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Graphical abstract 

 

Abstract 

In this work we present a facile and versatile strategy to prepare new amphiphilic compounds 

obtained from natural sources, avoiding costly covalent synthetic stages, and we introduce a 
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powerful methodology to describe hydrogen-bonding networks in carbohydrates liquid crystal. 

A series of new glycosides has been prepared by mixing a natural-based mannoside, ManPKO, 

with three different polymeric substrates: poly(ethylene oxide), PEG, poly(4-vinyl pyridine), 

P4VP, and a block-copolymer containing PEG and P4VP segments, PEG45-b-P4VP18.  The 

materials have been characterised by differential scanning calorimetry, polarised optical 

microscopy and small-angle X-ray diffraction.  The resulting complexes are assembled by 

hydrogen-bonding and form smectic A phases, with the polymeric chains spread along the 

surface of the glycosides bilayers.  By using Fourier-transform infrared spectroscopy, FT-IR, 

and molecular simulations, we have assessed the selectivity of the hydrogen bonds formed 

between ManPKO and the polymeric segments.  Our results suggest that the assembly of the 

polymeric complexes must be explained by a combination of interfacial mixing between the 

polymer/glycoside units at the bilayer boundaries (favoured by PEG) and the formation of strong 

hydrogen bonds (favoured by P4VP). 

Keywords: Glycosides, supramolecular liquid crystals, hydrogen bonding, Fourier-transform 

infrared spectroscopy, polymeric complexes, molecular simulation. 

1.  Introduction 

Hydrogen-bonding is a versatile technique to yield new supramolecular liquid crystals 1, 2, thanks 

to the directional character of the hydrogen bonds that facilitates the arrangement of anisotropic 

structures.  The typical strength of a hydrogen bond (1~60 kJ·mol-1) 3, 4 can guarantee the 

stability of the new materials above their processing melting points, whilst providing some 

degree of “softness”.  Some early examples of complexes with mesogenic character include the 

pyridine-benzoic assemblies, reported by Kato and co-workers5, 6 , or the seminal works by Bruce 

and co-workers, using alkoxystilbazoles.7-9  To date, a wide range of liquid crystals continues to 

be prepared by hydrogen-bonding, including, chiral bent-core with supramolecular induced 

chirality 10, 11, photosensitive liquid crystals12, 13 , modular assemblies showing broad blue 

phases14, supramolecular dimers exhibiting the twist-bend nematic phase 15-17, or smectic 

networks for selective mass and ionic transport 18-20, among many others. 

Carbohydrate liquid crystals can be considered as early precedents of supramolecular 

mesomorphic compounds, and were already reported in the first half of the 20th century21, 22.  

More specifically, the different hydroxyl groups can form multiple hydrogen bonds between 

glycosides, resulting in microphase separation between polar and non-polar regions, and 

ultimately favouring smectic behaviour  23-29.  We note, however, that the exhibition of liquid 
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crystalline phases is not based on the formation of new “rod-like” or “disc-like” moieties by 

hydrogen-bonding, but instead on segregation due to the amphiphilic character of the glycosides, 

including hydrogen-bonding between the sugar heads.  Carbohydrate liquid crystals experienced 

a fast development in the 1980’s and 1990’s 26-28, and the mesomorphic behaviour of new 

glycosides continues to be the object of systematic investigation by varying their composition 

and stereochemistry 30-33.  

Due to its important role on the formation of liquid crystal phases, in this work we investigate 

with detail the hydrogen-bonding network of a natural-based glycoside, a palm kernel oil-based 

mannoside, ManPKO, 1, and its complexes with different polymeric substrates, 

  

1, ManPKO 

The alkyl chains of ManPKO were obtained from palm kernel oil, and then added to a mannose 

head by glycosidation, resulting on a mixture containing different chain lengths, and the effect 

of composition of 1 is currently under investigation34.  The formation of liquid crystalline 

structures and its non-toxicity, makes ManPKO a promising candidate for drug delivery 

applications35.  ManPKO has been complexated to three different substrates: poly(ethylene 

oxide), PEG, 2; poly(4-vinyl pyridine), P4VP, 3; and a block copolymer with both PEG and 

P4VP segments, PEG45-b-P4VP18, 4, 

 

  

2, PEG 3, P4VP 4, PEG45-b-P4VP18 

 

N

CH  CH2 CH2 OCH2  
n

N

CH  CH2 CH2 OCH2  
m

N

CH  CH2 CH2 OCH2  

45 18
bJo

ur
na

l P
re

-p
ro

of



Aripin et al.   Revised Manuscript 
 

4 

Whilst PEG is considered as a polymer substrate of great interest for biological applications due 

to its bio-compatibility36, 37, P4VP has been widely applied as a building block to yield 

supramolecular polymers 13, 38-43.  Finally, block copolymers not only facilitate the introduction 

of new functionalities in different segments of the polymer chain, but they also offer further 

control over microphase separation by regulating their hydrophobic/hydrophilic ratios 44-46. 

