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Introduction

The global market for smart electronic

skins (E-skins), driven by the rise in

the aging population and chronic

patient care, is estimated to be >$1.7

billion.1 It is exciting to witness the

advancement in synthetic skins, which

can mimic the sensory and self-healing

functionalities of natural skin, monitor

vital signs, and deliver diagnoses

remotely. However, the lack of ultra-

thin, stretchable, and reliable power

sources has dramatically hindered their

commercial application to date. The

continually released thermal energy

from our body provides a plausible

solution to power the miniaturized

sensors and generic circuits in E-skins.

This article presents the recent ad-

vances and challenges in E-skins and

highlights the prospects of thermo-

electric (TE) generators as the poten-

tial power supply. We also discuss

the conceptual design of skin-

conformal TE devices and provide a di-

rection for self-powered integrated

E-skin systems.

Recent Advances and Challenges in

E-Skins

E-skins are artificial skin-type electronic

devices, which hold great promise

for applications in limb prostheses,

soft robotics, and artificial intelligence
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(Figure 1). As the aging population is

increasing, E-skin devices and chips

are expected to be in high demand for

establishing wireless health monitoring

systems, and their global market is

anticipated to reach $1.7 billion by

2025.1

To fulfill the requirements of such appli-

cations, skin-conformal, maintenance-

free, and, ideally, self-powered genera-

tors are highly desired. Although flexible

batteries and micro-supercapacitors can

be integrated to power E-skins, these still

require manual intervention for periodic

re-charging or replacement,2 which is

not suitable for long-term unattended

monitoring. Recently, high-efficiency so-

lar cells and theemergingphotosynthetic

‘‘green’’ deviceshavedemonstrated their

great potentials in such aspects.3,4 How-

ever, the voltage generated by these

devices largely depends on the received

light intensity, and their applications will

be restricted when there is no light

exposure.

Nanogenerators such as piezoelectric

generators can turn mechanical energy

into electricity, but they work at a spe-

cific frequency only. In addition, tribo-

electric generators can harvest energy

from body motion to self-power

E-skins. However, the produced

voltage is in the form of short transient

pulses, which need to be accumulated

by an energy storage device. Thus, it

could only provide power periodically.

This may satisfy the requirements

for certain micro-sensors, where

standby and active modes are working

alternately.5

Apart from mechanical motions, our

body can continually provide a thermal

energy up to 20 mW/cm2,6 which can

be harvested via a TE device and

generate a direct current. Such ther-

mally driven generators are superior

when a continuous working mode is

preferred. If we assume that the figure

of merit of a TE material can achieve

1 at room temperature, the thermal en-

ergy conversion efficiency7 will reach

3% (equal to a maximum of 0.6 mW/

cm2) at a temperature gradient of 5 K.

This provides a plausible solution to

power most of the integrated circuits

and sensors in E-skins systems, which

generally have the energy consump-

tion of 100 nW–10 mW.8 A successful

example is a commercialized MATRIX

PowerWatch, in which a TE generator

utilizes body heat to self-charge an in-

ternal battery and measure daily

activities.

Despite these exciting achievements,

it should be noted that most of the

traditional TE generators are rigid,

which is inefficient to harvest heat

from non-planar surfaces. Alternatives,

such as organic devices, are still at the

proof-of-concept stage. Although

several flexible prototype generators

have been reported,9,10 these have

yet to meet the skin-conformal re-

quirements. In this article, we will

focus on the following aspects, which

are crucial to the development of

self-powered smart E-skin systems:

(1) material selection—high power

output, lightweight, flexible, and solu-

tion-processable; (2) ink formulation—

adapted for various printing and

scale-up fabrication methods; and (3)

conceptual design of skin-conformal

Figure 1. The Prospects of Future E-Skins Powered by Body Heat

Functional E-skins and power sources (left) and the schematic illustration of E-skins powered by body heat using an integrated thermoelectric (TE)

generator for potential wireless health monitoring and diagnosis (right).
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TE nanogenerator and smart inte-

grated E-skin system.

Material Selection Criteria and Ink

Formulation

Flexible, high-output, and ink-formu-

lated materials are essential for fabri-

cating skin-conformal TE devices. From

the viewpoint of power generation,

most of the developed inorganic TE ma-

terials will reach their peak performance

at temperatures above 100�Candgener-

ally have relatively low power output at

near room temperature. In addition, the

brittle nature of these materials will

restrict the overall device flexibility.

From the perspective of device fabrica-

tion, solution-processable materials are

desirable and preferable, as they can

be formulated into inks and adapted for

scale-up production.

