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ABSTRACT 16 

Soil arthropod communities are highly diverse and critical for ecosystem functioning. 17 

However, our knowledge ofspatial structure andthe underlying processes of community 18 

assembly is scarce, hampered by limited empirical data on species diversity and 19 

turnover.We implement a high-throughput-sequencing approach to generate 20 

comparative data for thousands of arthropods at three hierarchical levels:genetic, 21 

species and supra-specific lineages. A joint analysisof the spatial arrangementacross 22 

these levels can reveal the predominant processes driving the variation in biological 23 

assemblages at the local scale. This multi-hierarchical approach was performed using 24 

haplotype-level-COI metabarcoding of entire communities of mites, springtails and 25 
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beetles from three Iberian mountain regions. Tens of thousands of specimens were 26 

extracted from deep and superficial soil layers and produced comparative 27 

phylogeographic data for >1000 co-distributed species and nearly 3000 haplotypes. 28 

Local assemblage composition differed greatly between grasslands and forests, and 29 

within each habitat showedstrong spatial structure and high endemicity. Distance-30 

decaywashigh at all levels, even at the scale of a few kilometres or less. The local 31 

distance-decay patterns were self-similar for the haplotypes and higher hierarchical 32 

entities, and this fractal structure was similarin all regions, suggesting that uniform 33 

processes of limited dispersal determinelocal-scale community assembly. Our results 34 

from whole-community metabarcoding provide insight into how dispersal limitations 35 

constrain mesofauna community structure within local spatial settings over evolutionary 36 

timescales. If generalized across wider areas, the high turnover and endemicity in the 37 

soil locally may indicate extremely high richness globally, challenging our 38 

currentestimations of total arthropod-diversity on Earth. 39 

 40 
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INTRODUCTION 46 

Soils are among the most biodiverse habitats on Earth, but represent probably the least 47 

well studied, and thus poorly understood, terrestrial ecosystem (Bardgett & van der 48 

Putten, 2014; Decaëns, 2010). Current understanding of terrestrial biodiversity has 49 

mainly relied on studies of aboveground organisms,but in recent years these efforts have 50 

been expanded towards the biodiversity of the soil (Thakur et al., 2019). However, 51 

current knowledgeis strongly unbalanced across taxonomic groups(Cameron et al., 52 

2018), which hampers the development of an integrative frameworkfor understanding 53 

the patterns and underlying mechanisms of soil biodiversity. In particular, there is a 54 

pronounced shortage of basic dataofspecies diversity andspatial structure for the 55 

taxonomically and functionally diverse soil arthropods.They make up a large proportion 56 

of the soilmesofauna composed of small-bodied invertebrates measuring between 0.1 – 57 

2 mm and are found by the thousands in virtually every square meter of natural 58 

soil(Bardgett, Usher, & Hopkins, 2005; Decaëns, 2010). Conventional taxonomic 59 

approaches have been onerous, given the small body size, limited morphological 60 

variation and high local abundances of most mesofauna components. High-throughput 61 

sequencing so far has been applied mostly to microbial components of soil ecosystems 62 

(e.g. Delgado-Baquerizo et al., 2018; Ramirez et al., 2018, 2014)while the study of soil 63 

arthropod mesofauna has seen comparatively little progress in exploiting these tools 64 

(mostly using 18S eDNA approaches Wu, Ayres, Bardgett, Wall, & Garey, 2011; 65 

Zinger et al., 2019). 66 

Existing work on the diversity,distribution and community composition of soil 67 

arthropodshas focussed on springtails and oribatid mites, and mostly has pointed to 68 

selection by abiotic and/or biotic environmental factors as major mechanisms of 69 

community assembly at the local scale(e.g. Caruso, Trokhymets, Bargagli, & Convey, 70 
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2013; Magilton, Maraun, Emmerson, & Caruso, 2019;reviewed in Berg, 2012; Thakur 71 

et al., 2019). Different studies have alsoreportedpurely spatial structures (independent of 72 

the measured environmental variables) orstochastic patterns (non-environmental neither 73 

spatial structures) for the soil mesofauna communities, that have been 74 

recurrentlyattributed to the contribution ofdemographic processes (i.e., ecological drift 75 

without dispersal limitation)in determining the local community assembly (Bahram, 76 

Kohout, Anslan, Harend, & Abarenkov, 2016; Ingimarsdóttir et al., 2012; Widenfalk, 77 

Malmström, Berg, & Bengtsson, 2016; Zinger et al., 2019). In addition, dispersal 78 

limitations have also been suggested to contribute to some of the spatial community 79 

structures reported(Caruso, Taormina, & Migliorini, 2012; Gao, He, Zhang, Liu, & Wu, 80 

2014). However, dispersal limitation still is rarely recognised as an important 81 

mechanism of assembly of the soil mesofauna at the local scale(Berg, 2012; Thakur et 82 

al., 2019). Beyond the aggregated distribution within the geographic ranges of the 83 

species, limitations to dispersal candetermine the degree to which species pools are 84 

differentiated over spatial distance (Hortal, Roura-Pascual, Sanders, & Rahbek, 2010). 85 

These effects are frequently evident as biogeographic or phylogeographic breaks at 86 

large (regional to continent-wide) scales reflecting long-term population separation. 87 

