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ABSTRACT 12 

The ability of compounds of natural origin (black, white, red, and green tea extracts, phytic acid) 13 

to inhibit TMAO-demethylase enzyme was assayed. Black tea and phytic acid exerted the highest 14 

inhibiting activities, similar to the already known inhibitor sodium citrate. Hake minces 15 

incorporating these three compounds were prepared and stored frozen (150 days, –12 °C). 16 

TMAO-demethylase enzyme was partially inhibited (lower enzyme activity, reduction of 17 

formaldehyde accumulation). The study of physicochemical properties of the minces (salt-18 

soluble proteins, water holding capacity, structural water associated with myofibrils) pointed to 19 

evident protein aggregation and loss of functionality when phytic acid was added, whereas black 20 

tea and sodium citrate did not have a negative effect. Consequently, the salt-ground mince with 21 

phytic acid showed worse viscoelastic properties than the others. In conclusion, black tea 22 

polyphenols and sodium citrate can be used as additives to inhibit TMAO-demethylase enzyme 23 

during frozen storage of fish minces. 24 
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1. INTRODUCTION 28 

Freezing is extensively used to preserve fish from microbial and enzymatic spoilage during long 29 

periods. However, it is well known that fish muscle spoils during frozen storage because of 30 

muscle hardening derived from protein aggregation and, depending on the fish species, because 31 

of the development of rancid flavors derived from lipid oxidation (Gómez-Estaca, Giménez, 32 

Gómez-Guillén, & Montero, 2010; Tejada, Huidobro, & Mohamed, 2003). The main cause of 33 

muscle freeze-induced protein aggregation is the progressive dehydration of proteins as ice 34 

crystals form and grow, along with the consequent increase in the salt concentration in the liquid 35 

phase (Bigelow & Lee, 2007; Cheung, Liceaga, & Li-Chan, 2009), both resulting in the formation 36 

of intermolecular cross-links (Bigelow & Lee, 2007). Other factors influencing the loss of muscle 37 

protein quality during frozen storage are the accumulation of dimethylamine and formaldehyde 38 

derived from the demethylation of trimethylamine oxide (TMAO) catalyzed by the 39 

trimethylamine oxide demethylase enzyme, as well as the accumulation of lipid oxidation 40 

products (aldehydes), depending on the fish species. The accumulation of formaldehyde is 41 

especially important in gadoids, whereas that of lipid oxidation products is of importance in fatty 42 

fish (Leelapongwattana, Benjakul, Visessanguan, & Howell, 2005; Saeed & Howell, 2002; Sikorski 43 

& Kostuch, 1982; Sotelo, Gallardo, Piñeiro, & Pérez-Martin, 1995). 44 

The quality of frozen fish depends on intrinsic factors such as species and season, as well as on 45 

technological factors such as handling practices prior to freezing, freezing rate, storage 46 

temperature, etc. (Careche, Herrero, Rodríguez-Casado, Del Mazo, & Carmona, 1999). Apart 47 

from this, in order to improve quality and shelf life of frozen fish, novel treatments have also 48 

been applied. Some of these strategies are based on the addition of antioxidants that retard 49 

lipid oxidation; cryoprotective agents such as sorbitol, sucrose, or protein hydrolysates that 50 

prevent ice crystal growth and protein dehydration; polyphosphates that improve water-binding 51 

capacity and protein solubility; sodium alginate that chelates calcium ions responsible for cross-52 
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linking; or soy protein isolate that reduces free water available for ice crystallization (Badii & 53 

Howell, 2002; Bigelow & Lee, 2007; Cheung, et al., 2009). Another alternative to improve frozen 54 

fish quality could be the inhibition of TMAO demethylase enzyme, resulting in the reduction or 55 

inhibition of formaldehyde accumulation, consequently retarding protein aggregation and loss 56 

of functionality (Leelapongwattana, Benjakul, Visessanguan, & Howell, 2008, 2010). In this 57 

regard, several compounds have been assayed in order to inhibit the activity of TMAO 58 

demethylase, such as sodium citrate, pyrophosphate, H2O2, or hydrocolloids such as sodium 59 

alginate, xanthan gum, or carrageenan (Da Ponte, Roozen, & Pilnik, 1986; Leelapongwattana, et 60 

al., 2008, 2010; Parkin & Hultin, 1982). The mechanism of action of many of these additives 61 

seems to be related to the chelating effect on ferrous ion, which is located in the active site of 62 

the enzyme and is also required for TMAOase activity (Leelapongwattana, et al., 2008). Despite 63 

this, the body of literature in this regard is quite scarce, and research on new compounds, 64 

especially those of natural origin, could be of great interest. Polyphenols are known to be good 65 

metal chelators (Bravo, 1998), so we hypothesize that they could be potential candidates to 66 

inhibit TMAO demethylase enzyme, improving fish quality and gelation ability during frozen 67 

storage. Tea (Camellia sinensis), a common beverage consumed worldwide, is well known for 68 

inducing health benefits because it contains phenolic compounds and derivatives with biological 69 

properties against a number of chronic diseases (Sanlier, Gokcen, & Altuğ, 2018). Catechins 70 

predominate in the phenolic composition of unfermented tea (green tea) or slightly fermented 71 

tea (white tea), while theaflavins and thearubigins (oxidized phenolic species) accumulate during 72 

fermentation, reaching a maximum in fully fermented black tea (Wang & Ho, 2009). Besides 73 

their radical scavenging capacity, green tea catechins and black tea theaflavins are also 74 

recognized for possessing well-established iron-chelating properties (Hatcher, Singh, Torti, & 75 