Typical TE generators require both

p- and n-type semiconducting mate-

rials connected in series to provide

sufficient voltage and current for smart

electronics. Among the p-type organic

materials, poly(3,4-ethylenedioxythio-

phene)-tosylate, carbon nanotubes,

and their hybrid composites have

demonstrated excellent TE perfor-

mance (power factor > 1,000 mW/

mK2).10 However, the commercial im-

plementation of flexible TE generators

is impeded by the lack of high-efficiency

and air-stable n-type organic semicon-

ductors.9 Recently, new dopants and sol-

vents aimed at overcoming this bottle-

neck for stable n-type polymers have

been reported.9,11 In addition, n-type

2D materials, such as transition metal

dichalcogenides, have demonstrated

extraordinary TE performance resulting

from enhanced quantum confinement

effects. The intercalation of organic cat-

ions and molecules into van der Waals

gaps of these 2Dmaterials can further in-

crease material flexibility and reduce

thermal conductivity of thesematerials.12

Moreover, it is expected that their power

output can be enhanced by tuning the

interplay between inorganic and organic

layers. This will enable 2D TEmaterials to

generate a decent power for the micro-

to milliwatt sensors at a small tempera-

ture gradient.

The solution processability of the

above-discussed materials allows for

the ink parameters such as active

material loading, exfoliated particle di-

mensions, shear viscosity, and surface

tension to be carefully controlled (Fig-

ure 2A). This protocol will allow for

functional inks to be tailored and

customized, which potentially enables

seamless integration of TE generators

based on these materials into existing

E-skin systems at a more affordable

price.

Conceptual Design of

Skin-Conformal TE Generator

Figure 2B depicts the conceptual design

of a prototype skin-conformal TE device,

Figure 2. Conceptual Design of a TE Generator and Integrated Self-Powered E-Skin System

(A) Functional inks of TE materials adapted to various printing methods.

(B) Conceptual design of skin-conformal TE device.

(C) Schematic illustration of integrated self-powered E-skin system.
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where both p and n-type inks will be

directly printed onto a soft biocompat-

ible substrate with pre-patterned elec-

trodes. In contrast to the rigid-type tradi-

tional generators, this proposed device

will have a planar shape and ultrathin

thickness, which can conform well to the

skin and capture the heat more effi-

ciently. As indicated in Figure 2B, the

induced thermal barrier and heat

absorber will enable the generation of

temperature gradients along each TE

leg during operation, and the heat will

be converted into electricity.

It should be noted that the conversion

efficiency of a TE device depends on

not only the power generated but

also the heat absorbed on the hot

side. To improve the overall power

output, there are two competing fac-

tors to consider. First, it is vital to mini-

mize the internal resistance (i.e.,

shorter TE legs are favorable) to

reduce the energy consumed by

joule heating while maintaining suffi-

ciently large temperature gradients

(i.e., longer legs are preferred). Sec-

ond, it is essential to take account of

the heat release on the cold side,

and this requires a rational device

design with a trade-off between these

parameters.

Future Integrated E-Skin Systems

Figure 2C presents a conceptual inte-

grated self-powered E-skin system,

where the TE generator has two work-

ing modes. It can directly drive the

low-power sensors in a continuous

way. Alternatively, the generated

voltage can be accumulated by an en-

ergy storage unit and then used to po-

wer the sensors with higher energy

consumption. In addition to the po-

wer-generation capability, there is a

strong need to develop highly stretch-

able and biocompatible devices for

seamless integration to the skin. While

most E-skin prototype devices are

bendable, they are not as stretchable

as natural skin. For future device fabri-

cation, both nanogenerators and sen-

sors are preferentially printed onto

elastic substrates with low Young

modulus, with the whole device being

only several micrometers thick. This

will enable intimate contact between

the device and epidermis with

maximum flexibility. Air permeability

(or breathability) also needs to be

considered to minimize the discomfort

associated with long-term wear.

Another challenge to address is the

material degradation over time, which

can arise from various sources

including deformation, environmental

conditions, or external damage. It is

very difficult to detect the microscale

cracks at an early stage and is costly

to have periodic inspections and

manual repairs. Therefore, it is essen-

tial that the materials either have the

built-in capability to self-repair damage

or are encapsulated by self-healing

coatings to protect the active compo-

nents from environmental exposure.

Lastly, to further reduce the fabrication

cost, ink-formulated materials are

highly desired, which will enable

the integration of power supply,

energy storage unit, and multiple sen-

sors in a cost-effective and straightfor-

ward way.

As the Internet of Things makes

home care a possibility, the develop-

ment of self-powered epidermal elec-

tronics will increase the likelihood

of breakthroughs in the field of wire-

less health monitoring and diagnosis.

One day, the tattoo-like devices will

no longer be science fiction and they

will unlock the new potential for hu-

man-machine synergy and provide

better solutions for achieving the

long-standing goals of living longer

and healthier.
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