The materials are characterised by a combination of thermal, structural, spectroscopic and 

modelling techniques, in order to provide relevant insights on the role of the hydrogen-bonding 

network to assemble liquid crystalline glycosides23.  Complexation of block-copolymers has 

been used for different applications and materials, including light-responsive materials studied 

in our lab 45.  More specifically, Ikkala and co-workers have reported several examples using 

P4VP as a polymeric matrix; and, for selected examples, they describe the self-assembly of P4VP 

block copolymers complexed with cholesteryl hemisuccinate47 and with 3-pentadecylphenol48.  

These and other precedent works, however, focus on the structural and compositional analysis, 

whilst a detailed model of the hydrogen-bonding network is still crucial to describe and predict 

complexation.  The assembly of glycosides, tackled in the present work, as well as other systems 

containing multiple and resonating hydrogen bonds 49, is particularly challenging, and requires 

accounting for several hydroxyl groups potentially acting as hydrogen-donors and hydrogen-

acceptors.  Our approach can then open new forefronts to prepare supramolecular liquid crystal 

polymers as drug-delivery and cosmetic formulations 50-54.  In the long-term, the use of 

amphiphilic polymers will be beneficial to provide nanocarriers stealth effects that suppress 

opsonisation, to reduce interactions with the reticular-endothelial system, and to ultimately 

prolong circulation lifetime in blood. 55-57 

2.  Experimental section 

Materials preparation 

The mannoside ManPKO, 1, was synthesised according to the process described in detail in 34, 

and can be reviewed as electronic supplementary information (ESI, section A).  D(+)-mannose 

monohydrate and boron trifluoride, BF3, were purchased from Sigma Aldrich and used without 

further purification.  The palm kernel oil, PKO, was obtained from Golden Jomalina Food 

Industries Sdn. Bhd. (Malaysia), and the main components after reduction were lauryl (49%), 

myristyl (16%) and oleyl (7%) alcohols, determined by gas chromatography-mass spectroscopy, 

GC-MS.  The chemical structures of ManPKO and its intermediates were assessed by 1H-NMR 

spectroscopy, using a Varian NMR Systems spectrometer at 400 MHz.  D(+)-mannose was 
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peracetylated and PKO was reduced to alcohols, followed by glycosidation with PKO, and 

finally deacetylation, to yield 1 35, 58, 59. 

Poly(ethylene glycol), PEG, with an average molar mass of MW=12000 g·mol-1, and poly(4-

vinylpyridine), P4VP, with MW=60000 g·mol-1, were purchased from Sigma Aldrich and used 

without further modification.  The poly(ethylene glycol)-b-poly(4-vinylpyridine block 

copolymer, PEG45-b-P4VP18, was synthesised at the Institute of Materials Technology of Aragon 

(Zaragoza, Spain) by atom transfer radical polymerisation, and details of the synthesis and 

characterisation are also included as ESI (section B).  The average molar mass is MW= 4350 

g·mol-1, and the average polymerisation degrees of each block are n=45 and m=18, verified by 

MALDI-TOF and 1H-NMR. 

The polymeric complexes were prepared by weighting appropriate amounts of ManPKO, 1, 

and the corresponding polymers (2, 3 or 4), in a Mettler Toledo Classic Plus digital balance 

(±0.01 mg), and dissolving in dichloromethane, DCM.  The resulting solutions were stirred at 

room temperature during 24 h, and then allowed for slow evaporation during several days, until 

no additional weight loss was observed.  Complexation was kept to 100% (full complexation), 

in terms of % of equivalent glycoside units respect to polymer repeating units.  Three complexes 

were obtained, namely, PEG●ManPKO, P4VP ●ManPKO and PEG45-b-P4VP18●ManPKO. 

Techniques and methods 

The phase behaviour of ManPKO, 1, and the polymeric complexes 2, 3 and 4, was determined 

by polarised optical microscopy, POM, and differential scanning calorimetry, DSC.  Liquid 

crystalline textures were assigned by using an Olympus BX51 microscope equipped with cross-

polarising filters coupled to a Mettler Toledo FP82HT hot stage.  Samples were sandwiched 

between two glass slides, heated to their respective isotropic phases, and then cooled down to 

room temperature, at a rate of 10°C min-1.  Samples for DSC were previously dried in a vacuum 

oven at 50°C for at least 3 hours over phosphorus pentoxide.  Around 6 mg of the samples were 

then placed in 40 μl-sized aluminium pans, and the heat flow measured using a Mettler Toledo 

differential scanning calorimeter 822e, equipped with a Haake EK90/MT intercooler. 

