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We show that the states generated by a three-mode spontaneous parametric down-conversion (SPDC) in-
teraction Hamiltonian possess tripartite entanglement of a different nature to other paradigmatic three-mode
entangled states generated by the combination of two-mode SPDC interactions. While two-mode SPDC gener-
ates Gaussian states whose entanglement can be characterized by standard criteria based on two-mode quantum
correlations, these criteria fail to capture the entanglement generated by three-mode SPDC. We use criteria built
from three-mode correlation functions to show that the class of states recently generated in a superconducting-
circuit implementation of three-mode SPDC ideally have tripartite entanglement, contrary to recent claims in
the literature. These criteria are suitable for triple SPDC but we show that they fail to detect tripartite entangle-
ment in other states which are known to possess it, which illustrates the existence of two fundamentally different
notions of tripartite entanglement in three-mode continuous-variable systems.

Parametric amplification of the quantum vacuum in
superconducting-circuit architectures [1] has proven to be a
very fruitful paradigm for quantum technologies. For in-
stance, the high-frequency modulation of a superconducting
quantum interference device (SQUID) terminating a super-
conducting transmission line can generate pairs of photons
out of the vacuum —a particular realization of the dynami-
cal Casimir effect [2] —which exhibit entanglement and other
forms of quantum correlations [3–6]. These correlations be-
come resources that can be used in many applications of quan-
tum technologies, for instance, entangling distant qubits [7, 8]
in distributed quantum computing architectures [9].

However, the use of these resources is limited by their bi-
partite nature, meaning the correlations only span two sys-
tems. Extending the entanglement to more modes would
unlock access to a large number of new protocols includ-
ing boson sampling [10], the generation of microwave clus-
ter states [11], quantum state sharing [12], quantum secret
sharing [13, 14], and quantum teleportation networks [15].
One strategy to accomplish this is multitone modulation of the
SQUID, with frequencies addressing multiple pairs of modes.
Theory predicts that this approach can produce genuine mul-
tipartite entanglement [16, 17] and it has recently been exper-
imentally validated for three modes [18]. While the demon-
strated entanglement was genuinely tripartite, it was gener-
ated by the simultaneous action of a pair of two-mode inter-
actions and was detected purely through the measurement of
second-order correlations [19]. It stands to reason that a single
three-mode Hamiltonian might be better suited for the task of
generating tripartite entanglement.

In fact, a three-mode spontaneous parametric down-
conversion (SPDC) Hamiltonian can be engineered in super-
conducting circuits by suitably flux pumping an asymmetric
SQUID terminating a coplanar waveguide resonator, as re-
cently demonstrated experimentally in [20]. As this scheme
includes a direct three-mode interaction, the relevant physi-
cal features cannot be captured by second-order correlations,

making it necessary to include higher-order correlations in
the characterization of the state [20]. The presence of inde-
pendent higher-order correlations is often referred to as non-
Gaussianity in the system. Common second-order criteria, in-
cluding those previously mentioned [19], fail to detect multi-
partite entanglement in these states, as was noted in [21]. This
has led to the impression that three-mode SPDC may not be
a useful quantum resource. Nevertheless, in this Letter, we
show that three-mode SPDC does produce entanglement, as
well as the necessity to use higher-order correlations to detect
the generated tripartite entanglement. Therefore, the claim
in [21] that there is no entanglement in these states is overly
broad. As we will prove below, the correct statement is that
entanglement is, indeed, generated, but that it is non-Gaussian
in nature.

In this work, we use entanglement criteria based on third-
and fourth-order correlations to detect tripartite entanglement
in the class of states produced experimentally by three-mode
SPDC [20]. We show that the class exhibits both full insep-
arability and genuine tripartite entanglement. We also show
that the same criteria fail to detect tripartite entanglement in
states produced by quadratic Hamiltonians, in which the mul-
timode interaction is induced by the combination of two-mode
interactions. Since we know the latter also include states with
genuine tripartite entanglement, as shown experimentally in
[18], our results clearly suggest that higher-order SPDC in-
teractions generate a different kind of multipartite entangle-
ment, distinguished from the Gaussian entanglement most
commonly studied in continuous-variable systems. We will
refer to this novel notion of entanglement as genuine non-
Gaussian entanglement.

Let us now start with the description of our results. We
analyze a system related to the experimental setup of [20],
consisting of a superconducting resonator terminated by an
asymmetric SQUID. We consider three field modes with fre-
quencies ωi, (i = a, b, c) and the corresponding creation and
annihilation operators i, i† with standard bosonic commuta-
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tion relations. We assume that initially each mode is in a weak
thermal state ρi(nith), characterized by the corresponding low
average number of thermal photons according to its frequency
and temperature, as given by 〈nith〉 = 1/(eβωi − 1), where
βωi = ~ωi/(kBT )� 1.