Similar patterns of species and haplotype turnover can arise even over relatively small 88 

distancesif the scale of movement is highly constrained and if the constraints are 89 

persistent through time, as could be the case in the soil matrix. The potentially low 90 

taxonomic resolution (due to morphological species assignment or the use of 18S rRNA 91 

gene) of most of the studies on arthropod mesofauna communitiesmay have missedthe 92 

importance of dispersal limitation in determining the diversity patterns of soil 93 

mesofauna (but see Andújar et al., 2015; Lindo & Winchester, 2009). 94 
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The spatial scale at which dispersal constraints are effective in determining 95 

species distributions and community assembly is amajor “open question” in soil 96 

biodiversity research (Thakur et al., 2019). For the mesofauna, small body size and high 97 

local abundance may increase the probability of passive dispersal and long-distance 98 

movement, and therefore dispersal constraints within the soil may be of limited 99 

importance. High prevalence of aerial, aquatic and marine rafting has been 100 

demonstrated for various mesofaunal lineages (Coulson, Hodkinson, Webb, & Harrison, 101 

2002; Nkem et al., 2006; Schuppenhauer, Lehmitz, & Xylander, 2019), and studies have 102 

shown mesofaunal assemblages with no apparent dispersal limitation across continental-103 

scale areas (Baird, Leihy, Scheepers, & Chown, 2019), especially for the smallest-104 

bodied soil arthropods (Gan, Zak, & Hunter, 2019). On the other hand, molecular 105 

studies have revealed high differentiation and ancient microendemicityeven in 106 

morphologically indistinguishable clades, indicating long-term constraints to 107 

dispersal(Andújar, Pérez-González, et al., 2017; Cicconardi, Fanciulli, & Emerson, 108 

2013). These empirical datalimited to particular mesofauna lineages and their 109 

contrasting findings highlight the difficulty of establishing the role of dispersal 110 

constraints in community assembly. As such, inferences regarding the distribution and 111 

diversification of edaphic species, and thus generalisations regarding macroecological 112 

and macroevolutionary patterns, remain challenging. 113 

New approaches to the study of diverse and cryptic arthropods using whole-114 

community metabarcoding (cMBC)using the mitochondrial COI gene are now 115 

revolutionizing the understanding of complex arthropod communities(Arribas et al., 116 

2016; Ji et al., 2013). The methodology involves the bulk sequencing of mixed 117 

communities and subsequent clustering of DNA reads into operational taxonomic units 118 

(OTUs) that broadly represent the species category. While an efficient method to 119 
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approximate community profiles at the species-level, precise removal of primary DNA 120 

reads affected by sequencing errors (Andújar, Arribas, Yu, Vogler, & Emerson, 2018; 121 

Elbrecht, Vamos, Steinke, & Leese, 2018; Turon, Antich, Palacín, Præbel, & 122 

Wangensteen, 2019)and co-amplified nuclear mitochondrial copies (numts) (Andújar et 123 

al., 2020)would avert the need for clustering.Read-based dataraise the prospect of 124 

reliable haplotype information from mitochondrial COIcMBC, which represents a step 125 

change for the study of diversity patterns throughwhole-community genetic analyses at 126 

haplotype-level resolution. 127 

Haplotype datacan be used directly for analyses of genetic diversity, or after 128 

aggregation into species-level entities for analyses of species diversity, whichpermitsthe 129 

joint analysis of turnover (beta diversity) at multiple hierarchical levels. This approach 130 

has been exploited to determine whether the composition in biological assemblages is 131 

predominantly driven by dispersal or niche-based processes (Baselga et al., 2013; 132 

Baselga, Gómez-Rodríguez, & Vogler, 2015). Local assemblages may diverge simply 133 

due to the lack of population movement which, when assessed for entire 134 

communities,results in a largely regular decay of community similarity with spatial 135 

distance for the typically neutral haplotype variation of the mitochondrial COI gene. 136 

Under ascenario where dispersal constraints determine the spatial community structure, 137 

assemblage turnover at the species level should mirror these haplotype patterns, albeit at 138 

a higher level of similarity. In contrast, niche-based processes acting on species traits 139 

produce species distributions that mainly follow environmental factors and thus differ 140 

from neutral conditions determining the haplotype distributions. This confounds the 141 

correlation (self-similarity)of distance decay at the species and haplotype levels, as each 142 

is driven by different processes. The self-similarity of distance decay of communities at 143 

genetic and species levels therefore provides a formal test to discern if a particular 144 
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spatial pattern of community assemblage is predominantly driven by stochastic 145 

dispersal or niche‐base d processes, as the latter will not usually produce this 146 

correlation(Baselga et al., 2013, 2015). In addition, multi-hierarchical analyses may also 147 

describe the spatial scale at which dispersal constraints act, and the variation of scale 148 

among different taxonomic groups or habitats (Gómez‐Rodríguez, M iller, Castillejo, 149 

Iglesias‐Piñeiro, &  Baselga, 2018; Múrria et al., 2017) . This framework remains to be 150 

exploited with whole-community metabarcoding. 151 

Here we apply the multi-hierarchical framework to study the spatial structure of 152 

entire assemblages of mites (Acari), springtails (Collembola) and beetles (Coleoptera) 153 

including many thousands of specimens, in a semi-natural mosaic landscape within 154 

three geographically distinct mountain regions in southern and central Iberia (Fig. 1 A). 155 

Our aim was to generate rigorous whole-community data at haplotype, putative species 156 

(OTU) and supra-specific levels to evaluate the spatial turnover at the local scale(i.e. 157 

<10 km, following scale definitions of Pearson & Dawson, 2003) and in two habitat 158 

types within the same spatial settings.Using the three regions as natural replicates,we 159 

evaluated patterns of richness, endemicity, turnover and the spatial scale of the distance 160 

decay in community similarity at each hierarchical level and assessed the prevailing 161 

ecological and evolutionary processes that determine the diversity and spatial 162 

distribution of soil arthropod communities at the local scale.  163 

 164 

MATERIALS AND METHODS 165 

Soil sampling and mesofauna extraction 166 

A total of 144 soil samples were collected from three regions in the southern Iberian 167 

