods. According to data in Figure 2A, TENG shows a highly stable

voltageoutputand isalmost independentof theapplied frequency,whereas thevoltageofPGs increases linearly

with the applied frequency. Nevertheless, the PG could only deliver around half the voltage of the TENG even

when tested atmaximum frequency (4 Hz). Based on the workingmechanism of piezoelectric energy harvesters,

the frequency-dependent behavior of PGoutput canbeeasily addressed.When themechanical input frequency

increases, the electron flow through the external circuit and instrument shows shorter time to respond to the

piezo-potential change, then this causes the higher current signal, because the total amount of electron flow

should be same. Since the voltage signal is the product of the current and circuital resistance (impedance),

the voltage alsobecomes higher correspondingly. This linear relationship causes PGgenerators towork only un-

der constant periodic loads and limits their use in a multi-frequency environment (Gu et al., 2012). According to

the previous reports, the voltage level can be saturated at a certain input frequency owing to the device struc-

tures,measurement conditions, and soon (Guet al., 2012; Yanget al., 2017). For our comparison study, themea-

surementswereconducted inoff-resonanceand tappingmodes (<5Hz), showing the frequency-dependent rela-

tionship of PG devices (Gu et al., 2012). Furthermore, it is known that PGs generally deliver higher current values

Figure 2. Evaluation of the Electric Properties and Performance of TENG and PG at Low Frequencies

(A and B) Open circuit voltage and short circuit current for TENG and PG at different frequencies.

(C and D) (C) The average power densities generated at multiple low-frequency values for the two generators. The

electrical output performance of the two generators is also shown after connecting to a rectifier for (D) TENG and PG,

respectively. Charging performance of a capacitor at multiple operating frequencies is investigated for the two

generators.

(E) Charging performance of a capacitor at multiple operating frequencies is investigated for the two generators.
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thanTENGs,which isalso truehereascanbeseen inFigure2B.However, thecurrent showsdirectproportionality

with frequency.

Next, we experimentally demonstrated the average power density (per unit volume) and its correlation with

the operating frequency. Figure 2C compares the performance of TENG and PG systems, respectively.

Given the wide range of frequencies and power, the data are presented on a logarithmic scale, where

the TENG had almost twice the power density of the PG system at the maximum operating frequency

for both modes. The slope of the fitted data has been calculated to manifest the consistency of power gen-

eration at multiple frequency values. It can be observed that TENGs had a much lower energy density vari-

ation than PGs, as lined by the calculated slope. The generated energy of PGs shows a strong dependence

on the input frequency, whereas the TENG exhibits stable performance and is less dependent on the

applied frequency. As discussed previously, the voltage of PG is proportional to the triggering frequency

u. This corresponds well to the broadband frequency operation of TENGs to sustain operations at multiple

frequency levels, as opposed to variable PG outputs.

Figure 2D shows the power density results of each generator after connecting the rectifier. It can be

observed that the TENG was able to produce electrical output with frequencies as small as 0.2 Hz. More-

over, this electrical output was still maintained for multiple frequencies after connecting the rectifier. How-

ever, PG was only able to produce electrical output at a minimum frequency value of 1 Hz (one order of

magnitude higher than the minimum operating frequency of TENG) when connected with a rectifier.

This limits the various works of PG harvesters for environments with extremely low frequencies, especially

when powering up an electrical component or charging up a battery. Because most of the output power

disappears after connecting to a rectifier, the PG harvesters might be impractical for generating or storing

sustainable power combined with a rectifying circuit. To ascertain such observations, Figure 2E shows the

voltage of charging a capacitor using the two harvesters, respectively, and the time it takes to charge the

capacitor at multiple frequency values. Consequently, the previous results show that most of the charge

density is omitted for the PG harvesters and the obtained charge is only about half of that reached by

TENG-based harvesters at only themaximum frequency. That corresponds well with the current capacitor’s

voltage results as the PG harvesters are unable to charge the capacitor to a large voltage within the time

span of 400 s, reaching a maximum of 0.6 V for PG (see inset in Figure 2E).

Next, we investigate the effect of load magnitude on the energy harvesting performance for the two gener-

ator types as portrayed in Figure 3A. Figure 3B shows the open-circuit voltage results, for the two gener-

ators with a linear fit of the data. The TENG experienced much higher voltages at lower values of applied

loads, where the PG performance approaches that of the TENG as the load magnitude increases. To verify

the power performance of the two harvesters, the generated power was calculated for the two cases and

compared in Figure 3C. At very low regions, the TENG performed well at a load range of approximately

10 N and below. The 10 N mark represents a break-even point, above which the PG starts to outperform

TENGs thanks to the superior power performance of the PG device, which seems to increase more rapidly

with the applied force, as shown in Figure 3C.