The system evolves under the interaction Hamiltonian:

HI = ~g0 cosω0t(e
iθaa+ e−iθaa†)(eiθbb+ e−iθbb†)

(eiθcc+ e−iθcc†), (1)

where θi are locally controllable phases and g0 is the coupling
strength. Choosing the coupling modulation ω0 as

ω0 = ωa + ωb + ωc (2)

gives rise to the effective Hamiltonian, with a derivation re-
sembling a rotating-wave approximation (RWA), that has the
form in the interaction picture of:

HI =
~g0
2

(eiθabc+ e−iθa†b†c†), (3)

where θ = θa+ θb+ θc, and in the following we fix it to zero,
as it plays no interesting role in entanglement generation. This
is the three-mode SPDC Hamiltonian [22–24] required.

The standard criteria to detect tripartite entanglement, such
as [19, 25], are based on inequalities concerning expecta-
tion values and correlations which involve of course the three
modes but in a pairwise fashion, such as 〈xixj〉 (xi, xj be-
ing the position quadratures associated to the modes, e.g.,
xi = (i + i†)/

√
2). However, looking at the Hamiltonian (3)

it seems natural to think that these criteria are not suitable in
this case. Indeed it was shown in [21] that some of these crite-
ria were not able to detect tripartite entanglement for these
states. Perhaps the most compelling evidence proving this
point is that the covariance matrix of an initial thermal state
—including the vacuum— evolved under Hamiltonian (3) re-
mains diagonal. That is, Hamiltonian (3) does not produce any
second-order correlations. But we must stress that the criteria
used in [21] are sufficient but not necessary conditions on en-
tanglement, and as such they are inconclusive when they fail.
Thus, what is needed is to look for higher-order criteria able to
capture the pure three-mode nature of the states generated by
the Hamiltonian (3). This nature has been demonstrated, both
theoretically and experimentally, by the absence of second-
order correlations together with the existence of third-order
ones [20].

A typical approach to tripartite entanglement is to study
correlations between all the possible bipartitions of the sys-
tem. We recall that the definition of an entangled system is
a system whose density matrix, ρ, is neither separable nor a
mixture of separable states, that is ρ 6=

∑
i Piρ

(1)
i ⊗ ρ

(2)
i ,

where each ρ(1)i spans the first system and each ρ(2)i the sec-
ond. For instance, for each bipartition we can look at the in-
equalities developed in [26]. As usual, if the state is not entan-
gled between the two subsystems, correlations between them
are, by definition, classical and the inequalities hold. But if

they are violated, we can conclude the state has to be entan-
gled between those subsystems. If we define A(1) and A(2)

as operators acting respectively on the Hilbert spaces of two
subsystems in which the total system is split, by [26] if the
total state is not entangled with respect to this partition, then:

|〈A(1)A(2)〉| ≤
√
〈A(1)†A(1)〉〈A(2)†A(2)〉. (4)

Therefore, in our case, choosing the annihilation operator as
the reference operator in all cases, we have that if condition

|〈abc〉| ≤
√
〈Ni〉〈NjNk〉, (5)

is violated for all three possible i − jk bipartitions (namely
a−bc, b−ac, c−ab) of the system then we know that the state
is not biseparable with respect to any bipartition. In the above,
N is the number operator. If the state is not biseparable for the
three bipartitions, then the state is said to be fully inseparable.
Defining Ii = |〈abc〉|−

√
〈Ni〉〈NjNk〉, we have that the state

is fully inseparable if Ii > 0 for the three bipartitions.
However, even if the state has full inseparability, there is

still the possibility that

ρ = P1ρ
(a)
1 ⊗ ρ

(bc)
1 + P2ρ

(b)
2 ⊗ ρ

(ac)
2

+ P3ρ
(c)
3 ⊗ ρ

(ab)
3 (6)

or in other words, the state is a mixture of biseparable states
(which implies P1 + P2 + P3 = 1). In this particular state,
it is as if the tripartite correlations were classical and, hence,
we do not refer to full inseparability as a form of tripartite
entanglement. Then it becomes immediate to define genuine
tripartite entanglement as the correlations of fully inseparable
states that cannot be written as (6) [19, 27, 28]. Note that we
are in an analogous situation as before, looking for a condi-
tion every state like (6) must follow, and concluding that any
state violating it has to be genuinely entangled. Note too that
the difference between full inseparability and genuine entan-
glement is only relevant for mixed states.