Peninsula at Sierra de Grazalema, (GRA), Sierra de Alatoz (ALZ) and Sierra de la 168 
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AlcarriaConquense (CUE) (Fig. 1 A). In each region, 24 points were sampled, half of 169 

them in Quercus forest and half in wet grassland habitat, at distances of 500 m to a 170 

maximum of 15 km (Fig. 1, Table S1). For each point, we collected i) a sample 171 

containing the superficial soil layer (SUP), by extracting one square meter of leaf litter 172 

and humus up to 5 cm deep and ii) a sample of the corresponding deep soil layer 173 

(DEEP), by digging the substrate of a 30 cm diameter core to 30 cm depth, comprising 174 

ca. 20 litres of soil.Samples were sifted in the field (1cm wire mesh sieve) to remove the 175 

biggest vegetation fragments and stones, and subsequentlyprocessed following the 176 

flotation–Berlese–flotation protocol (FBF) of Arribas et al. (2016) (see below for 177 

further details).Within each region and habitat, sampling points were located in natural 178 

patches of similar dominant vegetation and elevation. Different variables characterising 179 

the sampling points were recorded including elevation, slope, orientation, stoniness, 180 

humus depth, qualitative porosity, roots, soil temperature and soil relative humidity 181 

(Table S1). 182 

After sifting, samples were processed following the flotation–Berlese–flotation 183 

protocol (FBF,Arribas et al. 2016) for the ‘clean’ extraction of arthropod mesofauna 184 

from a large volume of soil. Briefly, the FBF protocol is based on the flotation of soil in 185 

water, which allows the extraction of the organic (floating) matter containing the soil 186 

mesofauna from raw soil samples. Subsequently, the organic portion is placed in a 187 

modified Berlese apparatus to capture specimens alive and preserve them in absolute 188 

ethanol. The last part of the FBF protocol includes additional flotation and filtering 189 

steps of the ethanol-preserved arthropods using 1-mm and 0.45-µm wire mesh sieves to 190 

remove debris and dirt accumulated in the Berlese extract. This procedure generates two 191 

‘clean’ subsamples of bulk specimens for DNA extraction, one including all adult and 192 
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larval Coleoptera, and a second with the smallest mesofauna typically dominated by 193 

mites and springtails. 194 

DNA extraction, PCR amplification and Illumina sequencing 195 

Each bulk specimen subsample was independently homogenised and a DNA extraction 196 

was performed using the DNeasy Blood and Tissue Spin-Column Kit (Qiagen). DNA 197 

extracts were quantified using Nanodrop 8000 UV–Vis Spectrophotometer (Thermo 198 

Scientific) and the corresponding subsample pairs were combined at a ratio of 1:10 in 199 

the amount of DNA for Coleoptera to Acari plus Collembola (according to the range of 200 

expected species diversity of these two fractions), in order to minimise the biomass bias 201 

in the sequencing depth of the two mesofauna components. For metabarcoding, the bc3’ 202 

fragment corresponding to 418 bp of the 3’ end of theCOI barcode region was 203 

amplified. Primers included a tail corresponding to the Illumina P5 and P7 sequencing 204 

adapters for subsequent library preparation (see Arribas et al., 2016). For each sample, 205 

three independent PCR reactions were performed and the amplicons were pooled. All 206 

information regarding primers and PCR reagents and conditions is given in Table S2. 207 

Amplicon pools were cleaned using Ampure XP magnetic beads, and used as template 208 

for a limited-cycle secondary PCR amplification to add dual-index barcodes and the 209 

Illumina sequencing adapters (Nextera XT Index Kit; Illumina, San Diego, CA, USA). 210 

The resulting metabarcoding libraries were sequenced on an Illumina MiSeq sequencer 211 

(2 x 300 bp paired-end reads) on ~ 1% of the flow cell each, to produce paired reads 212 

(R1 and R2) with a given dual tag combination for each sample. Negative controls were 213 

maintained across all the different steps above and were sequenced as three independent 214 

metabarcoding libraries. 215 

Bioinformatics read processing 216 
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Raw reads were quality checked in Fastqc(Babraham Institute, 2013). Primers were 217 

trimmed using fastx_trimmer and reads were processed in Trimmomatic(Bolger, Lohse, 218 

& Usadel, 2014) using TRAILING:20. Based on results from (Andújar, Arribas, Gray, 219 

et al., 2018) on the test of multiple tools and parameters for diverse metazoan 220 

metabarcoding samples, we further processed each library independently following 221 

several steps of the Usearch(Edgar, 2013) pipeline: reads were merged (option 222 

mergepairs – -fastq_minovlen50, -fastq_maxdiffs 15), quality-filtered (Maxee = 1), 223 

trimmed to full length amplicons of 418 bp (-sortbylength), dereplicated (-224 

fastx_uniques) and denoised (-unoise3, -minsize 4). Denoised reads from the 48 225 

libraries for each region, representing putative haplotypes, were combined and 226 

dereplicated to get a collection of unique sequences for each regional dataset. The 227 

surviving reads were assigned to high-level taxonomic categories with the lowest 228 

common ancestor (LCA) algorithm implemented in MEGAN V5 (Huson, Auch, Qi, & 229 

Schuster, 2007). Each read was subjected to BLAST searches (blastn -outfmt 5 -evalue 230 

0.001) against a reference library including the NCBI nt database (Accessed December 231 

2016) plus 382 sequences corresponding to Acari and Collembola collected at Sierra de 232 