Figure 3. Electrical Performance of TENG and PG as a Function of the Applied Force

(A) Schematic illustration of the TENG and PG under different applied forces.

(B) The measured open-circuit voltages at different applied forces.

(C) The average power densities at different applied forces.
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It is worth noting that the power performance for the two devices under different loads (Figure 3) follows a

different trend from that when tested as a function of the operating frequency of the source (Figure 2). The

main difference between the two generators regarding the loading profile is that the PGs were exposed to

a point load at the end of the cantilever-like structure, whereas TENGs experienced a distributed load to

cover its contact area. Therefore, the maximum deflection of a cantilever beam due to a point load is

directly proportional to the load magnitude (Takács, 2012). As such, increased deflection of the PG will

create an enhanced electrical output due to the piezoelectric effect. As for, TENGs has experienced an

increased slope of average power with elevated mechanical loads. Low distributed loads in a contact-sep-

aration motion may not ensure full contact area between the two triboelectric layers. However, additional

loads would enhance the contact surface (i.e., increase the total contact area), which would enhance the

electrical output from the TENGs and their surface charges.

DISCUSSION

We conducted a comparative analysis of the harvesters’ weight and economic performances relative to the

produced power. Figures 4A and 4B show the specific power (power normalized to the weight of the de-

vice) generated by both energy harvesters. Both TENG and PG exhibit adequate energy harvesting capa-

bilities with a slight advantage to TENGs regarding power generation per unit mass. The specific power

experiences an increase with increasing frequency. On the other hand, there is a considerable difference

in cost per watt between the two harvesters at extremely low-frequency values (around 1 Hz). At this fre-

quency, the cost of PGs is higher than that of TENGs. However, the cost of PG power goes down very

rapidly as the frequency increases. In contrast, the cost of TENGs is relatively constant, making it highly effi-

cient regarding multi-frequency operation at low-frequency scales.

As energy harvesting technologies, the two mechanical generator types should be investigated within a

cost-metric context to ascertain their performance regarding the cost of materials, fabrication, and their

environmental profiles. Here, we discuss the techno-economic of the TENG (Ahmed et al., 2017) and PG

(Ibn-Mohammed et al., 2016), where a chosen metric was assigned with its data presented in Figure 4C.

The metric chosen was the Eco-indicator 99, which provides an insight into whether the technologies

constitute any significant environmental limitations. The three categories for this comparison were

ecosystem quality, resources, and human health. In all three categories, PGs showed higher Eco-indicator

99 (environmental impact) values than TENGs, with a more visible difference coming from resources and

human health. The comparative study had shown a general preference for TENGs over PGs when operating

in the low frequency/force amplitude regions. This excellent performance opens up the door for a wide

range of self-powered electronics for wearable and wireless sensing applications. Such wearable devices

would require a minimal effort to operate, charge, and/or activate embedded electronics by mere human

motion and surrounding environmental conditions.

In summary, this work presents a systematic comparative study between PGs and TENGs as potential en-

ergy harvesting devices operating in low-frequency conditions. In general, PGs exhibit low voltage and

high current output, with both VOC and ISC having a visible proportionality with the operating frequency.

On the other hand, measurements show that TENGs do experience high voltage outputs with minimal

Figure 4. Specific Power, Cost per Watt, and Techno-Economic Analysis of TENG and PG

(A) The average power-to-mass ratio of PG and TENG.

(B) The cost per watt of PG and TENG.

(C) Eco-indicator 99 results for 1 m2 of each mode. The data for TENG is extracted from the study of Ahmed et al., 2017.

The data for PG is extracted from the study of Ibn-Mohammed et al. (2016).
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proportionality to the operating frequency and low current output. These attributes enable TENGs to

demonstrate much higher power density compared with PGs along the low-frequency range (below

1 Hz). At these frequency levels, the extremely low voltage values obtained by PGs limit their applications

in powering up electronic devices and energy storage units with rectifiers. Moreover, the energy perfor-

mance against the load magnitude confirmed that the TENGs are superior at lower mechanical loads

values. However, break-even analysis shows that PGs are better at higher values within the portrayed

load magnitude range. Finally, the work reveals a considerable opportunity for TENGs in wearable, self-

powered electronics powered by low-frequency/amplitude mechanical motions associated with human

movements.