Experiments were taken in subsequent heating and cooling cycles, ranging from -40°C to above 

their respective clearing temperatures, at rates of ±5°C min-1. 

The phase structures were analysed by small and wide angle X-ray diffraction, SWAXS, using 

a SAXess, Anton Parr, equipped with a DX-Cu 12x0.45 SERFERT X-ray tube generating CuKα 

radiation at λ = 1.542 Å, attached to a TCS 150 temperature controller.  Samples were introduced 
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inside 2-cm polyimide tubes sealed with Teflon tape, and subsequently dried in a vacuum oven 

for at least 48 h at 30°C.  Data were collected in diffraction mode and analysed with OriginPro 

8 software (OriginLab).  SWAXS scatterings were obtained at room temperature (T = 30C) and 

then at liquid crystalline temperature (T = 120C, 135C, 140C, for PEG●ManPKO, PEG45-

b-P4VP18●ManPKO and P4VP●ManPKO, respectively), after cooling from the isotropic 

phase.  Prior to each measurement, samples were held at the corresponding temperature for five 

minutes, to allow for thermal equilibration. 

Temperature-dependent Fourier-transform infrared spectroscopy, FT-IR, was carried out using 

a Thermo Nicolet NEXUS 470 main bench (Thermo Scientific), with the sample placed in a 

Linkam TMS93 hot stage unit for temperature control (± 0.1K).  The IR data were collected in 

transmittance mode and analysed with OMNIC (Thermo Scientific).  Samples consisted of 

dispersions of the complexes into dry KBr (~1% by wt. of complex), and were prepared by 

grinding both components into fine powder and further compression at 200 MPa for at least 10 

minutes, yielding homogeneous discs of 10 mm diameter and ~1.5 mm thickness.  A pristine 

KBr disc was also prepared and measured as the background, immediately prior to measure the 

samples.  Discs were heated into the isotropic phase of the complexes (above 150ºC), cooled 

down to room temperature, and the IR spectra were collected in isothermal steps, at 5°C intervals.  

Each measurement was taken after the temperature was stabilised for at least five minutes, to 

allow for thermal equilibration.  Spectra were collected in the frequency range 4000/400 cm−1, 

with a 4 cm−1 resolution, and recorded as an average of 64 scans. 

Simulation Procedure 

Single molecular units of ManC12, ManC18:1 (see chemical structure of ManPKO, 1), PEG, 

P4VP and PEG45-b-P4VP18 were modelled using Avogadro60  and were optimised in Gaussian09 

61 to get a stable structure of each compound.  Using packmol, a free modelling tool 62, a single 

layer of ManPKO containing ManC12 (80% w/w) and ManC18:1 (20% w/w), was built, with 

52 C12 molecules and 12 C18:1 molecules. The single layer (64 molecules total) was replicated 

and arranged allowing the tail groups of the lipids pointing toward each other at the centre of the 

bilayer and the head groups facing opposite direction to form a single bilayer.  On the top and 

bottom of this glycoside bilayer, 32 molecules of PEG were added to form a bilayer complex.  

Similarly, two other bilayer systems have been built by replacing PEG with thirty-two P4VP and 

seven PEG5-b-P4VP3 chains (as a PEG45-b-P4VP18 model, retaining the approximate relative 
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composition of the block copolymer).  For comparison purposes, a single bilayer of ManPKO 

is also modelled. The four systems were simulated using AMBER14 63, at 303 K and 1 atm. 

The four glycoside lamellar systems were then equilibrated using force field parameters from 

ff99SB 64 and GLYCAM_06j 65, in order to model the tails and sugar head groups of the 

glycolipids , respectively. The gaff 66 force field was used to model the PEG, P4VP and PEG45-

b-P4VP18 systems.  A non-bond cut off  of 9 Å was applied in calculating non-electrostatic 

interactions, and the long-range electrostatic interactions were treated using the particle mesh 

Ewald method 67.  The SHAKE algorithm was used to constrain covalent bonds involving 

hydrogen. The systems were heated gradually over 2 ns from 0 to 30°C in the NVT ensemble, 

using the Andersen thermostat (τp =0.5 ps) and a 1 fs time step. Subsequently, the systems were 

equilibrated under conditions of constant pressure NpT by anisotropic scaling. The Berendsen 

algorithm was used to achieve pressure coupling, with a coupling constant of 1 ps and a 

compressibility of 4.5 × 10−5 bar for anisotropic coupling. 