Grazalema. BLAST matches were fed into MEGAN to compute the taxonomic affinity 233 

of each read. This high level taxonomic assignment allowed extracting reads 234 

corresponding to the three target groups Acari, Collembola and Coleoptera, while 235 

excluding other taxa present in the bulk samples. Reads corresponding to the target 236 

groups were then aligned in Geneious 7.1.9(https://www.geneious.com/) using MAFFT 237 

and the Translation Align options, and those with insertions, deletions or stop codons 238 

disrupting the reading frame were identified and subsequently excluded.  239 

Haplotypes from each region were further filtered to remove likely nuclear 240 

mitochondrial (numts) pseudogenes, following a protocol based on the relative 241 
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abundance of co-distributed reads (Andújar et al., 2020). The set of putative haplotypes 242 

for Acari, Collembola and Coleopterawas used to generate a community table with 243 

read-counts (haplotype abundance) by sample against the complete collection of reads 244 

(i.e., reads before the dereplicating and denoising steps) using Usearch (-search_exact 245 

option). Using these abundances, we firstly removed from each library those haplotypes 246 

with four or fewer reads according to the criteria used for the denoising (see above). 247 

Next, we identified haplotypes that, in all the libraries where they were present, 248 

contributed less than 1% of the total reads of the library. All reads falling in this 249 

category were then removed from the analysis, as an auxiliary criterion to define 250 

spurious copies not representing the true mitochondrial haplotypes. The 1% cut-off 251 

value removes most of the spurious reads while maximizing the number of real 252 

haplotypes to be further analysed (see Andújar et al., 2020 for details). Community 253 

tables of fully filtered haplotypes were then transformed into incidence 254 

(presence/absence) data, that added to the haplotype filtering before, resulting in 255 

normalised samples for further analyses. 256 

Analysis of community composition and assembly at multiple thresholds of genetic 257 

similarity 258 

The analyses were performed using the R-packages vegan (Oksanen et al., 2013), 259 

cluster, PMCMR, hier.part, ecodist, and betapart(Baselga & Orme, 2012). The set of 260 

filtered haplotypes was used to generate a UPGMA tree with corrected genetic distances 261 

(F84 model), and based on this tree all haplotypes were grouped into clusters of genetic 262 

similarity at different thresholds (1%, 2%, 3%, 4%, 5%, 6% and 8%). This grouping 263 

procedure based on patristic pairwise distances over a phylogenetic tree including all 264 

haplotype sequences provided multiple hierarchical levels that each can be used to 265 

estimate alpha diversity (Figure 1 provides a graphical abstract of the workflow). These 266 
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diversity measures were estimated for the richness of lineages by sample for the whole 267 

mesofauna community and also for the subsets corresponding to Acari, Collembola and 268 

Coleoptera. To test for significant differences in alpha diversity between the 269 

communities of different habitats and soil layers of each sampling point, repeated-270 

measures ANOVAs were conducted using habitat and soil layer as grouping factors and 271 

sampling point as a within-subjects factor. For each of the three local settings, total 272 

accumulative richness (local scale richness) by habitat and soil layer and the 273 

contribution of mites, springtails and beetles was also calculated for the various levels 274 

of genetic similarity. Endemicity by sampling point was computed for each hierarchical 275 

level (once DEEP and SUP samples were combined) as the lineages present exclusively 276 

at a single sampling point in the region divided by the total number of lineages found in 277 

the region. To assess whether the endemicity by sampling point differed between the 278 

communities of forests and grasslands, Wilcoxon tests were conducted using habitat as 279 

a grouping factor. For each of the three local settings, the local scale endemicity, 280 

defined as the lineages present exclusively at a particular sampling point divided by the 281 

total number of lineages in that community, was also calculated for the multiple levels 282 

of genetic similarity. 283 

For the multi-hierarchical assessment of the variation in community composition 284 

at the local scale, the community dissimilarity matrices were generated for total beta 285 

diversity (Sorensen index, βsor) and its additive turnover (Simpson index, βsim) and 286 

nestedness (βsne) components (Baselga, 2010), for each level of genetic similarity. 287 

Community composition matrices were also used for non-parametric multidimensional 288 

scaling (NMDS) and plots were created with the ordispider option to visualise the 289 

compositional ordination of the communities according to the respective habitat and soil 290 

layer. To assess for significant differences, permutational ANOVAs were conducted 291 
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over the community dissimilarity matrices using 999 permutations and the habitat and 292 

the soil layer as grouping factors and sampling point as a within-subjects factor. The 293 

significant relationships between the dissimilarity matrices generated for the Acari, 294 

Collembola and Coleoptera were assessed independently by permutational multiple 295 

regression on distance matrices (MRM).Additional NMDS ordinations and 296 

permutational ANOVAs were also conducted for each taxonomic group using the same 297 

parameters as given before. 298 

The analysis of the variation in community composition with spatial distance 299 

followed the ‘multi-hierarchical macroecology’ approach of (Baselga et al., 2013) 300 

which is based on the joint analysis of distance decay of similarity patterns across the 301 

different genetic levels. For each local setting and habitat, the relationship of 302 

community similarity between pairs of points (1 – pairwise beta diversity, see above) 303 

with their spatial distance (computed in kilometres as the Euclidean distance) was 304 

assessed independently at each level of genetic similarity (from haplotypes to 8% 305 

lineages). A negative exponential function was used to adjust a generalized linear model 306 

(GLM) with Simpson similarity as response variable, spatial distance as predictor, log 307 

link and Gaussian error, and maintaining the spatial distances untransformed (Gómez-308 

Rodríguez & Baselga, 2018). Finally, the existence of a fractal pattern (power law 309 

function) in the distance-decay curves across the levels of genetic similarity was 310 

assessed by a log–log Pearson correlation of genetic level and, independently: (a) 311 

number of lineages, (b) initial similarity, and (c) mean similarity. High correlation 312 

values are indicative of self-similarity in lineage branching (i.e., number of lineages) 313 

and/or spatial geometry of lineage distributional ranges (i.e., initial and mean similarity; 314 

Baselga et al., 2015), which are predicted under a neutral process of community 315 

evolution. 316 
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In an equivalent way, these analyses were also conducted to assess the 317 

relationships of community similarity and environmental distance as computed using 318 