Limitations of Study

We provide a detail comparison of TENG and PG in low frequency, which is helpful for researchers. How-

ever, theoretical investigation can be conducted to get in-depth understanding for both generators under

different modes. In addition, different device modes such as, cantilever mode can be used to study

different effects on the generator’s performance.
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Fabrication of the TENG: A 100 µm thick FEP film (dimensions 18 × 40 mm) was coated with 

a layer of 200 nm thick Cu electrodes using physical vapor deposition (PVD500) before being 

attached to the substrate. This was brought in contact with the other electrode, a 100 µm thick Al 

foil with these dimensions 18 x 60 mm. This stack was sandwiched between two pieces of 

polyvinyl chloride (PVC, dimension 18 × 40 mm and thickness 0.5 mm) to provide the physical 

support for the device. The overall weight of the stack was measured to be 3.7g.  

Fabrication of PG: The PG device was made by winding a commercial Macro Fiber Composite 

MFC (28 × 14 mm, model M-2814-P1 from Smart-Material, Corp) around a 0.1 mm thick steel 

sheet (18 × 40 mm) and is approximately 5 g in weight. The chosen MFC consists of rectangular 

piezoceramic rods sandwiched between two adhesive layers with an 𝑑𝑑33 = 460 pC/N (Smart-

Material.com, 2020). In this case, the ceramic is lead zirconate titanate (PZT) with the chemical 

formula (Pb[Zr(x)Ti(1-x)]O3), whereas epoxy was used as the connecting polymer matrix. To 

complete the PG device, the MFC layer is attached to a polyimide film with copper back contact 

electrodes that are typically applied in an interdigitated pattern.  

Electromechanical Measurements: A three-dimensional positioner was used to deploy the 

nanogenerator (TENG or PG) in the vertical orientation. A force sensor was then attached to the 

end of a linear motor, enabling precise measurements. In this setup, the output current and voltage 

data were collected by a voltage preamplifier (Keithley 6514 System Electrometer). We 

implemented LabVIEW software as a platform for real-time data acquisition and control analysis. 

In the course of these experiments, different levels of external loads were tested during power 

measurements. This experiment utilized a linear motor to produce periodic loads with several magnitudes 

and frequencies.  Starting from time t = 0), the motion profile can be expressed as shown below: 



𝑋𝑋 =  

⎩
⎪
⎨

⎪
⎧       8𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓2𝑡𝑡2                             ; 0 ≤ 𝑡𝑡 ≤ 1

4𝑓𝑓

8𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓 − 8𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓2𝑡𝑡2 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  ; 1
4𝑓𝑓
≤ 𝑡𝑡 ≤ 3

4𝑓𝑓

     8𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓2(1
𝑓𝑓
− 𝑡𝑡)2                       ; 3

4𝑓𝑓
≤ 𝑡𝑡 ≤ 1

4𝑓𝑓

            

 

Simulation and modeling:  

TENG: The multiphysics study for the TENG was conducted by COMSOL. The potential field 

results were obtained between the Al and Cu electrodes, where the model was set up with the 

original device dimensions with deposited Cu on the FEP film. The film has dimensions of 18 × 

40 mm. The floating potential terminal was assigned to the Al electrode with the Cu electrode 

connected to the ground. Positive and negative triboelectric charge densities were allocated at tens 

of μC/m2 to the Al and FEP layer, respectively. 

PG: The model was set with a 20 µm piezoelectric layer and conductive electrodes with PZT as 

the material model for the piezoelectric simulation [8]. The electrodes were separated by a 200 µm 

gap. A Young’s modulus of 54.05 GPa was selected for the finite element model along with a 

piezoelectric charge constant d33 of 440 pC/N. The active area density ρ and the dielectric constant 

KT were set as 5.44 g/cm3 and 1950, respectively. [9] The applied strain was obtained from the 

bending radius and the thickness of the multilayer substrate, which is expressed as ε = δ/ r [10]. 

This formula is derived from the neutral plane distance from the top surface of the MFC film δ, 

and the PG bending radius r. This applies to flexible MFC devices containing a plastic surface with 

an epoxy passivation layer. In the PG simulation, figure 1, the results show the potential field 

between the electrodes only. Also, the open-circuit voltage contour was outputted without any 

external loads. The TENG simulation shows the field over its overall dimensions. Identical 

boundary conditions were utilized for both simulations.  
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