Simulations ran for a total of 350 ns, but only the last 50 ns of trajectories were used for 

subsequent analysis. All the coordinates were archived every 5 ps. The hydrogen bonding 

analysis was performed using the cpptraj module of AMBER, defining the O−O distance to be 

≤ 4Å and an angle cut off  of 120° from linearity.  The local density profiles were calculated 

along the bilayer normal, taking the centre of the bilayer as the origin to determine the bilayer 

thickness.  A detailed account of the methodologies is given by Manickam Achari et al 68. 

3.  Results and discussion 

Phase behaviour and structure, POM, DSC and SWAXS 

The phase behaviour of ManPKO and its complexes was assessed by polarised optical 

microscopy, POM, and confirmed by differential scanning calorimetry, DSC.  ManPKO forms 

a monotropic smectic A phase below ca. 146ºC, assessed by the appearance of battonêtes under 

the polarised microscope, which further coalesce into a focal conic fan texture, in coexistence 

with homeotropic regions.  The PEG●ManPKO, P4VP●ManPKO and PEG45-b-

P4VP18●ManPKO complexes, also develop battonêtes on cooling from the isotropic melt, 

indicating the formation of smectic A phases below TSmAI~150℃, see Fig. 1.  These textures 

flash upon pressure at high temperatures, and motions cease on cooling to room temperature.  

These results indicate that the mesomorphism of the glycoside is transferred to the polymer 

complexes, and their liquid crystal phases vitrify on cooling 69-71. 
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Figure 1.  Polarised optical microscopy images, POM, of: (a) PEG●ManPKO, (b) 

P4VP●ManPKO and (c) PEG45-b-P4VP18●ManPKO, showing their smectic A phases at T ~ 

130oC, evolved after cooling from their isotropic phases. 

 

The mesomorphism of the complexes is also confirmed by our DSC observations, see Fig. 2 and 

Table 1, even though we note that the thermal transitions associated to ManPKO are weak and 

appear rather spread over the temperature axis.  In Fig. 2(a), the intense peak at Tm~60oC 

indicates that the PEG chains also crystallise in the PEG●ManPKO complex, whilst in Fig. 

2(b) the glass transition of P4VP (Tg~135oC) is still visible in the complex, compare dotted and 

solid curves.  These observations can be explained by the occurrence of phase separation between 

the polymer chains and the mannoside units. 

Interestingly, it is also possible to detect a secondary glass transition at Tg~42oC in the 

P4VP●ManPKO curve, Fig. 2(b), which could indicate certain segregation degree of the 

polymer chains, with some of them undergoing a plasticizing effect by the proximity of 

mannoside units.  Another interesting phenomenon in the P4VP●ManPKO curve is the 

appearance of a new melting point at Tm~13oC, which is absent in the pristine components 34.  

This temperature fits well to the melting point of dodecane and similar alkanes, and suggests that 

the alkyl chains of ManPKO melt in the presence of the poly(4-vinyl pyridine) chains.  The 

previous phase transitions of the PEG and P4VP complexes are also visible in the DSC curve of 

PEG45-b-P4VP18●ManPKO, Fig. 2(c), which is consistent with the occurrence of micro-

segregation in block-copolymers.  These transitional properties are summarised in Fig. 2(d). Jo
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Figure 2.  DSC thermograms obtained on cooling the complexes (solid curves) and the 

respective pristine polymers (dotted curves): (a) PEG●ManPKO and PEG; (b) 

P4VP●ManPKO and P4VP; and (c) PEG45-b-P4VP18●ManPKO and PEG45-b-P4VP18.  Y-

axis: heat flow (mW), with the curves shifted arbitrarily; (d) phase diagram of the complexes. 

 

Table 1.  Thermal transitions of the complexes and pristine mannosides obtained by differential 

scanning calorimetry, DSC, on cooling from the isotropic phase.  

Sample 
Tg 

(°C) 

Tm 

(°C) 

Hm 

(J·g-1) 

TSmAI 

(°C) 

HSmAI 

(J·g-1) 

ManPKO 0 - - 146 3.8 

PEG - 62 199.6 -  

P4VP 133 - - -  

PEG45-b-P4VP18 - 43 43.6 -  

PEG●ManPKO 13 61 13.0 158* - 

P4VP ●ManPKO 
42 

135 

13 9.3 155* - 

PEG45-b-P4VP18●ManPKO 

-9 

 

11 

39 

44 

10.3 

2.7 

0.27 

151* - 

*Clearing temperatures, TSmAI, were obtained from POM. 

Jo
ur

na
l P

re
-p

ro
of



Aripin et al.   Revised Manuscript 
 

10 

The phase structures of the complexes are now investigated by small angle X-ray scattering, 

SWAXS, and for each complex we now display the corresponding scatterings in Fig. 3, obtained 

at the smectic A phase (upper) and room temperature (lower), on cooling from the isotropic melt.  