Torti, 2009). Similarly, phytic acid (inositol hexaphosphate), which is ubiquitous in eukaryotic 76 

cells, could also be a possible natural candidate to inhibit TMAO demethylase enzyme, owing to 77 

its strong iron affinity (Nielsen, Tetens, & Meyer, 2013). To the best of our knowledge, the 78 
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inhibiting activity of polyphenols and phytic acid on TMAO demethylase enzyme has not yet 79 

been reported. Therefore the objective of the present work was to study the TMAO demethylase 80 

inhibiting activity of several chelating agents, with special emphasis on those of natural origin 81 

(tea polyphenolic extracts and phytic acid), and their impact on hake mince protein functional 82 

aptitude, including gelation ability, during frozen storage. 83 

2. MATERIALS AND METHODS 84 

2.1. Materials and reagents 85 

Four hakes (Merluccius merluccius), each weighing 3–4 kg, were acquired at a local market in 86 

Madrid 36 h after fishing and immediately transported to ICTAN. TMAO was from Sigma-Aldrich 87 

(Madrid, Spain). Phytic acid and sodium citrate were from Sigma-Aldrich (Madrid, Spain). White, 88 

green, red, and black teas were acquired in a local market.  89 

2.2. Preparation and partial purification of TMAOase 90 

The partially purified enzyme extract was prepared following the method described by Benjakul, 91 

Visessanguan, and Tanaka (2004). For this purpose, finely chopped viscera or minced muscle of 92 

hake (Merluccius merluccius) were extracted with 3 volumes of chilled 20 mM Tris-acetate buffer 93 

(pH 7), containing 0.1 M NaCl and 0.1% Triton X-100, in an Omnimixer-Homogenizer (model 94 

17106, OMNI International, Waterbury, USA). The homogenates were centrifuged at 38,500×g95 

at 4 °C for 30 min (Sorvall Combiplus, Dupont, Wilmington, DE, USA), and the supernatants were 96 

partially purified by acidification. For this purpose, they were mixed at a 1:1 ratio (v:v) with 0.1 97 

M Na-acetate buffer, pH 4.5, centrifuged at 38,500×g at 4 °C for 30 min, and the supernatants 98 

were neutralized to pH 7 with NaOH. The neutralized supernatants were centrifuged again 99 

(38,500×g, 4 °C, 30 min) to remove undissolved debris. The supernatants obtained were used as 100 

crude enzyme extract (partially purified TMAOase) for: (i) enzyme inhibiting experiments, (ii) 101 
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addition to the minces (extracts obtained from viscera), and (iii) determination of residual 102 

TMAOase activity in the minces during frozen storage (extracts obtained from minced muscle). 103 

2.3. Determination of TMAO demethylase activity 104 

The method described by Benjakul, et al. (2004) was used, with slight modifications. To 2.5 mL 105 

of assay buffer (24 mM Tris-acetate, 24 mM TMAO, 2.4 mM ascorbate, 0.24 mM FeCl2, and 0.12 106 

M NaCl, pH 7), 0.5 mL of properly diluted partially purified enzyme extract was added. The 107 

reaction was performed at 25 °C for 20 min, after which 1 mL of 10% trichloroacetic acid was 108 

added to terminate the reaction. The pH of the enzyme reaction was checked (6.8 ± 0.15) and 109 

no significant differences (p≤0.05) were observed among samples. The reaction mixture was 110 

centrifuged at 8,000×g for 30 min and the supernatant was subjected to formaldehyde 111 

determination. One unit of TMAOase was defined as the activity that released 1 µmol of 112 

formaldehyde per minute. 113 

2.4. Extraction and determination of formaldehyde 114 

Formaldehyde was extracted by steam distillation in the presence of phosphoric acid as 115 

described by Rehbein (1987). Formaldehyde determination was performed by means of the 116 