Gower's distance over the recorded variables characterising the sampling points (Table 319 

S1). In the cases where this relationship was significant, variance partitioning was 320 

conducted to assess the fractions of variance in community dissimilarity that are 321 

uniquely and jointly explained by spatial and environmental distance.  322 

 323 

RESULTS 324 

Multi-hierarchical assessment of alpha and gamma diversity of soil mesofauna 325 

Processing of 144 soil samples using the FBF protocol, followed by double dual 326 

indexing of cox1 amplicons and Illumina MiSeq sequencing, produced 51433 to 375211 327 

sequence reads per sample for GRA, 11307 to 159244 for ALZ, and 43562 to 128149 328 

for CUE. Filtering of raw reads using standard protocols of read curation and denoising, 329 

followed by removal of likely nuclear mitochondrial pseudogenes generated a 330 

conservative set of clean sequences representing the mitochondrial haplotypes.A total of 331 

1124, 1009 and 992 haplotypes where found for the GRA, ALZ and CUE local areas 332 

respectively, and these numbers declined rapidly when haplotypes were grouped at 333 

increasing threshold values, e.g. 511, 479 and 480 lineages at 3% similarity (Table 1), 334 

but they declined only slightly further at the higher thresholds, indicating the point at 335 

which stable groups are obtained that broadly could represent the species level. The 336 

relative proportions of mites, springtails and beetles were similar across the three local 337 

settings and hierarchical levels, with Acari representing the richest group (around the 338 

50% of clusters) followed by Collembola and Coleoptera in similar proportions (Table 339 

1). The taxonomic composition of the samples as estimated by MEGAN is provided in 340 

Fig. S1 and included a total of 39, 44 and 40 families of Acari, 11, 9, and 10 families of 341 
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Collembola and 18, 23 and 20 families of Coleoptera for the GRA, ALC and CUE local 342 

settings respectively. 343 

The patterns of richness by sample (alpha diversity) for the different habitats, 344 

soil layers and genetic thresholds were similar for the three regions, with mean values 345 

between 35 - 60 haplotypes and 25 - 42 lineages at 3% per sample (Fig. 2 A, B, C and 346 

Fig. S2). Superficial soils had significantly higher diversity than their corresponding 347 

deep soil counterparts for the overall dataset and for both of the forest and grassland 348 

habitats assessed independently (Fig. 2 A, B, C, Fig S2 and Table S3). At GRA, forest 349 

habitat showed significantly higher alpha diversity per sample than grassland. However, 350 

no significant differences between forest and grassland were found for ALZ and CUE 351 

(Fig. 2 A, B, C and Fig S2, Table S3).  352 

The local-scale cumulative richness at each region (gamma diversity) showed 353 

more diverse communities for the superficial compared with deep layers, and gamma 354 

diversity was generally higher for forest than grassland habitats, but the differences 355 

between both habitat types were lower than observed for alpha diversity. Thus, species 356 

accumulation was higher for the grassland than forest habitats, and the grassland 357 

superficial layers had the highest total richness of haplotypes for ALZ and CUE, and the 358 

highest for the three regions at the 3% similarity level (Fig. 2 D, E, F and Fig S3). 359 

Patterns of alpha and gamma diversity for the subsets of mites, springtails and beetles 360 

were similar (Fig. S3 and S4).  361 

Multi-hierarchical assessment of beta diversity and endemicity of soil mesofauna 362 

Compositional dissimilarity of communities within each of the three regions was high 363 

and was dominated by lineage turnover βsim, instead of nestednessβsne (0.8 >βsim> 0.95), 364 

across all hierarchical levels. NMDS showed a consistent pattern of the forest and 365 

grassland habitats as the main driver of the ordination while soil layers had a secondary 366 
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role (Fig. 3, Fig. S5). Accordingly, for the three regions and all genetic levels, the 367 

community composition was significantly different for both habitats and soil layers but 368 

the proportion of variance explained by the forest-grassland factor was always higher 369 

(Fig. 3 and Table S4). Beta diversity matrices for mites, springtails and beetles showed 370 

high and significant correlations for each of the genetic similarity levels (Table S5), and 371 

when independently analysed, these main taxonomic groups each showed similar 372 

patterns of community composition. 373 

Community similarity (1-pairwise beta diversity) significantly decreased with 374 

spatial distance (distance decay) at all levels of genetic similarity for both the forest and 375 

grassland habitats, and these patterns were remarkably consistent across the three local 376 

settings (Fig. 4, Table S6). The slopes of the exponential decay curves were very similar 377 

at all threshold levels, and assemblage similarity increased with each level (Fig. 4, Table 378 

S6). The levels of genetic similarity showed a high and significant log–log correlation 379 

with the number of lineages (0.90 <r2> 0.96, p< 0.001), initial similarity (0.86 <r2> 380 

0.96, p< 0.001) and mean similarity of communities (0.89 <r2

Comparisons of distance-decay relationships between forests and grasslands 384 

showed similar values for explained variance and for the slopes for the three regions 385 

(Fig. 4, Table S6). However, there was a consistent pattern of a lower initial community 386 

similarity in grasslands than in forests, particularly above the haplotype level (Fig. 4). 387 

Similarly, the local-scale (mean) dissimilarity of communities was always higher for 388 

grasslands than for forests and the differences between both increased across the levels 389 

of genetic similarity (Fig. 5 A, B, C). A decrease in community similarity with 390 

environmental distance was only significant in the case of the forests from ALZ and 391 