The results are consistent with the formation of layered smectic structures, with one strong signal 

at low angles (d1) and a weaker signal (d2~d1/2), associated to first and second order signals of 

the smectic layer periodicities, respectively, see Table 2.  Samples also show broad diffuse 

signals at wide angles, associated to the alkyl chain distances of the αManPKO molecules (d3 ~ 

4.7-4.9 Å).  It is worth mentioning that PEG●αManPKO exhibits two additional sharp signals 

overlapping the broad region, at d3’ =3.8 Å and d3” =4.6 Å, indicative of partial crystallisation, 

which is in agreement with our DSC results in Fig. 2(a). 

These diffractograms are essentially identical to that of pristine αManPKO and indicate the 

formation of smectic bilayers, d1 ~ 31 Å, with certain degree of interdigitation of the alkyl chains 

(assuming an estimated averaged molecular length d l ~23 Å and alkyl chains found in all-trans 

configuration34).  We note that, in the complexes, there is a slight increase in the layering spacing, 

which will be accounted for in terms of the molecular model developed in the next sections. 

 

Figure 3.  SWAXS scatterings of the complexes obtained in their smectic A phases (upper curves, 

T=140oC, 120oC and 135oC, for PEG●ManPKO, P4VP●ManPKO and PEG45-b-

P4VP18●ManPKO, respectively) and at room temperature (lower curves, T=25oC). 
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Table 2.  Phase structure of the polymeric complexes and ManPKO.  Thickness of the 

bilayers/d-spacings (d, Å) as obtained by small-wide angle X-ray scattering, SWAXS. 

 Glassa  Smecticb 

d1 d2 d3 d1 d2 d3 

ManPKOc 31.2 15.7 5.0 30.8 15.4 5.2 

PEG●ManPKO 31.2 15.6 3.8, 4.6 30.9 15.1 4.8 

P4VP●ManPKO - 15.8 4.8 30.9 15.4 4.9 

PEG45-b-P4VP18●ManPKO 31.3 15.6 4.7 31.2 15.6 4.8 

aT=25C. 

bSmectic A phase scatterings of αManPKO, PEG●ManPKO, P4VP●ManPKO and PEG45-b-

P4VP18●ManPKO are measured at 120C, 120C, 140C and 135C, respectively. 

c Unpublished results34. 

Molecular interactions, FT-IR 

The specific interactions responsible for the phase behaviour of ManPKO and its complexes 

are now investigated by temperature-dependent Fourier-transform infrared spectroscopy, FT-IR.  

Fig. 4 displays the FT-IR spectra corresponding to ManPKO, PEG●ManPKO, 

P4VP●ManPKO and PEG45-b-P4VP18●ManPKO, obtained in their smectic phases, 

T=104oC.  Fig. 5 and Fig. 6 highlight some specific IR vibration regions of interest. 

As expected, the spectra of the complexes present several similarities, and contain different 

signals arising from the polymer chains and ManPKO molecules34.  The C-C-O st. vibration 

regions of PEG and PEG●ManPKO (1300 – 900 cm-1) are shown with more detail in Fig. 5(a) 

and 5(b), respectively, where several PEG signals (broad arrows) appear overlapped with 

contributions from the glycoside molecules of ManPKO, Fig. 5(c) (thin arrows).  More 

specifically, the PEG●ManPKO curve in Fig. 5(b) shows two maxima: at 1110 cm-1, from 

PEG, and at 1060 cm-1, from ManPKO.  We believe that the absence of step changes with 

temperature is caused by the inhibition of crystallisation of PEG in the KBr discs.  The 

P4VP●ManPKO curve in Fig. 6(b), on other hand, displays blue-shifts of the 1600 cm-1 peak 

associated to the P4VP ring vibration, Fig. 6(a), which reveal the formation on cooling of new 

hydrogen bonds involving the pyridine ring. 
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Figure 4.  FT-IR spectra of the complexes and pristine ManPKO, obtained at T=104oC, highlighting 

some stretching, st., regions of interest.  Curves are shifted along the Y-axis arbitrarily. 

 

 

Figure 5.  Temperature-dependent FT-IR spectra of (a) PEG, (b) PEG●ManPKO and (c) ManPKO, 

in the C-C-O st. region.  Solid broad arrows indicate contributions from PEG, and solid narrow arrows, 

from ManPKO.  Dotted arrows indicate the direction on cooling from the isotropic phase to room 

temperature; Y-axes represent IR absorbance (%). 

 

 

Figure 6.  Temperature-dependent FT-IR spectra of (a) P4VP; (b) P4VP●ManPKO and (c) ManPKO.  

Dotted arrows indicate the direction on cooling from the isotropic phase to room temperature.  Y-axes 

represent IR absorbance (%). 
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With the aim to investigate how potential interactions between the hydroxyl groups of 

ManPKO and the polymer chains can contribute to assemble the new complexes, we now 

analyse with detail the OH stretching regions of PEG●ManPKO and P4VP●ManPKO in Fig. 