Hantzsch reaction as described by Nash (1953). 117 

2.5. In vitro enzyme inhibiting assay 118 

The TMAO-demethylase inhibiting activity of sodium citrate, phytic acid, and various types of 119 

tea extracts (white, green, red, and black) was evaluated. Sodium citrate and phytic acid were 120 

dissolved in distilled water (5 g/100 mL) by magnetic stirring for 1 h at room temperature. Tea 121 

extracts (5 g/100 mL) were prepared by infusion at 90 °C for 15 min in a thermostatic bath and 122 

filtration through Whatman No. 1 filter paper. For enzyme inhibiting assays, to 2.5 mL of assay 123 

buffer (24 mM Tris-acetate, 24 mM TMAO, 2.4 mM ascorbate, 0.24 mM FeCl2, and 0.12 M NaCl, 124 
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pH 7), 0.5 mL of properly diluted partially purified enzyme extract from viscera and 0.12 mL of 125 

various dilutions of enzyme inhibiting solutions or extracts were added. The reaction was 126 

performed at 25 °C for 20 min, after which 1 mL of 10% trichloroacetic acid was added to 127 

terminate the reaction. The reaction mixture was centrifuged at 8,000×g for 30 min and the 128 

supernatant was subjected to formaldehyde determination. As positive control, a sample was 129 

prepared following the same procedure but with the addition of 0.12 mL of distilled water 130 

instead of enzyme inhibiting solution. Results have been expressed as IC50, which is the 131 

concentration of inhibiting agent needed to reduce the initial enzyme activity by 50%. In the 132 

case of the tea extracts, IC50 is calculated based on the amount of leaves (w/v) used to prepare 133 

the extracts. 134 

2.6. Mince preparation 135 

Hakes were headed, gutted, skinned, filleted, and washed with cold tap water.Chopped muscle 136 

was ground with 1.5% NaCl and divided into 1250 g aliquots, which were mixed with partially 137 

purified enzyme extract from viscera (1160 units/Kg mince) in a Stephan blender at 2 °C for 1 138 

min, in order to magnify the subsequent TMAO activity. Afterwards, the various enzyme 139 

inhibitors, cooled to 3 °C, were added to achieve a final concentration of 3.7 g/Kg mince and 140 

mixed for 2 min. According to the results of the in vitro inhibiting assay, four different batches 141 

were produced: (i) control without enzyme inhibitor (C), (ii) with phytic acid (PA), (iii) with 142 

sodium citrate (SC), and (iv) with black tea extract (BT). All batches were vacuum-packed in 250 143 

g aliquots in flexible bags (type BB4L, Cryovac, Barcelona, Spain), placed in stainless steel trays, 144 

and frozen in a horizontal plate freezer (Sabroe, Aarhus, Denmark) at –40 °C for 2 h. All batches 145 

were subsequently stored at –12 °C in order to simulate temperature abuse conditions and allow 146 

magnification of the changes in formaldehyde accumulation (Sotelo, Aubourg, Perezmartin, & 147 

Gallardo, 1994). 148 

2.7. Color determination 149 
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For mince color determination, the minces were allowed to thaw and then placed in a glass 150 

sample container, and the color coordinates L* [black (0) to white (100)], a* [green (–) to red 151 

(+)], and b* [blue (–) to yellow (+)] were obtained with a Konica Minolta CM-3500d 152 

spectrophotometer (Konica Minolta Sensing, Inc., Osaka, Japan). Simple transformations were 153 

used to convert a* and b* coordinates to C* and h° chromatic parameters. Total color 154 

differences (ΔE) from control mince and whiteness index (WI) were calculated as shown below 155 

in Eqs. 2 and 3, respectively: 156 

                Eq. 2 157 

                            Eq. 3 158 

where L*, a*, and b* are the values of these parameters for each sample, and L*
c, a*

c, and b*
c are 159 

those of the control sample. 160 

2.8. Protein solubility and water holding capacity 161 

Protein solubility was determined as previously described by Gómez-Estaca, et al. (2010) and 162 

expressed as g soluble protein/100 g protein present in the muscle. Water holding capacity was 163 

determined as described by Gómez-Guillén, Montero, Hurtado, and Borderías (2000) and results 164 

expressed as g water retained/100 g water present in the muscle. 165 

2.9. Protein aggregate size measurement and ζ-potential166 

An amount of 1 g of muscle was homogenized with cold 0.8 M NaCl for 1 min in an Omnimixer-167 

Homogenizer (model 17106, OMNI International, Waterbury, USA) immersed in an ice/water 168 

bath. The homogenates were centrifuged (6,000×g, 2 °C, 15 min) in a Sorvall Evolution RC 169 

Centrifuge (Thermo Fisher Scientific Inc., Landsmeer, The Netherlands) and the supernatants 170 

were used for analyses. Particle size and ζ-potential of the soluble protein fraction were 171 

determined using a Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK) at ≤5 °C. 172 
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Z-average was measured by dynamic light scattering (DLS), and ζ-potential by laser Doppler 173 

velocimetry through the electrophoretic mobility, provided by the Hückel approximation. All 174 

samples were diluted with 0.2 M phosphate buffer (pH 7.0) to a final concentration of 0.01 175 

mg/mL, and the results were the means of at least 10 replicates. 176 

2.10. Low-Field Proton Nuclear Magnetic Resonance (LF-NMR H1) 177 

Relaxometry analysis was carried out according to Sánchez-Alonso, Moreno, and Careche (2014). 178 