> 0.95, p< 0.001) for all 381 

three regions and two habitats, as expected if community variation across genetic 382 

similarity levels can be described by a fractal geometry(Baselga et al., 2013, 2015).  383 
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CUE. However, even in these two significant cases, the variance partitioning showed 392 

that uniquely explained variance in environmental distance, i.e. independently of the 393 

spatial distance, was low (5 – 9 % of explained variation at all levels) compared with 394 

the uniquely explained variance in spatial distance (23 – 31 % of explained variation). 395 

Theendemicitywithin the GRA, ALZ and CUE regions ranged from 71%, 64% 396 

and 58% at the haplotype level to 55%, 53% and 46% for lineages at the 3% threshold, 397 

respectively (Table 1). Comparisons between forest and grassland habitats showed that 398 

the local scale endemicity of grassland communities was higher in the case of GRA and 399 

CUE and was similar in both habitats for ALZ (Fig. 5 D, E, F). The endemicity by 400 

sampling points was consistently higher for grassland than for forest local communities 401 

particularly above the haplotype level, although the differences were significant only in 402 

the case of the GRA localities (Fig. 5 G, H, I). 403 

 404 

DISCUSSION 405 

In total, soil samples from three Iberian mountain regions produced over 1000 putative 406 

species (lineages at 3%) and nearly 3000 haplotypes of mites, springtails and 407 

beetles.Their distribution was determined across numerous sampling points, 408 

demonstrating the power of mitochondrial cMBC to overcome impediments to studying 409 

the arthropod mesofauna of the soil using conventional morphological and molecular 410 

approaches. Data analysis revealed a strong spatial community structure and high levels 411 

of endemicity at haplotype, species and supra-specific levels, even at sampling points 412 

that were mostly within a few kilometres of each other (maximum 15 km). Patterns of 413 

turnover and endemicitywere similarin all three independent study regions and in the 414 

grassland and forest biomes (that each harbour largely non-overlapping communities). 415 

Distance decay is evident at all hierarchical levels, and can be described as self-similar. 416 
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The correlation of community turnover at population and species levels is expected if 417 

soil arthropod assemblages are predominantly driven by distance-based parameters, 418 

andmovement is stronglyconstrained at the local scale and over time. In addition, the 419 

overriding importance of habitat-related processes was apparent from the strong 420 

differentiation of grassland and forest communities, which again was seen recurrently in 421 

each of the three study regions.  422 

The study extends existing comparative analyses of soil mesofaunaby improving 423 

the taxonomic resolution, providing haplotype level variation, and analysing a wide 424 

range of soil arthropods together. Broad surveys of invertebrate soil diversity using HTS 425 

have commonly relied on markers of low species-level resolution and via eDNA 426 

extracted from small soil samples(Bahram et al., 2016; Wu et al., 2011; Zinger et al., 427 

2019).Other studies have characterised specific groups of mites or springtails by 428 

processing ofindividualised specimens and relying on morphological assignment to 429 

generate species-level data (Caruso, Schaefer, Monson, & Keith, 2019; Ingimarsdóttir et 430 

al., 2012), but see alsoYoung, Proctor, DeWaard, & Hebert(2019) on molecular species 431 

assignment. HTS data now greatly increase the potential of expanding both the number 432 

of species studied and the level of detail at which intra-specific variation for each is 433 

captured. Our study provides haplotype level data for entire communities (one square 434 

meter of leaf litter and humus and ca. 20 litres of soil per sampling point) of the three 435 

most species-rich soil arthropods, which allows surveys of community composition and 436 

species turnover at an unprecedented level of detail, both spatially and genetically. 437 

While the correlation of COI divergence with species boundaries can vary greatly 438 

between taxa, we analysed our dataset using an extensive range of hierarchical 439 

thresholds (from 1 to 8% genetic similarity thresholds) as a simplified but conservative 440 

approach to consider both species and supra-specific levels. We found some degree of 441 
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stabilization in the number of lineages defined above the 3% similarity grouping, 442 

consistent with this similarity threshold as broadly representing the species level.Using 443 

these data, community level responses to distance-based parameters can be assessed that 444 

may be not evident in other types of studies. In addition, the combined haplotype and 445 

species-level data permit the exploitation of the hierarchical framework of Baselga et al. 446 

(2013, 2015) for discriminating between distance- and niche-based factors of 447 

community assembly. 448 

The limited spatial scale of dispersal in soil arthropods 449 

Existing literatureexploring the local community composition of arthropod 450 

mesofaunagenerallyhas argued for selection by abiotic and/or biotic environmental 451 

factors as the predominant mechanisms (seeBerg, 2012; Thakur et al., 2019 for a recent 452 

review).Stochastic and purely spatial patterns have also been reported, pointing to a 453 

contribution of dispersal and demographic processes at least in some local 454 

settings(Caruso et al., 2012; Gao et al., 2014; Gao, Liu, Lin, & Wu, 2016; Zinger et al., 455 

2019).However, strong dispersal constraints have rarely been recognised, in part due to 456 

the lower taxonomic resolution of previous community-level studies that used species 457 

assignments from morphological or 18S rRNAdata (see Tang et al., 2012). Our results 458 

demonstrate high community differentiation at the kilometre scalefor both genetic and 459 

species levels. The key observation from the multi-hierarchical analysis is the correlated 460 

distance decay at haplotype and species level. Self-similarity is expected to be eroded 461 

byselection on adaptive traits at the species level, but not at the (neutral) haplotype level 462 