7(a) and 7(b), respectively.  The broad profiles of the OH st. bands, typical of sugars and 

glycosides, denote a distribution of hydroxyl groups found in different intermolecular 

environments, and the relatively low wavenumbers of the signal, ~3600-3000 cm-1, confirm the 

presence of extensive hydrogen-bonding in these complexes23.  The shift of the OH st. band 

towards lower frequencies on cooling indicates the progression to form stronger interactions 

within the hydrophilic domains of these complexes, due to the reconstruction of hydrogen bonds.  

Fig. 7(c) displays the maxima of the OH stretching region as a function of the temperature, OH-

max, and the values for PEG●ManPKO and P4VP●ManPKO are a few wavenumbers higher 

than ManPKO (at comparable temperatures), which indicates that complexation weakens the 

interactions between the sugar heads of the glycoside molecules of ManPKO.  Interestingly, 

PEG45-b-P4VP18●ManPKO displays the opposite trend respect to ManPKO, suggesting the 

formation of stronger hydrogen bonds, and we will return to this observation later.  The dynamic 

character of the hydrogen-bonding network can be semi-quantified by the slopes of the OH-max 

graphs in Fig. 7(c), also known as the wavenumber-temperature coefficients, WTC 72.  All 

samples under study, including the block copolymer, show similar values of WTC ~ 0.260 cm-1/K.  

These also fall within the range of other sugars72 and glycosides23 measured in their glassy states, 

but are smaller than values typically obtained in liquid crystal phases.  Our results are indicative 

of hydrogen-bonding networks with low thermal sensitivity, in terms of Angell’s strength and 

fragility73, 74. 
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Figure 7.  Temperature dependence of the IR OH stretching region corresponding to (a) 

PEG●ManPKO and (b) P4VP●ManPKO; (c) maxima of the OH stretching band frequency, 

OH-max, calculated for  PEG●ManPKO,   P4VP●ManPKO,  PEG45-b-

P4VP18●ManPKO and  ManPKO, as a function of the temperature.  Dotted arrows indicate 

direction of the measurements on cooling. 

 

Molecular Simulations 

With the aim to assess the role of the intermolecular interactions on the phase structure of our 

complexes, studied in the previous sections, we have carried out molecular simulations on model 

systems.  More specifically, we have modelled ManPKO as a mixture of mannoside molecules 

containing n=12 (C12, ManC12 in 1) and n=18 (C18:1 with a double bond at n=9, ManC18:1 

in 1) alkyl chains, based on its average composition and in order to study the effect of 

unsaturation.  This ratio was maintained in the simulations of the ManPKO complexes, when 

additional PEG and P4VP segments were included, according to the Simulation Procedure 

described above in the experimental section. 

The (thickness) d-spacing of the bilayer was determined by calculating the local density profile, 

and the area per lipid of ManPKO was obtained by dividing the xy- plane of the bilayer with 

the total number of lipid present in a layer; results are shown in Table 3.  The length of one fully 

stretched ManPKO molecule with single chain C12 is about 20.2 Å, while the longer 

hydrocarbon chain, C18:1, extends to a maximum length of 27.5 Å (with a trans conformation 

around its double bond). 68 
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Snapshots of the resulting structures and conformations are displayed for PEG●ManPKO, 

P4VP●ManPKO, PEG45-b-P4VP18●ManPKO and ManPKO, in Fig. 8(a), 8(b), 8(c) and 

8(d), respectively, and the results are in accordance with the formation of bilayers.  The d-

spacings obtained from simulations, see Table 3, agree with the experimental values reported 

above in Table 2.  There is a slight underestimation of the layer thickness (≤11.5%), except for 

P4VP●ManPKO, which gives an excellent prediction with a positive +2.7% error.  These 

deviations can be attributed to the length reduction of the complex used in simulation compared 

to the experimental conditions. 

The d-spacing is always less than two times the fully stretched length of a single mannoside 

molecule, suggesting the adoption of cis conformers, favoured by the presence of the double 

bond between C9—C10 on the C18:1 chain, which induces kinks in the linear molecular structure.  

Nevertheless, we must consider that interdigitation of the alkyl chains affects the d-spacing of 

the bilayers, and visual inspection of Fig. 8(c) and 8(d) also hints that some chains may 

interdigitate between the two layers.  We also note that P4VP●ManPKO shows signs of 

protrusion of the mannoside phase into the polymer region, see Fig. 8(b).  We then hypothesise 

that these mixing effects could be seen in the whole series if longer times were allowed, resulting 

in more accurate estimations of the bilayer structures. 