Portions of mince measuring 1 × 1 × 2 cm and weighing 2 g were placed in NMR tubes (1.8 cm 179 

diameter and 18 cm height) and sample temperature was kept at 4 °C using a Thermo Haake 180 

C/DC class DC10-K10 refrigerated circulator (Fisher Scientific S.L., Madrid, Spain). Transverse 181 

relaxation data (T2) were determined in a Low-Field Nuclear Magnetic Resonance Minispec 182 

mq20 analyzer (Bruker Optik GmbH, Germany) with a magnetic field strength of 0.47 T (proton 183 

resonance frequency of 20 MHz). Relaxation time distribution was analyzed using the CONTIN 184 

regularization algorithm employing the Carr–Purcell–Meiboom–Gill pulse sequence with a τ-185 

value of 150 µs, and 16 scans at 2 s intervals with a total of 3,000 echoes were obtained per 186 

sample. At least three replicates were measured per sample. 187 

2.11. Viscoelastic properties and gelling capacity 188 

The salt-ground muscles were obtained by homogenizing the minces with NaCl for 2 min to a 189 

final concentration of 1.5 g/100 g mince, using a domestic homogenizer (Braun, Germany) 190 

immersed in an ice/water bath. Batter moisture was adjusted to 80% with the required amount 191 

of ice. Viscoelastic properties of the batters (elastic modulus G′ and viscous modulus G″) were 192 

determined using a Bohlin rheometer (Bohlin Instruments Ltd., model CVO, Worcestershire, UK) 193 

with a cone-plate geometry (cone angle 4°, gap=0.15 mm). A dynamic frequency sweep was 194 

carried out at 10 °C over the frequency range 0.1–10 Hz (γ=0.005). A dynamic temperature 195 
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sweep was done at 1 Hz by heating from 10 °C to 85 °C at a scan rate of 1 °C/min (γ=0.005). At 196 

least two replicates per sample were measured. 197 

3. RESULTS AND DISCUSSION 198 

3.1. In vitro TMAO demethylase inhibiting assay 199 

The compound showing the highest enzyme inhibiting activity was phytic acid (95.2 ± 4.8) 200 

(p≤0.05), followed by black tea extract (116.9 ± 5.8) and sodium citrate (114.7 ± 5.7), which 201 

showed similar values (p>0.05). The red, white, and green tea extracts were significantly less 202 

active than the other compounds studied (p≤0.05), showing IC50 values of 234.1 ± 11.7, 268.1 ± 203 

13.4, and 268.9 ± 13.3, respectively. The inhibition exerted by sodium citrate in the present work 204 

agrees with previous results obtained by Leelapongwattana, et al. (2008). The authors cited 205 

studied the TMAO demethylase inhibiting activity of a number of potentially inhibiting 206 

compounds, finding that sodium pyrophosphate, sodium citrate, and sodium alginate showed 207 

the highest activities, in decreasing order. The proposed mechanism of action of the three 208 

compounds was a chelating or complexing effect on ferrous or ferric ions. To the best of our 209 

knowledge, there are no previous reports on the inhibiting activity of phytic acid or polyphenolic 210 

extracts on TMAO demethylase enzyme. The mechanism of action of the natural inhibitors used 211 

in the present work (tea polyphenols and phytic acid) would most probably also be iron ion 212 

chelation (Hatcher et al., 2009; Gupta et al., 2013). Interestingly, among the various tea types 213 

tested, there seems to be a positive relationship between the presumably higher oxidation level 214 

of polyphenols in black tea and its higher TMAOase inhibiting activity, probably favored by a 215 

higher Fe chelating activity (Wang & Ho, 2009). 216 

3.2. Physicochemical changes of hake minces with enzyme inhibitors during frozen storage 217 

Among the various inhibitors studied, black tea, phytic acid, and sodium citrate were selected 218 

to be included in the hake minces. The optical properties of the minces are shown in Table 1. 219 
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Sodium citrate did not produce any change in optical properties (p>0.05) as compared to the 220 

control batch. In contrast, significant changes (p≤0.05) were observed with the other enzyme 221 

inhibitors, which were especially evident in the batch with black tea, resulting in decreased 222 

lightness, higher chromaticity, and a change in hue angle toward the blue region. These 223 

variations are clearly reflected in the total color difference and also resulted in a decrease in the 224 

whiteness index (Table 1). 225 

The results of TMAO demethylase activity of hake minces with enzyme inhibitors during frozen 226 

storage are shown in Figure 1A. All samples showed a similar trend during storage, i.e., an 227 

increase in activity during the first month followed by a decrease as storage continued. 228 

Leelapongwattana, et al. (2008) also reported this trend when studying the TMAO demethylase 229 

activity of minced lizardfish muscle with the addition of enzyme inhibitors during frozen storage. 230 