(Baselga et al., 2015; Gómez‐Rodríguez et al., 2018) . As the data largely confirm the 463 

self-similarity of distance decay at haplotype and species level, this is interpreted to 464 

support the predominant role of dispersal limitation driving community assembly. The 465 

predominance of the dispersal constraints seems to emerge at short spatial distances 466 
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within the soil matrix, and the evident high turnover with physical distancesuggests that 467 

our sampling within each study regions (local scale) is beyond the scale of a single 468 

metacommunity. Short dispersal distancesprobably have affected a significant 469 

proportion of lineages within these communities over evolutionary timescalesin a 470 

largely stable spatial setting.The spatiotemporal continuum expected under this scenario 471 

predicts that lineages in more distant places have diverged at a more distanttime point in 472 

evolutionary history (Baselga et al., 2013, 2015), and our findings of a largely regular 473 

distance decay at higher levels are consistent with this prediction. Additional evidence 474 

for the role of short dispersal distancedriving the local community assembly comes 475 

from the high microendemicityfound at all hierarchical levels, an overall picture which 476 

is not expected under a scenario with predominant environmental driversnor ecological 477 

drift without dispersal limitation.  478 

Yet, the influence of environmental drivers cannot be discarded entirely. 479 

Whereas the recorded environmental variables did not explain the variation in 480 

community composition, a significant portion of the unexplained variance in the 481 

distance‐decay curves potentiallysuggests the influence of non‐spatial factors 482 

determining the community composition. Edaphic parameters such as soil pH or organic 483 

matter have been shown to explain a significant part of the variance observed in the 484 

distribution of the soil mesofauna communities(Caruso et al., 2012; Gao et al., 2014), 485 

and here could be driving at least part of the unexplained variation within the different 486 

habitats and regions. Edaphic environmental variables are often spatially structured and 487 

so have been also reported as potential drivers of purely spatial patterns in mesofauna 488 

communities (Caruso et al., 2019, 2012). However, this possibility is poorly supported 489 

here, as similar spatial structures were independently found within the different habitats 490 

and regions, mirroring thedistance-decay patterns at the (neutral) haplotype level, and 491 
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hence suggesting that dispersal limitation is the main driver of the localspatial structure 492 

of the studied mesofauna communities.  493 

The small spatial scale of turnover and endemicityis consistent with population 494 

genetic studies in soil mesofauna showing deep genetic breaks even over relatively 495 

short geographic distances (Andújar, Pérez-González, et al., 2017; Cicconardi et al., 496 

2013; Collins, Hogg, Convey, Barnes, & McDonald, 2019). In contrast, our results are 497 

not concordant with long-distance dispersal as aprevalentprocess for soil mesofauna, as 498 

might be expected frompassive dispersal by air, water or in marine plankton(Decaëns, 499 

2010; Thakur et al., 2019; Wardle, 2002). Existing reports of long-distance dispersal are 500 

mainly into virgin isolated habitats (Ingimarsdóttir et al., 2012) or 501 

recentlydeglaciatedareas (Gan et al., 2019), or may involve the detection of mesofauna 502 

during transport(Coulson, Hodkinson, & Webb, 2003; Schuppenhauer et al., 2019). 503 

However, they do not inform about colonisation and establishment success (effective 504 

dispersal) and possibly only pertain to a few highly dispersive species. Additionally, the 505 

dispersal potential may have been overestimated due to the low resolution of 506 

morphological species identification (Cicconardi et al., 2013) leading to perceived low 507 

turnover among sites, as evident from recent large-scale barcoding studies (Collins, 508 

Hogg, Baxter, Maggs-Kölling, & Cowan, 2019; Young et al., 2019). Our results at the 509 

community level thus raise doubts about a generalised dispersal advantage for small-510 

bodied arthropods and instead indicate very small dispersal distances, even over 511 

evolutionary time scales, for the majority of species that make up the complex 512 

mesofauna communities of the soil.This scale and dynamics of community assembly 513 

contrasts withpatterns and processes reported for the microbial eukaryote diversity of 514 

the soil (Bahram et al., 2016) and aligns with recent empirical evidences suggesting that 515 

at the local scale dispersal rates may be much lower for soil mesofauna than for 516 
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microfauna(Zinger et al., 2019).In the context of theoverall arthropod diversity(for 517 

which soil mesofauna comprises the majority of the smallest fraction), our results are 518 

not supporting the macroecologicalpredictionfora reduce impact of dispersal limitation 519 

in the assemblage for small-bodied components compared with their bigger 520 

counterparts(de Bie et al., 2012; Ricklefs, 2004)and highlight the uniqueness 521 

ofecological and evolutionary processes driving the biodiversity ofthese edaphic 522 

arthropods(Andújar, Arribas, & Vogler, 2017; Andújar, Pérez-González, et al., 2017).  523 

The role of dispersal constraints within a habitat-based framework 524 

In spite of the important role of dispersal limitation within each habitat type, the greatest 525 

assemblage differentiation was between grassland and forest communities, which share 526 

very few species even in close (meters) spatial proximity. Previous studies also have 527 

shown great differences in soil arthropod community composition between beech forest 528 

and adjacent grassland (Caruso et al., 2012), and twice higher species richness in the 529 

forest community. The grassland-forest dichotomy in community composition is 530 

concordant with these findings, but the total diversity in either type of community was 531 

more complex.Alpha diversity tended to be higher for forest habitats, although lineage 532 

accumulation across multiple sites was higher for the grasslands, resulting in higher 533 

overall landscape richness (gamma diversity). Grassland communities also had 534 

consistently lower initial and mean community similarities in the corresponding 535 

distance decay curves, together with higher levels of both point and local scale 536 

endemicity. These results are recurrent across the three sampling areas and point to 537 

slightly higher long-term dispersal constraints for the mesofauna in the grasslands 538 

studied. 539 

Grassland species are expected to experience higher environmental variability and 540 

greater extremes, which are moderated within forested patches and thus presumably are 541 
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more stable (De Frenne et al., 2019). Under the habitat stability hypothesis (Ribera & 542 