 

Table 3.  Calculated (modelled) thickness (d-spacing) of bilayers and area per lipid A / Å2. 

Complexes modelled d-spacing (Å) Area per lipid, A(Å2) 

PEG●ManPKO 28.7 ± 0.8 31.7 ± 0.2 

P4VP●ManPKO 31.6 ± 0.2 24.1 ± 0.4 

PEG45-b-P4VP18●ManPKO 27.7 ± 0.6 29.9 ± 0.3 

ManPKO 29.6 ± 0.8 35.4 ± 0.5 
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Figure 8.  Snapshots of the molecular models used for (a) PEG●ManPKO, (b) 

P4VP●ManPKO, (c) PEG45-b-P4VP18●ManPKO and (d) ManPKO. 

The FT-IR results have already evidenced the formation of specific interactions between the 

mannoside molecules and the respective polymer chains in the complexes, and we now quantify 

hydrogen-bonding via our molecular simulations.  Based on previous findings34, 75, we can rule 

out relevant intramolecular effects, and we then focus on intermolecular hydrogen-bonding 

between constituents moieties.  Fig. 9 illustrates the hydroxyl groups at the ManPKO sugar 

heads capable to form hydrogen bonds, namely, O1H, O2H, O3H and O5H, and we note that 

these can act as both hydrogen donors and acceptors.  PEG and P4VP segments contain hydrogen 

acceptors (oxygen and nitrogen atoms, respectively), and PEG segments also contain hydrogen 

donors (terminal hydroxyl groups, see Fig. ESI7). 

 

 

Figure 9.  Labelling of the groups acting as hydrogen donors/acceptors in the complexes.  We 

note that OH residual groups exist in both the PEG (O21, O28) and PEG45-b-P4VP18 (O201, 

O208) segments used during simulations, according to Tables ESI3 and ESI4, and Fig. ESI7.  
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Table 4 summarises the hydrogen bonds (hits) formed in the bilayer complexes of our 

PEG●ManPKO, P4VP●ManPKO, PEG45-b-P4VP18●ManPKO and ManPKO models.  

The total number of hydrogen bonds between glycosides (C12 and C18:1) fall between 99 to 111 

hit per-frame, with an average of 106 hit per-frame, and this indicates that the interactions 

between glycosides are not extensively modified by the presence and nature of polymer chains 

at the hydrophilic interlayer region, at least for pristine PEG and P4VP.  Indeed, glycosides 

predominantly form hydrogen bonds via the equatorial O1 hydroxyl group, regardless of the 

presence and nature of the polymer chain. 

Hydrogen-bonding between glycosides and the polymer chains does show some significant 

differences.  In terms of overall interactions, the glycosides form more hydrogen bonds with PEG 

(52) than with P4VP (31), and the PEG segments preferentially form new hydrogen bonds with 

glycosides, rather than within other CH2CH2O groups in the PEG chain, see 13.92 + 2.57 > 11.18 

in Table ESI3 (O21 and O28).  By comparing the C12/C18:1-PEG and C12/C18:1-P4VP totals 

in Table 4(a) and 4(b), there seems to be a stronger tendency for C18:1 molecules to interact 

with P4VP than with PEG, and this can be also seen from Table 4(c) for PEG45-b-

P4VP18●ManPKO.  These results cannot be explained, at least solely, by differences in 

hydrogen-bonding strength, since the OH-max (and WTC) values for PEG●ManPKO and 

P4VP●ManPKO in Fig. 7(c) almost overlap.  Interactions must be then favoured by a stronger 

interfacial mixing of PEG chains and mannoside molecules at the bilayer boundaries, due to the 

hydrophilic nature of the PEG chains.  In the case of P4VP, such interfacial interactions must be 

somehow hindered by the more hydrophobic nature of the pyridine ring, probably coupled with 

steric effects, and perhaps offset by the stereochemistry of C18:1. 

Interestingly, the PEG45-b-P4VP18●ManPKO model provides different tendencies for 

hydrogen-bonding respect to the pristine polymers, see Table 4(c).  As a first observation, the 

O2H group in the mannoside tends to form more hydrogen bonds than O1H, and P4VP is now 

the preferred polymer segment to interact with the glycosides, respect to PEG (8.464 > 6.121 in 

the total columns).  These changes in the local distribution of hydrogen bonding could be 

favoured by a better interfacial mixing between polymer chains and glycosides bilayers, due to 

the amphiphilic character of the block-copolymer.  As a result, the pyridine group of P4VP is 

capable to form stronger interactions with the hydroxyl groups of ManPKO than PEG4, which 

is in excellent agreement with the shift to lower frequencies in the IR OH stretching band of 

PEG45-b-P4VP18●ManPKO reported above in Fig. 7(c). 