According to those authors, this effect may be the result of the disruption of cell membranes at 231 

the beginning of frozen storage induced by ice crystals, followed by a decrease in activities, 232 

possibly because of denaturation of TMAO demethylase and lower extraction efficacy resulting 233 

from cold-induced protein aggregation during frozen storage. The batches with phytic acid and 234 

black tea generally showed lower values than the control batch during storage (p≤0.05), pointing 235 

to a small degree of enzyme inhibition. In contrast, the batch with sodium citrate showed higher 236 

enzyme activity than the control (p≤0.05). This result was unexpected, as it does not agree with 237 

the in vitro inhibiting results. A possible explanation may be an improvement in enzyme 238 

extraction due to cell disruption and muscle protein denaturation in the presence of this salt. 239 

The accumulation of formaldehyde, which could be an indirect measure of the TMAO 240 

demethylase activity, is shown in Figure 1B. From the first month of storage onwards, the 241 

formaldehyde content in the samples with enzyme inhibitors showed a tendency towards lower 242 

values than in the control batch, although differences were not always significant (p≤0.05), 243 

suggesting a reduction in enzyme activity. The batch in which the lowest formaldehyde 244 
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accumulation was observed was the one with phytic acid (PA), followed by black tea (BT) and 245 

sodium citrate (SC). These results seem to confirm that the apparent increase in enzyme activity 246 

observed in the SC batch (Figure 2) might be due to an improvement in enzyme extraction, as 247 

discussed, rather than a real increase in enzymatic activity in the mince. Leelapongwattana, et 248 

al. (2008) studied the TMAO demethylase inhibitory effect of sodium alginate, pyrophosphate, 249 

and mixtures of them added to minced lizardfish, finding a reduction both in enzyme activity 250 

and in formaldehyde accumulation. However, the inhibitory effect observed by those authors 251 

was higher than that found in the present work. The differences must be attributed to the 252 

different fish species, freshness, enzyme inhibitors assayed, storage temperature, sample 253 

preparation, etc. 254 

The results of salt-soluble protein and water holding capacity (WHC) of hake minces containing 255 

the various TMAOase inhibitors during frozen storage are depicted in Figures 1C and 1D, 256 

respectively. Initially, muscle protein solubility was around 74% in the control batch. It 257 

decreased sharply to 43% during the first 15 days of storage, and then decreased further to 33% 258 

by the end of the storage period. A similar biphasic pattern of fish myofibrillar protein 259 

denaturation during frozen storage has been reported previously (Jiang & Wu, 2018). The early 260 

sharp decrease was attributed to a pronounced change in muscle protein conformation and 261 

aggregation due to strong water recrystallization at the relatively high storage temperature used 262 

(–12°C). This temperature of abuse was selected in order to maximize the accumulation of 263 

formaldehyde, as its formation is directly related to frozen storage temperature (Sotelo, et al., 264 

1994). Sodium citrate and, more intensely, phytic acid reduced protein solubility significantly 265 

(p≤0.05) at day 15 as compared to the control batch and the batch with black tea extract. No 266 

significant differences were observed during the subsequent storage period, in which all batches 267 

exhibited rather low salt-soluble protein. The water holding capacity decreased with storage 268 

time in all batches (p≤0.05). Unlike the protein solubility, a pronounced drop in WHC during the 269 

first 15 days was not observed, probably because the initial protein quality was not ideal, and 270 
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the muscle might have exuded weakly bonded water before and during the mince preparation. 271 

Phytic acid reduced WHC greatly from day 15 onwards, in contrast to sodium citrate and black 272 

tea extract, which showed values close to the control batch. 273 

In order to obtain deeper knowledge about the quality of the myofibrillar proteins during frozen 274 

storage, the evolution of the size and net charge of soluble aggregates was monitored (Bao, 275 

Boeren, & Ertbjerg, 2018; Chihi, Mession, Sok, & Saurel, 2016) and shown in Figure 2. Figure 2A 276 

shows the changes that occurred in the C batch during frozen storage, whereas Figures 2B, 2C, 277 

2D, and 2E show the changes at days 15, 30, 90, and 150, respectively, depending on the enzyme 278 

inhibitor added. At day 0 of storage, the soluble fraction of the C batch consisted mainly of 279 

protein aggregates peaking around 700 nm, although fractions of lower (130 nm) and higher 280 

(5.5 µm) average size were also observed, the latter coinciding with the detection limit of the 281 

equipment. After 15 days of storage, a noticeable decrease in intensity of the main population 282 

(≈700 nm) was concomitant with an increase in 5.5 µm particles, both events denoting protein 283 

rearrangement into larger microaggregates that were still present in the soluble protein fraction. 284 

As storage continued, the mean particle size of the main soluble aggregates showed a 285 

progressive downward tendency, reaching a value near 250 nm at day 150 of storage; at the 286 

same time, the intensity of the largest aggregates also tended to decrease with time (Figure 2A). 287 