We have not found in the literature a condition for genuine
tripartite entanglement involving correlations of more than
two modes. However, we can derive an inequality involving
|〈abc〉| that every state of the form (6) follows. Using (6) and
the triangle inequality, it is straightforward to write

|〈abc〉ρ| ≤ P1|〈abc〉ρ1 |+ P2|〈abc〉ρ2 |+ P3|〈abc〉ρ3 |, (7)

where in the lhs the expectation value refers to the total state
ρ while in the rhs refer to the different elements of the convex
sum, that we are denoting ρ1, ρ2, ρ3, namely

ρ1 = ρ
(a)
1 ⊗ ρ

(bc)
1 , ρ2 = ρ

(b)
2 ⊗ ρ

(ac)
2

ρ3 = ρ
(c)
3 ⊗ ρ

(ab)
3 (8)
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FIG. 1: Maximum value of the witness I1 taken in the time in-
terval (0, 50ωa), when the system evolves under Hamiltonian (1)
and represented for several values of coupling g0 and temperature
T = ~/kBβ, in units normalized by the lower energy mode fre-
quency, ωa. I2 and I3 have the same behavior, accounting for differ-
ent mode frequencies. This indicates the system is fully inseparable
for any value of g0 and β in the regime explored, except for very high
temperature and low coupling.

Now we know that, by construction, ρ1, ρ2 and ρ3 are
biseparable and therefore they must follow the inequalities
(5). Therefore we have

|〈abc〉ρ| ≤ P1

√
〈Na〉ρ1〈NbNc〉ρ1

+ P2

√
〈Nb〉ρ2〈NaNc〉ρ2

+ P3

√
〈Nc〉ρ3〈NaNb〉ρ3 . (9)

Finally, using again (6) we have that, for instance,

P1〈Na〉ρ1 = 〈Na〉ρ − P2〈Na〉ρ2 − P3〈Na〉ρ3
≤ 〈Na〉ρ, (10)

and similarly with all the expectation values in (9). Putting
everything together, we find that if the state is of the form (6)
then:

|〈abc〉| ≤
√
〈Na〉〈NbNc〉+

√
〈Nb〉〈NaNc〉

+
√
〈Nc〉〈NaNb〉, (11)

where we have let the subindex ρ drop since it would be the
same for all expectation values. Therefore, we conclude that if
a state violates (11), then it possesses genuine tripartite entan-
glement. If it does not violate the inequality (11) but violates
(5) for the three bipartitions, then it is just fully inseparable.
We define G = |〈abc〉|−

√
〈Na〉〈NbNc〉−

√
〈Nb〉〈NaNc〉−√

〈Nc〉〈NaNb〉, and then G > 0 is the condition for genuine
tripartite entanglement.

With these witnesses Ii and G, we can begin to study the
entanglement generated by three-mode SPDC. If we consider

FIG. 2: Maximum value of the witness G taken in the same time in-
terval as I1 in Fig. (1) and represented against the same variables in
the same units and conditions. As it can be seen, genuine nongaus-
sian entanglement is reported for low temperatures over βωa = 1.6
(blue/darker upper region) while the witness fails to capture the sys-
tem’s entanglement, if any, for higher temperatures comparable to
level spacing (red/darker lower region).

the initial temperature negligible, then the initial state is the
vacuum. If in addition to this we suppose that we are in a
perturbative regime where the system evolves to a pure state
containing only the vacuum and a triplet with small probabil-
ity amplitude α, then 〈abc〉 ' α, while the 〈Ni〉, 〈NjNk〉 are
of order |α|2. Therefore, for very low temperatures and cou-
pling strengths, the conditions for entanglement are expected
to be satisfied.

In order to confirm and generalize this analytical intuition,
we present now numerical results for the above inequalities
for the states generated by the evolution under the interaction
Hamiltonian (3) for three modes ωa = ω, ωb = 2ω, ωc = 3ω
in the parameter regime βi > 1, g0/ω << 1 (low temperature
and low coupling).