Jo
ur

na
l P

re
-p

ro
of



Aripin et al.       Revised Manuscript 
 

18 

Table 4(a).  Hydrogen-bonding hits per frame, corresponding to the PEG●αManPKO model.  First molecular unit acts as donor, second as acceptor 

(for example, in C12 – PEG, C12 is the hydrogen donor, and the PEG unit the hydrogen acceptor).  Oxygen notation according to Fig. 9 and Fig. 

ESI7.  

 C12-C12 C12-C18:1 C18:1-C18:1 C18:1-C12 Total C12-PEG C18:1-PEG Total 

O1 18.14 5.59 2.81 3.54 30.07 13.07 2.87 76.08 

O2 17.85 4.11 1.88 4.11 27.96 13.99 2.50 72.41 

O3 17.98 2.69 2.24 3.63 26.54 10.69 2.47 66.25 

O5 13.47 1.84 2.09 1.71 19.11 5.41 1.03 44.65 

Total 67.44 14.23 9.02 12.99 103.68 43.16 8.87 52.03 

Table 4(b).  Hydrogen-bonding hits per frame corresponding to the P4VP●αManPKO model. 

 C12-C12 C12-C18:1 C18:1-C18:1 C18:1-C12 Total C12- P4VP C18:1-P4VP Total 

O1 18.45 7.94 0.02 6.80 33.21 6.29 4.09 10.37 

O2 16.85 7.03 0.85 6.06 30.79 5.75 0.57 6.32 

O3 19.20 3.58 2.86 2.30 27.94 6.38 2.76 9.14 

O5 14.75 1.51 1.88 0.31 18.45 4.37 1.24 5.60 

Total 69.25 20.06 5.61 15.47 110.39 22.78 8.65 31.43 

Table 4(c).  Hydrogen-bonding hits per frame corresponding to the PEG45-b-P4VP18●ManPKO model. 

 C12-C12 C12-C18:1 C18:1-C18:1 C18:1-C12 Total C12-PEG C18:1-PEG Total C12-P4VP C18:1-P4VP Total 

O1 20.89 3.01 1.61 6.01 31.52 1.296 0.840 2.136 2.878 0.0004 2.878 

O2 24.82 3.51 0.69 5.25 34.27 1.476 0.257 1.732 2.807 0.0000 2.807 

O3 18.41 4.10 1.81 3.47 27.79 1.286 0.037 1.323 1.906 0.0000 1.906 

O5 13.04 0.75 1.35 0.86 16.00 0.906 0.025 0.930 0.874 0.0000 0.874 

Total 77.16 11.37 5.47 15.58 109.59 4.963 1.158 6.121 8.464 0.0004 8.464 
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Table 4(d). Hydrogen-bonding hits per frame corresponding to the ManPKO model. 

 C12-C12 C12-C18:1 C18:1-C18:1 C18:1-C12 Total 

O1 20.41 4.82 2.26 3.89 31.38 

O2 15.98 2.32 2.70 1.88 22.88 

O3 18.37 3.94 2.33 2.33 26.97 

O5 12.69 2.68 1.12 2.18 18.66 

Total 67.45 13.76 8.41 10.28 99.90 
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Conclusions 

We have prepared complexes of the so-called ManPKO mannoside with different polymeric 

substrates, resulting in three new supramolecular polymers with smectic A mesomorphism, 

following a facile method to yield new formulations containing natural-based liquid crystal 

carbohydrates, and their lyotropic properties in water solutions are under current evaluation.  The 

polymeric segments are located at the interface of glycoside bilayers, stabilised by specific 

interactions with the ManPKO molecules. 

The interfacial miscibility between the poly(ethylene oxide) segments and the mannosides 

promotes hydrogen-bonding in the PEG●ManPKO complex, whilst low solubility and steric 

effects may restrict the interactions involving the poly(4-vynil pyridine) chains and ManPKO 

in the P4VP●ManPKO complex.  Alternatively, the amphiphilic character of the PEG45-b-

P4VP18 block-copolymer seems to facilitate the interactions of the glycosides with the P4VP 

units in the PEG45-b-P4VP18●ManPKO complex.  Hence, it is possible to establish stronger 

hydrogen-bonding with the mannoside molecules, due to the high hydrogen acceptor character 

of the pyridine ring.  

The detailed experimental/modelling analysis of the hydrogen bonds allows to discriminate 

interactions between different components and hydrogen acceptors and donors within sugar 

heads, thus opening new strategies to modify the properties of glycosides by tuning and 

monitoring the hydrogen-bonding network.  We plan to extent this methodology to calculate the 

interactions using other glycosides and varying the relative block sizes, and to introduce new 

functionalities (such as light-responsive molecules) in different polymer blocks capable to 

simultaneously yield strong hydrogen bonds and favourable interfacial mixing. 
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