Vogler, 2000; Southwood, 1977), low species turnover is predicted in less stable 543 

habitats due to the stronger selection on traits promoting dispersal that are required to 544 

persist in ephemeral environments. However, our findings are not aligned with this 545 

hypothesis, suggesting similar local-scale patterns of lineage turnover within both 546 

habitats and with slightly stronger community structure for the presumably less stable 547 

grasslands. Further studies comparing the assemblages of both habitat types across 548 

gradients of stability (e.g. latitude) are needed to identify the processes driving the 549 

mesofaunal community turnover, but both habitat types show the signature of long-term 550 

stability without which the high spatial structure at multiple hierarchical levels and 551 

between grassland and forest habitats could not have arisen.  552 

Extrapolating beyond the local scale 553 

The recurrence of the local patterns in each of the three study regions and across the 554 

three major taxonomic groups corroborates the hypothesis of an underlying process of 555 

stochastic dispersal of individuals, affected by a universal type of dispersal constraint. 556 

This seems to affect a majority of species composing these communities, regardless of 557 

their taxonomic affinity, species traits or functional role. The soil matrix provides a 558 

common sphere in which these processes are played out, and if these soils are similar, 559 

complex communities, on average, appear to respond in a similar way. The two habitat 560 

types clearly provide different overall settings, obvious from the very different species 561 

present, but they also impact the respective species pool in similar ways. With the local-562 

scale patterns and likely underlying processesreported here, questions arise about the 563 

impact for cross-regional and global spatial scales, and how these patterns and processes 564 

compare to aboveground arthropod components. If generalized across broader 565 

geographical scales and other ecoregions, the very reduced spatial scale of dispersal in 566 



24 
 

soil mesofauna could be a major contribution to the overall gamma diversity and may 567 

lead to a revised estimate of total species diversity on Earth. In this sense, further 568 

developments on the multi-hierarchical analysis of genetic and higher-level diversity 569 

from metabarcoding data has the potential to propel the characterisation of edaphic 570 

macrobialcommunity structure into a new era of biodiversity discovery. By taking 571 

advantage of the full breadth of contemporary metabarcoding data at expanded 572 

taxonomic and geographic scales,the advances made here will provide unique insights 573 

into the ecological and evolutionary processes that determine the magnitude and spatial 574 

distribution of soil arthropods. 575 
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Table 1 Total number of haplotypes and clusters for Acari, Collembola and Coleoptera 807 
for each local setting (GRA, ALZ, CUE) at increasing levels of genetic divergence 808 
thresholds.  809 

 haplotypes 1% 
lineages 

2% 
lineages 

3% 
lineages 

4% 
lineages 

5% 
lineages 

6% 
lineages 

8% 
lineages 

GRA         

Total 1124 693 559 511 487 470 458 436 
Acari 540 354 286 260 243 233 226 219 

Collembola 306 172 129 113 108 104 101 94 
Coleoptera 278 167 144 138 136 133 131 123 

ALZ         

Total 1009 655 540 479 451 431 419 407 
Acari 451 319 260 226 210 197 194 189 

Collembola 275 155 114 94 90 87 81 77 
Coleoptera 283 181 166 159 151 147 144 141 

CUE         

Total 992 613 519 480 462 443 437 423 

Acari 459 296 244 220 208 198 193 184 

Collembola 273 138 117 107 101 96 95 91 

Coleoptera 260 179 158 153 153 149 149 148 
 810 

811 
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FIGURE CAPTIONS 812 

Figure 1. Sampling points in the three local settings within the Iberian Peninsula, Sierra 813 

de Grazalema, (GRA), Sierra de Alatoz (ALZ) and Sierra de la AlcarriaConquense 814 

(CUE). Sampling points are located within Quercus forest patches (dark grey) and wet 815 

grassland patches (pale grey). 816 

Figure 2. Richness of soil mesofauna lineages by sample (alpha diversity, A, B, C) and 817 

total accumulated richness (local scale richness, D, E, F) by habitat and soil layer for the 818 

three local settings (GRA, ALZ, CUE). Both measures are shown at the haplotype and 819 

the 3% genetic similarity levels. Forest habitat as dark grey, grassland habitat as pale 820 

gray, sup for superficial and deep for deep soil layers. Significantly different richness of 821 

lineages by sample (repeated-measures ANOVA p< 0.05) between deep and superficial 822 

communities of each habitat are indicated by asterisks within A, B, C panels. The 823 

contribution of Acari, Collembola and Coleoptera to the local scale richness are shown 824 

within D, E, F panels.  825 

Figure 3. NMDS ordinations of the soil mesofauna samples according to the variation 826 

in community composition (Simpson index, βsim) within the three local settings (GRA, 827 

ALZ, CUE) and at the haplotype and the 3% genetic similarity levels. Forest habitat as 828 

dark grey, grassland habitat as pale grey, sup for superficial and deep for deep soil 829 

layers. Explained variation (r2

Figure 4. Distance decay of soil mesofauna community similarity at multiple levels of 832 

genetic similarity (from haplotype, black to 8% genetic similarity level, pale grey) 833 

within the three local settings (GRA, ALZ, CUE) and for forest and grassland habitats. 834 

) and significance (p) of each grouping factor from the 830 

permutational ANOVAs over the community dissimilarity matrixes are shown. 831 
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Figure 5. Dissimilarity of soil mesofauna communities (A, B, C), regional endemicity 835 

(lineages present exclusively at a single sampling point in the region divided by the total 836 

number of lineages found, D, E, F) and endemicity by sampling points (lineages present 837 

exclusively at a particular sampling point divided by the total number of lineages in that 838 

community, G, H, I) at multiple levels of genetic similarity within the three local 839 

settings (GRA, ALZ, CUE) and for forest (dark grey) and grassland (pale grey) habitats. 840 

Significantly different endemicity by sampling point (Wilcoxon tests p< 0.05) between 841 

forest and grassland communities at each hierarchical level is indicated by asterisks in 842 

panels G, H, I. 843 
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