Although there is no specific literature on the effect of frozen storage of fish on the size of 288 

soluble aggregates, the results obtained here are consistent with progressive protein 289 

aggregation, with disruption of the original protein aggregates and formation of larger particles 290 

that tended to leave the soluble fraction as frozen storage continued. Vate and Benjakul (2016) 291 

reported an average particle size of 513 nm in heated natural actomyosin solution from sardine, 292 

which upon addition of protein cross-linkers increased to 645 nm as a result of protein 293 

aggregation. However, comparisons with the present work are difficult because the above-294 

mentioned natural actomyosin was previously heated and changes in particle size distribution 295 

were not shown. 296 
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With regard to the effect of the various enzyme inhibitors, phytic acid was the one that induced 297 

the greatest changes, at day 15 causing a marked reduction in the average size of soluble 298 

aggregates as compared to the other samples. This was due not only to a shift of the most 299 

abundant protein aggregates to a smaller size, but also to a reduction in the amount of larger 300 

soluble microaggregates, which presumably went into the insoluble protein fraction (Figure 2B). 301 

At the same day of storage, the most abundant protein fraction in SC also shifted toward a lower 302 

particle size and the abundance of the 5.5 µm population decreased, as compared to the control 303 

and BT batches (Figure 2B). All these events suggested considerable protein insolubilization at 304 

the early stage of storage in both PA and SC batches, in agreement with the protein solubility 305 

results (Figure 1C). During storage, the average size of the aggregates in the three batches 306 

treated with enzyme inhibitors showed a downward tendency, as described for the control, and 307 

at day 150 of storage only minor differences were observed between them and the control batch, 308 

as observed before for protein solubility (Figure 1C). 309 

The effect of frozen storage on the net charge of the soluble protein aggregates from the various 310 

minces is shown in Figure 2F. All samples presented an electronegative ζ-potential, attributed 311 

to the abundance of acidic amino acids in the fish muscle, which are largely deprotonated at 312 

neutral pH. The ζ-potential of the control batch at day 0 was slightly lower than that reported 313 

previously in salt-ground hake muscle (–20.8 mV) (Marín-Peñalver, Alemán, Montero, & Gómez-314 

Guillén, 2018), but slightly higher than in heated natural actomyosin from sardine (–13.0 mV) 315 

(Vate & Benjakul, 2016). These differences could be related to different protein aggregation 316 

status. Furthermore, coinciding with increasing protein aggregation, the protein net charge 317 

tended to decrease (p≤0.05) in all batches during storage, and PA was the batch that exhibited 318 

the lowest ζ-potential. According to Vate and Benjakul (2016), aggregation of protein molecules 319 

had an impact on the surface charge of the aggregates by masking the charged amino acids, 320 

which remain inside the protein complexes. 321 
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LF-NMR H1 has been used as a tool to evaluate deeper changes in structural water associated 322 

with morphological changes in protein (Sánchez-Alonso, et al., 2014). Figure 3 shows the 323 

transversal proton relaxation time curves in the 10–1000 ms range of the various hake minces 324 

during frozen storage. At day 0 of storage, the control sample showed a main T21 relaxation band, 325 

indicative of water located predominantly in the intra-myofibrillar space (Figure 3A). This finding 326 

would be compatible with muscle that has been frozen in adequate conditions (fast freezing) 327 

and stored during a short period of time (Sánchez-Alonso, Martinez, Sánchez-Valencia, & 328 

Careche, 2012; Sánchez-Alonso, et al., 2014). During storage, the T21 band gradually lost 329 

amplitude and shifted toward lower relaxation times, which indicates a decrease in the spacing 330 

between the myofibrils; at the same time, a slower relaxation component (T22) appeared, 331 

corresponding to extra-myofibrillar water, resulting from freeze-induced morphological changes 332 

in protein (Sánchez-Alonso, et al., 2012). These changes were indicative of protein denaturation 333 

and were consistent with the loss of protein solubility and water holding capacity during frozen 334 

storage. In the samples with enzyme inhibitors (Figure 3 B–E), again, from day 15 onward, phytic 335 

acid induced the greatest changes in structural water, showing an intense migration of water 336 

protons the intra- to extra-myofibrillar space, in agreement with the strong protein aggregation. 337 

As with the control batch, the T22 component showed a noticeable tendency to increase in all 338 

batches during the storage period. After 90 days, the BT batch was apparently the least affected, 339 

but at the end of storage no great differences were found among the various batches. 340 

3.3. Gel forming capacity of hake minces with added enzyme inhibitors during frozen storage 341 

In order to determine the effect of the various additives on the viscoelastic properties of the 342 

salt-ground muscle, as a previous and necessary step for protein gelation a frequency sweep 343 

test was carried out initially (in the control mince without additives at day 0) and at days 15 and 344 

150 of frozen storage (Figure 4). The elastic modulus G′ was greater than the viscous modulus 345 