We find that the system is fully inseparable in all the ex-
plored parameter regime, except for very low coupling and
high temperature (g0 < 0.002ωa and βωa < 1.2). This can
be seen in Fig. (1), where we present the maximum value of
I1 over the time interval (0, 50/ωa) as a function of coupling
and temperature. This proves a − bc inseparability. The val-
ues of I2 and I3 are not shown, but, in fact, they generally
exceed I1. We expect this behavior since the single modes
in their bipartitions have higher frequencies which leads to
fewer thermal photons and a better parametric amplification
of vacuum by the Hamiltonian. Genuine entanglement is de-
tected for temperatures lower than βωa = 1.6, as reported in
Fig. (2). Summarizing, almost everywhere in the explored
parameter regime (that is, g0 < 0.1ωa and β < 1) the sys-
tem contains tripartite correlations, but only for temperatures
below βωa = 1.6 are those correlations known to be genuine
entanglement.
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FIG. 3: Value of the witness G as a function of time and cou-
pling, in units of the lowest frequency mode when the temperature
is kBT = ~ωa/2.7, well in the genuinely entangled regime shown
in Fig. (2) and close to vacuum. The system evolves under the RWA
Hamiltonian (3). As expected, the value of the witness increases both
with time and coupling.

The role of the coupling is richer than the temperature, as
higher coupling can require higher-order corrections in pertur-
bation theory, as well as break the rotating-wave approxima-
tion, leading to a discrepancy between the full Hamiltonian in
Eq. (1) and the effective one in Eq. (3). Intuitively, the cou-
pling controls the rate of evolution of the interacting system.
Figure (3) shows how the system evolves from a slightly ther-
mal state under the RWA Hamiltonian (3), developing an ever
increasing value of G with a rate determined by the coupling.

However, we may expect that the Hamiltonian (3) will stop
being an effective description of the full Hamiltonian (1) at
high couplings and long times. That is, the RWA may break
down. In fact, we observe this breakdown as shown in Fig.
(4), which plots the same information but evolving the system
under the full Hamiltonian (1). In this new scenario, the be-
havior ofG is the same as Figure (3) for short times (in units of
the coupling), indicating genuine entanglement. However, G
becomes negative after some time. This behavior is expected,
since the RWA neglects terms that do not create or annihi-
late photon triplets, e.g., a†bc, a†b†c. Therefore, when their
effects become relevant, we expect weaker third-order corre-
lations. In the experimental setup of [20], the reported cor-
relations follow from the evolution of the system under their
RWA Hamiltonian, therefore the relevant parameter regime in
this work has to be contained in the region with G > 0 in
Figure (4). In addition to this, the timescale during which
the RWA is valid is short compared to dissipative ones, so we
conclude that decoherence in the system will not produce a
relevant change in G before the full Hamiltonian (1) spoils it.

FIG. 4: Value of the witness G under the same conditions as in Fig.
(3) but evolving under the full Hamiltonian (1). In the perturbative
regime, i.e. for short times or low coupling, the prediction for G is
the same as in Fig. (3). However, outside this regime the behav-
ior is significantly different with the value of the witness becoming
negative, for longer times and higher couplings.

We have seen, then, that the states generated by the ac-
tion of a three-mode SPDC Hamiltonian such as (1) or (3)
evolving from an initial weakly thermal state possess tripartite
entanglement —contrary to the claim in [21]—which can be
detected by our three-mode criteria. Now we compare these
results with the case of double two-mode SPDC (that is, a
Hamiltonian of the form ab + ac + a†b† + a†c†). In [18],
it was shown that the resulting state possesses not only full
inseparability, but also genuine entanglement by means of en-
tanglement tests based on second-order correlations. We re-
port thatG fails at detecting any entanglement at any coupling
or temperature in the regime in which it would be expected to
(that is, β > 1 and g0/ωa < 0.1). Therefore, we are now
in the opposite scenario: tripartite entanglement is detected
by two-mode criteria but not by our three-mode criteria. This
suggests that G and the conditions explored in [18, 21] de-
tect two different kinds of entanglement. Hence, we label the
entanglement signaled by G > 0 as tripartite genuine non-
Gaussian entanglement, given the clear non-Gaussian nature
of states evolved under either Eqs. (1) or (3).

Summarizing, we have shown that three-mode SPDC inter-
action Hamiltonians generate states with both full insepara-
bility and genuine tripartite entanglement when acting upon a
weak thermal state, contrary to previous claims in the litera-
ture. The type of tripartite entanglement displayed by these
states is different from other paradigmatic three-mode states,
and therefore needs to be captured by different entanglement
criteria. We introduce entanglement criteria based on three-
mode correlations and show that our states satisfy them in a
promising parameter regime. However, we show that double-
SPDC Hamiltonians acting on weak thermal states, which
generate states that have been proven to also possess tripartite
entanglement by means of different second-order criteria, fail
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to satisfy our conditions. This points to two different classes
of continuous-variable tripartite entanglement in three-mode
systems.

Our results pave the way for multipartite entanglement tests
in the experimental setup of [20] and could be a guide for the
characterization and measurement of entanglement in three-
mode SPDC in other platforms [29, 30].
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