G″ throughout the whole frequency range in all the samples tested, denoting a typically 346 
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predominant solid-like behavior, regardless of the additive or the storage period. All mechanical 347 

spectra in terms of G’ fitted the power law model very well (R2≥0.99). The n’ exponent values of 348 

the corresponding equations are also shown in Fig. 4. According to Campo and Tovar (2008), the 349 

smaller the value of n’, the greater the matrix stability. Within the first 15 days of storage, the n’ 350 

value in the control batch (without inhibitors) increased from 0.134 to 0.149, but it registered 351 

the lowest value as compared to the minces with added inhibitors, indicating that at the early 352 

stage of storage this was the most stable batter. In contrast, the PA batch presented the highest 353 

degree of matrix instability (n’ = 0.233), which coincided with the considerable early protein 354 

aggregation described in section 3.2. At the end of storage, G′ and G″ values increased 355 

considerably in all batches, but much more intensely in PA, in agreement with its more intense 356 

protein aggregation and lower matrix stability. No great differences in the viscoelastic behavior 357 

of the respective salt-ground batters were observed in SC and BT batches at the end of the 358 

storage period, and it was very similar to that of the control batch (without additives). 359 

The thermal gelation profile of the salt-ground muscle without and with inhibitors during frozen 360 

storage is shown in Figure 5. Figure 5A shows the changes in G’ as a function of the heating 361 

temperature of the control batch (without inhibitors) during the whole storage period. During 362 

the first 15 days of storage the control batch presented a sharp increase in G’ between 30 and 363 

39 °C, indicating a strong setting phenomenon (Figure 5A). This peak is largely attributed to the 364 

result of endogenous muscle transglutaminase activity that leads to the formation of ε-(γ-365 

glutamyl)-lysine covalent bonds (Lanier, Yongsawatdigul, & Carvajal-Rondanelli, 2013). After 366 

that, the pronounced drop in G’ to ≈47 °C could be ascribed to the activity of indigenous 367 

proteolytic enzymes causing a breakdown in the preformed protein network, constituting the 368 

so-called modori phenomenon (Ueki, Wan, & Watabe, 2016). This phenomenon has been also 369 

attributed to the destruction of alpha-helix and unwinding of coiled-coil structure of myosin rod 370 

(Fukushima, Satoh, Nakaya, Ishizaki, & Watabe, 2003). From 47 °C upwards the progressive rise 371 

in G’ indicated continuous thermal aggregation of muscle proteins. Similar viscoelastic behavior 372 
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of salt-ground hake mince upon heating from 5 to 80 °C has been reported previously (Marín-373 

Peñalver, et al., 2018). Interestingly, at days 0 and 15 the maximum values of G’ registered at 374 

the end of the heating ramp did not exceed those of the setting peak, probably because of strong 375 

residual proteolytic activity. In contrast, after the first month of storage both setting and modori376 

phenomena clearly tended to be less pronounced or even disappeared at the end of 150 days. 377 

This effect could be related to the loss of enzyme activities during frozen storage. Furthermore, 378 

values of G’ in the thermal profiles tended to be higher with storage time, and the onset of 379 

thermal aggregation also showed a slight down-shift, both effects being compatible with 380 

progressive freeze-induced muscle protein aggregation and protease inactivation. After 150 381 

days of storage, the pronounced increase in the G’ values from the onset of the heating ramp 382 

indicated that the protein was highly aggregated, but it did not lose its thermal aggregation 383 

ability. 384 

This pronounced effect of initial protein aggregation on rheological behavior during heating was 385 

also observed in the PA batch in the early stage of frozen storage (Figure 5B), where setting and 386 

modori were not clearly evidenced. In contrast to the SC and BT batches, the initially high degree 387 

of protein aggregation induced by phytic acid at day 15 also resulted in a greater increase in G’ 388 

as a result of thermal aggregation. However, this effect was considerably reduced after 30 days 389 

(Figure 5C), so by the end of the storage period this batch had almost completely lost its thermal 390 

gelation ability. The early reduction in protein solubility and WHC induced by the interaction of 391 

phytic acid with the muscle proteins and the noticeable decrease in water binding properties of 392 

this batch during the entire storage period led to a final collapse of the protein network upon 393 

heating. In contrast, the evolution of the gelation profile in the presence of sodium citrate or 394 

black tea was quite similar to that of the control batch during 150 days of storage. 395 

4. CONCLUSION 396 

397 
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The ability of sodium citrate, tea polyphenolic extracts, and phytic acid to inhibit the activity of 398 

TMAO-demethylase enzyme was evidenced in vitro and subsequent evaluated in vivo during 399 

frozen storage of hake mince (–12 °C/150 days). Results from enzyme activity and formaldehyde 400 

accumulation during frozen storage evidenced a discrete inhibition, which was more intense for 401 

phytic acid and black tea polyphenolic extract. The study of the salt-soluble proteins (total 402 

amount, net charge, and size of aggregates), water holding capacity, and structural water 403 

associated with myofibrils pointed to evident protein aggregation and loss of functionality when 404 

phytic acid was added to the hake minces, whereas black tea polyphenols and sodium citrate 405 

did not have a negative effect. This resulted in a worsening of the viscoelastic properties of the 406 

salt-ground muscle for the mince with added phytic acid, whereas the other additives had a 407 

negligible effect. All the salt-ground minces were able to form thermally induced gels, but by the 408 

end of the storage period the mince with added phytic acid had almost lost this property, owing 409 

to extensive protein aggregation. Sodium citrate and black tea polyphenols can be used to inhibit 410 

TMAO-demethylase enzyme during frozen storage of fish minces, but they showed a limited 411 

capacity to protect the functional aptitude of the hake mince protein. However, as black tea 412 

polyphenols could provide fish restructured products with interesting health properties, the use 413 

of black tea as a potential bioactive agent should not be disregarded. Under the experimental 414 

conditions used, a clear relationship between formaldehyde-mediated protein aggregation 415 

inhibition during frozen storage and protein thermal aggregation ability could not be stablished. 416 

This could be due to a combined effect of (i) the boosting of protein aggregation at the storage 417 

temperature selected (–12 °C) and the muscle processing type (mincing), and (ii) the discrete 418 

formaldehyde inhibition observed in vitro. Further studies at lower storage temperatures would 419 

be necessary to fully understand the effect of TMAO-demethylase inhibitors on protein quality 420 

of fish muscle. 421 
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Figure captions 548 

Figure 1. TMAO-demethylase activity (A, enzyme units/g), formaldehyde accumulation (B, 549 
µg/kg), salt-soluble protein (C, %), and water holding capacity (D, g/100 g water), determined in 550 
various hake minces without and with addition of inhibitors during frozen storage. C: control 551 
without inhibitors; SC: with sodium citrate; PA: with phytic acid; BT: with black tea. Different 552 
letters (a, b, c, d) indicate significant differences (p≤0.05) as function of frozen storage. Different 553 
letters (x, y, z, w) indicate significant differences (p≤0.05) as function of the enzyme inhibitor 554 
added. 555 

Figure 2. Particle size distribution of salt-soluble protein aggregates from various hake minces 556 
without and with addition of inhibitors during frozen storage. A) control batch at days 0, 15, 30, 557 
90, and 150; B) all batches at day 15; C) all batches at day 30; D) all batches at day 90, and E) all 558 
batches at day 150. F) net charge (ζ-potential, mV). C: control without inhibitors; SC: with sodium 559 
citrate; PA: with phytic acid; BT: with black tea. 560 

Figure 3. LF-NMR relaxation time distribution of various hake minces without and with addition 561 
of inhibitors during frozen storage. A) control batch at days 0, 15, 30, 90, and 150; B) all batches 562 
at day 15; C) all batches at day 30; D) all batches at day 90, and E) all batches at day 150. C: 563 
control without inhibitors; SC: with sodium citrate; PA: with phytic acid; BT: with black tea. 564 

Figure 4. Mechanical spectra in terms of elastic modulus (G’) and viscous modulus (G″) of various 565 
salt-ground hake minces without and with addition of inhibitors during frozen storage. a) elastic 566 
modulus and c) viscous modulus, determined after 15 days of storage; b) elastic modulus and d) 567 
viscous modulus, determined after 150 days of storage. C0d: control without inhibitors at day 0 568 
of storage; C: control without inhibitors; SC: with sodium citrate; PA: with phytic acid; BT: with 569 
black tea. 570 

Figure 5. Thermal gelation profile in terms of elastic modulus (G’) of various salt-ground hake 571 
minces without and with addition of inhibitors during frozen storage. a) control batch at days 0, 572 
15, 30, 90, and 150; b) all batches at day 15; C) all batches at day 30; D) all batches at day 150. 573 
C: control without inhibitors; SC: with sodium citrate; PA: with phytic acid; BT: with black tea. 574 



Highlights 

1. Tea extracts, phytic acid PA, sodium citrate SC inhibit TMAO-demethylase in vitro
2. Black tea extract BTE inhibits TMAO-d more intensely than red, white and green ones 
3. BTE, PA and SC partially inhibit TMAO-d in hake mince during frozen storage 
4. PA aggregates hake proteins and impairs protein functionality and gelation 
5. BTE and SC do not affect hake protein functionality and gelation 



Table 1. Optical properties of the various minces developed: Lightness (L*), hue angle (h°), 
chromaticity (C*), total color difference (ΔE), and whiteness index (WI). C: control without 
inhibitors; SC: with sodium citrate; PA: with phytic acid; BT: with black tea. 

C SC PA BT
L* 63.5 ± 0.9c 63.3 ± 0.7c 61.2 ± 0.8b 57.7 ± 1.3a
hº 107.4 ± 2.3c 108.4 ± 2.0c 102.4 ± 2.0b 82.9 ± 1.2a
C* 7.2 ± 0.5a 7.2 ±0.5a 6.8 ± 0.8a 12.0 ± 0.9b
ΔE 1.17 ± 0.75a 2.63 ± 1.2a 8.65 ± 1.14b
WI 7.67 ± 0.08c 7.66 ± 0.07c 7.49 ± 0.08b 6.66 ± 0.11a

Different letters in the same row (a, b, c, d) indicate significant differences (p≤0.05) among 
samples. 
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